• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
11 
12 #define BASE 65521U     /* largest prime smaller than 65536 */
13 #define NMAX 5552
14 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
15 
16 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
17 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
18 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
19 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
20 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
21 
22 /* use NO_DIVIDE if your processor does not do division in hardware --
23    try it both ways to see which is faster */
24 #ifdef NO_DIVIDE
25 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
26    (thank you to John Reiser for pointing this out) */
27 #  define CHOP(a) \
28     do { \
29         unsigned long tmp = a >> 16; \
30         a &= 0xffffUL; \
31         a += (tmp << 4) - tmp; \
32     } while (0)
33 #  define MOD28(a) \
34     do { \
35         CHOP(a); \
36         if (a >= BASE) a -= BASE; \
37     } while (0)
38 #  define MOD(a) \
39     do { \
40         CHOP(a); \
41         MOD28(a); \
42     } while (0)
43 #  define MOD63(a) \
44     do { /* this assumes a is not negative */ \
45         z_off64_t tmp = a >> 32; \
46         a &= 0xffffffffL; \
47         a += (tmp << 8) - (tmp << 5) + tmp; \
48         tmp = a >> 16; \
49         a &= 0xffffL; \
50         a += (tmp << 4) - tmp; \
51         tmp = a >> 16; \
52         a &= 0xffffL; \
53         a += (tmp << 4) - tmp; \
54         if (a >= BASE) a -= BASE; \
55     } while (0)
56 #else
57 #  define MOD(a) a %= BASE
58 #  define MOD28(a) a %= BASE
59 #  define MOD63(a) a %= BASE
60 #endif
61 
62 #if defined(ADLER32_SIMD_SSSE3)
63 #include "adler32_simd.h"
64 #include "x86.h"
65 #elif defined(ADLER32_SIMD_NEON)
66 #include "adler32_simd.h"
67 #endif
68 
69 /* ========================================================================= */
adler32_z(adler,buf,len)70 uLong ZEXPORT adler32_z(adler, buf, len)
71     uLong adler;
72     const Bytef *buf;
73     z_size_t len;
74 {
75     unsigned long sum2;
76     unsigned n;
77 
78 #if defined(ADLER32_SIMD_SSSE3)
79     if (x86_cpu_enable_ssse3 && buf && len >= 64)
80         return adler32_simd_(adler, buf, len);
81 #elif defined(ADLER32_SIMD_NEON)
82     if (buf && len >= 64)
83         return adler32_simd_(adler, buf, len);
84 #endif
85 
86     /* split Adler-32 into component sums */
87     sum2 = (adler >> 16) & 0xffff;
88     adler &= 0xffff;
89 
90     /* in case user likes doing a byte at a time, keep it fast */
91     if (len == 1) {
92         adler += buf[0];
93         if (adler >= BASE)
94             adler -= BASE;
95         sum2 += adler;
96         if (sum2 >= BASE)
97             sum2 -= BASE;
98         return adler | (sum2 << 16);
99     }
100 
101 #if defined(ADLER32_SIMD_SSSE3)
102     /*
103      * Use SSSE3 to compute the adler32. Since this routine can be
104      * freely used, check CPU features here. zlib convention is to
105      * call adler32(0, NULL, 0), before making calls to adler32().
106      * So this is a good early (and infrequent) place to cache CPU
107      * features for those later, more interesting adler32() calls.
108      */
109     if (buf == Z_NULL) {
110         if (!len) /* Assume user is calling adler32(0, NULL, 0); */
111             x86_check_features();
112         return 1L;
113     }
114 #else
115     /* initial Adler-32 value (deferred check for len == 1 speed) */
116     if (buf == Z_NULL)
117         return 1L;
118 #endif
119 
120     /* in case short lengths are provided, keep it somewhat fast */
121     if (len < 16) {
122         while (len--) {
123             adler += *buf++;
124             sum2 += adler;
125         }
126         if (adler >= BASE)
127             adler -= BASE;
128         MOD28(sum2);            /* only added so many BASE's */
129         return adler | (sum2 << 16);
130     }
131 
132     /* do length NMAX blocks -- requires just one modulo operation */
133     while (len >= NMAX) {
134         len -= NMAX;
135         n = NMAX / 16;          /* NMAX is divisible by 16 */
136         do {
137             DO16(buf);          /* 16 sums unrolled */
138             buf += 16;
139         } while (--n);
140         MOD(adler);
141         MOD(sum2);
142     }
143 
144     /* do remaining bytes (less than NMAX, still just one modulo) */
145     if (len) {                  /* avoid modulos if none remaining */
146         while (len >= 16) {
147             len -= 16;
148             DO16(buf);
149             buf += 16;
150         }
151         while (len--) {
152             adler += *buf++;
153             sum2 += adler;
154         }
155         MOD(adler);
156         MOD(sum2);
157     }
158 
159     /* return recombined sums */
160     return adler | (sum2 << 16);
161 }
162 
163 /* ========================================================================= */
adler32(adler,buf,len)164 uLong ZEXPORT adler32(adler, buf, len)
165     uLong adler;
166     const Bytef *buf;
167     uInt len;
168 {
169     return adler32_z(adler, buf, len);
170 }
171 
172 /* ========================================================================= */
adler32_combine_(adler1,adler2,len2)173 local uLong adler32_combine_(adler1, adler2, len2)
174     uLong adler1;
175     uLong adler2;
176     z_off64_t len2;
177 {
178     unsigned long sum1;
179     unsigned long sum2;
180     unsigned rem;
181 
182     /* for negative len, return invalid adler32 as a clue for debugging */
183     if (len2 < 0)
184         return 0xffffffffUL;
185 
186     /* the derivation of this formula is left as an exercise for the reader */
187     MOD63(len2);                /* assumes len2 >= 0 */
188     rem = (unsigned)len2;
189     sum1 = adler1 & 0xffff;
190     sum2 = rem * sum1;
191     MOD(sum2);
192     sum1 += (adler2 & 0xffff) + BASE - 1;
193     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
194     if (sum1 >= BASE) sum1 -= BASE;
195     if (sum1 >= BASE) sum1 -= BASE;
196     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
197     if (sum2 >= BASE) sum2 -= BASE;
198     return sum1 | (sum2 << 16);
199 }
200 
201 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)202 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
203     uLong adler1;
204     uLong adler2;
205     z_off_t len2;
206 {
207     return adler32_combine_(adler1, adler2, len2);
208 }
209 
adler32_combine64(adler1,adler2,len2)210 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
211     uLong adler1;
212     uLong adler2;
213     z_off64_t len2;
214 {
215     return adler32_combine_(adler1, adler2, len2);
216 }
217