• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkStream.h"
9 #include "include/private/SkSLProgramElement.h"
10 #include "include/private/SkSLStatement.h"
11 #include "include/private/SkTArray.h"
12 #include "include/private/SkTPin.h"
13 #include "src/sksl/SkSLCompiler.h"
14 #include "src/sksl/SkSLOperators.h"
15 #include "src/sksl/codegen/SkSLCodeGenerator.h"
16 #include "src/sksl/codegen/SkSLVMCodeGenerator.h"
17 #include "src/sksl/ir/SkSLBinaryExpression.h"
18 #include "src/sksl/ir/SkSLBlock.h"
19 #include "src/sksl/ir/SkSLBreakStatement.h"
20 #include "src/sksl/ir/SkSLChildCall.h"
21 #include "src/sksl/ir/SkSLConstructor.h"
22 #include "src/sksl/ir/SkSLConstructorArray.h"
23 #include "src/sksl/ir/SkSLConstructorArrayCast.h"
24 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
25 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
26 #include "src/sksl/ir/SkSLConstructorSplat.h"
27 #include "src/sksl/ir/SkSLConstructorStruct.h"
28 #include "src/sksl/ir/SkSLContinueStatement.h"
29 #include "src/sksl/ir/SkSLDoStatement.h"
30 #include "src/sksl/ir/SkSLExpressionStatement.h"
31 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
32 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
33 #include "src/sksl/ir/SkSLFieldAccess.h"
34 #include "src/sksl/ir/SkSLForStatement.h"
35 #include "src/sksl/ir/SkSLFunctionCall.h"
36 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
37 #include "src/sksl/ir/SkSLFunctionDefinition.h"
38 #include "src/sksl/ir/SkSLIfStatement.h"
39 #include "src/sksl/ir/SkSLIndexExpression.h"
40 #include "src/sksl/ir/SkSLLiteral.h"
41 #include "src/sksl/ir/SkSLPostfixExpression.h"
42 #include "src/sksl/ir/SkSLPrefixExpression.h"
43 #include "src/sksl/ir/SkSLReturnStatement.h"
44 #include "src/sksl/ir/SkSLSwitchStatement.h"
45 #include "src/sksl/ir/SkSLSwizzle.h"
46 #include "src/sksl/ir/SkSLTernaryExpression.h"
47 #include "src/sksl/ir/SkSLVarDeclarations.h"
48 #include "src/sksl/ir/SkSLVariableReference.h"
49 
50 #include <algorithm>
51 #include <unordered_map>
52 
53 namespace {
54     // sksl allows the optimizations of fast_mul(), so we want to use that most of the time.
55     // This little sneaky snippet of code lets us use ** as a fast multiply infix operator.
56     struct FastF32 { skvm::F32 val; };
operator *(skvm::F32 y)57     static FastF32 operator*(skvm::F32 y) { return {y}; }
operator *(skvm::F32 x,FastF32 y)58     static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); }
operator *(float x,FastF32 y)59     static skvm::F32 operator*(float     x, FastF32 y) { return fast_mul(x, y.val); }
60 }
61 
62 namespace SkSL {
63 
64 namespace {
65 
66 // Holds scalars, vectors, or matrices
67 struct Value {
68     Value() = default;
ValueSkSL::__anond80167d30211::Value69     explicit Value(size_t slots) {
70         fVals.resize(slots);
71     }
ValueSkSL::__anond80167d30211::Value72     Value(skvm::F32 x) : fVals({ x.id }) {}
ValueSkSL::__anond80167d30211::Value73     Value(skvm::I32 x) : fVals({ x.id }) {}
74 
operator boolSkSL::__anond80167d30211::Value75     explicit operator bool() const { return !fVals.empty(); }
76 
slotsSkSL::__anond80167d30211::Value77     size_t slots() const { return fVals.size(); }
78 
79     struct ValRef {
ValRefSkSL::__anond80167d30211::Value::ValRef80         ValRef(skvm::Val& val) : fVal(val) {}
81         // Required until C++17 copy elision
82         ValRef(const ValRef&) = default;
83 
operator =SkSL::__anond80167d30211::Value::ValRef84         ValRef& operator=(ValRef    v) { fVal = v.fVal; return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef85         ValRef& operator=(skvm::Val v) { fVal = v;      return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef86         ValRef& operator=(skvm::F32 v) { fVal = v.id;   return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef87         ValRef& operator=(skvm::I32 v) { fVal = v.id;   return *this; }
88 
operator skvm::ValSkSL::__anond80167d30211::Value::ValRef89         operator skvm::Val() { return fVal; }
90 
91         skvm::Val& fVal;
92     };
93 
operator []SkSL::__anond80167d30211::Value94     ValRef    operator[](size_t i) {
95         // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
96         // 32-bit x86 Debug builds.
