1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10
11 #include "include/core/SkTypes.h"
12
13 #include <atomic> // std::atomic, std::memory_order_*
14 #include <cstddef> // std::nullptr_t
15 #include <iosfwd> // std::basic_ostream
16 #include <memory> // TODO: unused
17 #include <type_traits> // std::enable_if, std::is_convertible
18 #include <utility> // std::forward, std::swap
19
20 /** \class SkRefCntBase
21
22 SkRefCntBase is the base class for objects that may be shared by multiple
23 objects. When an existing owner wants to share a reference, it calls ref().
24 When an owner wants to release its reference, it calls unref(). When the
25 shared object's reference count goes to zero as the result of an unref()
26 call, its (virtual) destructor is called. It is an error for the
27 destructor to be called explicitly (or via the object going out of scope on
28 the stack or calling delete) if getRefCnt() > 1.
29 */
30 class SK_API SkRefCntBase {
31 public:
32 /** Default construct, initializing the reference count to 1.
33 */
SkRefCntBase()34 SkRefCntBase() : fRefCnt(1) {}
35
36 /** Destruct, asserting that the reference count is 1.
37 */
~SkRefCntBase()38 virtual ~SkRefCntBase() {
39 #ifdef SK_DEBUG
40 SkASSERTF(this->getRefCnt() == 1, "fRefCnt was %d", this->getRefCnt());
41 // illegal value, to catch us if we reuse after delete
42 fRefCnt.store(0, std::memory_order_relaxed);
43 #endif
44 }
45
46 /** May return true if the caller is the only owner.
47 * Ensures that all previous owner's actions are complete.
48 */
unique()49 bool unique() const {
50 if (1 == fRefCnt.load(std::memory_order_acquire)) {
51 // The acquire barrier is only really needed if we return true. It
52 // prevents code conditioned on the result of unique() from running
53 // until previous owners are all totally done calling unref().
54 return true;
55 }
56 return false;
57 }
58
59 /** Increment the reference count. Must be balanced by a call to unref().
60 */
ref()61 void ref() const {
62 SkASSERT(this->getRefCnt() > 0);
63 // No barrier required.
64 (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
65 }
66
67 /** Decrement the reference count. If the reference count is 1 before the
68 decrement, then delete the object. Note that if this is the case, then
69 the object needs to have been allocated via new, and not on the stack.
70 */
unref()71 void unref() const {
72 SkASSERT(this->getRefCnt() > 0);
73 // A release here acts in place of all releases we "should" have been doing in ref().
74 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
75 // Like unique(), the acquire is only needed on success, to make sure
76 // code in internal_dispose() doesn't happen before the decrement.
77 this->internal_dispose();
78 }
79 }
80
81 private:
82
83 #ifdef SK_DEBUG
84 /** Return the reference count. Use only for debugging. */
getRefCnt()85 int32_t getRefCnt() const {
86 return fRefCnt.load(std::memory_order_relaxed);
87 }
88 #endif
89
90 /**
91 * Called when the ref count goes to 0.
92 */
internal_dispose()93 virtual void internal_dispose() const {
94 #ifdef SK_DEBUG
95 SkASSERT(0 == this->getRefCnt());
96 fRefCnt.store(1, std::memory_order_relaxed);
97 #endif
98 delete this;
99 }
100
101 // The following friends are those which override internal_dispose()
102 // and conditionally call SkRefCnt::internal_dispose().
103 friend class SkWeakRefCnt;
104
105 mutable std::atomic<int32_t> fRefCnt;
106
107 SkRefCntBase(SkRefCntBase&&) = delete;
108 SkRefCntBase(const SkRefCntBase&) = delete;
109 SkRefCntBase& operator=(SkRefCntBase&&) = delete;
110 SkRefCntBase& operator=(const SkRefCntBase&) = delete;
111 };
112
113 #ifdef SK_REF_CNT_MIXIN_INCLUDE
114 // It is the responsibility of the following include to define the type SkRefCnt.
115 // This SkRefCnt should normally derive from SkRefCntBase.
