1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <math.h>
28 #include "util/half_float.h"
29 #include "util/u_math.h"
30
31 #include "ir3.h"
32 #include "ir3_compiler.h"
33 #include "ir3_shader.h"
34
35 #define swap(a, b) \
36 do { \
37 __typeof(a) __tmp = (a); \
38 (a) = (b); \
39 (b) = __tmp; \
40 } while (0)
41
42 /*
43 * Copy Propagate:
44 */
45
46 struct ir3_cp_ctx {
47 struct ir3 *shader;
48 struct ir3_shader_variant *so;
49 bool progress;
50 };
51
52 /* is it a type preserving mov, with ok flags?
53 *
54 * @instr: the mov to consider removing
55 * @dst_instr: the instruction consuming the mov (instr)
56 *
57 * TODO maybe drop allow_flags since this is only false when dst is
58 * NULL (ie. outputs)
59 */
60 static bool
is_eligible_mov(struct ir3_instruction * instr,struct ir3_instruction * dst_instr,bool allow_flags)61 is_eligible_mov(struct ir3_instruction *instr,
62 struct ir3_instruction *dst_instr, bool allow_flags)
63 {
64 if (is_same_type_mov(instr)) {
65 struct ir3_register *dst = instr->dsts[0];
66 struct ir3_register *src = instr->srcs[0];
67 struct ir3_instruction *src_instr = ssa(src);
68
69 /* only if mov src is SSA (not const/immed): */
70 if (!src_instr)
71 return false;
72
73 /* no indirect: */
74 if (dst->flags & IR3_REG_RELATIV)
75 return false;
76 if (src->flags & IR3_REG_RELATIV)
77 return false;
78
79 if (src->flags & IR3_REG_ARRAY)
80 return false;
81
82 if (!allow_flags)
83 if (src->flags & (IR3_REG_FABS | IR3_REG_FNEG | IR3_REG_SABS |
84 IR3_REG_SNEG | IR3_REG_BNOT))
85 return false;
86
87 return true;
88 }
89 return false;
90 }
91
92 /* we can end up with extra cmps.s from frontend, which uses a
93 *
94 * cmps.s p0.x, cond, 0
95 *
96 * as a way to mov into the predicate register. But frequently 'cond'
97 * is itself a cmps.s/cmps.f/cmps.u. So detect this special case.
98 */
99 static bool
is_foldable_double_cmp(struct ir3_instruction * cmp)100 is_foldable_double_cmp(struct ir3_instruction *cmp)
101 {
102 struct ir3_instruction *cond = ssa(cmp->srcs[0]);
103 return (cmp->dsts[0]->num == regid(REG_P0, 0)) && cond &&
104 (cmp->srcs[1]->flags & IR3_REG_IMMED) &&
105 (cmp->srcs[1]->iim_val == 0) &&
106 (cmp->cat2.condition == IR3_COND_NE) &&
107 (!cond->address || cond->address->def->instr->block == cmp->block);
108 }
109
110 /* propagate register flags from src to dst.. negates need special
111 * handling to cancel each other out.
112 */
113 static void
combine_flags(unsigned * dstflags,struct ir3_instruction * src)114 combine_flags(unsigned *dstflags, struct ir3_instruction *src)
115 {
116 unsigned srcflags = src->srcs[0]->flags;
117
118 /* if what we are combining into already has (abs) flags,
119 * we can drop (neg) from src:
120 */
121 if (*dstflags & IR3_REG_FABS)
122 srcflags &= ~IR3_REG_FNEG;
123 if (*dstflags & IR3_REG_SABS)
124 srcflags &= ~IR3_REG_SNEG;
125
126 if (srcflags & IR3_REG_FABS)
127 *dstflags |= IR3_REG_FABS;
128 if (srcflags & IR3_REG_SABS)
129 *dstflags |= IR3_REG_SABS;
130 if (srcflags & IR3_REG_FNEG)
131 *dstflags ^= IR3_REG_FNEG;
132 if (srcflags & IR3_REG_SNEG)
133 *dstflags ^= IR3_REG_SNEG;
134 if (srcflags & IR3_REG_BNOT)
135 *dstflags ^= IR3_REG_BNOT;
136
137 *dstflags &= ~IR3_REG_SSA;
138 *dstflags |= srcflags & IR3_REG_SSA;
139 *dstflags |= srcflags & IR3_REG_CONST;
140 *dstflags |= srcflags & IR3_REG_IMMED;
141 *dstflags |= srcflags & IR3_REG_RELATIV;
142 *dstflags |= srcflags & IR3_REG_ARRAY;
143 *dstflags |= srcflags & IR3_REG_SHARED;
144
145 /* if src of the src is boolean we can drop the (abs) since we know
146 * the source value is already a postitive integer. This cleans
147 * up the absnegs that get inserted when converting between nir and
148 * native boolean (see ir3_b2n/n2b)
149 */
150 struct ir3_instruction *srcsrc = ssa(src->srcs[0]);
151 if (srcsrc && is_bool(srcsrc))
152 *dstflags &= ~IR3_REG_SABS;
153 }
154
155 /* Tries lowering an immediate register argument to a const buffer access by
156 * adding to the list of immediates to be pushed to the const buffer when
157 * switching to this shader.
