1 //! Implementation of the Eisel-Lemire algorithm.
2 //!
3 //! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust),
4 //! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust.
5
6 #![cfg(not(feature = "compact"))]
7 #![doc(hidden)]
8
9 use crate::extended_float::ExtendedFloat;
10 use crate::num::Float;
11 use crate::number::Number;
12 use crate::table::{LARGEST_POWER_OF_FIVE, POWER_OF_FIVE_128, SMALLEST_POWER_OF_FIVE};
13
14 /// Ensure truncation of digits doesn't affect our computation, by doing 2 passes.
15 #[inline]
lemire<F: Float>(num: &Number) -> ExtendedFloat16 pub fn lemire<F: Float>(num: &Number) -> ExtendedFloat {
17 // If significant digits were truncated, then we can have rounding error
18 // only if `mantissa + 1` produces a different result. We also avoid
19 // redundantly using the Eisel-Lemire algorithm if it was unable to
20 // correctly round on the first pass.
21 let mut fp = compute_float::<F>(num.exponent, num.mantissa);
22 if num.many_digits && fp.exp >= 0 && fp != compute_float::<F>(num.exponent, num.mantissa + 1) {
23 // Need to re-calculate, since the previous values are rounded
24 // when the slow path algorithm expects a normalized extended float.
25 fp = compute_error::<F>(num.exponent, num.mantissa);
26 }
27 fp
28 }
29
30 /// Compute a float using an extended-precision representation.
31 ///
32 /// Fast conversion of a the significant digits and decimal exponent
33 /// a float to a extended representation with a binary float. This
34 /// algorithm will accurately parse the vast majority of cases,
35 /// and uses a 128-bit representation (with a fallback 192-bit
36 /// representation).
37 ///
38 /// This algorithm scales the exponent by the decimal exponent
39 /// using pre-computed powers-of-5, and calculates if the
40 /// representation can be unambiguously rounded to the nearest
41 /// machine float. Near-halfway cases are not handled here,
42 /// and are represented by a negative, biased binary exponent.
43 ///
44 /// The algorithm is described in detail in "Daniel Lemire, Number Parsing
45 /// at a Gigabyte per Second" in section 5, "Fast Algorithm", and
46 /// section 6, "Exact Numbers And Ties", available online:
47 /// <https://arxiv.org/abs/2101.11408.pdf>.
compute_float<F: Float>(q: i32, mut w: u64) -> ExtendedFloat48 pub fn compute_float<F: Float>(q: i32, mut w: u64) -> ExtendedFloat {
49 let fp_zero = ExtendedFloat {
50 mant: 0,
51 exp: 0,
52 };
53 let fp_inf = ExtendedFloat {
54 mant: 0,
55 exp: F::INFINITE_POWER,
56 };
57
58 // Short-circuit if the value can only be a literal 0 or infinity.
59 if w == 0 || q < F::SMALLEST_POWER_OF_TEN {
60 return fp_zero;
61 } else if q > F::LARGEST_POWER_OF_TEN {
62 return fp_inf;
63 }
64 // Normalize our significant digits, so the most-significant bit is set.
65 let lz = w.leading_zeros() as i32;
66 w <<= lz;
67 let (lo, hi) = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3);
68 if lo == 0xFFFF_FFFF_FFFF_FFFF {
69 // If we have failed to approximate w x 5^-q with our 128-bit value.
70 // Since the addition of 1 could lead to an overflow which could then
71 // round up over the half-way point, this can lead to improper rounding
72 // of a float.
73 //
74 // However, this can only occur if q ∈ [-27, 55]. The upper bound of q
75 // is 55 because 5^55 < 2^128, however, this can only happen if 5^q > 2^64,
76 // since otherwise the product can be represented in 64-bits, producing
77 // an exact result. For negative exponents, rounding-to-even can
78 // only occur if 5^-q < 2^64.
79 //
80 // For detailed explanations of rounding for negative exponents, see
81 // <https://arxiv.org/pdf/2101.11408.pdf#section.9.1>. For detailed
82 // explanations of rounding for positive exponents, see
83 // <https://arxiv.org/pdf/2101.11408.pdf#section.8>.
84 let inside_safe_exponent = (q >= -27) && (q <= 55);
85 if !inside_safe_exponent {
86 return compute_error_scaled::<F>(q, hi, lz);
87 }
88 }
89 let upperbit = (hi >> 63) as i32;
90 let mut mantissa = hi >> (upperbit + 64 - F::MANTISSA_SIZE - 3);
91 let mut power2 = power(q) + upperbit - lz - F::MINIMUM_EXPONENT;
92 if power2 <= 0 {
93 if -power2 + 1 >= 64 {
94 // Have more than 64 bits below the minimum exponent, must be 0.
95 return fp_zero;
96 }
97 // Have a subnormal value.
98 mantissa >>= -power2 + 1;
99 mantissa += mantissa & 1;
100 mantissa >>= 1;
101 power2 = (mantissa >= (1_u64 << F::MANTISSA_SIZE)) as i32;
102 return ExtendedFloat {
103 mant: mantissa,
104 exp: power2,
105 };
106 }
107 // Need to handle rounding ties. Normally, we need to round up,
108 // but if we fall right in between and and we have an even basis, we
109 // need to round down.
110 //
111 // This will only occur if:
112 // 1. The lower 64 bits of the 128-bit representation is 0.
113 // IE, 5^q fits in single 64-bit word.