97         SkASSERT(i < fVals.size());
98         return fVals[i];
99     }
operator []SkSL::__anond80167d30211::Value100     skvm::Val operator[](size_t i) const {
101         // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
102         // 32-bit x86 Debug builds.
103         SkASSERT(i < fVals.size());
104         return fVals[i];
105     }
106 
asSpanSkSL::__anond80167d30211::Value107     SkSpan<skvm::Val> asSpan() { return SkMakeSpan(fVals); }
108 
109 private:
110     SkSTArray<4, skvm::Val, true> fVals;
111 };
112 
113 }  // namespace
114 
115 class SkVMGenerator {
116 public:
117     SkVMGenerator(const Program& program,
118                   skvm::Builder* builder,
119                   SkVMDebugInfo* debugInfo,
120                   SampleShaderFn sampleShader,
121                   SampleColorFilterFn sampleColorFilter,
122                   SampleBlenderFn sampleBlender);
123 
124     void writeProgram(SkSpan<skvm::Val> uniforms,
125                       skvm::Coord device,
126                       const FunctionDefinition& function,
127                       SkSpan<skvm::Val> arguments,
128                       SkSpan<skvm::Val> outReturn);
129 
130 private:
131     /**
132      * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc).
133      * Every Variable is mapped to one (or several, contiguous) indices into our vector of
134      * skvm::Val. Those skvm::Val entries hold the current actual value of that variable.
135      *
136      * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way,
137      * (and eliminate the indirection), but it would add overhead for each Variable,
138      * and add additional (different) bookkeeping for things like lvalue-swizzles.
139      *
140      * Any time a variable appears in an expression, that's a VariableReference, which is a kind of
141      * Expression. Evaluating that VariableReference (or any other Expression) produces a Value,
142      * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in
143      * addition to a scalar).
144      *
145      * For a VariableReference, producing a Value is straightforward - we get the slot of the
146      * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the
147      * variable's contents, and construct a Value with those ids.
148      */
149 
150     /** Appends this variable to the SkVMSlotInfo array inside of SkVMDebugInfo. */
151     void addDebugSlotInfo(String varName, const Type& type, int line);
152 
153     /**
154      * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is
155      * referenced. Compound variables (e.g. vectors) will consume more than one slot, with
156      * getSlot returning the start of the contiguous chunk of slots.
157      */
158     size_t getSlot(const Variable& v);
159 
160     /**
161      * Writes a value to a slot previously created by getSlot.
162      */
163     void writeToSlot(int slot, skvm::Val value);
164 
165     /**
166      * Emits an trace_line opcode. writeStatement already does this, but statements that alter
167      * control flow may need to explicitly add additional traces.
168      */
169     void emitTraceLine(int line);
170 
171     /** Initializes uniforms and global variables at the start of main(). */
172     void setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device);
173 
174     /** Emits an SkSL function. */
175     void writeFunction(const FunctionDefinition& function,
176                        SkSpan<skvm::Val> arguments,
177                        SkSpan<skvm::Val> outReturn);
178 
f32(skvm::Val id)179     skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
i32(skvm::Val id)180     skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
181 
182     // Shorthand for scalars
f32(const Value & v)183     skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); }
i32(const Value & v)184     skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); }
185 
186     template <typename Fn>
unary(const Value & v,Fn && fn)187     Value unary(const Value& v, Fn&& fn) {
188         Value result(v.slots());
189         for (size_t i = 0; i < v.slots(); ++i) {
190             result[i] = fn({fBuilder, v[i]});
191         }
192         return result;
193     }
194 
mask()195     skvm::I32 mask() {
196         // Mask off execution if we have encountered `break` or `continue` on this path.
