1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_screen.h"
37 #include "sp_quad.h"
38 #include "sp_quad_pipe.h"
39 #include "sp_setup.h"
40 #include "sp_state.h"
41 #include "draw/draw_context.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50
51 /**
52 * Triangle edge info
53 */
54 struct edge {
55 float dx; /**< X(v1) - X(v0), used only during setup */
56 float dy; /**< Y(v1) - Y(v0), used only during setup */
57 float dxdy; /**< dx/dy */
58 float sx, sy; /**< first sample point coord */
59 int lines; /**< number of lines on this edge */
60 };
61
62
63 /**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68 #define MAX_QUADS 16
69
70
71 /**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75 struct setup_context {
76 struct softpipe_context *softpipe;
77
78 /* Vertices are just an array of floats making up each attribute in
79 * turn. Currently fixed at 4 floats, but should change in time.
80 * Codegen will help cope with this.
81 */
82 const float (*vmax)[4];
83 const float (*vmid)[4];
84 const float (*vmin)[4];
85 const float (*vprovoke)[4];
86
87 struct edge ebot;
88 struct edge etop;
89 struct edge emaj;
90
91 float oneoverarea;
92 int facing;
93
94 float pixel_offset;
95 unsigned max_layer;
96
97 struct quad_header quad[MAX_QUADS];
98 struct quad_header *quad_ptrs[MAX_QUADS];
99 unsigned count;
100
101 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
102 struct tgsi_interp_coef posCoef; /* For Z, W */
103
104 struct {
105 int left[2]; /**< [0] = row0, [1] = row1 */
106 int right[2];
107 int y;
108 } span;
109
110 #if DEBUG_FRAGS
111 uint numFragsEmitted; /**< per primitive */
112 uint numFragsWritten; /**< per primitive */
113 #endif
114
115 unsigned cull_face; /* which faces cull */
116 unsigned nr_vertex_attrs;
117 };
118
119
120
121
122
123
124
125 /**
126 * Clip setup->quad against the scissor/surface bounds.
127 */
128 static inline void
quad_clip(struct setup_context * setup,struct quad_header * quad)129 quad_clip(struct setup_context *setup, struct quad_header *quad)
130 {
131 unsigned viewport_index = quad[0].input.viewport_index;
132 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
133 const int minx = (int) cliprect->minx;
134 const int maxx = (int) cliprect->maxx;
135 const int miny = (int) cliprect->miny;
136 const int maxy = (int) cliprect->maxy;
137
138 if (quad->input.x0 >= maxx ||
139 quad->input.y0 >= maxy ||
140 quad->input.x0 + 1 < minx ||
141 quad->input.y0 + 1 < miny) {
142 /* totally clipped */
143 quad->inout.mask = 0x0;
144 return;
145 }
146 if (quad->input.x0 < minx)
147 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
148 if (quad->input.y0 < miny)
149 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
150 if (quad->input.x0 == maxx - 1)
151 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
152 if (quad->input.y0 == maxy - 1)
153 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
154 }
155
156
157 /**
158 * Emit a quad (pass to next stage) with clipping.
159 */
160 static inline void
clip_emit_quad(struct setup_context * setup,struct quad_header * quad)161 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
162 {
163 quad_clip(setup, quad);
164
165 if (quad->inout.mask) {
166 struct softpipe_context *sp = setup->softpipe;
167
168 #if DEBUG_FRAGS
169 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
170 #endif
171
172 sp->quad.first->run( sp->quad.first, &quad, 1 );
173 }
174 }
175
176
177
178 /**
179 * Given an X or Y coordinate, return the block/quad coordinate that it
180 * belongs to.
181 */
182 static inline int
block(int x)183 block(int x)
184 {
185 return x & ~(2-1);
186 }
187
188
189 static inline int
block_x(int x)190 block_x(int x)
191 {
192 return x & ~(16-1);
193 }
194
195
196 /**
197 * Render a horizontal span of quads
198 */
199 static void
flush_spans(struct setup_context * setup)200 flush_spans(struct setup_context *setup)
201 {
202 const int step = MAX_QUADS;
203 const int xleft0 = setup->span.left[0];
204 const int xleft1 = setup->span.left[1];
205 const int xright0 = setup->span.right[0];
206 const int xright1 = setup->span.right[1];
207 struct quad_stage *pipe = setup->softpipe->quad.first;
208
209 const int minleft = block_x(MIN2(xleft0, xleft1));
210 const int maxright = MAX2(xright0, xright1);
211 int x;
212
213 /* process quads in horizontal chunks of 16 */
214 for (x = minleft; x < maxright; x += step) {
215 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
216 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
217 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
218 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
219 unsigned lx = x;
220 unsigned q = 0;
221
222 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
223 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
224
225 /* These calculations fail when step == 32 and skip_right == 0.
