1 /*
2 * jmemmgr.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2016, 2021-2022, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains the JPEG system-independent memory management
12 * routines. This code is usable across a wide variety of machines; most
13 * of the system dependencies have been isolated in a separate file.
14 * The major functions provided here are:
15 * * pool-based allocation and freeing of memory;
16 * * policy decisions about how to divide available memory among the
17 * virtual arrays;
18 * * control logic for swapping virtual arrays between main memory and
19 * backing storage.
20 * The separate system-dependent file provides the actual backing-storage
21 * access code, and it contains the policy decision about how much total
22 * main memory to use.
23 * This file is system-dependent in the sense that some of its functions
24 * are unnecessary in some systems. For example, if there is enough virtual
25 * memory so that backing storage will never be used, much of the virtual
26 * array control logic could be removed. (Of course, if you have that much
27 * memory then you shouldn't care about a little bit of unused code...)
28 */
29
30 #define JPEG_INTERNALS
31 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
32 #include "jinclude.h"
33 #include "jpeglib.h"
34 #include "jmemsys.h" /* import the system-dependent declarations */
35 #if !defined(_MSC_VER) || _MSC_VER > 1600
36 #include <stdint.h>
37 #endif
38 #include <limits.h>
39
40
41 LOCAL(size_t)
round_up_pow2(size_t a,size_t b)42 round_up_pow2(size_t a, size_t b)
43 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
44 /* Assumes a >= 0, b > 0, and b is a power of 2 */
45 {
46 return ((a + b - 1) & (~(b - 1)));
47 }
48
49
50 /*
51 * Some important notes:
52 * The allocation routines provided here must never return NULL.
53 * They should exit to error_exit if unsuccessful.
54 *
55 * It's not a good idea to try to merge the sarray and barray routines,
56 * even though they are textually almost the same, because samples are
57 * usually stored as bytes while coefficients are shorts or ints. Thus,
58 * in machines where byte pointers have a different representation from
59 * word pointers, the resulting machine code could not be the same.
60 */
61
62
63 /*
64 * Many machines require storage alignment: longs must start on 4-byte
65 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
66 * always returns pointers that are multiples of the worst-case alignment
67 * requirement, and we had better do so too.
68 * There isn't any really portable way to determine the worst-case alignment
69 * requirement. This module assumes that the alignment requirement is
70 * multiples of ALIGN_SIZE.
71 * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and
72 * sizeof(void *). This is necessary on some workstations (where doubles
73 * really do need 8-byte alignment) and will work fine on nearly everything.
74 * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double)
75 * may be insufficient, for example, on CHERI-enabled platforms with 16-byte
76 * pointers and a 16-byte alignment requirement. If your machine has lesser
77 * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller.
78 * The only place I know of where this will NOT work is certain Macintosh
79 * 680x0 compilers that define double as a 10-byte IEEE extended float.
80 * Doing 10-byte alignment is counterproductive because longwords won't be
81 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have
82 * such a compiler.
83 */
84
85 #ifndef ALIGN_SIZE /* so can override from jconfig.h */
86 #ifndef WITH_SIMD
87 #define ALIGN_SIZE MAX(sizeof(void *), sizeof(double))
88 #else
89 #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require
90 16-byte (128-bit) alignment, but AVX2 requires
91 32-byte alignment. */
92 #endif
93 #endif
94
95 /*
96 * We allocate objects from "pools", where each pool is gotten with a single
97 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
98 * overhead within a pool, except for alignment padding. Each pool has a
99 * header with a link to the next pool of the same class.
100 * Small and large pool headers are identical.
101 */
102
103 typedef struct small_pool_struct *small_pool_ptr;
104
105 typedef struct small_pool_struct {
106 small_pool_ptr next; /* next in list of pools */
107 size_t bytes_used; /* how many bytes already used within pool */
108 size_t bytes_left; /* bytes still available in this pool */
109 } small_pool_hdr;
110
111 typedef struct large_pool_struct *large_pool_ptr;
112
113 typedef struct large_pool_struct {
114 large_pool_ptr next; /* next in list of pools */
115 size_t bytes_used; /* how many bytes already used within pool */
116 size_t bytes_left; /* bytes still available in this pool */
117 } large_pool_hdr;
118
119 /*
120 * Here is the full definition of a memory manager object.
121 */
122
123 typedef struct {
124 struct jpeg_memory_mgr pub; /* public fields */
125
126 /* Each pool identifier (lifetime class) names a linked list of pools. */
127 small_pool_ptr small_list[JPOOL_NUMPOOLS];
128 large_pool_ptr large_list[JPOOL_NUMPOOLS];
129
130 /* Since we only have one lifetime class of virtual arrays, only one
131 * linked list is necessary (for each datatype). Note that the virtual
132 * array control blocks being linked together are actually stored somewhere
133 * in the small-pool list.