197         skvm::I32 result = fConditionMask & fLoopMask;
198         if (!fFunctionStack.empty()) {
199             // As we encounter (possibly conditional) return statements, fReturned is updated to
200             // store the lanes that have already returned. For the remainder of the current
201             // function, those lanes should be disabled.
202             result = result & ~currentFunction().fReturned;
203         }
204         return result;
205     }
206 
207     size_t fieldSlotOffset(const FieldAccess& expr);
208     size_t indexSlotOffset(const IndexExpression& expr);
209 
210     Value writeExpression(const Expression& expr);
211     Value writeBinaryExpression(const BinaryExpression& b);
212     Value writeAggregationConstructor(const AnyConstructor& c);
213     Value writeChildCall(const ChildCall& c);
214     Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c);
215     Value writeConstructorMatrixResize(const ConstructorMatrixResize& c);
216     Value writeConstructorCast(const AnyConstructor& c);
217     Value writeConstructorSplat(const ConstructorSplat& c);
218     Value writeFunctionCall(const FunctionCall& c);
219     Value writeExternalFunctionCall(const ExternalFunctionCall& c);
220     Value writeFieldAccess(const FieldAccess& expr);
221     Value writeLiteral(const Literal& l);
222     Value writeIndexExpression(const IndexExpression& expr);
223     Value writeIntrinsicCall(const FunctionCall& c);
224     Value writePostfixExpression(const PostfixExpression& p);
225     Value writePrefixExpression(const PrefixExpression& p);
226     Value writeSwizzle(const Swizzle& swizzle);
227     Value writeTernaryExpression(const TernaryExpression& t);
228     Value writeVariableExpression(const VariableReference& expr);
229 
230     Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind);
231 
232     void writeStatement(const Statement& s);
233     void writeBlock(const Block& b);
234     void writeBreakStatement();
235     void writeContinueStatement();
236     void writeForStatement(const ForStatement& f);
237     void writeIfStatement(const IfStatement& stmt);
238     void writeReturnStatement(const ReturnStatement& r);
239     void writeSwitchStatement(const SwitchStatement& s);
240     void writeVarDeclaration(const VarDeclaration& decl);
241 
242     Value writeStore(const Expression& lhs, const Value& rhs);
243     skvm::Val writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask);
244 
245     Value writeMatrixInverse2x2(const Value& m);
246     Value writeMatrixInverse3x3(const Value& m);
247     Value writeMatrixInverse4x4(const Value& m);
248 
249     //
250     // Global state for the lifetime of the generator:
251     //
252     const Program& fProgram;
253     skvm::Builder* fBuilder;
254     SkVMDebugInfo* fDebugInfo;
255 
256     const SampleShaderFn fSampleShader;
257     const SampleColorFilterFn fSampleColorFilter;
258     const SampleBlenderFn fSampleBlender;
259 
260     struct Slot {
261         skvm::Val         val;
262     };
263     std::vector<Slot> fSlots;
264 
265     std::unordered_map<const Variable*, size_t> fVariableMap;  // [Variable, first slot in fSlots]
266 
267     // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes)
268     skvm::I32 fConditionMask;
269 
270     // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask).