226 */
227 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
228 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
229
230 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
231 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
232
233 if (mask0 | mask1) {
234 do {
235 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
236 if (quadmask) {
237 setup->quad[q].input.x0 = lx;
238 setup->quad[q].input.y0 = setup->span.y;
239 setup->quad[q].input.facing = setup->facing;
240 setup->quad[q].inout.mask = quadmask;
241 setup->quad_ptrs[q] = &setup->quad[q];
242 q++;
243 #if DEBUG_FRAGS
244 setup->numFragsEmitted += util_bitcount(quadmask);
245 #endif
246 }
247 mask0 >>= 2;
248 mask1 >>= 2;
249 lx += 2;
250 } while (mask0 | mask1);
251
252 pipe->run( pipe, setup->quad_ptrs, q );
253 }
254 }
255
256
257 setup->span.y = 0;
258 setup->span.right[0] = 0;
259 setup->span.right[1] = 0;
260 setup->span.left[0] = 1000000; /* greater than right[0] */
261 setup->span.left[1] = 1000000; /* greater than right[1] */
262 }
263
264
265 #if DEBUG_VERTS
266 static void
print_vertex(const struct setup_context * setup,const float (* v)[4])267 print_vertex(const struct setup_context *setup,
268 const float (*v)[4])
269 {
270 int i;
271 debug_printf(" Vertex: (%p)\n", (void *) v);
272 for (i = 0; i < setup->nr_vertex_attrs; i++) {
273 debug_printf(" %d: %f %f %f %f\n", i,
274 v[i][0], v[i][1], v[i][2], v[i][3]);
275 if (util_is_inf_or_nan(v[i][0])) {
276 debug_printf(" NaN!\n");
277 }
278 }
279 }
280 #endif
281
282
283 /**
284 * Sort the vertices from top to bottom order, setting up the triangle
285 * edge fields (ebot, emaj, etop).
286 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
287 */
288 static boolean
setup_sort_vertices(struct setup_context * setup,float det,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])289 setup_sort_vertices(struct setup_context *setup,
290 float det,
291 const float (*v0)[4],
292 const float (*v1)[4],
293 const float (*v2)[4])
294 {
295 if (setup->softpipe->rasterizer->flatshade_first)
296 setup->vprovoke = v0;
297 else
298 setup->vprovoke = v2;
299
300 /* determine bottom to top order of vertices */
301 {
302 float y0 = v0[0][1];
303 float y1 = v1[0][1];
304 float y2 = v2[0][1];
305 if (y0 <= y1) {
306 if (y1 <= y2) {
307 /* y0<=y1<=y2 */
308 setup->vmin = v0;
309 setup->vmid = v1;
310 setup->vmax = v2;
311 }
312 else if (y2 <= y0) {
313 /* y2<=y0<=y1 */
314 setup->vmin = v2;
315 setup->vmid = v0;
316 setup->vmax = v1;
317 }
318 else {
319 /* y0<=y2<=y1 */
320 setup->vmin = v0;
321 setup->vmid = v2;
322 setup->vmax = v1;
323 }
324 }
325 else {
326 if (y0 <= y2) {
327 /* y1<=y0<=y2 */
328 setup->vmin = v1;
329 setup->vmid = v0;
330 setup->vmax = v2;
331 }
332 else if (y2 <= y1) {
333 /* y2<=y1<=y0 */
334 setup->vmin = v2;
335 setup->vmid = v1;
336 setup->vmax = v0;
337 }
338 else {
339 /* y1<=y2<=y0 */
340 setup->vmin = v1;
341 setup->vmid = v2;
342 setup->vmax = v0;
343 }
344 }
345 }
346
347 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
348 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
349 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
350 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
351 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
352 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
353
354 /*
355 * Compute triangle's area. Use 1/area to compute partial
356 * derivatives of attributes later.
357 *
358 * The area will be the same as prim->det, but the sign may be
359 * different depending on how the vertices get sorted above.
360 *
361 * To determine whether the primitive is front or back facing we
362 * use the prim->det value because its sign is correct.
363 */
364 {
365 const float area = (setup->emaj.dx * setup->ebot.dy -
366 setup->ebot.dx * setup->emaj.dy);
367
368 setup->oneoverarea = 1.0f / area;
369
370 /*
371 debug_printf("%s one-over-area %f area %f det %f\n",
372 __FUNCTION__, setup->oneoverarea, area, det );
373 */
374 if (util_is_inf_or_nan(setup->oneoverarea))
375 return FALSE;
376 }
377
378 /* We need to know if this is a front or back-facing triangle for:
379 * - the GLSL gl_FrontFacing fragment attribute (bool)
380 * - two-sided stencil test
381 * 0 = front-facing, 1 = back-facing
382 */
383 setup->facing =
384 ((det < 0.0) ^
385 (setup->softpipe->rasterizer->front_ccw));
386
387 {
388 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
389
390 if (face & setup->cull_face)
391 return FALSE;
392 }
393
394 return TRUE;
395 }
396
397
398 /**
399 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
400 * The value value comes from vertex[slot][i].
401 * The result will be put into setup->coef[slot].a0[i].
402 * \param slot which attribute slot
403 * \param i which component of the slot (0..3)
404 */
405 static void
const_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint vertSlot,uint i)406 const_coeff(struct setup_context *setup,
407 struct tgsi_interp_coef *coef,
408 uint vertSlot, uint i)
409 {
410 assert(i <= 3);
411
412 coef->dadx[i] = 0;
413 coef->dady[i] = 0;
414
415 /* need provoking vertex info!
416 */
417 coef->a0[i] = setup->vprovoke[vertSlot][i];
418 }
419
420
421 /**
422 * Compute a0, dadx and dady for a linearly interpolated coefficient,
423 * for a triangle.