134 */
135 jvirt_sarray_ptr virt_sarray_list;
136 jvirt_barray_ptr virt_barray_list;
137
138 /* This counts total space obtained from jpeg_get_small/large */
139 size_t total_space_allocated;
140
141 /* alloc_sarray and alloc_barray set this value for use by virtual
142 * array routines.
143 */
144 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
145 } my_memory_mgr;
146
147 typedef my_memory_mgr *my_mem_ptr;
148
149
150 /*
151 * The control blocks for virtual arrays.
152 * Note that these blocks are allocated in the "small" pool area.
153 * System-dependent info for the associated backing store (if any) is hidden
154 * inside the backing_store_info struct.
155 */
156
157 struct jvirt_sarray_control {
158 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
159 JDIMENSION rows_in_array; /* total virtual array height */
160 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
161 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
162 JDIMENSION rows_in_mem; /* height of memory buffer */
163 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
164 JDIMENSION cur_start_row; /* first logical row # in the buffer */
165 JDIMENSION first_undef_row; /* row # of first uninitialized row */
166 boolean pre_zero; /* pre-zero mode requested? */
167 boolean dirty; /* do current buffer contents need written? */
168 boolean b_s_open; /* is backing-store data valid? */
169 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
170 backing_store_info b_s_info; /* System-dependent control info */
171 };
172
173 struct jvirt_barray_control {
174 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
175 JDIMENSION rows_in_array; /* total virtual array height */
176 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
177 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
178 JDIMENSION rows_in_mem; /* height of memory buffer */
179 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
180 JDIMENSION cur_start_row; /* first logical row # in the buffer */
181 JDIMENSION first_undef_row; /* row # of first uninitialized row */
182 boolean pre_zero; /* pre-zero mode requested? */
183 boolean dirty; /* do current buffer contents need written? */
184 boolean b_s_open; /* is backing-store data valid? */
185 jvirt_barray_ptr next; /* link to next virtual barray control block */
186 backing_store_info b_s_info; /* System-dependent control info */
187 };
188
189
190 #ifdef MEM_STATS /* optional extra stuff for statistics */
191
192 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)193 print_mem_stats(j_common_ptr cinfo, int pool_id)
194 {
195 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
196 small_pool_ptr shdr_ptr;
197 large_pool_ptr lhdr_ptr;
198
199 /* Since this is only a debugging stub, we can cheat a little by using
200 * fprintf directly rather than going through the trace message code.
201 * This is helpful because message parm array can't handle longs.
202 */
203 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
204 pool_id, mem->total_space_allocated);
205
206 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
207 lhdr_ptr = lhdr_ptr->next) {
208 fprintf(stderr, " Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
209 }
210
211 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
212 shdr_ptr = shdr_ptr->next) {
213 fprintf(stderr, " Small chunk used %ld free %ld\n",
214 (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
215 }
216 }
217
218 #endif /* MEM_STATS */
219
220
221 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)222 out_of_memory(j_common_ptr cinfo, int which)
223 /* Report an out-of-memory error and stop execution */
224 /* If we compiled MEM_STATS support, report alloc requests before dying */
225 {
226 #ifdef MEM_STATS
227 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
228 #endif
229 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
230 }
231
232
233 /*
234 * Allocation of "small" objects.
235 *
236 * For these, we use pooled storage. When a new pool must be created,
237 * we try to get enough space for the current request plus a "slop" factor,
238 * where the slop will be the amount of leftover space in the new pool.
239 * The speed vs. space tradeoff is largely determined by the slop values.
240 * A different slop value is provided for each pool class (lifetime),
241 * and we also distinguish the first pool of a class from later ones.
242 * NOTE: the values given work fairly well on both 16- and 32-bit-int
243 * machines, but may be too small if longs are 64 bits or more.
244 *
245 * Since we do not know what alignment malloc() gives us, we have to
246 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
247 * adjustment.
248 */
249
250 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
251 1600, /* first PERMANENT pool */
252 16000 /* first IMAGE pool */
253 };
254
255 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
256 0, /* additional PERMANENT pools */
257 5000 /* additional IMAGE pools */
258 };
259
260 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
261
262
263 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)264 alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
265 /* Allocate a "small" object */
266 {
267 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
268 small_pool_ptr hdr_ptr, prev_hdr_ptr;
269 char *data_ptr;
270 size_t min_request, slop;
271
272 /*
273 * Round up the requested size to a multiple of ALIGN_SIZE in order
274 * to assure alignment for the next object allocated in the same pool
275 * and so that algorithms can straddle outside the proper area up
276 * to the next alignment.