271     // 'break' disables a lane in fLoopMask until the loop finishes
272     // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next
273     //   iteration
274     skvm::I32 fLoopMask;
275     skvm::I32 fContinueMask;
276 
277     //
278     // State that's local to the generation of a single function:
279     //
280     struct Function {
281         const SkSpan<skvm::Val> fReturnValue;
282         skvm::I32               fReturned;
283     };
284     std::vector<Function> fFunctionStack;
currentFunction()285     Function& currentFunction() { return fFunctionStack.back(); }
286 
287     class ScopedCondition {
288     public:
ScopedCondition(SkVMGenerator * generator,skvm::I32 mask)289         ScopedCondition(SkVMGenerator* generator, skvm::I32 mask)
290                 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) {
291             fGenerator->fConditionMask &= mask;
292         }
293 
~ScopedCondition()294         ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; }
295 
296     private:
297         SkVMGenerator* fGenerator;
298         skvm::I32 fOldConditionMask;
299     };
300 };
301 
dump(SkWStream * o) const302 void SkVMDebugInfo::dump(SkWStream* o) const {
303     for (size_t index = 0; index < fSlotInfo.size(); ++index) {
304         const SkVMSlotInfo& info = fSlotInfo[index];
305 
306         o->writeText("$");
307         o->writeDecAsText(index);
308         o->writeText(" = ");
309         o->writeText(info.name.c_str());
310         o->writeText(" (");
311         switch (info.numberKind) {
312             case Type::NumberKind::kFloat:      o->writeText("float"); break;
313             case Type::NumberKind::kSigned:     o->writeText("int"); break;
314             case Type::NumberKind::kUnsigned:   o->writeText("uint"); break;
315             case Type::NumberKind::kBoolean:    o->writeText("bool"); break;
316             case Type::NumberKind::kNonnumeric: o->writeText("???"); break;
317         }
318         if (info.rows * info.columns > 1) {
319             o->writeDecAsText(info.columns);
320             if (info.rows != 1) {
321                 o->writeText("x");
322                 o->writeDecAsText(info.rows);
323             }
324             o->writeText(" : ");
325             o->writeText("slot ");
326             o->writeDecAsText(info.componentIndex + 1);
327             o->writeText("/");
328             o->writeDecAsText(info.rows * info.columns);
329         }
330         o->writeText(", L");
331         o->writeDecAsText(info.line);
332         o->writeText(")");
333         o->newline();
334     }
335     o->newline();
336 }
337 
base_number_kind(const Type & type)338 static Type::NumberKind base_number_kind(const Type& type) {
339     if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
340         return base_number_kind(type.componentType());
341     }
342     return type.numberKind();
343 }
344 
is_uniform(const SkSL::Variable & var)345 static inline bool is_uniform(const SkSL::Variable& var) {
346     return var.modifiers().fFlags & Modifiers::kUniform_Flag;
347 }
348 
SkVMGenerator(const Program & program,skvm::Builder * builder,SkVMDebugInfo * debugInfo,SampleShaderFn sampleShader,SampleColorFilterFn sampleColorFilter,SampleBlenderFn sampleBlender)349 SkVMGenerator::SkVMGenerator(const Program& program,
350                              skvm::Builder* builder,
351                              SkVMDebugInfo* debugInfo,
352                              SampleShaderFn sampleShader,
353                              SampleColorFilterFn sampleColorFilter,
354                              SampleBlenderFn sampleBlender)
355         : fProgram(program)
356         , fBuilder(builder)
357         , fDebugInfo(debugInfo)
358         , fSampleShader(std::move(sampleShader))
359         , fSampleColorFilter(std::move(sampleColorFilter))
360         , fSampleBlender(std::move(sampleBlender)) {}
361 
writeProgram(SkSpan<skvm::Val> uniforms,skvm::Coord device,const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)362 void SkVMGenerator::writeProgram(SkSpan<skvm::Val> uniforms,
363                                  skvm::Coord device,
364                                  const FunctionDefinition& function,
365                                  SkSpan<skvm::Val> arguments,
366                                  SkSpan<skvm::Val> outReturn) {
367     fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff);
368 
369     this->setupGlobals(uniforms, device);
370     this->writeFunction(function, arguments, outReturn);
371 }
372 
setupGlobals(SkSpan<skvm::Val> uniforms,skvm::Coord device)373 void SkVMGenerator::setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device) {
374     // Add storage for each global variable (including uniforms) to fSlots, and entries in
375     // fVariableMap to remember where every variable is stored.