424 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
425 */
426 static void
tri_linear_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])427 tri_linear_coeff(struct setup_context *setup,
428 struct tgsi_interp_coef *coef,
429 uint i,
430 const float v[3])
431 {
432 float botda = v[1] - v[0];
433 float majda = v[2] - v[0];
434 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
435 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
436 float dadx = a * setup->oneoverarea;
437 float dady = b * setup->oneoverarea;
438
439 assert(i <= 3);
440
441 coef->dadx[i] = dadx;
442 coef->dady[i] = dady;
443
444 /* calculate a0 as the value which would be sampled for the
445 * fragment at (0,0), taking into account that we want to sample at
446 * pixel centers, in other words (pixel_offset, pixel_offset).
447 *
448 * this is neat but unfortunately not a good way to do things for
449 * triangles with very large values of dadx or dady as it will
450 * result in the subtraction and re-addition from a0 of a very
451 * large number, which means we'll end up loosing a lot of the
452 * fractional bits and precision from a0. the way to fix this is
453 * to define a0 as the sample at a pixel center somewhere near vmin
454 * instead - i'll switch to this later.
455 */
456 coef->a0[i] = (v[0] -
457 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
458 dady * (setup->vmin[0][1] - setup->pixel_offset)));
459 }
460
461
462 /**
463 * Compute a0, dadx and dady for a perspective-corrected interpolant,
464 * for a triangle.
465 * We basically multiply the vertex value by 1/w before computing
466 * the plane coefficients (a0, dadx, dady).
467 * Later, when we compute the value at a particular fragment position we'll
468 * divide the interpolated value by the interpolated W at that fragment.
469 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
470 */
471 static void
tri_persp_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])472 tri_persp_coeff(struct setup_context *setup,
473 struct tgsi_interp_coef *coef,
474 uint i,
475 const float v[3])
476 {
477 /* premultiply by 1/w (v[0][3] is always W):
478 */
479 float mina = v[0] * setup->vmin[0][3];
480 float mida = v[1] * setup->vmid[0][3];
481 float maxa = v[2] * setup->vmax[0][3];
482 float botda = mida - mina;
483 float majda = maxa - mina;
484 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
485 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
486 float dadx = a * setup->oneoverarea;
487 float dady = b * setup->oneoverarea;
488
489 assert(i <= 3);
490
491 coef->dadx[i] = dadx;
492 coef->dady[i] = dady;
493 coef->a0[i] = (mina -
494 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
495 dady * (setup->vmin[0][1] - setup->pixel_offset)));
496 }
497
498
499 /**
500 * Special coefficient setup for gl_FragCoord.
501 * X and Y are trivial, though Y may have to be inverted for OpenGL.
502 * Z and W are copied from posCoef which should have already been computed.
503 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
504 */
505 static void
setup_fragcoord_coeff(struct setup_context * setup,uint slot)506 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
507 {
508 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
509 boolean origin_lower_left =
510 fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
511 boolean pixel_center_integer =
512 fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
513
514 /*X*/
515 setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
516 setup->coef[slot].dadx[0] = 1.0f;
517 setup->coef[slot].dady[0] = 0.0f;
518 /*Y*/
519 setup->coef[slot].a0[1] =
520 (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
521 + (pixel_center_integer ? 0.0f : 0.5f);
522 setup->coef[slot].dadx[1] = 0.0f;
523 setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
524 /*Z*/
525 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
526 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
527 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
528 /*W*/
529 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
530 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
531 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
532 }
533
534
535
536 /**
537 * Compute the setup->coef[] array dadx, dady, a0 values.
538 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
539 */
540 static void
setup_tri_coefficients(struct setup_context * setup)541 setup_tri_coefficients(struct setup_context *setup)
542 {
543 struct softpipe_context *softpipe = setup->softpipe;
544 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
545 const struct sp_setup_info *sinfo = &softpipe->setup_info;
546 uint fragSlot;
547 float v[3];
548
549 assert(sinfo->valid);
550
551 /* z and w are done by linear interpolation:
552 */
553 v[0] = setup->vmin[0][2];
554 v[1] = setup->vmid[0][2];
555 v[2] = setup->vmax[0][2];
556 tri_linear_coeff(setup, &setup->posCoef, 2, v);
557
558 v[0] = setup->vmin[0][3];
559 v[1] = setup->vmid[0][3];
560 v[2] = setup->vmax[0][3];
561 tri_linear_coeff(setup, &setup->posCoef, 3, v);
562
563 /* setup interpolation for all the remaining attributes:
564 */
565 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
566 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
567 uint j;
568
569 switch (sinfo->attrib[fragSlot].interp) {
570 case SP_INTERP_CONSTANT:
571 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
572 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
573 }
574 break;
575 case SP_INTERP_LINEAR:
576 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
577 v[0] = setup->vmin[vertSlot][j];
578 v[1] = setup->vmid[vertSlot][j];
579 v[2] = setup->vmax[vertSlot][j];
580 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
581 }
582 break;
583 case SP_INTERP_PERSPECTIVE:
584 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
585 v[0] = setup->vmin[vertSlot][j];
586 v[1] = setup->vmid[vertSlot][j];
587 v[2] = setup->vmax[vertSlot][j];
588 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
589 }
590 break;
591 case SP_INTERP_POS:
592 setup_fragcoord_coeff(setup, fragSlot);
593 break;
594 default:
595 assert(0);
596 }
597
598 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
599 /* convert 0 to 1.0 and 1 to -1.0 */
600 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
601 setup->coef[fragSlot].dadx[0] = 0.0;
602 setup->coef[fragSlot].dady[0] = 0.0;
603 }
604
605 if (0) {
606 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
607 debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
608 fragSlot, "xyzw"[j],
609 setup->coef[fragSlot].a0[j],
610 setup->coef[fragSlot].dadx[j],
611 setup->coef[fragSlot].dady[j]);
612 }
613 }
614 }
615 }
616
617
618 static void
setup_tri_edges(struct setup_context * setup)619 setup_tri_edges(struct setup_context *setup)
620 {
621 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
622 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
623
624 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
625 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
626 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
627
628 setup->emaj.sy = ceilf(vmin_y);
629 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
630 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
631 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
632
633 setup->etop.sy = ceilf(vmid_y);
634 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
635 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
636 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
637
638 setup->ebot.sy = ceilf(vmin_y);
639 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
640 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
641 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
642 }
643
644
645 /**
646 * Render the upper or lower half of a triangle.
