• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include "internal/cryptlib.h"
11 #include "bn_local.h"
12 
13 /*
14  * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
15  * not contain branches that may leak sensitive information.
16  *
17  * This is a static function, we ensure all callers in this file pass valid
18  * arguments: all passed pointers here are non-NULL.
19  */
20 static ossl_inline
bn_mod_inverse_no_branch(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx,int * pnoinv)21 BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
22                                  const BIGNUM *a, const BIGNUM *n,
23                                  BN_CTX *ctx, int *pnoinv)
24 {
25     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
26     BIGNUM *ret = NULL;
27     int sign;
28 
29     bn_check_top(a);
30     bn_check_top(n);
31 
32     BN_CTX_start(ctx);
33     A = BN_CTX_get(ctx);
34     B = BN_CTX_get(ctx);
35     X = BN_CTX_get(ctx);
36     D = BN_CTX_get(ctx);
37     M = BN_CTX_get(ctx);
38     Y = BN_CTX_get(ctx);
39     T = BN_CTX_get(ctx);
40     if (T == NULL)
41         goto err;
42 
43     if (in == NULL)
44         R = BN_new();
45     else
46         R = in;
47     if (R == NULL)
48         goto err;
49 
50     if (!BN_one(X))
51         goto err;
52     BN_zero(Y);
53     if (BN_copy(B, a) == NULL)
54         goto err;
55     if (BN_copy(A, n) == NULL)
56         goto err;
57     A->neg = 0;
58 
59     if (B->neg || (BN_ucmp(B, A) >= 0)) {
60         /*
61          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
62          * BN_div_no_branch will be called eventually.
63          */
64          {
65             BIGNUM local_B;
66             bn_init(&local_B);
67             BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
68             if (!BN_nnmod(B, &local_B, A, ctx))
69                 goto err;
70             /* Ensure local_B goes out of scope before any further use of B */
71         }
72     }
73     sign = -1;
74     /*-
75      * From  B = a mod |n|,  A = |n|  it follows that
76      *
77      *      0 <= B < A,
78      *     -sign*X*a  ==  B   (mod |n|),
79      *      sign*Y*a  ==  A   (mod |n|).
80      */
81 
82     while (!BN_is_zero(B)) {
83         BIGNUM *tmp;
84 
85         /*-
86          *      0 < B < A,
87          * (*) -sign*X*a  ==  B   (mod |n|),
88          *      sign*Y*a  ==  A   (mod |n|)
89          */
90 
91         /*
92          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
93          * BN_div_no_branch will be called eventually.
94          */
95         {
96             BIGNUM local_A;
97             bn_init(&local_A);
98             BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
99 
100             /* (D, M) := (A/B, A%B) ... */
101             if (!BN_div(D, M, &local_A, B, ctx))
102                 goto err;
103             /* Ensure local_A goes out of scope before any further use of A */
104         }
105 
106         /*-
107          * Now
108          *      A = D*B + M;
109          * thus we have
110          * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
111          */
112 
113         tmp = A;                /* keep the BIGNUM object, the value does not
114                                  * matter */
115 
116         /* (A, B) := (B, A mod B) ... */
117         A = B;
118         B = M;
119         /* ... so we have  0 <= B < A  again */
120 
121         /*-
122          * Since the former  M  is now  B  and the former  B  is now  A,
123          * (**) translates into
124          *       sign*Y*a  ==  D*A + B    (mod |n|),
125          * i.e.
126          *       sign*Y*a - D*A  ==  B    (mod |n|).
127          * Similarly, (*) translates into
128          *      -sign*X*a  ==  A          (mod |n|).
129          *
130          * Thus,
131          *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
132          * i.e.
133          *        sign*(Y + D*X)*a  ==  B  (mod |n|).
134          *
135          * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
136          *      -sign*X*a  ==  B   (mod |n|),
137          *       sign*Y*a  ==  A   (mod |n|).
138          * Note that  X  and  Y  stay non-negative all the time.