376     const skvm::Val* uniformIter = uniforms.begin();
377     size_t fpCount = 0;
378     for (const ProgramElement* e : fProgram.elements()) {
379         if (e->is<GlobalVarDeclaration>()) {
380             const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>();
381             const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>();
382             const Variable& var = decl.var();
383             SkASSERT(fVariableMap.find(&var) == fVariableMap.end());
384 
385             // For most variables, fVariableMap stores an index into fSlots, but for children,
386             // fVariableMap stores the index to pass to fSample(Shader|ColorFilter|Blender)
387             if (var.type().isEffectChild()) {
388                 fVariableMap[&var] = fpCount++;
389                 continue;
390             }
391 
392             // Opaque types include fragment processors, GL objects (samplers, textures, etc), and
393             // special types like 'void'. Of those, only fragment processors are legal variables.
394             SkASSERT(!var.type().isOpaque());
395 
396             // getSlot() allocates space for the variable's value in fSlots, initializes it to zero,
397             // and populates fVariableMap.
398             size_t slot   = this->getSlot(var),
399                    nslots = var.type().slotCount();
400 
401             // builtin variables are system-defined, with special semantics. The only builtin
402             // variable exposed to runtime effects is sk_FragCoord.
403             if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) {
404                 switch (builtin) {
405                     case SK_FRAGCOORD_BUILTIN:
406                         SkASSERT(nslots == 4);
407                         this->writeToSlot(slot + 0, device.x.id);
408                         this->writeToSlot(slot + 1, device.y.id);
409                         this->writeToSlot(slot + 2, fBuilder->splat(0.0f).id);
410                         this->writeToSlot(slot + 3, fBuilder->splat(1.0f).id);
411                         break;
412                     default:
413                         SkDEBUGFAILF("Unsupported builtin %d", builtin);
414                 }
415                 continue;
416             }
417 
418             // For uniforms, copy the supplied IDs over
419             if (is_uniform(var)) {
420                 SkASSERT(uniformIter + nslots <= uniforms.end());
421                 for (size_t i = 0; i < nslots; ++i) {
422                     this->writeToSlot(slot + i, uniformIter[i]);
423                 }
424                 uniformIter += nslots;
425                 continue;
426             }
427 
428             // For other globals, populate with the initializer expression (if there is one)
429             if (decl.value()) {
430                 Value val = this->writeExpression(*decl.value());
431                 for (size_t i = 0; i < nslots; ++i) {
432                     this->writeToSlot(slot + i, val[i]);
433                 }
434             }
435         }
436     }
437     SkASSERT(uniformIter == uniforms.end());
438 }
439 
writeFunction(const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)440 void SkVMGenerator::writeFunction(const FunctionDefinition& function,
441                                   SkSpan<skvm::Val> arguments,
442                                   SkSpan<skvm::Val> outReturn) {
443     const FunctionDeclaration& decl = function.declaration();
444     SkASSERT(decl.returnType().slotCount() == outReturn.size());
445 
446     if (fDebugInfo) {
447         fBuilder->trace_call_enter(this->mask(), function.fLine);
448     }
449 
450     fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)});
451 
452     // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs
453     size_t argIdx = 0;
454     for (const Variable* p : decl.parameters()) {
455         size_t paramSlot = this->getSlot(*p),
456                nslots    = p->type().slotCount();
457 
458         for (size_t i = 0; i < nslots; ++i) {
459             this->writeToSlot(paramSlot + i, arguments[argIdx + i]);
460         }
461         argIdx += nslots;
462     }
463     SkASSERT(argIdx == arguments.size());
464 
465     this->writeStatement(*function.body());