158 */
159 static bool
lower_immed(struct ir3_cp_ctx * ctx,struct ir3_instruction * instr,unsigned n,struct ir3_register * reg,unsigned new_flags)160 lower_immed(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr, unsigned n,
161 struct ir3_register *reg, unsigned new_flags)
162 {
163 if (!(new_flags & IR3_REG_IMMED))
164 return false;
165
166 new_flags &= ~IR3_REG_IMMED;
167 new_flags |= IR3_REG_CONST;
168
169 if (!ir3_valid_flags(instr, n, new_flags))
170 return false;
171
172 reg = ir3_reg_clone(ctx->shader, reg);
173
174 /* Half constant registers seems to handle only 32-bit values
175 * within floating-point opcodes. So convert back to 32-bit values.
176 */
177 bool f_opcode =
178 (is_cat2_float(instr->opc) || is_cat3_float(instr->opc)) ? true : false;
179 if (f_opcode && (new_flags & IR3_REG_HALF))
180 reg->uim_val = fui(_mesa_half_to_float(reg->uim_val));
181
182 /* in some cases, there are restrictions on (abs)/(neg) plus const..
183 * so just evaluate those and clear the flags:
184 */
185 if (new_flags & IR3_REG_SABS) {
186 reg->iim_val = abs(reg->iim_val);
187 new_flags &= ~IR3_REG_SABS;
188 }
189
190 if (new_flags & IR3_REG_FABS) {
191 reg->fim_val = fabs(reg->fim_val);
192 new_flags &= ~IR3_REG_FABS;
193 }
194
195 if (new_flags & IR3_REG_SNEG) {
196 reg->iim_val = -reg->iim_val;
197 new_flags &= ~IR3_REG_SNEG;
198 }
199
200 if (new_flags & IR3_REG_FNEG) {
201 reg->fim_val = -reg->fim_val;
202 new_flags &= ~IR3_REG_FNEG;
203 }
204
205 /* Reallocate for 4 more elements whenever it's necessary. Note that ir3
206 * printing relies on having groups of 4 dwords, so we fill the unused
207 * slots with a dummy value.
208 */
209 struct ir3_const_state *const_state = ir3_const_state(ctx->so);
210 if (const_state->immediates_count == const_state->immediates_size) {
211 const_state->immediates = rerzalloc(
212 const_state, const_state->immediates,
213 __typeof__(const_state->immediates[0]), const_state->immediates_size,
214 const_state->immediates_size + 4);
215 const_state->immediates_size += 4;
216
217 for (int i = const_state->immediates_count;
218 i < const_state->immediates_size; i++)
219 const_state->immediates[i] = 0xd0d0d0d0;
220 }
221
222 int i;
223 for (i = 0; i < const_state->immediates_count; i++) {
224 if (const_state->immediates[i] == reg->uim_val)
225 break;
226 }
227
228 if (i == const_state->immediates_count) {
229 /* Add on a new immediate to be pushed, if we have space left in the
230 * constbuf.
231 */
232 if (const_state->offsets.immediate + const_state->immediates_count / 4 >=
233 ir3_max_const(ctx->so))
234 return false;
235
236 const_state->immediates[i] = reg->uim_val;
237 const_state->immediates_count++;
238 }
239
240 reg->flags = new_flags;
241 reg->num = i + (4 * const_state->offsets.immediate);
242
243 instr->srcs[n] = reg;
244
245 return true;
246 }
247
248 static void
unuse(struct ir3_instruction * instr)249 unuse(struct ir3_instruction *instr)
250 {
251 assert(instr->use_count > 0);
252
253 if (--instr->use_count == 0) {
254 struct ir3_block *block = instr->block;
255
256 instr->barrier_class = 0;
257 instr->barrier_conflict = 0;
258
259 /* we don't want to remove anything in keeps (which could
260 * be things like array store's)
261 */
262 for (unsigned i = 0; i < block->keeps_count; i++) {
263 assert(block->keeps[i] != instr);
264 }
265 }
266 }
267
268 /**
269 * Handles the special case of the 2nd src (n == 1) to "normal" mad
270 * instructions, which cannot reference a constant. See if it is
271 * possible to swap the 1st and 2nd sources.