139          */
140 
141         if (!BN_mul(tmp, D, X, ctx))
142             goto err;
143         if (!BN_add(tmp, tmp, Y))
144             goto err;
145 
146         M = Y;                  /* keep the BIGNUM object, the value does not
147                                  * matter */
148         Y = X;
149         X = tmp;
150         sign = -sign;
151     }
152 
153     /*-
154      * The while loop (Euclid's algorithm) ends when
155      *      A == gcd(a,n);
156      * we have
157      *       sign*Y*a  ==  A  (mod |n|),
158      * where  Y  is non-negative.
159      */
160 
161     if (sign < 0) {
162         if (!BN_sub(Y, n, Y))
163             goto err;
164     }
165     /* Now  Y*a  ==  A  (mod |n|).  */
166 
167     if (BN_is_one(A)) {
168         /* Y*a == 1  (mod |n|) */
169         if (!Y->neg && BN_ucmp(Y, n) < 0) {
170             if (!BN_copy(R, Y))
171                 goto err;
172         } else {
173             if (!BN_nnmod(R, Y, n, ctx))
174                 goto err;
175         }
176     } else {
177         *pnoinv = 1;
178         /* caller sets the BN_R_NO_INVERSE error */
179         goto err;
180     }
181 
182     ret = R;
183     *pnoinv = 0;
184 
185  err:
186     if ((ret == NULL) && (in == NULL))
187         BN_free(R);
188     BN_CTX_end(ctx);
189     bn_check_top(ret);
190     return ret;
191 }
192 
193 /*
194  * This is an internal function, we assume all callers pass valid arguments:
195  * all pointers passed here are assumed non-NULL.
196  */
int_bn_mod_inverse(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx,int * pnoinv)197 BIGNUM *int_bn_mod_inverse(BIGNUM *in,
198                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
199                            int *pnoinv)
200 {
201     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
202     BIGNUM *ret = NULL;
203     int sign;
204 
205     /* This is invalid input so we don't worry about constant time here */
206     if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
207         *pnoinv = 1;
208         return NULL;
209     }
210 
211     *pnoinv = 0;
212 
213     if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
214         || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
215         return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
216     }
217 
218     bn_check_top(a);
219     bn_check_top(n);
220 
221     BN_CTX_start(ctx);
222     A = BN_CTX_get(ctx);
223     B = BN_CTX_get(ctx);
224     X = BN_CTX_get(ctx);
225     D = BN_CTX_get(ctx);
226     M = BN_CTX_get(ctx);
227     Y = BN_CTX_get(ctx);
228     T = BN_CTX_get(ctx);
229     if (T == NULL)
230         goto err;
231 
232     if (in == NULL)
233         R = BN_new();
234     else
235         R = in;
236     if (R == NULL)
237         goto err;
238 
239     if (!BN_one(X))
240         goto err;
241     BN_zero(Y);
242     if (BN_copy(B, a) == NULL)
243         goto err;
244     if (BN_copy(A, n) == NULL)
245         goto err;
246     A->neg = 0;
247     if (B->neg || (BN_ucmp(B, A) >= 0)) {
248         if (!BN_nnmod(B, B, A, ctx))
249             goto err;
250     }
251     sign = -1;
252     /*-
253      * From  B = a mod |n|,  A = |n|  it follows that
254      *
255      *      0 <= B < A,
256      *     -sign*X*a  ==  B   (mod |n|),
257      *      sign*Y*a  ==  A   (mod |n|).
258      */
259 
260     if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
261         /*
262          * Binary inversion algorithm; requires odd modulus. This is faster
263          * than the general algorithm if the modulus is sufficiently small
264          * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
265          * systems)
266          */
267         int shift;
268 
269         while (!BN_is_zero(B)) {
270             /*-
271              *      0 < B < |n|,
272              *      0 < A <= |n|,
273              * (1) -sign*X*a  ==  B   (mod |n|),
274              * (2)  sign*Y*a  ==  A   (mod |n|)
275              */
276 
277             /*
278              * Now divide B by the maximum possible power of two in the
279              * integers, and divide X by the same value mod |n|. When we're
280              * done, (1) still holds.