277 */
278 if (sizeofobject > MAX_ALLOC_CHUNK) {
279 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
280 is close to SIZE_MAX. */
281 out_of_memory(cinfo, 7);
282 }
283 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
284
285 /* Check for unsatisfiable request (do now to ensure no overflow below) */
286 if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
287 MAX_ALLOC_CHUNK)
288 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
289
290 /* See if space is available in any existing pool */
291 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
292 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
293 prev_hdr_ptr = NULL;
294 hdr_ptr = mem->small_list[pool_id];
295 while (hdr_ptr != NULL) {
296 if (hdr_ptr->bytes_left >= sizeofobject)
297 break; /* found pool with enough space */
298 prev_hdr_ptr = hdr_ptr;
299 hdr_ptr = hdr_ptr->next;
300 }
301
302 /* Time to make a new pool? */
303 if (hdr_ptr == NULL) {
304 /* min_request is what we need now, slop is what will be leftover */
305 min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
306 if (prev_hdr_ptr == NULL) /* first pool in class? */
307 slop = first_pool_slop[pool_id];
308 else
309 slop = extra_pool_slop[pool_id];
310 /* Don't ask for more than MAX_ALLOC_CHUNK */
311 if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
312 slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
313 /* Try to get space, if fail reduce slop and try again */
314 for (;;) {
315 hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
316 if (hdr_ptr != NULL)
317 break;
318 slop /= 2;
319 if (slop < MIN_SLOP) /* give up when it gets real small */
320 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
321 }
322 mem->total_space_allocated += min_request + slop;
323 /* Success, initialize the new pool header and add to end of list */
324 hdr_ptr->next = NULL;
325 hdr_ptr->bytes_used = 0;
326 hdr_ptr->bytes_left = sizeofobject + slop;
327 if (prev_hdr_ptr == NULL) /* first pool in class? */
328 mem->small_list[pool_id] = hdr_ptr;
329 else
330 prev_hdr_ptr->next = hdr_ptr;
331 }
332
333 /* OK, allocate the object from the current pool */
334 data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
335 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
336 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
337 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
338 data_ptr += hdr_ptr->bytes_used; /* point to place for object */
339 hdr_ptr->bytes_used += sizeofobject;
340 hdr_ptr->bytes_left -= sizeofobject;
341
342 return (void *)data_ptr;
343 }
344
345
346 /*
347 * Allocation of "large" objects.
348 *
349 * The external semantics of these are the same as "small" objects. However,
350 * the pool management heuristics are quite different. We assume that each
351 * request is large enough that it may as well be passed directly to
352 * jpeg_get_large; the pool management just links everything together
353 * so that we can free it all on demand.
354 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
355 * structures. The routines that create these structures (see below)
356 * deliberately bunch rows together to ensure a large request size.
357 */
358
359 METHODDEF(void *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)360 alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
361 /* Allocate a "large" object */
362 {
363 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
364 large_pool_ptr hdr_ptr;
365 char *data_ptr;
366
367 /*
368 * Round up the requested size to a multiple of ALIGN_SIZE so that
369 * algorithms can straddle outside the proper area up to the next
370 * alignment.
371 */
372 if (sizeofobject > MAX_ALLOC_CHUNK) {
373 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
374 is close to SIZE_MAX. */
375 out_of_memory(cinfo, 8);
376 }
377 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
378
379 /* Check for unsatisfiable request (do now to ensure no overflow below) */
380 if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
381 MAX_ALLOC_CHUNK)
382 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
383
384 /* Always make a new pool */
385 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
386 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
387
388 hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
389 sizeof(large_pool_hdr) +
390 ALIGN_SIZE - 1);
391 if (hdr_ptr == NULL)
392 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
393 mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
394 ALIGN_SIZE - 1;
395
396 /* Success, initialize the new pool header and add to list */
397 hdr_ptr->next = mem->large_list[pool_id];
398 /* We maintain space counts in each pool header for statistical purposes,
399 * even though they are not needed for allocation.
400 */
401 hdr_ptr->bytes_used = sizeofobject;
402 hdr_ptr->bytes_left = 0;
403 mem->large_list[pool_id] = hdr_ptr;
404
405 data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
406 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
407 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
408 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
409
410 return (void *)data_ptr;
411 }
412
413
414 /*
415 * Creation of 2-D sample arrays.
416 *
417 * To minimize allocation overhead and to allow I/O of large contiguous
418 * blocks, we allocate the sample rows in groups of as many rows as possible
419 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
420 * NB: the virtual array control routines, later in this file, know about
421 * this chunking of rows. The rowsperchunk value is left in the mem manager
422 * object so that it can be saved away if this sarray is the workspace for
423 * a virtual array.
424 *
425 * Since we are often upsampling with a factor 2, we align the size (not
426 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
427 * to be as careful about size.