647 * Scissoring/cliprect is applied here too.
648 */
649 static void
subtriangle(struct setup_context * setup,struct edge * eleft,struct edge * eright,int lines,unsigned viewport_index)650 subtriangle(struct setup_context *setup,
651 struct edge *eleft,
652 struct edge *eright,
653 int lines,
654 unsigned viewport_index)
655 {
656 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
657 const int minx = (int) cliprect->minx;
658 const int maxx = (int) cliprect->maxx;
659 const int miny = (int) cliprect->miny;
660 const int maxy = (int) cliprect->maxy;
661 int y, start_y, finish_y;
662 int sy = (int)eleft->sy;
663
664 assert((int)eleft->sy == (int) eright->sy);
665 assert(lines >= 0);
666
667 /* clip top/bottom */
668 start_y = sy;
669 if (start_y < miny)
670 start_y = miny;
671
672 finish_y = sy + lines;
673 if (finish_y > maxy)
674 finish_y = maxy;
675
676 start_y -= sy;
677 finish_y -= sy;
678
679 /*
680 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
681 */
682
683 for (y = start_y; y < finish_y; y++) {
684
685 /* avoid accumulating adds as floats don't have the precision to
686 * accurately iterate large triangle edges that way. luckily we
687 * can just multiply these days.
688 *
689 * this is all drowned out by the attribute interpolation anyway.
690 */
691 int left = (int)(eleft->sx + y * eleft->dxdy);
692 int right = (int)(eright->sx + y * eright->dxdy);
693
694 /* clip left/right */
695 if (left < minx)
696 left = minx;
697 if (right > maxx)
698 right = maxx;
699
700 if (left < right) {
701 int _y = sy + y;
702 if (block(_y) != setup->span.y) {
703 flush_spans(setup);
704 setup->span.y = block(_y);
705 }
706
707 setup->span.left[_y&1] = left;
708 setup->span.right[_y&1] = right;
709 }
710 }
711
712
713 /* save the values so that emaj can be restarted:
714 */
715 eleft->sx += lines * eleft->dxdy;
716 eright->sx += lines * eright->dxdy;
717 eleft->sy += lines;
718 eright->sy += lines;
719 }
720
721
722 /**
723 * Recalculate prim's determinant. This is needed as we don't have
724 * get this information through the vbuf_render interface & we must
725 * calculate it here.
726 */
727 static float
calc_det(const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])728 calc_det(const float (*v0)[4],
729 const float (*v1)[4],
730 const float (*v2)[4])
731 {
732 /* edge vectors e = v0 - v2, f = v1 - v2 */
733 const float ex = v0[0][0] - v2[0][0];
734 const float ey = v0[0][1] - v2[0][1];
735 const float fx = v1[0][0] - v2[0][0];
736 const float fy = v1[0][1] - v2[0][1];
737
738 /* det = cross(e,f).z */
739 return ex * fy - ey * fx;
740 }
741
742
743 /**
744 * Do setup for triangle rasterization, then render the triangle.
745 */
746 void
sp_setup_tri(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])747 sp_setup_tri(struct setup_context *setup,
748 const float (*v0)[4],
749 const float (*v1)[4],
750 const float (*v2)[4])
751 {
752 float det;
753 uint layer = 0;
754 unsigned viewport_index = 0;
755 #if DEBUG_VERTS
756 debug_printf("Setup triangle:\n");
757 print_vertex(setup, v0);
758 print_vertex(setup, v1);
759 print_vertex(setup, v2);
760 #endif
761
762 if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
763 setup->softpipe->rasterizer->rasterizer_discard)
764 return;
765
766 det = calc_det(v0, v1, v2);
767 /*
768 debug_printf("%s\n", __FUNCTION__ );
769 */
770
771 #if DEBUG_FRAGS
772 setup->numFragsEmitted = 0;
773 setup->numFragsWritten = 0;
774 #endif
775
776 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
777 return;
778
779 setup_tri_coefficients( setup );
780 setup_tri_edges( setup );
781
782 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
783
784 setup->span.y = 0;
785 setup->span.right[0] = 0;
786 setup->span.right[1] = 0;
787 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
788 if (setup->softpipe->layer_slot > 0) {
789 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
790 layer = MIN2(layer, setup->max_layer);
791 }
792 setup->quad[0].input.layer = layer;
793
794 if (setup->softpipe->viewport_index_slot > 0) {
795 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
796 viewport_index = sp_clamp_viewport_idx(*udata);
797 }
798 setup->quad[0].input.viewport_index = viewport_index;
799
800 /* init_constant_attribs( setup ); */
801
802 if (setup->oneoverarea < 0.0) {
803 /* emaj on left:
804 */
805 subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
806 subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
807 }
808 else {
809 /* emaj on right:
810 */
811 subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
812 subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
813 }
814
815 flush_spans( setup );
816
817 if (setup->softpipe->active_statistics_queries) {
818 setup->softpipe->pipeline_statistics.c_primitives++;
819 }
820
821 #if DEBUG_FRAGS
822 printf("Tri: %u frags emitted, %u written\n",
823 setup->numFragsEmitted,
824 setup->numFragsWritten);
825 #endif
826 }
827
828
829 /**
830 * Compute a0, dadx and dady for a linearly interpolated coefficient,
831 * for a line.