281              */
282             shift = 0;
283             while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
284                 shift++;
285 
286                 if (BN_is_odd(X)) {
287                     if (!BN_uadd(X, X, n))
288                         goto err;
289                 }
290                 /*
291                  * now X is even, so we can easily divide it by two
292                  */
293                 if (!BN_rshift1(X, X))
294                     goto err;
295             }
296             if (shift > 0) {
297                 if (!BN_rshift(B, B, shift))
298                     goto err;
299             }
300 
301             /*
302              * Same for A and Y.  Afterwards, (2) still holds.
303              */
304             shift = 0;
305             while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
306                 shift++;
307 
308                 if (BN_is_odd(Y)) {
309                     if (!BN_uadd(Y, Y, n))
310                         goto err;
311                 }
312                 /* now Y is even */
313                 if (!BN_rshift1(Y, Y))
314                     goto err;
315             }
316             if (shift > 0) {
317                 if (!BN_rshift(A, A, shift))
318                     goto err;
319             }
320 
321             /*-
322              * We still have (1) and (2).
323              * Both  A  and  B  are odd.
324              * The following computations ensure that
325              *
326              *     0 <= B < |n|,
327              *      0 < A < |n|,
328              * (1) -sign*X*a  ==  B   (mod |n|),
329              * (2)  sign*Y*a  ==  A   (mod |n|),
330              *
331              * and that either  A  or  B  is even in the next iteration.
332              */
333             if (BN_ucmp(B, A) >= 0) {
334                 /* -sign*(X + Y)*a == B - A  (mod |n|) */
335                 if (!BN_uadd(X, X, Y))
336                     goto err;
337                 /*
338                  * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
339                  * actually makes the algorithm slower
340                  */
341                 if (!BN_usub(B, B, A))
342                     goto err;
343             } else {
344                 /*  sign*(X + Y)*a == A - B  (mod |n|) */
345                 if (!BN_uadd(Y, Y, X))
346                     goto err;
347                 /*
348                  * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
349                  */
350                 if (!BN_usub(A, A, B))
351                     goto err;
352             }
353         }
354     } else {
355         /* general inversion algorithm */
356 
357         while (!BN_is_zero(B)) {
358             BIGNUM *tmp;
359 
360             /*-
361              *      0 < B < A,
362              * (*) -sign*X*a  ==  B   (mod |n|),
363              *      sign*Y*a  ==  A   (mod |n|)
364              */
365 
366             /* (D, M) := (A/B, A%B) ... */
367             if (BN_num_bits(A) == BN_num_bits(B)) {
368                 if (!BN_one(D))
369                     goto err;
370                 if (!BN_sub(M, A, B))
371                     goto err;
372             } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
373                 /* A/B is 1, 2, or 3 */
374                 if (!BN_lshift1(T, B))
375                     goto err;
376                 if (BN_ucmp(A, T) < 0) {
377                     /* A < 2*B, so D=1 */
378                     if (!BN_one(D))
379                         goto err;
380                     if (!BN_sub(M, A, B))
381                         goto err;
382                 } else {
383                     /* A >= 2*B, so D=2 or D=3 */
384                     if (!BN_sub(M, A, T))
385                         goto err;
386                     if (!BN_add(D, T, B))
387                         goto err; /* use D (:= 3*B) as temp */
388                     if (BN_ucmp(A, D) < 0) {
389                         /* A < 3*B, so D=2 */
390                         if (!BN_set_word(D, 2))
391                             goto err;
392                         /*
393                          * M (= A - 2*B) already has the correct value
394                          */
395                     } else {
396                         /* only D=3 remains */
397                         if (!BN_set_word(D, 3))
398                             goto err;
399                         /*
400                          * currently M = A - 2*B, but we need M = A - 3*B
401                          */
402                         if (!BN_sub(M, M, B))
403                             goto err;
404                     }
405                 }
406             } else {
407                 if (!BN_div(D, M, A, B, ctx))
408                     goto err;
409             }
410 
411             /*-
412              * Now
413              *      A = D*B + M;
414              * thus we have
415              * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
416              */
417 
418             tmp = A;    /* keep the BIGNUM object, the value does not matter */
419 
420             /* (A, B) := (B, A mod B) ... */
421             A = B;
422             B = M;
423             /* ... so we have  0 <= B < A  again */
424 
425             /*-
426              * Since the former  M  is now  B  and the former  B  is now  A,
427              * (**) translates into
428              *       sign*Y*a  ==  D*A + B    (mod |n|),
429              * i.e.