428 */
429
430 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)431 alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
432 JDIMENSION numrows)
433 /* Allocate a 2-D sample array */
434 {
435 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
436 JSAMPARRAY result;
437 JSAMPROW workspace;
438 JDIMENSION rowsperchunk, currow, i;
439 long ltemp;
440
441 /* Make sure each row is properly aligned */
442 if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
443 out_of_memory(cinfo, 5); /* safety check */
444
445 if (samplesperrow > MAX_ALLOC_CHUNK) {
446 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
447 is close to SIZE_MAX. */
448 out_of_memory(cinfo, 9);
449 }
450 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
451 sizeof(JSAMPLE));
452
453 /* Calculate max # of rows allowed in one allocation chunk */
454 ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
455 ((long)samplesperrow * sizeof(JSAMPLE));
456 if (ltemp <= 0)
457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458 if (ltemp < (long)numrows)
459 rowsperchunk = (JDIMENSION)ltemp;
460 else
461 rowsperchunk = numrows;
462 mem->last_rowsperchunk = rowsperchunk;
463
464 /* Get space for row pointers (small object) */
465 result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
466 (size_t)(numrows * sizeof(JSAMPROW)));
467
468 /* Get the rows themselves (large objects) */
469 currow = 0;
470 while (currow < numrows) {
471 rowsperchunk = MIN(rowsperchunk, numrows - currow);
472 workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
473 (size_t)((size_t)rowsperchunk * (size_t)samplesperrow *
474 sizeof(JSAMPLE)));
475 for (i = rowsperchunk; i > 0; i--) {
476 result[currow++] = workspace;
477 workspace += samplesperrow;
478 }
479 }
480
481 return result;
482 }
483
484
485 /*
486 * Creation of 2-D coefficient-block arrays.
487 * This is essentially the same as the code for sample arrays, above.
488 */
489
490 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)491 alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
492 JDIMENSION numrows)
493 /* Allocate a 2-D coefficient-block array */
494 {
495 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
496 JBLOCKARRAY result;
497 JBLOCKROW workspace;
498 JDIMENSION rowsperchunk, currow, i;
499 long ltemp;
500
501 /* Make sure each row is properly aligned */
502 if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
503 out_of_memory(cinfo, 6); /* safety check */
504
505 /* Calculate max # of rows allowed in one allocation chunk */
506 ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
507 ((long)blocksperrow * sizeof(JBLOCK));
508 if (ltemp <= 0)
509 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
510 if (ltemp < (long)numrows)
511 rowsperchunk = (JDIMENSION)ltemp;
512 else
513 rowsperchunk = numrows;
514 mem->last_rowsperchunk = rowsperchunk;
515
516 /* Get space for row pointers (small object) */
517 result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
518 (size_t)(numrows * sizeof(JBLOCKROW)));
519
520 /* Get the rows themselves (large objects) */
521 currow = 0;
522 while (currow < numrows) {
523 rowsperchunk = MIN(rowsperchunk, numrows - currow);
524 workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
525 (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
526 sizeof(JBLOCK)));
527 for (i = rowsperchunk; i > 0; i--) {
528 result[currow++] = workspace;
529 workspace += blocksperrow;
530 }
531 }
532
533 return result;
534 }
535
536
537 /*
538 * About virtual array management:
539 *
540 * The above "normal" array routines are only used to allocate strip buffers
541 * (as wide as the image, but just a few rows high). Full-image-sized buffers
542 * are handled as "virtual" arrays. The array is still accessed a strip at a
543 * time, but the memory manager must save the whole array for repeated
544 * accesses. The intended implementation is that there is a strip buffer in
545 * memory (as high as is possible given the desired memory limit), plus a
546 * backing file that holds the rest of the array.
547 *
548 * The request_virt_array routines are told the total size of the image and
549 * the maximum number of rows that will be accessed at once. The in-memory
550 * buffer must be at least as large as the maxaccess value.
551 *
552 * The request routines create control blocks but not the in-memory buffers.
553 * That is postponed until realize_virt_arrays is called. At that time the
554 * total amount of space needed is known (approximately, anyway), so free
555 * memory can be divided up fairly.
556 *
557 * The access_virt_array routines are responsible for making a specific strip
558 * area accessible (after reading or writing the backing file, if necessary).
559 * Note that the access routines are told whether the caller intends to modify
560 * the accessed strip; during a read-only pass this saves having to rewrite
561 * data to disk. The access routines are also responsible for pre-zeroing
562 * any newly accessed rows, if pre-zeroing was requested.
563 *
564 * In current usage, the access requests are usually for nonoverlapping
565 * strips; that is, successive access start_row numbers differ by exactly
566 * num_rows = maxaccess. This means we can get good performance with simple
567 * buffer dump/reload logic, by making the in-memory buffer be a multiple
568 * of the access height; then there will never be accesses across bufferload
569 * boundaries. The code will still work with overlapping access requests,
570 * but it doesn't handle bufferload overlaps very efficiently.
