• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 
13 #include <atomic>       // std::atomic, std::memory_order_*
14 #include <cstddef>      // std::nullptr_t
15 #include <iosfwd>       // std::basic_ostream
16 #include <memory>       // TODO: unused
17 #include <type_traits>  // std::enable_if, std::is_convertible
18 #include <utility>      // std::forward, std::swap
19 
20 /** \class SkRefCntBase
21 
22     SkRefCntBase is the base class for objects that may be shared by multiple
23     objects. When an existing owner wants to share a reference, it calls ref().
24     When an owner wants to release its reference, it calls unref(). When the
25     shared object's reference count goes to zero as the result of an unref()
26     call, its (virtual) destructor is called. It is an error for the
27     destructor to be called explicitly (or via the object going out of scope on
28     the stack or calling delete) if getRefCnt() > 1.
29 */
30 class SK_API SkRefCntBase {
31 public:
32     /** Default construct, initializing the reference count to 1.
33     */
SkRefCntBase()34     SkRefCntBase() : fRefCnt(1) {}
35 
36     /** Destruct, asserting that the reference count is 1.
37     */
~SkRefCntBase()38     virtual ~SkRefCntBase() {
39     #ifdef SK_DEBUG
40         SkASSERTF(this->getRefCnt() == 1, "fRefCnt was %d", this->getRefCnt());
41         // illegal value, to catch us if we reuse after delete
42         fRefCnt.store(0, std::memory_order_relaxed);
43     #endif
44     }
45 
46     /** May return true if the caller is the only owner.
47      *  Ensures that all previous owner's actions are complete.
48      */
unique()49     bool unique() const {
50         if (1 == fRefCnt.load(std::memory_order_acquire)) {
51             // The acquire barrier is only really needed if we return true.  It
52             // prevents code conditioned on the result of unique() from running
53             // until previous owners are all totally done calling unref().
54             return true;
55         }
56         return false;
57     }
58 
59     /** Increment the reference count. Must be balanced by a call to unref().
60     */
ref()61     void ref() const {
62         SkASSERT(this->getRefCnt() > 0);
63         // No barrier required.
64         (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
65     }
66 
67     /** Decrement the reference count. If the reference count is 1 before the
68         decrement, then delete the object. Note that if this is the case, then
69         the object needs to have been allocated via new, and not on the stack.
70     */
unref()71     void unref() const {
72         SkASSERT(this->getRefCnt() > 0);
73         // A release here acts in place of all releases we "should" have been doing in ref().
74         if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
75             // Like unique(), the acquire is only needed on success, to make sure
76             // code in internal_dispose() doesn't happen before the decrement.
77             this->internal_dispose();
78         }
79     }
80 
81 private:
82 
83 #ifdef SK_DEBUG
84     /** Return the reference count. Use only for debugging. */
getRefCnt()85     int32_t getRefCnt() const {
86         return fRefCnt.load(std::memory_order_relaxed);
87     }
88 #endif
89 
90     /**
91      *  Called when the ref count goes to 0.
92      */
internal_dispose()93     virtual void internal_dispose() const {
94     #ifdef SK_DEBUG
95         SkASSERT(0 == this->getRefCnt());
96         fRefCnt.store(1, std::memory_order_relaxed);
97     #endif
98         delete this;
99     }
100 
101     // The following friends are those which override internal_dispose()
102     // and conditionally call SkRefCnt::internal_dispose().
103     friend class SkWeakRefCnt;
104 
105     mutable std::atomic<int32_t> fRefCnt;
106 
107     SkRefCntBase(SkRefCntBase&&) = delete;
108     SkRefCntBase(const SkRefCntBase&) = delete;
109     SkRefCntBase& operator=(SkRefCntBase&&) = delete;
110     SkRefCntBase& operator=(const SkRefCntBase&) = delete;
111 };
112 
113 #ifdef SK_REF_CNT_MIXIN_INCLUDE
114 // It is the responsibility of the following include to define the type SkRefCnt.
115 // This SkRefCnt should normally derive from SkRefCntBase.