430              *       sign*Y*a - D*A  ==  B    (mod |n|).
431              * Similarly, (*) translates into
432              *      -sign*X*a  ==  A          (mod |n|).
433              *
434              * Thus,
435              *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
436              * i.e.
437              *        sign*(Y + D*X)*a  ==  B  (mod |n|).
438              *
439              * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
440              *      -sign*X*a  ==  B   (mod |n|),
441              *       sign*Y*a  ==  A   (mod |n|).
442              * Note that  X  and  Y  stay non-negative all the time.
443              */
444 
445             /*
446              * most of the time D is very small, so we can optimize tmp := D*X+Y
447              */
448             if (BN_is_one(D)) {
449                 if (!BN_add(tmp, X, Y))
450                     goto err;
451             } else {
452                 if (BN_is_word(D, 2)) {
453                     if (!BN_lshift1(tmp, X))
454                         goto err;
455                 } else if (BN_is_word(D, 4)) {
456                     if (!BN_lshift(tmp, X, 2))
457                         goto err;
458                 } else if (D->top == 1) {
459                     if (!BN_copy(tmp, X))
460                         goto err;
461                     if (!BN_mul_word(tmp, D->d[0]))
462                         goto err;
463                 } else {
464                     if (!BN_mul(tmp, D, X, ctx))
465                         goto err;
466                 }
467                 if (!BN_add(tmp, tmp, Y))
468                     goto err;
469             }
470 
471             M = Y;      /* keep the BIGNUM object, the value does not matter */
472             Y = X;
473             X = tmp;
474             sign = -sign;
475         }
476     }
477 
478     /*-
479      * The while loop (Euclid's algorithm) ends when
480      *      A == gcd(a,n);
481      * we have
482      *       sign*Y*a  ==  A  (mod |n|),
483      * where  Y  is non-negative.
484      */
485 
486     if (sign < 0) {
487         if (!BN_sub(Y, n, Y))
488             goto err;
489     }
490     /* Now  Y*a  ==  A  (mod |n|).  */
491 
492     if (BN_is_one(A)) {
493         /* Y*a == 1  (mod |n|) */
494         if (!Y->neg && BN_ucmp(Y, n) < 0) {
495             if (!BN_copy(R, Y))
496                 goto err;
497         } else {
498             if (!BN_nnmod(R, Y, n, ctx))
499                 goto err;
500         }
501     } else {
502         *pnoinv = 1;
503         goto err;
504     }
505     ret = R;
506  err:
507     if ((ret == NULL) && (in == NULL))
508         BN_free(R);
509     BN_CTX_end(ctx);
510     bn_check_top(ret);
511     return ret;
512 }
513 
514 /* solves ax == 1 (mod n) */
BN_mod_inverse(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)515 BIGNUM *BN_mod_inverse(BIGNUM *in,
516                        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
517 {
518     BN_CTX *new_ctx = NULL;
519     BIGNUM *rv;
520     int noinv = 0;
521 
522     if (ctx == NULL) {
523         ctx = new_ctx = BN_CTX_new_ex(NULL);
524         if (ctx == NULL) {
525             ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
526             return NULL;
527         }
528     }
529 
530     rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
531     if (noinv)
532         ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
533     BN_CTX_free(new_ctx);
534     return rv;
535 }
536 
537 /*-
538  * This function is based on the constant-time GCD work by Bernstein and Yang:
539  * https://eprint.iacr.org/2019/266
540  * Generalized fast GCD function to allow even inputs.