571 */
572
573
574 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)575 request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
576 JDIMENSION samplesperrow, JDIMENSION numrows,
577 JDIMENSION maxaccess)
578 /* Request a virtual 2-D sample array */
579 {
580 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
581 jvirt_sarray_ptr result;
582
583 /* Only IMAGE-lifetime virtual arrays are currently supported */
584 if (pool_id != JPOOL_IMAGE)
585 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
586
587 /* get control block */
588 result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
589 sizeof(struct jvirt_sarray_control));
590
591 result->mem_buffer = NULL; /* marks array not yet realized */
592 result->rows_in_array = numrows;
593 result->samplesperrow = samplesperrow;
594 result->maxaccess = maxaccess;
595 result->pre_zero = pre_zero;
596 result->b_s_open = FALSE; /* no associated backing-store object */
597 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
598 mem->virt_sarray_list = result;
599
600 return result;
601 }
602
603
604 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)605 request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
606 JDIMENSION blocksperrow, JDIMENSION numrows,
607 JDIMENSION maxaccess)
608 /* Request a virtual 2-D coefficient-block array */
609 {
610 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
611 jvirt_barray_ptr result;
612
613 /* Only IMAGE-lifetime virtual arrays are currently supported */
614 if (pool_id != JPOOL_IMAGE)
615 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
616
617 /* get control block */
618 result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
619 sizeof(struct jvirt_barray_control));
620
621 result->mem_buffer = NULL; /* marks array not yet realized */
622 result->rows_in_array = numrows;
623 result->blocksperrow = blocksperrow;
624 result->maxaccess = maxaccess;
625 result->pre_zero = pre_zero;
626 result->b_s_open = FALSE; /* no associated backing-store object */
627 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
628 mem->virt_barray_list = result;
629
630 return result;
631 }
632
633
634 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)635 realize_virt_arrays(j_common_ptr cinfo)
636 /* Allocate the in-memory buffers for any unrealized virtual arrays */
637 {
638 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
639 size_t space_per_minheight, maximum_space, avail_mem;
640 size_t minheights, max_minheights;
641 jvirt_sarray_ptr sptr;
642 jvirt_barray_ptr bptr;
643
644 /* Compute the minimum space needed (maxaccess rows in each buffer)
645 * and the maximum space needed (full image height in each buffer).
646 * These may be of use to the system-dependent jpeg_mem_available routine.
647 */
648 space_per_minheight = 0;
649 maximum_space = 0;
650 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
651 if (sptr->mem_buffer == NULL) { /* if not realized yet */
652 size_t new_space = (long)sptr->rows_in_array *
653 (long)sptr->samplesperrow * sizeof(JSAMPLE);
654
655 space_per_minheight += (long)sptr->maxaccess *
656 (long)sptr->samplesperrow * sizeof(JSAMPLE);
657 if (SIZE_MAX - maximum_space < new_space)
658 out_of_memory(cinfo, 10);
659 maximum_space += new_space;
660 }
661 }
662 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
663 if (bptr->mem_buffer == NULL) { /* if not realized yet */
664 size_t new_space = (long)bptr->rows_in_array *
665 (long)bptr->blocksperrow * sizeof(JBLOCK);
666
667 space_per_minheight += (long)bptr->maxaccess *
668 (long)bptr->blocksperrow * sizeof(JBLOCK);
669 if (SIZE_MAX - maximum_space < new_space)
670 out_of_memory(cinfo, 11);
671 maximum_space += new_space;
672 }
673 }
674
675 if (space_per_minheight <= 0)
676 return; /* no unrealized arrays, no work */
677
678 /* Determine amount of memory to actually use; this is system-dependent. */
679 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
680 mem->total_space_allocated);
681
682 /* If the maximum space needed is available, make all the buffers full
683 * height; otherwise parcel it out with the same number of minheights
684 * in each buffer.
685 */
686 if (avail_mem >= maximum_space)
687 max_minheights = 1000000000L;
688 else {
689 max_minheights = avail_mem / space_per_minheight;
690 /* If there doesn't seem to be enough space, try to get the minimum
691 * anyway. This allows a "stub" implementation of jpeg_mem_available().