466 
467     // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage
468     argIdx = 0;
469     for (const Variable* p : decl.parameters()) {
470         size_t nslots = p->type().slotCount();
471 
472         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
473             size_t paramSlot = this->getSlot(*p);
474             for (size_t i = 0; i < nslots; ++i) {
475                 arguments[argIdx + i] = fSlots[paramSlot + i].val;
476             }
477         }
478         argIdx += nslots;
479     }
480     SkASSERT(argIdx == arguments.size());
481 
482     fFunctionStack.pop_back();
483 
484     if (fDebugInfo) {
485         fBuilder->trace_call_exit(this->mask(), function.fLine);
486     }
487 }
488 
writeToSlot(int slot,skvm::Val value)489 void SkVMGenerator::writeToSlot(int slot, skvm::Val value) {
490     if (fDebugInfo && fSlots[slot].val != value) {
491         if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kFloat) {
492             fBuilder->trace_var(this->mask(), slot, f32(value));
493         } else if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kBoolean) {
494             fBuilder->trace_var(this->mask(), slot, bool(value));
495         } else {
496             fBuilder->trace_var(this->mask(), slot, i32(value));
497         }
498     }
499 
500     fSlots[slot].val = value;
501 }
502 
addDebugSlotInfo(String varName,const Type & type,int line)503 void SkVMGenerator::addDebugSlotInfo(String varName, const Type& type, int line) {
504     SkASSERT(fDebugInfo);
505     switch (type.typeKind()) {
506         case Type::TypeKind::kArray: {
507             int nslots = type.columns();
508             const Type& elemType = type.componentType();
509             for (int slot = 0; slot < nslots; ++slot) {
510                 this->addDebugSlotInfo(varName + "[" + to_string(slot) + "]",
511                                        elemType,
512                                        line);
513             }
514             break;
515         }
516         case Type::TypeKind::kStruct: {
517             for (const Type::Field& field : type.fields()) {
518                 this->addDebugSlotInfo(varName + "." + field.fName,
519                                        *field.fType,
520                                        line);
521             }
522             break;
523         }
524         default:
525             SkASSERTF(0, "unsupported slot type %d", (int)type.typeKind());
526             [[fallthrough]];
527 
528         case Type::TypeKind::kScalar:
529         case Type::TypeKind::kVector:
530         case Type::TypeKind::kMatrix: {
531             Type::NumberKind numberKind = type.componentType().numberKind();
532             int nslots = type.slotCount();
533 
534             for (int slot = 0; slot < nslots; ++slot) {
535                 SkVMSlotInfo slotInfo;
536                 slotInfo.name = varName;
537                 slotInfo.columns = type.columns();
538                 slotInfo.rows = type.rows();
539                 slotInfo.componentIndex = slot;
540                 slotInfo.numberKind = numberKind;
541                 slotInfo.line = line;
542                 fDebugInfo->fSlotInfo.push_back(std::move(slotInfo));
543             }
544             break;
545         }
546     }
547 }
548 
getSlot(const Variable & v)549 size_t SkVMGenerator::getSlot(const Variable& v) {
550     auto entry = fVariableMap.find(&v);
551     if (entry != fVariableMap.end()) {
552         return entry->second;
553     }
554 
555     size_t slot   = fSlots.size(),
556            nslots = v.type().slotCount();
557 
558     if (fDebugInfo) {
559         // Our debug slot-info table should always have the same length as the actual slot table.
560         SkASSERT(fDebugInfo->fSlotInfo.size() == slot);
561 
562         // Append slots for this variable to our debug slot-info table.
563         fDebugInfo->fSlotInfo.reserve(slot + nslots);
564         this->addDebugSlotInfo(String(v.name()), v.type(), v.fLine);
565 
566         // Confirm that we added the expected number of slots.
567         SkASSERT(fDebugInfo->fSlotInfo.size() == (slot + nslots));
568     }
569 
570     // Create zeroed-out slots for this new variable.