114 // 2. The least-significant bit prior to truncated mantissa is odd.
115 // 3. All the bits truncated when shifting to mantissa bits + 1 are 0.
116 //
117 // Or, we may fall between two floats: we are exactly halfway.
118 if lo <= 1
119 && q >= F::MIN_EXPONENT_ROUND_TO_EVEN
120 && q <= F::MAX_EXPONENT_ROUND_TO_EVEN
121 && mantissa & 3 == 1
122 && (mantissa << (upperbit + 64 - F::MANTISSA_SIZE - 3)) == hi
123 {
124 // Zero the lowest bit, so we don't round up.
125 mantissa &= !1_u64;
126 }
127 // Round-to-even, then shift the significant digits into place.
128 mantissa += mantissa & 1;
129 mantissa >>= 1;
130 if mantissa >= (2_u64 << F::MANTISSA_SIZE) {
131 // Rounding up overflowed, so the carry bit is set. Set the
132 // mantissa to 1 (only the implicit, hidden bit is set) and
133 // increase the exponent.
134 mantissa = 1_u64 << F::MANTISSA_SIZE;
135 power2 += 1;
136 }
137 // Zero out the hidden bit.
138 mantissa &= !(1_u64 << F::MANTISSA_SIZE);
139 if power2 >= F::INFINITE_POWER {
140 // Exponent is above largest normal value, must be infinite.
141 return fp_inf;
142 }
143 ExtendedFloat {
144 mant: mantissa,
145 exp: power2,
146 }
147 }
148
149 /// Fallback algorithm to calculate the non-rounded representation.
150 /// This calculates the extended representation, and then normalizes
151 /// the resulting representation, so the high bit is set.
152 #[inline]
compute_error<F: Float>(q: i32, mut w: u64) -> ExtendedFloat153 pub fn compute_error<F: Float>(q: i32, mut w: u64) -> ExtendedFloat {
154 let lz = w.leading_zeros() as i32;
155 w <<= lz;
156 let hi = compute_product_approx(q, w, F::MANTISSA_SIZE as usize + 3).1;
157 compute_error_scaled::<F>(q, hi, lz)
158 }
159
160 /// Compute the error from a mantissa scaled to the exponent.
161 #[inline]
compute_error_scaled<F: Float>(q: i32, mut w: u64, lz: i32) -> ExtendedFloat162 pub fn compute_error_scaled<F: Float>(q: i32, mut w: u64, lz: i32) -> ExtendedFloat {
163 // Want to normalize the float, but this is faster than ctlz on most architectures.
164 let hilz = (w >> 63) as i32 ^ 1;
165 w <<= hilz;
166 let power2 = power(q as i32) + F::EXPONENT_BIAS - hilz - lz - 62;
167
168 ExtendedFloat {
169 mant: w,
170 exp: power2 + F::INVALID_FP,
171 }
172 }
173
174 /// Calculate a base 2 exponent from a decimal exponent.
175 /// This uses a pre-computed integer approximation for
176 /// log2(10), where 217706 / 2^16 is accurate for the
177 /// entire range of non-finite decimal exponents.
178 #[inline]
power(q: i32) -> i32179 fn power(q: i32) -> i32 {
180 (q.wrapping_mul(152_170 + 65536) >> 16) + 63
181 }
182
183 #[inline]
full_multiplication(a: u64, b: u64) -> (u64, u64)184 fn full_multiplication(a: u64, b: u64) -> (u64, u64) {
185 let r = (a as u128) * (b as u128);
186 (r as u64, (r >> 64) as u64)
187 }
188
189 // This will compute or rather approximate w * 5**q and return a pair of 64-bit words
190 // approximating the result, with the "high" part corresponding to the most significant
191 // bits and the low part corresponding to the least significant bits.
compute_product_approx(q: i32, w: u64, precision: usize) -> (u64, u64)192 fn compute_product_approx(q: i32, w: u64, precision: usize) -> (u64, u64) {
193 debug_assert!(q >= SMALLEST_POWER_OF_FIVE);
194 debug_assert!(q <= LARGEST_POWER_OF_FIVE);
195 debug_assert!(precision <= 64);
196
197 let mask = if precision < 64 {
198 0xFFFF_FFFF_FFFF_FFFF_u64 >> precision
199 } else {
200 0xFFFF_FFFF_FFFF_FFFF_u64
201 };
202
203 // 5^q < 2^64, then the multiplication always provides an exact value.
204 // That means whenever we need to round ties to even, we always have
205 // an exact value.
206 let index = (q - SMALLEST_POWER_OF_FIVE) as usize;
207 let (lo5, hi5) = POWER_OF_FIVE_128[index];
208 // Only need one multiplication as long as there is 1 zero but
209 // in the explicit mantissa bits, +1 for the hidden bit, +1 to
210 // determine the rounding direction, +1 for if the computed
211 // product has a leading zero.
212 let (mut first_lo, mut first_hi) = full_multiplication(w, lo5);
213 if first_hi & mask == mask {
214 // Need to do a second multiplication to get better precision
215 // for the lower product. This will always be exact
216 // where q is < 55, since 5^55 < 2^128. If this wraps,
217 // then we need to need to round up the hi product.
218 let (_, second_hi) = full_multiplication(w, hi5);
219 first_lo = first_lo.wrapping_add(second_hi);
220 if second_hi > first_lo {
221 first_hi += 1;
222 }
223 }
224 (first_lo, first_hi)
225 }
226