272 */
273 static bool
try_swap_mad_two_srcs(struct ir3_instruction * instr,unsigned new_flags)274 try_swap_mad_two_srcs(struct ir3_instruction *instr, unsigned new_flags)
275 {
276 if (!is_mad(instr->opc))
277 return false;
278
279 /* If we've already tried, nothing more to gain.. we will only
280 * have previously swapped if the original 2nd src was const or
281 * immed. So swapping back won't improve anything and could
282 * result in an infinite "progress" loop.
283 */
284 if (instr->cat3.swapped)
285 return false;
286
287 /* cat3 doesn't encode immediate, but we can lower immediate
288 * to const if that helps:
289 */
290 if (new_flags & IR3_REG_IMMED) {
291 new_flags &= ~IR3_REG_IMMED;
292 new_flags |= IR3_REG_CONST;
293 }
294
295 /* If the reason we couldn't fold without swapping is something
296 * other than const source, then swapping won't help:
297 */
298 if (!(new_flags & IR3_REG_CONST))
299 return false;
300
301 instr->cat3.swapped = true;
302
303 /* NOTE: pre-swap first two src's before valid_flags(),
304 * which might try to dereference the n'th src:
305 */
306 swap(instr->srcs[0], instr->srcs[1]);
307
308 bool valid_swap =
309 /* can we propagate mov if we move 2nd src to first? */
310 ir3_valid_flags(instr, 0, new_flags) &&
311 /* and does first src fit in second slot? */
312 ir3_valid_flags(instr, 1, instr->srcs[1]->flags);
313
314 if (!valid_swap) {
315 /* put things back the way they were: */
316 swap(instr->srcs[0], instr->srcs[1]);
317 } /* otherwise leave things swapped */
318
319 return valid_swap;
320 }
321
322 /* Values that are uniform inside a loop can become divergent outside
323 * it if the loop has a divergent trip count. This means that we can't
324 * propagate a copy of a shared to non-shared register if it would
325 * make the shared reg's live range extend outside of its loop. Users
326 * outside the loop would see the value for the thread(s) that last
327 * exited the loop, rather than for their own thread.
328 */
329 static bool
is_valid_shared_copy(struct ir3_instruction * dst_instr,struct ir3_instruction * src_instr,struct ir3_register * src_reg)330 is_valid_shared_copy(struct ir3_instruction *dst_instr,
331 struct ir3_instruction *src_instr,
332 struct ir3_register *src_reg)
333 {
334 return !(src_reg->flags & IR3_REG_SHARED) ||
335 dst_instr->block->loop_id == src_instr->block->loop_id;
336 }
337
338 /**
339 * Handle cp for a given src register. This additionally handles
340 * the cases of collapsing immedate/const (which replace the src
341 * register with a non-ssa src) or collapsing mov's from relative
342 * src (which needs to also fixup the address src reference by the
343 * instruction).