832 * v[0] and v[1] are vmin and vmax, respectively.
833 */
834 static void
line_linear_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])835 line_linear_coeff(const struct setup_context *setup,
836 struct tgsi_interp_coef *coef,
837 uint i,
838 const float v[2])
839 {
840 const float da = v[1] - v[0];
841 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
842 const float dady = da * setup->emaj.dy * setup->oneoverarea;
843 coef->dadx[i] = dadx;
844 coef->dady[i] = dady;
845 coef->a0[i] = (v[0] -
846 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
847 dady * (setup->vmin[0][1] - setup->pixel_offset)));
848 }
849
850
851 /**
852 * Compute a0, dadx and dady for a perspective-corrected interpolant,
853 * for a line.
854 * v[0] and v[1] are vmin and vmax, respectively.
855 */
856 static void
line_persp_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])857 line_persp_coeff(const struct setup_context *setup,
858 struct tgsi_interp_coef *coef,
859 uint i,
860 const float v[2])
861 {
862 const float a0 = v[0] * setup->vmin[0][3];
863 const float a1 = v[1] * setup->vmax[0][3];
864 const float da = a1 - a0;
865 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
866 const float dady = da * setup->emaj.dy * setup->oneoverarea;
867 coef->dadx[i] = dadx;
868 coef->dady[i] = dady;
869 coef->a0[i] = (a0 -
870 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
871 dady * (setup->vmin[0][1] - setup->pixel_offset)));
872 }
873
874
875 /**
876 * Compute the setup->coef[] array dadx, dady, a0 values.
877 * Must be called after setup->vmin,vmax are initialized.
878 */
879 static boolean
setup_line_coefficients(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])880 setup_line_coefficients(struct setup_context *setup,
881 const float (*v0)[4],
882 const float (*v1)[4])
883 {
884 struct softpipe_context *softpipe = setup->softpipe;
885 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
886 const struct sp_setup_info *sinfo = &softpipe->setup_info;
887 uint fragSlot;
888 float area;
889 float v[2];
890
891 assert(sinfo->valid);
892
893 /* use setup->vmin, vmax to point to vertices */
894 if (softpipe->rasterizer->flatshade_first)
895 setup->vprovoke = v0;
896 else
897 setup->vprovoke = v1;
898 setup->vmin = v0;
899 setup->vmax = v1;
900
901 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
902 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
903
904 /* NOTE: this is not really area but something proportional to it */
905 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
906 if (area == 0.0f || util_is_inf_or_nan(area))
907 return FALSE;
908 setup->oneoverarea = 1.0f / area;
909
910 /* z and w are done by linear interpolation:
911 */
912 v[0] = setup->vmin[0][2];
913 v[1] = setup->vmax[0][2];
914 line_linear_coeff(setup, &setup->posCoef, 2, v);
915
916 v[0] = setup->vmin[0][3];
917 v[1] = setup->vmax[0][3];
918 line_linear_coeff(setup, &setup->posCoef, 3, v);
919
920 /* setup interpolation for all the remaining attributes:
921 */
922 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
923 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
924 uint j;
925
926 switch (sinfo->attrib[fragSlot].interp) {
927 case SP_INTERP_CONSTANT:
928 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
929 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
930 break;
931 case SP_INTERP_LINEAR:
932 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
933 v[0] = setup->vmin[vertSlot][j];
934 v[1] = setup->vmax[vertSlot][j];
935 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
936 }
937 break;
938 case SP_INTERP_PERSPECTIVE:
939 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
940 v[0] = setup->vmin[vertSlot][j];
941 v[1] = setup->vmax[vertSlot][j];
942 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
943 }
944 break;
945 case SP_INTERP_POS:
946 setup_fragcoord_coeff(setup, fragSlot);
947 break;
948 default:
949 assert(0);
950 }
951
952 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
953 /* convert 0 to 1.0 and 1 to -1.0 */
954 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
955 setup->coef[fragSlot].dadx[0] = 0.0;
956 setup->coef[fragSlot].dady[0] = 0.0;
957 }
958 }
959 return TRUE;
960 }
961
962
963 /**
964 * Plot a pixel in a line segment.