116 #include SK_REF_CNT_MIXIN_INCLUDE
117 #else
118 class SK_API SkRefCnt : public SkRefCntBase {
119     // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
120     #if defined(SK_BUILD_FOR_GOOGLE3)
121     public:
deref()122         void deref() const { this->unref(); }
123     #endif
124 };
125 #endif
126 
127 ///////////////////////////////////////////////////////////////////////////////
128 
129 /** Call obj->ref() and return obj. The obj must not be nullptr.
130  */
SkRef(T * obj)131 template <typename T> static inline T* SkRef(T* obj) {
132     SkASSERT(obj);
133     obj->ref();
134     return obj;
135 }
136 
137 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
138  */
SkSafeRef(T * obj)139 template <typename T> static inline T* SkSafeRef(T* obj) {
140     if (obj) {
141         obj->ref();
142     }
143     return obj;
144 }
145 
146 /** Check if the argument is non-null, and if so, call obj->unref()
147  */
SkSafeUnref(T * obj)148 template <typename T> static inline void SkSafeUnref(T* obj) {
149     if (obj) {
150         obj->unref();
151     }
152 }
153 
154 ///////////////////////////////////////////////////////////////////////////////
155 
156 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
157 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
158 template <typename Derived>
159 class SkNVRefCnt {
160 public:
SkNVRefCnt()161     SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()162     ~SkNVRefCnt() {
163     #ifdef SK_DEBUG
164         int rc = fRefCnt.load(std::memory_order_relaxed);
165         SkASSERTF(rc == 1, "NVRefCnt was %d", rc);
166     #endif
167     }
168 
169     // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
170     //   - unique() needs acquire when it returns true, and no barrier if it returns false;
171     //   - ref() doesn't need any barrier;
172     //   - unref() needs a release barrier, and an acquire if it's going to call delete.
173 
unique()174     bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()175     void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()176     void  unref() const {
177         if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
178             // restore the 1 for our destructor's assert
179             SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
180             delete (const Derived*)this;
181         }
182     }
deref()183     void  deref() const { this->unref(); }
184 
185     // This must be used with caution. It is only valid to call this when 'threadIsolatedTestCnt'
186     // refs are known to be isolated to the current thread. That is, it is known that there are at
187     // least 'threadIsolatedTestCnt' refs for which no other thread may make a balancing unref()
188     // call. Assuming the contract is followed, if this returns false then no other thread has
189     // ownership of this. If it returns true then another thread *may* have ownership.
refCntGreaterThan(int32_t threadIsolatedTestCnt)190     bool refCntGreaterThan(int32_t threadIsolatedTestCnt) const {
191         int cnt = fRefCnt.load(std::memory_order_acquire);
192         // If this fails then the above contract has been violated.
193         SkASSERT(cnt >= threadIsolatedTestCnt);
194         return cnt > threadIsolatedTestCnt;
195     }
196 
197 private:
198     mutable std::atomic<int32_t> fRefCnt;
199 
200     SkNVRefCnt(SkNVRefCnt&&) = delete;
201     SkNVRefCnt(const SkNVRefCnt&) = delete;
202     SkNVRefCnt& operator=(SkNVRefCnt&&) = delete;
203     SkNVRefCnt& operator=(const SkNVRefCnt&) = delete;
204 };
205 
206 ///////////////////////////////////////////////////////////////////////////////////////////////////
207 
208 /**
209  *  Shared pointer class to wrap classes that support a ref()/unref() interface.
210  *
211  *  This can be used for classes inheriting from SkRefCnt, but it also works for other
212  *  classes that match the interface, but have different internal choices: e.g. the hosted class
213  *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
214  */
215 template <typename T> class sk_sp {
216 public:
217     using element_type = T;
218 
sk_sp()219     constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)220     constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
221 
222     /**
223      *  Shares the underlying object by calling ref(), so that both the argument and the newly
224      *  created sk_sp both have a reference to it.
225      */
sk_sp(const sk_sp<T> & that)226     sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
227     template <typename U,
228               typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(const sk_sp<U> & that)229     sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
230 
231     /**
232      *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
233      *  the new sk_sp will have a reference to the object, and the argument will point to null.
234      *  No call to ref() or unref() will be made.
235      */
sk_sp(sk_sp<T> && that)236     sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
237     template <typename U,
238               typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(sk_sp<U> && that)239     sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
240 
241     /**
242      *  Adopt the bare pointer into the newly created sk_sp.