344 */
345 static bool
reg_cp(struct ir3_cp_ctx * ctx,struct ir3_instruction * instr,struct ir3_register * reg,unsigned n)346 reg_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr,
347 struct ir3_register *reg, unsigned n)
348 {
349 struct ir3_instruction *src = ssa(reg);
350
351 if (is_eligible_mov(src, instr, true)) {
352 /* simple case, no immed/const/relativ, only mov's w/ ssa src: */
353 struct ir3_register *src_reg = src->srcs[0];
354 unsigned new_flags = reg->flags;
355
356 if (!is_valid_shared_copy(instr, src, src_reg))
357 return false;
358
359 combine_flags(&new_flags, src);
360
361 if (ir3_valid_flags(instr, n, new_flags)) {
362 if (new_flags & IR3_REG_ARRAY) {
363 assert(!(reg->flags & IR3_REG_ARRAY));
364 reg->array = src_reg->array;
365 }
366 reg->flags = new_flags;
367 reg->def = src_reg->def;
368
369 instr->barrier_class |= src->barrier_class;
370 instr->barrier_conflict |= src->barrier_conflict;
371
372 unuse(src);
373 reg->def->instr->use_count++;
374
375 return true;
376 }
377 } else if ((is_same_type_mov(src) || is_const_mov(src)) &&
378 /* cannot collapse const/immed/etc into control flow: */
379 opc_cat(instr->opc) != 0) {
380 /* immed/const/etc cases, which require some special handling: */
381 struct ir3_register *src_reg = src->srcs[0];
382 unsigned new_flags = reg->flags;
383
384 if (!is_valid_shared_copy(instr, src, src_reg))
385 return false;
386
387 if (src_reg->flags & IR3_REG_ARRAY)
388 return false;
389
390 combine_flags(&new_flags, src);
391
392 if (!ir3_valid_flags(instr, n, new_flags)) {
393 /* See if lowering an immediate to const would help. */
394 if (lower_immed(ctx, instr, n, src_reg, new_flags))
395 return true;
396
397 /* special case for "normal" mad instructions, we can
398 * try swapping the first two args if that fits better.
399 *
400 * the "plain" MAD's (ie. the ones that don't shift first
401 * src prior to multiply) can swap their first two srcs if
402 * src[0] is !CONST and src[1] is CONST:
403 */
404 if ((n == 1) && try_swap_mad_two_srcs(instr, new_flags)) {
405 return true;
406 } else {
407 return false;
408 }
409 }
410
411 /* Here we handle the special case of mov from
412 * CONST and/or RELATIV. These need to be handled
413 * specially, because in the case of move from CONST
414 * there is no src ir3_instruction so we need to
415 * replace the ir3_register. And in the case of
416 * RELATIV we need to handle the address register
417 * dependency.
418 */
419 if (src_reg->flags & IR3_REG_CONST) {
420 /* an instruction cannot reference two different
421 * address registers:
422 */
423 if ((src_reg->flags & IR3_REG_RELATIV) &&
424 conflicts(instr->address, reg->def->instr->address))
425 return false;
426
427 /* These macros expand to a mov in an if statement */
428 if ((src_reg->flags & IR3_REG_RELATIV) &&
429 is_subgroup_cond_mov_macro(instr))
430 return false;
431
432 /* This seems to be a hw bug, or something where the timings
433 * just somehow don't work out. This restriction may only
434 * apply if the first src is also CONST.
435 */
436 if ((opc_cat(instr->opc) == 3) && (n == 2) &&
437 (src_reg->flags & IR3_REG_RELATIV) && (src_reg->array.offset == 0))
438 return false;
439
440 /* When narrowing constant from 32b to 16b, it seems
441 * to work only for float. So we should do this only with
442 * float opcodes.
443 */
444 if (src->cat1.dst_type == TYPE_F16) {
445 /* TODO: should we have a way to tell phi/collect to use a
446 * float move so that this is legal?
447 */
448 if (is_meta(instr))
449 return false;
450 if (instr->opc == OPC_MOV && !type_float(instr->cat1.src_type))
451 return false;
452 if (!is_cat2_float(instr->opc) && !is_cat3_float(instr->opc))
453 return false;
454 } else if (src->cat1.dst_type == TYPE_U16) {
455 /* Since we set CONSTANT_DEMOTION_ENABLE, a float reference of
456 * what was a U16 value read from the constbuf would incorrectly
457 * do 32f->16f conversion, when we want to read a 16f value.