965 */
966 static inline void
plot(struct setup_context * setup,int x,int y)967 plot(struct setup_context *setup, int x, int y)
968 {
969 const int iy = y & 1;
970 const int ix = x & 1;
971 const int quadX = x - ix;
972 const int quadY = y - iy;
973 const int mask = (1 << ix) << (2 * iy);
974
975 if (quadX != setup->quad[0].input.x0 ||
976 quadY != setup->quad[0].input.y0)
977 {
978 /* flush prev quad, start new quad */
979
980 if (setup->quad[0].input.x0 != -1)
981 clip_emit_quad(setup, &setup->quad[0]);
982
983 setup->quad[0].input.x0 = quadX;
984 setup->quad[0].input.y0 = quadY;
985 setup->quad[0].inout.mask = 0x0;
986 }
987
988 setup->quad[0].inout.mask |= mask;
989 }
990
991
992 /**
993 * Do setup for line rasterization, then render the line.
994 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
995 * to handle stippling and wide lines.
996 */
997 void
sp_setup_line(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])998 sp_setup_line(struct setup_context *setup,
999 const float (*v0)[4],
1000 const float (*v1)[4])
1001 {
1002 int x0 = (int) v0[0][0];
1003 int x1 = (int) v1[0][0];
1004 int y0 = (int) v0[0][1];
1005 int y1 = (int) v1[0][1];
1006 int dx = x1 - x0;
1007 int dy = y1 - y0;
1008 int xstep, ystep;
1009 uint layer = 0;
1010 unsigned viewport_index = 0;
1011
1012 #if DEBUG_VERTS
1013 debug_printf("Setup line:\n");
1014 print_vertex(setup, v0);
1015 print_vertex(setup, v1);
1016 #endif
1017
1018 if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1019 setup->softpipe->rasterizer->rasterizer_discard)
1020 return;
1021
1022 if (dx == 0 && dy == 0)
1023 return;
1024
1025 if (!setup_line_coefficients(setup, v0, v1))
1026 return;
1027
1028 assert(v0[0][0] < 1.0e9);
1029 assert(v0[0][1] < 1.0e9);
1030 assert(v1[0][0] < 1.0e9);
1031 assert(v1[0][1] < 1.0e9);
1032
1033 if (dx < 0) {
1034 dx = -dx; /* make positive */
1035 xstep = -1;
1036 }
1037 else {
1038 xstep = 1;
1039 }
1040
1041 if (dy < 0) {
1042 dy = -dy; /* make positive */
1043 ystep = -1;
1044 }
1045 else {
1046 ystep = 1;
1047 }
1048
1049 assert(dx >= 0);
1050 assert(dy >= 0);
1051 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1052
1053 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1054 setup->quad[0].inout.mask = 0x0;
1055 if (setup->softpipe->layer_slot > 0) {
1056 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1057 layer = MIN2(layer, setup->max_layer);
1058 }
1059 setup->quad[0].input.layer = layer;
1060
1061 if (setup->softpipe->viewport_index_slot > 0) {
1062 unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1063 viewport_index = sp_clamp_viewport_idx(*udata);
1064 }
1065 setup->quad[0].input.viewport_index = viewport_index;
1066
1067 /* XXX temporary: set coverage to 1.0 so the line appears
1068 * if AA mode happens to be enabled.
1069 */
1070 setup->quad[0].input.coverage[0] =
1071 setup->quad[0].input.coverage[1] =
1072 setup->quad[0].input.coverage[2] =
1073 setup->quad[0].input.coverage[3] = 1.0;
1074
1075 if (dx > dy) {
1076 /*** X-major line ***/
1077 int i;
1078 const int errorInc = dy + dy;
1079 int error = errorInc - dx;
1080 const int errorDec = error - dx;
1081
1082 for (i = 0; i < dx; i++) {
1083 plot(setup, x0, y0);
1084
1085 x0 += xstep;
1086 if (error < 0) {
1087 error += errorInc;
1088 }
1089 else {
1090 error += errorDec;
1091 y0 += ystep;
1092 }
1093 }
1094 }
1095 else {
1096 /*** Y-major line ***/
1097 int i;
1098 const int errorInc = dx + dx;
1099 int error = errorInc - dy;
1100 const int errorDec = error - dy;
1101
1102 for (i = 0; i < dy; i++) {
1103 plot(setup, x0, y0);
1104
1105 y0 += ystep;
1106 if (error < 0) {
1107 error += errorInc;
1108 }
1109 else {
1110 error += errorDec;
1111 x0 += xstep;
1112 }
1113 }
1114 }
1115
1116 /* draw final quad */
1117 if (setup->quad[0].inout.mask) {
1118 clip_emit_quad(setup, &setup->quad[0]);
1119 }
1120 }
1121
1122
1123 static void
point_persp_coeff(const struct setup_context * setup,const float (* vert)[4],struct tgsi_interp_coef * coef,uint vertSlot,uint i)1124 point_persp_coeff(const struct setup_context *setup,
1125 const float (*vert)[4],
1126 struct tgsi_interp_coef *coef,
1127 uint vertSlot, uint i)
1128 {
1129 assert(i <= 3);
1130 coef->dadx[i] = 0.0F;
1131 coef->dady[i] = 0.0F;
1132 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1133 }
1134
1135
1136 /**
1137 * Do setup for point rasterization, then render the point.
1138 * Round or square points...
1139 * XXX could optimize a lot for 1-pixel points.