116 #include SK_REF_CNT_MIXIN_INCLUDE
117 #else
118 class SK_API SkRefCnt : public SkRefCntBase {
119 // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
120 #if defined(SK_BUILD_FOR_GOOGLE3)
121 public:
deref()122 void deref() const { this->unref(); }
123 #endif
124 };
125 #endif
126
127 ///////////////////////////////////////////////////////////////////////////////
128
129 /** Call obj->ref() and return obj. The obj must not be nullptr.
130 */
SkRef(T * obj)131 template <typename T> static inline T* SkRef(T* obj) {
132 SkASSERT(obj);
133 obj->ref();
134 return obj;
135 }
136
137 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
138 */
SkSafeRef(T * obj)139 template <typename T> static inline T* SkSafeRef(T* obj) {
140 if (obj) {
141 obj->ref();
142 }
143 return obj;
144 }
145
146 /** Check if the argument is non-null, and if so, call obj->unref()
147 */
SkSafeUnref(T * obj)148 template <typename T> static inline void SkSafeUnref(T* obj) {
149 if (obj) {
150 obj->unref();
151 }
152 }
153
154 ///////////////////////////////////////////////////////////////////////////////
155
156 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
157 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
158 template <typename Derived>
159 class SkNVRefCnt {
160 public:
SkNVRefCnt()161 SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()162 ~SkNVRefCnt() {
163 #ifdef SK_DEBUG
164 int rc = fRefCnt.load(std::memory_order_relaxed);
165 SkASSERTF(rc == 1, "NVRefCnt was %d", rc);
166 #endif
167 }
168
169 // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
170 // - unique() needs acquire when it returns true, and no barrier if it returns false;
171 // - ref() doesn't need any barrier;
172 // - unref() needs a release barrier, and an acquire if it's going to call delete.
173
unique()174 bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()175 void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()176 void unref() const {
177 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
178 // restore the 1 for our destructor's assert
179 SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
180 delete (const Derived*)this;
181 }
182 }
deref()183 void deref() const { this->unref(); }
184
185 // This must be used with caution. It is only valid to call this when 'threadIsolatedTestCnt'
186 // refs are known to be isolated to the current thread. That is, it is known that there are at
187 // least 'threadIsolatedTestCnt' refs for which no other thread may make a balancing unref()
188 // call. Assuming the contract is followed, if this returns false then no other thread has
189 // ownership of this. If it returns true then another thread *may* have ownership.
refCntGreaterThan(int32_t threadIsolatedTestCnt)190 bool refCntGreaterThan(int32_t threadIsolatedTestCnt) const {
191 int cnt = fRefCnt.load(std::memory_order_acquire);
192 // If this fails then the above contract has been violated.
193 SkASSERT(cnt >= threadIsolatedTestCnt);
194 return cnt > threadIsolatedTestCnt;
195 }
196
197 private:
198 mutable std::atomic<int32_t> fRefCnt;
199
200 SkNVRefCnt(SkNVRefCnt&&) = delete;
201 SkNVRefCnt(const SkNVRefCnt&) = delete;
202 SkNVRefCnt& operator=(SkNVRefCnt&&) = delete;
203 SkNVRefCnt& operator=(const SkNVRefCnt&) = delete;
204 };
205
206 ///////////////////////////////////////////////////////////////////////////////////////////////////
207
208 /**
209 * Shared pointer class to wrap classes that support a ref()/unref() interface.
210 *
211 * This can be used for classes inheriting from SkRefCnt, but it also works for other
212 * classes that match the interface, but have different internal choices: e.g. the hosted class
213 * may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
214 */
215 template <typename T> class sk_sp {
216 public:
217 using element_type = T;
218
sk_sp()219 constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)220 constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
221
222 /**
223 * Shares the underlying object by calling ref(), so that both the argument and the newly
224 * created sk_sp both have a reference to it.
225 */
sk_sp(const sk_sp<T> & that)226 sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
227 template <typename U,
228 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(const sk_sp<U> & that)229 sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
230
231 /**
232 * Move the underlying object from the argument to the newly created sk_sp. Afterwards only
233 * the new sk_sp will have a reference to the object, and the argument will point to null.
234 * No call to ref() or unref() will be made.
235 */
sk_sp(sk_sp<T> && that)236 sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
237 template <typename U,
238 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(sk_sp<U> && that)239 sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
240
241 /**
242 * Adopt the bare pointer into the newly created sk_sp.