692 */
693 if (max_minheights <= 0)
694 max_minheights = 1;
695 }
696
697 /* Allocate the in-memory buffers and initialize backing store as needed. */
698
699 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
700 if (sptr->mem_buffer == NULL) { /* if not realized yet */
701 minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
702 if (minheights <= max_minheights) {
703 /* This buffer fits in memory */
704 sptr->rows_in_mem = sptr->rows_in_array;
705 } else {
706 /* It doesn't fit in memory, create backing store. */
707 sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
708 jpeg_open_backing_store(cinfo, &sptr->b_s_info,
709 (long)sptr->rows_in_array *
710 (long)sptr->samplesperrow *
711 (long)sizeof(JSAMPLE));
712 sptr->b_s_open = TRUE;
713 }
714 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
715 sptr->samplesperrow, sptr->rows_in_mem);
716 sptr->rowsperchunk = mem->last_rowsperchunk;
717 sptr->cur_start_row = 0;
718 sptr->first_undef_row = 0;
719 sptr->dirty = FALSE;
720 }
721 }
722
723 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
724 if (bptr->mem_buffer == NULL) { /* if not realized yet */
725 minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
726 if (minheights <= max_minheights) {
727 /* This buffer fits in memory */
728 bptr->rows_in_mem = bptr->rows_in_array;
729 } else {
730 /* It doesn't fit in memory, create backing store. */
731 bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
732 jpeg_open_backing_store(cinfo, &bptr->b_s_info,
733 (long)bptr->rows_in_array *
734 (long)bptr->blocksperrow *
735 (long)sizeof(JBLOCK));
736 bptr->b_s_open = TRUE;
737 }
738 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
739 bptr->blocksperrow, bptr->rows_in_mem);
740 bptr->rowsperchunk = mem->last_rowsperchunk;
741 bptr->cur_start_row = 0;
742 bptr->first_undef_row = 0;
743 bptr->dirty = FALSE;
744 }
745 }
746 }
747
748
749 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)750 do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
751 /* Do backing store read or write of a virtual sample array */
752 {
753 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
754
755 bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE);
756 file_offset = ptr->cur_start_row * bytesperrow;
757 /* Loop to read or write each allocation chunk in mem_buffer */
758 for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
759 /* One chunk, but check for short chunk at end of buffer */
760 rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
761 /* Transfer no more than is currently defined */
762 thisrow = (long)ptr->cur_start_row + i;
763 rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
764 /* Transfer no more than fits in file */
765 rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
766 if (rows <= 0) /* this chunk might be past end of file! */
767 break;
768 byte_count = rows * bytesperrow;
769 if (writing)
770 (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
771 (void *)ptr->mem_buffer[i],
772 file_offset, byte_count);
773 else
774 (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
775 (void *)ptr->mem_buffer[i],
776 file_offset, byte_count);
777 file_offset += byte_count;
778 }
779 }
780
781
782 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)783 do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
784 /* Do backing store read or write of a virtual coefficient-block array */
785 {
786 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
787
788 bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
789 file_offset = ptr->cur_start_row * bytesperrow;
790 /* Loop to read or write each allocation chunk in mem_buffer */
791 for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
792 /* One chunk, but check for short chunk at end of buffer */
793 rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
794 /* Transfer no more than is currently defined */
795 thisrow = (long)ptr->cur_start_row + i;
796 rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
797 /* Transfer no more than fits in file */
798 rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
799 if (rows <= 0) /* this chunk might be past end of file! */
800 break;
801 byte_count = rows * bytesperrow;
802 if (writing)
803 (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
804 (void *)ptr->mem_buffer[i],
805 file_offset, byte_count);
806 else
807 (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
808 (void *)ptr->mem_buffer[i],
809 file_offset, byte_count);
810 file_offset += byte_count;
811 }
812 }
813
814
815 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)816 access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
817 JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
818 /* Access the part of a virtual sample array starting at start_row */
819 /* and extending for num_rows rows. writable is true if */
820 /* caller intends to modify the accessed area. */
821 {
822 JDIMENSION end_row = start_row + num_rows;
823 JDIMENSION undef_row;
824
825 /* debugging check */
826 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
827 ptr->mem_buffer == NULL)
828 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
829
830 /* Make the desired part of the virtual array accessible */
831 if (start_row < ptr->cur_start_row ||
832 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
833 if (!ptr->b_s_open)
834 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
835 /* Flush old buffer contents if necessary */
836 if (ptr->dirty) {
837 do_sarray_io(cinfo, ptr, TRUE);
838 ptr->dirty = FALSE;
839 }
840 /* Decide what part of virtual array to access.
841 * Algorithm: if target address > current window, assume forward scan,
842 * load starting at target address. If target address < current window,
843 * assume backward scan, load so that target area is top of window.
844 * Note that when switching from forward write to forward read, will have
845 * start_row = 0, so the limiting case applies and we load from 0 anyway.
846 */
847 if (start_row > ptr->cur_start_row) {
848 ptr->cur_start_row = start_row;
849 } else {
850 /* use long arithmetic here to avoid overflow & unsigned problems */
851 long ltemp;
852
853 ltemp = (long)end_row - (long)ptr->rows_in_mem;
854 if (ltemp < 0)
855 ltemp = 0; /* don't fall off front end of file */
856 ptr->cur_start_row = (JDIMENSION)ltemp;
857 }
858 /* Read in the selected part of the array.
859 * During the initial write pass, we will do no actual read
860 * because the selected part is all undefined.
861 */
862 do_sarray_io(cinfo, ptr, FALSE);
863 }
864 /* Ensure the accessed part of the array is defined; prezero if needed.
865 * To improve locality of access, we only prezero the part of the array
866 * that the caller is about to access, not the entire in-memory array.