458 */
459 if (is_cat2_float(instr->opc) || is_cat3_float(instr->opc))
460 return false;
461 if (instr->opc == OPC_MOV && type_float(instr->cat1.src_type))
462 return false;
463 }
464
465 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
466 src_reg->flags = new_flags;
467 instr->srcs[n] = src_reg;
468
469 if (src_reg->flags & IR3_REG_RELATIV)
470 ir3_instr_set_address(instr, reg->def->instr->address->def->instr);
471
472 return true;
473 }
474
475 if (src_reg->flags & IR3_REG_IMMED) {
476 int32_t iim_val = src_reg->iim_val;
477
478 assert((opc_cat(instr->opc) == 1) ||
479 (opc_cat(instr->opc) == 2) ||
480 (opc_cat(instr->opc) == 6) ||
481 is_meta(instr) ||
482 (is_mad(instr->opc) && (n == 0)));
483
484 if ((opc_cat(instr->opc) == 2) &&
485 !ir3_cat2_int(instr->opc)) {
486 iim_val = ir3_flut(src_reg);
487 if (iim_val < 0) {
488 /* Fall back to trying to load the immediate as a const: */
489 return lower_immed(ctx, instr, n, src_reg, new_flags);
490 }
491 }
492
493 if (new_flags & IR3_REG_SABS)
494 iim_val = abs(iim_val);
495
496 if (new_flags & IR3_REG_SNEG)
497 iim_val = -iim_val;
498
499 if (new_flags & IR3_REG_BNOT)
500 iim_val = ~iim_val;
501
502 if (ir3_valid_flags(instr, n, new_flags) &&
503 ir3_valid_immediate(instr, iim_val)) {
504 new_flags &= ~(IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT);
505 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
506 src_reg->flags = new_flags;
507 src_reg->iim_val = iim_val;
508 instr->srcs[n] = src_reg;
509
510 return true;
511 } else {
512 /* Fall back to trying to load the immediate as a const: */
513 return lower_immed(ctx, instr, n, src_reg, new_flags);
514 }
515 }
516 }
517
518 return false;
519 }
520
521 /* Handle special case of eliminating output mov, and similar cases where
522 * there isn't a normal "consuming" instruction. In this case we cannot
523 * collapse flags (ie. output mov from const, or w/ abs/neg flags, cannot
524 * be eliminated)
525 */
526 static struct ir3_instruction *
eliminate_output_mov(struct ir3_cp_ctx * ctx,struct ir3_instruction * instr)527 eliminate_output_mov(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
528 {
529 if (is_eligible_mov(instr, NULL, false)) {
530 struct ir3_register *reg = instr->srcs[0];
531 if (!(reg->flags & IR3_REG_ARRAY)) {
532 struct ir3_instruction *src_instr = ssa(reg);
533 assert(src_instr);
534 ctx->progress = true;
535 return src_instr;
536 }
537 }
538 return instr;
539 }
540
541 /**
542 * Find instruction src's which are mov's that can be collapsed, replacing
543 * the mov dst with the mov src
544 */
545 static void
instr_cp(struct ir3_cp_ctx * ctx,struct ir3_instruction * instr)546 instr_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
547 {
548 if (instr->srcs_count == 0)
549 return;
550
551 if (ir3_instr_check_mark(instr))
552 return;
553
554 /* walk down the graph from each src: */
555 bool progress;
556 do {
557 progress = false;
558 foreach_src_n (reg, n, instr) {
559 struct ir3_instruction *src = ssa(reg);
560
561 if (!src)
562 continue;
563
564 instr_cp(ctx, src);
565
566 /* TODO non-indirect access we could figure out which register
567 * we actually want and allow cp..
568 */
569 if ((reg->flags & IR3_REG_ARRAY) && src->opc != OPC_META_PHI)
570 continue;
571
572 /* Don't CP absneg into meta instructions, that won't end well: */
573 if (is_meta(instr) &&
574 (src->opc == OPC_ABSNEG_F || src->opc == OPC_ABSNEG_S))
575 continue;
576
577 /* Don't CP mova and mova1 into their users */
578 if (writes_addr0(src) || writes_addr1(src))
579 continue;
580
581 progress |= reg_cp(ctx, instr, reg, n);
582 ctx->progress |= progress;
583 }
584 } while (progress);
585
586 /* After folding a mov's source we may wind up with a type-converting mov
587 * of an immediate. This happens e.g. with texture descriptors, since we
588 * narrow the descriptor (which may be a constant) to a half-reg in ir3.
589 * By converting the immediate in-place to the destination type, we can
590 * turn the mov into a same-type mov so that it can be further propagated.
591 */
592 if (instr->opc == OPC_MOV && (instr->srcs[0]->flags & IR3_REG_IMMED) &&
593 instr->cat1.src_type != instr->cat1.dst_type &&
594 /* Only do uint types for now, until we generate other types of
595 * mov's during instruction selection.
596 */
597 full_type(instr->cat1.src_type) == TYPE_U32 &&
598 full_type(instr->cat1.dst_type) == TYPE_U32) {
599 uint32_t uimm = instr->srcs[0]->uim_val;
600 if (instr->cat1.dst_type == TYPE_U16)
601 uimm &= 0xffff;
602 instr->srcs[0]->uim_val = uimm;
603 if (instr->dsts[0]->flags & IR3_REG_HALF)
604 instr->srcs[0]->flags |= IR3_REG_HALF;
605 else
606 instr->srcs[0]->flags &= ~IR3_REG_HALF;
607 instr->cat1.src_type = instr->cat1.dst_type;
608 ctx->progress = true;
609 }
610
611 /* Re-write the instruction writing predicate register to get rid
612 * of the double cmps.