541  * The algorithm first finds the shared powers of 2 between
542  * the inputs, and removes them, reducing at least one of the
543  * inputs to an odd value. Then it proceeds to calculate the GCD.
544  * Before returning the resulting GCD, we take care of adding
545  * back the powers of two removed at the beginning.
546  * Note 1: we assume the bit length of both inputs is public information,
547  * since access to top potentially leaks this information.
548  */
BN_gcd(BIGNUM * r,const BIGNUM * in_a,const BIGNUM * in_b,BN_CTX * ctx)549 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
550 {
551     BIGNUM *g, *temp = NULL;
552     BN_ULONG mask = 0;
553     int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
554 
555     /* Note 2: zero input corner cases are not constant-time since they are
556      * handled immediately. An attacker can run an attack under this
557      * assumption without the need of side-channel information. */
558     if (BN_is_zero(in_b)) {
559         ret = BN_copy(r, in_a) != NULL;
560         r->neg = 0;
561         return ret;
562     }
563     if (BN_is_zero(in_a)) {
564         ret = BN_copy(r, in_b) != NULL;
565         r->neg = 0;
566         return ret;
567     }
568 
569     bn_check_top(in_a);
570     bn_check_top(in_b);
571 
572     BN_CTX_start(ctx);
573     temp = BN_CTX_get(ctx);
574     g = BN_CTX_get(ctx);
575 
576     /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
577     if (g == NULL
578         || !BN_lshift1(g, in_b)
579         || !BN_lshift1(r, in_a))
580         goto err;
581 
582     /* find shared powers of two, i.e. "shifts" >= 1 */
583     for (i = 0; i < r->dmax && i < g->dmax; i++) {
584         mask = ~(r->d[i] | g->d[i]);
585         for (j = 0; j < BN_BITS2; j++) {
586             bit &= mask;
587             shifts += bit;
588             mask >>= 1;
589         }
590     }
591 
592     /* subtract shared powers of two; shifts >= 1 */
593     if (!BN_rshift(r, r, shifts)
594         || !BN_rshift(g, g, shifts))
595         goto err;
596 
597     /* expand to biggest nword, with room for a possible extra word */
598     top = 1 + ((r->top >= g->top) ? r->top : g->top);
599     if (bn_wexpand(r, top) == NULL
600         || bn_wexpand(g, top) == NULL
601         || bn_wexpand(temp, top) == NULL)
602         goto err;
603 
604     /* re arrange inputs s.t. r is odd */
605     BN_consttime_swap((~r->d[0]) & 1, r, g, top);
606 
607     /* compute the number of iterations */
608     rlen = BN_num_bits(r);
609     glen = BN_num_bits(g);
610     m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
611 
612     for (i = 0; i < m; i++) {
613         /* conditionally flip signs if delta is positive and g is odd */
614         cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
615             /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
616             & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1)));
617         delta = (-cond & -delta) | ((cond - 1) & delta);
618         r->neg ^= cond;
619         /* swap */
620         BN_consttime_swap(cond, r, g, top);
621 
622         /* elimination step */
623         delta++;
624         if (!BN_add(temp, g, r))
625             goto err;
626         BN_consttime_swap(g->d[0] & 1 /* g is odd */
627                 /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
628                 & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))),
629                 g, temp, top);
630         if (!BN_rshift1(g, g))
631             goto err;
632     }
633 
634     /* remove possible negative sign */
635     r->neg = 0;
636     /* add powers of 2 removed, then correct the artificial shift */
637     if (!BN_lshift(r, r, shifts)
638         || !BN_rshift1(r, r))
639         goto err;
640 
641     ret = 1;
642 
643  err:
644     BN_CTX_end(ctx);
645     bn_check_top(r);
646     return ret;
647 }
648