867 */
868 if (ptr->first_undef_row < end_row) {
869 if (ptr->first_undef_row < start_row) {
870 if (writable) /* writer skipped over a section of array */
871 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
872 undef_row = start_row; /* but reader is allowed to read ahead */
873 } else {
874 undef_row = ptr->first_undef_row;
875 }
876 if (writable)
877 ptr->first_undef_row = end_row;
878 if (ptr->pre_zero) {
879 size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE);
880 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
881 end_row -= ptr->cur_start_row;
882 while (undef_row < end_row) {
883 jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
884 undef_row++;
885 }
886 } else {
887 if (!writable) /* reader looking at undefined data */
888 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
889 }
890 }
891 /* Flag the buffer dirty if caller will write in it */
892 if (writable)
893 ptr->dirty = TRUE;
894 /* Return address of proper part of the buffer */
895 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
896 }
897
898
899 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)900 access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
901 JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
902 /* Access the part of a virtual block array starting at start_row */
903 /* and extending for num_rows rows. writable is true if */
904 /* caller intends to modify the accessed area. */
905 {
906 JDIMENSION end_row = start_row + num_rows;
907 JDIMENSION undef_row;
908
909 /* debugging check */
910 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
911 ptr->mem_buffer == NULL)
912 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
913
914 /* Make the desired part of the virtual array accessible */
915 if (start_row < ptr->cur_start_row ||
916 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
917 if (!ptr->b_s_open)
918 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
919 /* Flush old buffer contents if necessary */
920 if (ptr->dirty) {
921 do_barray_io(cinfo, ptr, TRUE);
922 ptr->dirty = FALSE;
923 }
924 /* Decide what part of virtual array to access.
925 * Algorithm: if target address > current window, assume forward scan,
926 * load starting at target address. If target address < current window,
927 * assume backward scan, load so that target area is top of window.
928 * Note that when switching from forward write to forward read, will have
929 * start_row = 0, so the limiting case applies and we load from 0 anyway.
930 */
931 if (start_row > ptr->cur_start_row) {
932 ptr->cur_start_row = start_row;
933 } else {
934 /* use long arithmetic here to avoid overflow & unsigned problems */
935 long ltemp;
936
937 ltemp = (long)end_row - (long)ptr->rows_in_mem;
938 if (ltemp < 0)
939 ltemp = 0; /* don't fall off front end of file */
940 ptr->cur_start_row = (JDIMENSION)ltemp;
941 }
942 /* Read in the selected part of the array.
943 * During the initial write pass, we will do no actual read
944 * because the selected part is all undefined.
945 */
946 do_barray_io(cinfo, ptr, FALSE);
947 }
948 /* Ensure the accessed part of the array is defined; prezero if needed.
949 * To improve locality of access, we only prezero the part of the array
950 * that the caller is about to access, not the entire in-memory array.
951 */
952 if (ptr->first_undef_row < end_row) {
953 if (ptr->first_undef_row < start_row) {
954 if (writable) /* writer skipped over a section of array */
955 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
956 undef_row = start_row; /* but reader is allowed to read ahead */
957 } else {
958 undef_row = ptr->first_undef_row;
959 }
960 if (writable)
961 ptr->first_undef_row = end_row;
962 if (ptr->pre_zero) {
963 size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
964 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
965 end_row -= ptr->cur_start_row;
966 while (undef_row < end_row) {
967 jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
968 undef_row++;
969 }
970 } else {
971 if (!writable) /* reader looking at undefined data */
972 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
973 }
974 }
975 /* Flag the buffer dirty if caller will write in it */
976 if (writable)
977 ptr->dirty = TRUE;
978 /* Return address of proper part of the buffer */
979 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
980 }
981
982
983 /*
984 * Release all objects belonging to a specified pool.
985 */
986
987 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)988 free_pool(j_common_ptr cinfo, int pool_id)
989 {
990 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
991 small_pool_ptr shdr_ptr;
992 large_pool_ptr lhdr_ptr;
993 size_t space_freed;
994
995 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
996 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
997
998 #ifdef MEM_STATS
999 if (cinfo->err->trace_level > 1)
1000 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1001 #endif
1002
1003 /* If freeing IMAGE pool, close any virtual arrays first */
1004 if (pool_id == JPOOL_IMAGE) {
1005 jvirt_sarray_ptr sptr;
1006 jvirt_barray_ptr bptr;
1007
1008 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1009 if (sptr->b_s_open) { /* there may be no backing store */
1010 sptr->b_s_open = FALSE; /* prevent recursive close if error */
1011 (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
1012 }
1013 }
1014 mem->virt_sarray_list = NULL;
1015 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1016 if (bptr->b_s_open) { /* there may be no backing store */
1017 bptr->b_s_open = FALSE; /* prevent recursive close if error */
1018 (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
1019 }
1020 }
1021 mem->virt_barray_list = NULL;
1022 }
1023
1024 /* Release large objects */
1025 lhdr_ptr = mem->large_list[pool_id];
1026 mem->large_list[pool_id] = NULL;
1027
1028 while (lhdr_ptr != NULL) {
1029 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1030 space_freed = lhdr_ptr->bytes_used +
1031 lhdr_ptr->bytes_left +
1032 sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
1033 jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
1034 mem->total_space_allocated -= space_freed;
1035 lhdr_ptr = next_lhdr_ptr;
1036 }
1037
1038 /* Release small objects */
1039 shdr_ptr = mem->small_list[pool_id];
1040 mem->small_list[pool_id] = NULL;
1041
1042 while (shdr_ptr != NULL) {
1043 small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1044 space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
1045 sizeof(small_pool_hdr) + ALIGN_SIZE - 1;
1046 jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
1047 mem->total_space_allocated -= space_freed;
1048 shdr_ptr = next_shdr_ptr;
1049 }
1050 }
1051
1052
1053 /*
1054 * Close up shop entirely.