1140 */
1141 void
sp_setup_point(struct setup_context * setup,const float (* v0)[4])1142 sp_setup_point(struct setup_context *setup,
1143 const float (*v0)[4])
1144 {
1145 struct softpipe_context *softpipe = setup->softpipe;
1146 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1147 const int sizeAttr = setup->softpipe->psize_slot;
1148 const float size
1149 = sizeAttr > 0 ? v0[sizeAttr][0]
1150 : setup->softpipe->rasterizer->point_size;
1151 const float halfSize = 0.5F * size;
1152 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1153 const float x = v0[0][0]; /* Note: data[0] is always position */
1154 const float y = v0[0][1];
1155 const struct sp_setup_info *sinfo = &softpipe->setup_info;
1156 uint fragSlot;
1157 uint layer = 0;
1158 unsigned viewport_index = 0;
1159 #if DEBUG_VERTS
1160 debug_printf("Setup point:\n");
1161 print_vertex(setup, v0);
1162 #endif
1163
1164 assert(sinfo->valid);
1165
1166 if (unlikely(sp_debug & SP_DBG_NO_RAST) ||
1167 setup->softpipe->rasterizer->rasterizer_discard)
1168 return;
1169
1170 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1171
1172 if (setup->softpipe->layer_slot > 0) {
1173 layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1174 layer = MIN2(layer, setup->max_layer);
1175 }
1176 setup->quad[0].input.layer = layer;
1177
1178 if (setup->softpipe->viewport_index_slot > 0) {
1179 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1180 viewport_index = sp_clamp_viewport_idx(*udata);
1181 }
1182 setup->quad[0].input.viewport_index = viewport_index;
1183
1184 /* For points, all interpolants are constant-valued.
1185 * However, for point sprites, we'll need to setup texcoords appropriately.
1186 * XXX: which coefficients are the texcoords???
1187 * We may do point sprites as textured quads...
1188 *
1189 * KW: We don't know which coefficients are texcoords - ultimately
1190 * the choice of what interpolation mode to use for each attribute
1191 * should be determined by the fragment program, using
1192 * per-attribute declaration statements that include interpolation
1193 * mode as a parameter. So either the fragment program will have
1194 * to be adjusted for pointsprite vs normal point behaviour, or
1195 * otherwise a special interpolation mode will have to be defined
1196 * which matches the required behaviour for point sprites. But -
1197 * the latter is not a feature of normal hardware, and as such
1198 * probably should be ruled out on that basis.
1199 */
1200 setup->vprovoke = v0;
1201
1202 /* setup Z, W */
1203 const_coeff(setup, &setup->posCoef, 0, 2);
1204 const_coeff(setup, &setup->posCoef, 0, 3);
1205
1206 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1207 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1208 uint j;
1209
1210 switch (sinfo->attrib[fragSlot].interp) {
1211 case SP_INTERP_CONSTANT:
1212 FALLTHROUGH;
1213 case SP_INTERP_LINEAR:
1214 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1215 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1216 break;
1217 case SP_INTERP_PERSPECTIVE:
1218 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1219 point_persp_coeff(setup, setup->vprovoke,
1220 &setup->coef[fragSlot], vertSlot, j);
1221 break;
1222 case SP_INTERP_POS:
1223 setup_fragcoord_coeff(setup, fragSlot);
1224 break;
1225 default:
1226 assert(0);
1227 }
1228
1229 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1230 /* convert 0 to 1.0 and 1 to -1.0 */
1231 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1232 setup->coef[fragSlot].dadx[0] = 0.0;
1233 setup->coef[fragSlot].dady[0] = 0.0;
1234 }
1235 }
1236
1237
1238 if (halfSize <= 0.5 && !round) {
1239 /* special case for 1-pixel points */
1240 const int ix = ((int) x) & 1;
1241 const int iy = ((int) y) & 1;
1242 setup->quad[0].input.x0 = (int) x - ix;
1243 setup->quad[0].input.y0 = (int) y - iy;
1244 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1245 clip_emit_quad(setup, &setup->quad[0]);
1246 }
1247 else {
1248 if (round) {
1249 /* rounded points */
1250 const int ixmin = block((int) (x - halfSize));
1251 const int ixmax = block((int) (x + halfSize));
1252 const int iymin = block((int) (y - halfSize));
1253 const int iymax = block((int) (y + halfSize));
1254 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1255 const float rmax = halfSize + 0.7071F;
1256 const float rmin2 = MAX2(0.0F, rmin * rmin);
1257 const float rmax2 = rmax * rmax;
1258 const float cscale = 1.0F / (rmax2 - rmin2);
1259 int ix, iy;
1260
1261 for (iy = iymin; iy <= iymax; iy += 2) {
1262 for (ix = ixmin; ix <= ixmax; ix += 2) {
1263 float dx, dy, dist2, cover;
1264
1265 setup->quad[0].inout.mask = 0x0;
1266
1267 dx = (ix + 0.5f) - x;
1268 dy = (iy + 0.5f) - y;
1269 dist2 = dx * dx + dy * dy;
1270 if (dist2 <= rmax2) {
1271 cover = 1.0F - (dist2 - rmin2) * cscale;
1272 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1273 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1274 }
1275
1276 dx = (ix + 1.5f) - x;
1277 dy = (iy + 0.5f) - y;
1278 dist2 = dx * dx + dy * dy;