613 */
614 if ((instr->opc == OPC_CMPS_S) && is_foldable_double_cmp(instr)) {
615 struct ir3_instruction *cond = ssa(instr->srcs[0]);
616 switch (cond->opc) {
617 case OPC_CMPS_S:
618 case OPC_CMPS_F:
619 case OPC_CMPS_U:
620 instr->opc = cond->opc;
621 instr->flags = cond->flags;
622 instr->cat2 = cond->cat2;
623 if (cond->address)
624 ir3_instr_set_address(instr, cond->address->def->instr);
625 instr->srcs[0] = ir3_reg_clone(ctx->shader, cond->srcs[0]);
626 instr->srcs[1] = ir3_reg_clone(ctx->shader, cond->srcs[1]);
627 instr->barrier_class |= cond->barrier_class;
628 instr->barrier_conflict |= cond->barrier_conflict;
629 unuse(cond);
630 ctx->progress = true;
631 break;
632 default:
633 break;
634 }
635 }
636
637 /* Handle converting a sam.s2en (taking samp/tex idx params via register)
638 * into a normal sam (encoding immediate samp/tex idx) if they are
639 * immediate. This saves some instructions and regs in the common case
640 * where we know samp/tex at compile time. This needs to be done in the
641 * frontend for bindless tex, though, so don't replicate it here.
642 */
643 if (is_tex(instr) && (instr->flags & IR3_INSTR_S2EN) &&
644 !(instr->flags & IR3_INSTR_B) &&
645 !(ir3_shader_debug & IR3_DBG_FORCES2EN)) {
646 /* The first src will be a collect, if both of it's
647 * two sources are mov from imm, then we can
648 */
649 struct ir3_instruction *samp_tex = ssa(instr->srcs[0]);
650
651 assert(samp_tex->opc == OPC_META_COLLECT);
652
653 struct ir3_register *samp = samp_tex->srcs[0];
654 struct ir3_register *tex = samp_tex->srcs[1];
655
656 if ((samp->flags & IR3_REG_IMMED) && (tex->flags & IR3_REG_IMMED) &&
657 (samp->iim_val < 16) && (tex->iim_val < 16)) {
658 instr->flags &= ~IR3_INSTR_S2EN;
659 instr->cat5.samp = samp->iim_val;
660 instr->cat5.tex = tex->iim_val;
661
662 /* shuffle around the regs to remove the first src: */
663 instr->srcs_count--;
664 for (unsigned i = 0; i < instr->srcs_count; i++) {
665 instr->srcs[i] = instr->srcs[i + 1];
666 }
667
668 ctx->progress = true;
669 }
670 }
671 }
672
673 bool
ir3_cp(struct ir3 * ir,struct ir3_shader_variant * so)674 ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so)
675 {
676 struct ir3_cp_ctx ctx = {
677 .shader = ir,
678 .so = so,
679 };
680
681 /* This is a bit annoying, and probably wouldn't be necessary if we
682 * tracked a reverse link from producing instruction to consumer.
683 * But we need to know when we've eliminated the last consumer of
684 * a mov, so we need to do a pass to first count consumers of a
685 * mov.
686 */
687 foreach_block (block, &ir->block_list) {
688 foreach_instr (instr, &block->instr_list) {
689
690 /* by the way, we don't account for false-dep's, so the CP
691 * pass should always happen before false-dep's are inserted
692 */
693 assert(instr->deps_count == 0);
694
695 foreach_ssa_src (src, instr) {
696 src->use_count++;
697 }
698 }
699 }
700
701 ir3_clear_mark(ir);
702
703 foreach_block (block, &ir->block_list) {
704 if (block->condition) {
705 instr_cp(&ctx, block->condition);
706 block->condition = eliminate_output_mov(&ctx, block->condition);
707 }
708
709 for (unsigned i = 0; i < block->keeps_count; i++) {
710 instr_cp(&ctx, block->keeps[i]);
711 block->keeps[i] = eliminate_output_mov(&ctx, block->keeps[i]);
712 }
713 }
714
715 return ctx.progress;
716 }
717