1055 * Note that this cannot be called unless cinfo->mem is non-NULL.
1056 */
1057
1058 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1059 self_destruct(j_common_ptr cinfo)
1060 {
1061 int pool;
1062
1063 /* Close all backing store, release all memory.
1064 * Releasing pools in reverse order might help avoid fragmentation
1065 * with some (brain-damaged) malloc libraries.
1066 */
1067 for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1068 free_pool(cinfo, pool);
1069 }
1070
1071 /* Release the memory manager control block too. */
1072 jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
1073 cinfo->mem = NULL; /* ensures I will be called only once */
1074
1075 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1076 }
1077
1078
1079 /*
1080 * Memory manager initialization.
1081 * When this is called, only the error manager pointer is valid in cinfo!
1082 */
1083
1084 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1085 jinit_memory_mgr(j_common_ptr cinfo)
1086 {
1087 my_mem_ptr mem;
1088 long max_to_use;
1089 int pool;
1090 size_t test_mac;
1091
1092 cinfo->mem = NULL; /* for safety if init fails */
1093
1094 /* Check for configuration errors.
1095 * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1096 * doesn't reflect any real hardware alignment requirement.
1097 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1098 * in common if and only if X is a power of 2, ie has only one one-bit.
1099 * Some compilers may give an "unreachable code" warning here; ignore it.
1100 */
1101 if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
1102 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1103 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1104 * a multiple of ALIGN_SIZE.
1105 * Again, an "unreachable code" warning may be ignored here.
1106 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1107 */
1108 test_mac = (size_t)MAX_ALLOC_CHUNK;
1109 if ((long)test_mac != MAX_ALLOC_CHUNK ||
1110 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1111 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1112
1113 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1114
1115 /* Attempt to allocate memory manager's control block */
1116 mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1117
1118 if (mem == NULL) {
1119 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1120 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1121 }
1122
1123 /* OK, fill in the method pointers */
1124 mem->pub.alloc_small = alloc_small;
1125 mem->pub.alloc_large = alloc_large;
1126 mem->pub.alloc_sarray = alloc_sarray;
1127 mem->pub.alloc_barray = alloc_barray;
1128 mem->pub.request_virt_sarray = request_virt_sarray;
1129 mem->pub.request_virt_barray = request_virt_barray;
1130 mem->pub.realize_virt_arrays = realize_virt_arrays;
1131 mem->pub.access_virt_sarray = access_virt_sarray;
1132 mem->pub.access_virt_barray = access_virt_barray;
1133 mem->pub.free_pool = free_pool;
1134 mem->pub.self_destruct = self_destruct;
1135
1136 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1137 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1138
1139 /* Initialize working state */
1140 mem->pub.max_memory_to_use = max_to_use;
1141
1142 for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1143 mem->small_list[pool] = NULL;
1144 mem->large_list[pool] = NULL;
1145 }
1146 mem->virt_sarray_list = NULL;
1147 mem->virt_barray_list = NULL;
1148
1149 mem->total_space_allocated = sizeof(my_memory_mgr);
1150
1151 /* Declare ourselves open for business */
1152 cinfo->mem = &mem->pub;
1153
1154 /* Check for an environment variable JPEGMEM; if found, override the
1155 * default max_memory setting from jpeg_mem_init. Note that the
1156 * surrounding application may again override this value.
1157 * If your system doesn't support getenv(), define NO_GETENV to disable
1158 * this feature.
1159 */
1160 #ifndef NO_GETENV
1161 {
1162 char memenv[30] = { 0 };
1163
1164 if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) {
1165 char ch = 'x';
1166
1167 #ifdef _MSC_VER
1168 if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) {
1169 #else
1170 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1171 #endif
1172 if (ch == 'm' || ch == 'M')
1173 max_to_use *= 1000L;
1174 mem->pub.max_memory_to_use = max_to_use * 1000L;
1175 }
1176 }
1177 }
1178 #endif
1179
1180 }
1181