• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Single-precision log function.
3  *
4  * Copyright (c) 2017-2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "libm.h"
11 #include "logf_data.h"
12 
13 /*
14 LOGF_TABLE_BITS = 4
15 LOGF_POLY_ORDER = 4
16 
17 ULP error: 0.818 (nearest rounding.)
18 Relative error: 1.957 * 2^-26 (before rounding.)
19 */
20 
21 #define T __logf_data.tab
22 #define A __logf_data.poly
23 #define Ln2 __logf_data.ln2
24 #define N (1 << LOGF_TABLE_BITS)
25 #define OFF 0x3f330000
26 
logf(float x)27 float logf(float x)
28 {
29 	double_t z, r, r2, y, y0, invc, logc;
30 	uint32_t ix, iz, tmp;
31 	int k, i;
32 
33 	ix = asuint(x);
34 	/* Fix sign of zero with downward rounding when x==1.  */
35 	if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
36 		return 0;
37 	if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
38 		/* x < 0x1p-126 or inf or nan.  */
39 		if (ix * 2 == 0)
40 			return __math_divzerof(1);
41 		if (ix == 0x7f800000) /* log(inf) == inf.  */
42 			return x;
43 		if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
44 			return __math_invalidf(x);
45 		/* x is subnormal, normalize it.  */
46 		ix = asuint(x * 0x1p23f);
47 		ix -= 23 << 23;
48 	}
49 
50 	/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
51 	   The range is split into N subintervals.
52 	   The ith subinterval contains z and c is near its center.  */
53 	tmp = ix - OFF;
54 	i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
55 	k = (int32_t)tmp >> 23; /* arithmetic shift */
56 	iz = ix - (tmp & 0x1ff << 23);
57 	invc = T[i].invc;
58 	logc = T[i].logc;
59 	z = (double_t)asfloat(iz);
60 
61 	/* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
62 	r = z * invc - 1;
63 	y0 = logc + (double_t)k * Ln2;
64 
65 	/* Pipelined polynomial evaluation to approximate log1p(r).  */
66 	r2 = r * r;
67 	y = A[1] * r + A[2];
68 	y = A[0] * r2 + y;
69 	y = y * r2 + (y0 + r);
70 	return eval_as_float(y);
71 }
72