243 * No call to ref() or unref() will be made.
244 */
sk_sp(T * obj)245 explicit sk_sp(T* obj) : fPtr(obj) {}
246
247 /**
248 * Calls unref() on the underlying object pointer.
249 */
~sk_sp()250 ~sk_sp() {
251 SkSafeUnref(fPtr);
252 SkDEBUGCODE(fPtr = nullptr);
253 }
254
255 sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
256
257 /**
258 * Shares the underlying object referenced by the argument by calling ref() on it. If this
259 * sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
260 * object.
261 */
262 sk_sp<T>& operator=(const sk_sp<T>& that) {
263 if (this != &that) {
264 this->reset(SkSafeRef(that.get()));
265 }
266 return *this;
267 }
268 template <typename U,
269 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
270 sk_sp<T>& operator=(const sk_sp<U>& that) {
271 this->reset(SkSafeRef(that.get()));
272 return *this;
273 }
274
275 /**
276 * Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
277 * a reference to another object, unref() will be called on that object. No call to ref()
278 * will be made.
279 */
280 sk_sp<T>& operator=(sk_sp<T>&& that) {
281 this->reset(that.release());
282 return *this;
283 }
284 template <typename U,
285 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
286 sk_sp<T>& operator=(sk_sp<U>&& that) {
287 this->reset(that.release());
288 return *this;
289 }
290
291 T& operator*() const {
292 SkASSERT(this->get() != nullptr);
293 return *this->get();
294 }
295
296 explicit operator bool() const { return this->get() != nullptr; }
297
get()298 T* get() const { return fPtr; }
299 T* operator->() const { return fPtr; }
300
301 /**
302 * Adopt the new bare pointer, and call unref() on any previously held object (if not null).
303 * No call to ref() will be made.
304 */
305 void reset(T* ptr = nullptr) {
306 // Calling fPtr->unref() may call this->~() or this->reset(T*).
307 // http://wg21.cmeerw.net/lwg/issue998
308 // http://wg21.cmeerw.net/lwg/issue2262
309 T* oldPtr = fPtr;
310 fPtr = ptr;
311 SkSafeUnref(oldPtr);
312 }
313
314 /**
315 * Return the bare pointer, and set the internal object pointer to nullptr.
316 * The caller must assume ownership of the object, and manage its reference count directly.
317 * No call to unref() will be made.
318 */
release()319 T* SK_WARN_UNUSED_RESULT release() {
320 T* ptr = fPtr;
321 fPtr = nullptr;
322 return ptr;
323 }
324
swap(sk_sp<T> & that)325 void swap(sk_sp<T>& that) /*noexcept*/ {
326 using std::swap;
327 swap(fPtr, that.fPtr);
328 }
329
330 private:
331 T* fPtr;
332 };
333
swap(sk_sp<T> & a,sk_sp<T> & b)334 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
335 a.swap(b);
336 }
337
338 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
339 return a.get() == b.get();
340 }
341 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
342 return !a;
343 }
344 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
345 return !b;
346 }
347
348 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
349 return a.get() != b.get();
350 }
351 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
352 return static_cast<bool>(a);
353 }
354 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
355 return static_cast<bool>(b);
356 }
357
358 template <typename C, typename CT, typename T>
359 auto operator<<(std::basic_ostream<C, CT>& os, const sk_sp<T>& sp) -> decltype(os << sp.get()) {
360 return os << sp.get();
361 }
362
363 template <typename T, typename... Args>
sk_make_sp(Args &&...args)364 sk_sp<T> sk_make_sp(Args&&... args) {
365 return sk_sp<T>(new T(std::forward<Args>(args)...));
366 }
367
368 /*
369 * Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
370 *
371 * This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
372 * effectively "adopting" it.
373 */
sk_ref_sp(T * obj)374 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
375 return sk_sp<T>(SkSafeRef(obj));
376 }
377
sk_ref_sp(const T * obj)378 template <typename T> sk_sp<T> sk_ref_sp(const T* obj) {
379 return sk_sp<T>(const_cast<T*>(SkSafeRef(obj)));
380 }
381
382 #endif
383