571     skvm::Val initialValue = fBuilder->splat(0.0f).id;
572     fSlots.insert(fSlots.end(), nslots, Slot{initialValue});
573     fVariableMap[&v] = slot;
574     return slot;
575 }
576 
writeBinaryExpression(const BinaryExpression & b)577 Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) {
578     const Expression& left = *b.left();
579     const Expression& right = *b.right();
580     Operator op = b.getOperator();
581     if (op.kind() == Token::Kind::TK_EQ) {
582         return this->writeStore(left, this->writeExpression(right));
583     }
584 
585     const Type& lType = left.type();
586     const Type& rType = right.type();
587     bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
588     bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
589     bool isAssignment = op.isAssignment();
590     if (isAssignment) {
591         op = op.removeAssignment();
592     }
593     Type::NumberKind nk = base_number_kind(lType);
594 
595     // A few ops require special treatment:
596     switch (op.kind()) {
597         case Token::Kind::TK_LOGICALAND: {
598             SkASSERT(!isAssignment);
599             SkASSERT(nk == Type::NumberKind::kBoolean);
600             skvm::I32 lVal = i32(this->writeExpression(left));
601             ScopedCondition shortCircuit(this, lVal);
602             skvm::I32 rVal = i32(this->writeExpression(right));
603             return lVal & rVal;
604         }
605         case Token::Kind::TK_LOGICALOR: {
606             SkASSERT(!isAssignment);
607             SkASSERT(nk == Type::NumberKind::kBoolean);
608             skvm::I32 lVal = i32(this->writeExpression(left));
609             ScopedCondition shortCircuit(this, ~lVal);
610             skvm::I32 rVal = i32(this->writeExpression(right));
611             return lVal | rVal;
612         }
613         case Token::Kind::TK_COMMA:
614             // We write the left side of the expression to preserve its side effects, even though we
615             // immediately discard the result.
616             this->writeExpression(left);
617             return this->writeExpression(right);
618         default:
619             break;
620     }
621 
622     // All of the other ops always evaluate both sides of the expression
623     Value lVal = this->writeExpression(left),
624           rVal = this->writeExpression(right);
625 
626     // Special case for M*V, V*M, M*M (but not V*V!)
627     if (op.kind() == Token::Kind::TK_STAR
628         && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) {
629         int rCols = rType.columns(),
630             rRows = rType.rows(),
631             lCols = lType.columns(),
632             lRows = lType.rows();
633         // M*V treats the vector as a column
634         if (rType.isVector()) {
635             std::swap(rCols, rRows);
636         }
637         SkASSERT(lCols == rRows);
638         SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols));
639         Value result(lRows * rCols);
640         size_t resultIdx = 0;
641         const skvm::F32 zero = fBuilder->splat(0.0f);
642         for (int c = 0; c < rCols; ++c)
643         for (int r = 0; r < lRows; ++r) {
644             skvm::F32 sum = zero;
645             for (int j = 0; j < lCols; ++j) {
646                 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]);
647             }
648             result[resultIdx++] = sum;
649         }
650         SkASSERT(resultIdx == result.slots());
651         return isAssignment ? this->writeStore(left, result) : result;
652     }
653 
654     size_t nslots = std::max(lVal.slots(), rVal.slots());
655 
656     auto binary = [&](auto&& f_fn, auto&& i_fn) {
657         Value result(nslots);
658         for (size_t i = 0; i < nslots; ++i) {
659             // If one side is scalar, replicate it to all channels
660             skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i],
661                       R = rVal.slots() == 1 ? rVal[0] : rVal[i];
662             if (nk == Type::NumberKind::kFloat) {
663                 result[i] = f_fn(f32(L), f32(R));
664             } else {
665                 result[i] = i_fn(i32(L), i32(R));
666             }
667         }
668         return isAssignment ? this->writeStore(left, result) : result;
669     };
670 
671     auto unsupported_f = [&](skvm::F32, skvm::F32) {
672         SkDEBUGFAIL("Unsupported operator");
673         return skvm::F32{};
674     };
675 
676     switch (op.kind()) {
677         case Token::Kind::TK_EQEQ: {
678             SkASSERT(!isAssignment);
679             Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; },
680                                [](skvm::I32 x, skvm::I32 y) { return x == y; });
681             skvm::I32 folded = i32(cmp[0]);