1279 if (dist2 <= rmax2) {
1280 cover = 1.0F - (dist2 - rmin2) * cscale;
1281 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1282 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1283 }
1284
1285 dx = (ix + 0.5f) - x;
1286 dy = (iy + 1.5f) - y;
1287 dist2 = dx * dx + dy * dy;
1288 if (dist2 <= rmax2) {
1289 cover = 1.0F - (dist2 - rmin2) * cscale;
1290 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1291 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1292 }
1293
1294 dx = (ix + 1.5f) - x;
1295 dy = (iy + 1.5f) - y;
1296 dist2 = dx * dx + dy * dy;
1297 if (dist2 <= rmax2) {
1298 cover = 1.0F - (dist2 - rmin2) * cscale;
1299 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1300 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1301 }
1302
1303 if (setup->quad[0].inout.mask) {
1304 setup->quad[0].input.x0 = ix;
1305 setup->quad[0].input.y0 = iy;
1306 clip_emit_quad(setup, &setup->quad[0]);
1307 }
1308 }
1309 }
1310 }
1311 else {
1312 /* square points */
1313 const int xmin = (int) (x + 0.75 - halfSize);
1314 const int ymin = (int) (y + 0.25 - halfSize);
1315 const int xmax = xmin + (int) size;
1316 const int ymax = ymin + (int) size;
1317 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1318 const int ixmin = block(xmin);
1319 const int ixmax = block(xmax - 1);
1320 const int iymin = block(ymin);
1321 const int iymax = block(ymax - 1);
1322 int ix, iy;
1323
1324 /*
1325 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1326 */
1327 for (iy = iymin; iy <= iymax; iy += 2) {
1328 uint rowMask = 0xf;
1329 if (iy < ymin) {
1330 /* above the top edge */
1331 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1332 }
1333 if (iy + 1 >= ymax) {
1334 /* below the bottom edge */
1335 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1336 }
1337
1338 for (ix = ixmin; ix <= ixmax; ix += 2) {
1339 uint mask = rowMask;
1340
1341 if (ix < xmin) {
1342 /* fragment is past left edge of point, turn off left bits */
1343 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1344 }
1345 if (ix + 1 >= xmax) {
1346 /* past the right edge */
1347 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1348 }
1349
1350 setup->quad[0].inout.mask = mask;
1351 setup->quad[0].input.x0 = ix;
1352 setup->quad[0].input.y0 = iy;
1353 clip_emit_quad(setup, &setup->quad[0]);
1354 }
1355 }
1356 }
1357 }
1358 }
1359
1360
1361 /**
1362 * Called by vbuf code just before we start buffering primitives.
1363 */
1364 void
sp_setup_prepare(struct setup_context * setup)1365 sp_setup_prepare(struct setup_context *setup)
1366 {
1367 struct softpipe_context *sp = setup->softpipe;
1368 int i;
1369 unsigned max_layer = ~0;
1370 if (sp->dirty) {
1371 softpipe_update_derived(sp, sp->reduced_api_prim);
1372 }
1373
1374 /* Note: nr_attrs is only used for debugging (vertex printing) */
1375 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1376
1377 /*
1378 * Determine how many layers the fb has (used for clamping layer value).
1379 * OpenGL (but not d3d10) permits different amount of layers per rt, however
1380 * results are undefined if layer exceeds the amount of layers of ANY
1381 * attachment hence don't need separate per cbuf and zsbuf max.
1382 */
1383 for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1384 struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1385 if (cbuf) {
1386 max_layer = MIN2(max_layer,
1387 cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1388
1389 }
1390 }
1391
1392 /* Prepare pixel offset for rasterisation:
1393 * - pixel center (0.5, 0.5) for GL, or
1394 * - assume (0.0, 0.0) for other APIs.
1395 */
1396 if (setup->softpipe->rasterizer->half_pixel_center) {
1397 setup->pixel_offset = 0.5f;
1398 } else {
1399 setup->pixel_offset = 0.0f;
1400 }
1401
1402 setup->max_layer = max_layer;
1403
1404 sp->quad.first->begin( sp->quad.first );
1405
1406 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1407 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1408 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1409 /* we'll do culling */
1410 setup->cull_face = sp->rasterizer->cull_face;
1411 }
1412 else {
1413 /* 'draw' will do culling */
1414 setup->cull_face = PIPE_FACE_NONE;
1415 }
1416 }
1417
1418
1419 void
sp_setup_destroy_context(struct setup_context * setup)1420 sp_setup_destroy_context(struct setup_context *setup)
1421 {
1422 FREE( setup );
1423 }
1424
1425
1426 /**
1427 * Create a new primitive setup/render stage.
1428 */
1429 struct setup_context *
sp_setup_create_context(struct softpipe_context * softpipe)1430 sp_setup_create_context(struct softpipe_context *softpipe)
1431 {
1432 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1433 unsigned i;
1434
1435 setup->softpipe = softpipe;
1436
1437 for (i = 0; i < MAX_QUADS; i++) {
1438 setup->quad[i].coef = setup->coef;
1439 setup->quad[i].posCoef = &setup->posCoef;
1440 }
1441
1442 setup->span.left[0] = 1000000; /* greater than right[0] */
1443 setup->span.left[1] = 1000000; /* greater than right[1] */
1444
1445 return setup;
1446 }
1447