243      *  No call to ref() or unref() will be made.
244      */
sk_sp(T * obj)245     explicit sk_sp(T* obj) : fPtr(obj) {}
246 
247     /**
248      *  Calls unref() on the underlying object pointer.
249      */
~sk_sp()250     ~sk_sp() {
251         SkSafeUnref(fPtr);
252         SkDEBUGCODE(fPtr = nullptr);
253     }
254 
255     sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
256 
257     /**
258      *  Shares the underlying object referenced by the argument by calling ref() on it. If this
259      *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
260      *  object.
261      */
262     sk_sp<T>& operator=(const sk_sp<T>& that) {
263         if (this != &that) {
264             this->reset(SkSafeRef(that.get()));
265         }
266         return *this;
267     }
268     template <typename U,
269               typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
270     sk_sp<T>& operator=(const sk_sp<U>& that) {
271         this->reset(SkSafeRef(that.get()));
272         return *this;
273     }
274 
275     /**
276      *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
277      *  a reference to another object, unref() will be called on that object. No call to ref()
278      *  will be made.
279      */
280     sk_sp<T>& operator=(sk_sp<T>&& that) {
281         this->reset(that.release());
282         return *this;
283     }
284     template <typename U,
285               typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
286     sk_sp<T>& operator=(sk_sp<U>&& that) {
287         this->reset(that.release());
288         return *this;
289     }
290 
291     T& operator*() const {
292         SkASSERT(this->get() != nullptr);
293         return *this->get();
294     }
295 
296     explicit operator bool() const { return this->get() != nullptr; }
297 
get()298     T* get() const { return fPtr; }
299     T* operator->() const { return fPtr; }
300 
301     /**
302      *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
303      *  No call to ref() will be made.
304      */
305     void reset(T* ptr = nullptr) {
306         // Calling fPtr->unref() may call this->~() or this->reset(T*).
307         // http://wg21.cmeerw.net/lwg/issue998
308         // http://wg21.cmeerw.net/lwg/issue2262
309         T* oldPtr = fPtr;
310         fPtr = ptr;
311         SkSafeUnref(oldPtr);
312     }
313 
314     /**
315      *  Return the bare pointer, and set the internal object pointer to nullptr.
316      *  The caller must assume ownership of the object, and manage its reference count directly.
317      *  No call to unref() will be made.
318      */
release()319     T* SK_WARN_UNUSED_RESULT release() {
320         T* ptr = fPtr;
321         fPtr = nullptr;
322         return ptr;
323     }
324 
swap(sk_sp<T> & that)325     void swap(sk_sp<T>& that) /*noexcept*/ {
326         using std::swap;
327         swap(fPtr, that.fPtr);
328     }
329 
330 private:
331     T*  fPtr;
332 };
333 
swap(sk_sp<T> & a,sk_sp<T> & b)334 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
335     a.swap(b);
336 }
337 
338 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
339     return a.get() == b.get();
340 }
341 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
342     return !a;
343 }
344 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
345     return !b;
346 }
347 
348 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
349     return a.get() != b.get();
350 }
351 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
352     return static_cast<bool>(a);
353 }
354 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
355     return static_cast<bool>(b);
356 }
357 
358 template <typename C, typename CT, typename T>
359 auto operator<<(std::basic_ostream<C, CT>& os, const sk_sp<T>& sp) -> decltype(os << sp.get()) {
360     return os << sp.get();
361 }
362 
363 template <typename T, typename... Args>
sk_make_sp(Args &&...args)364 sk_sp<T> sk_make_sp(Args&&... args) {
365     return sk_sp<T>(new T(std::forward<Args>(args)...));
366 }
367 
368 /*
369  *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
370  *
371  *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
372  *  effectively "adopting" it.
373  */
sk_ref_sp(T * obj)374 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
375     return sk_sp<T>(SkSafeRef(obj));
376 }
377 
sk_ref_sp(const T * obj)378 template <typename T> sk_sp<T> sk_ref_sp(const T* obj) {
379     return sk_sp<T>(const_cast<T*>(SkSafeRef(obj)));
380 }
381 
382 #endif
383