682             for (size_t i = 1; i < nslots; ++i) {
683                 folded &= i32(cmp[i]);
684             }
685             return folded;
686         }
687         case Token::Kind::TK_NEQ: {
688             SkASSERT(!isAssignment);
689             Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; },
690                                [](skvm::I32 x, skvm::I32 y) { return x != y; });
691             skvm::I32 folded = i32(cmp[0]);
692             for (size_t i = 1; i < nslots; ++i) {
693                 folded |= i32(cmp[i]);
694             }
695             return folded;
696         }
697         case Token::Kind::TK_GT:
698             return binary([](skvm::F32 x, skvm::F32 y) { return x > y; },
699                           [](skvm::I32 x, skvm::I32 y) { return x > y; });
700         case Token::Kind::TK_GTEQ:
701             return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; },
702                           [](skvm::I32 x, skvm::I32 y) { return x >= y; });
703         case Token::Kind::TK_LT:
704             return binary([](skvm::F32 x, skvm::F32 y) { return x < y; },
705                           [](skvm::I32 x, skvm::I32 y) { return x < y; });
706         case Token::Kind::TK_LTEQ:
707             return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; },
708                           [](skvm::I32 x, skvm::I32 y) { return x <= y; });
709 
710         case Token::Kind::TK_PLUS:
711             return binary([](skvm::F32 x, skvm::F32 y) { return x + y; },
712                           [](skvm::I32 x, skvm::I32 y) { return x + y; });
713         case Token::Kind::TK_MINUS:
714             return binary([](skvm::F32 x, skvm::F32 y) { return x - y; },
715                           [](skvm::I32 x, skvm::I32 y) { return x - y; });
716         case Token::Kind::TK_STAR:
717             return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; },
718                           [](skvm::I32 x, skvm::I32 y) { return x * y; });
719         case Token::Kind::TK_SLASH:
720             // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations.
721             // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating
722             // point division plus rounding. Section 10.28 of the spec even clarifies that the
723             // rounding mode is undefined (but round-towards-zero is the obvious/common choice).
724             return binary([](skvm::F32 x, skvm::F32 y) { return x / y; },
725                           [](skvm::I32 x, skvm::I32 y) {
726                               return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y));
727                           });
728 
729         case Token::Kind::TK_BITWISEXOR:
730         case Token::Kind::TK_LOGICALXOR:
731             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; });
732         case Token::Kind::TK_BITWISEAND:
733             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; });
734         case Token::Kind::TK_BITWISEOR:
735             return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; });
736 
737         // These three operators are all 'reserved' (illegal) in our minimum spec, but will require
738         // implementation in the future.
739         case Token::Kind::TK_PERCENT:
740         case Token::Kind::TK_SHL:
741         case Token::Kind::TK_SHR:
742         default:
743             SkDEBUGFAIL("Unsupported operator");
744             return {};
745     }
746 }
747 
writeAggregationConstructor(const AnyConstructor & c)748 Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) {
749     Value result(c.type().slotCount());
750     size_t resultIdx = 0;
751     for (const auto &arg : c.argumentSpan()) {
752         Value tmp = this->writeExpression(*arg);
753         for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) {
754             result[resultIdx++] = tmp[tmpSlot];
755         }
756     }
757     return result;
758 }
759 
writeTypeConversion(const Value & src,Type::NumberKind srcKind,Type::NumberKind dstKind)760 Value SkVMGenerator::writeTypeConversion(const Value& src,
761                                          Type::NumberKind srcKind,
762                                          Type::NumberKind dstKind) {
763     // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op.
764     if (srcKind == dstKind) {
765         return src;
766     }
767 
768     // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet.
769     Value dst(src.slots());
770     switch (dstKind) {
771         case Type::NumberKind::kFloat:
772             if (srcKind == Type::NumberKind::kSigned) {
773                 // int -> float
774                 for (size_t i = 0; i < src.slots(); ++i) {
775                     dst[i] = skvm::to_F32(i32(src[i]));
776                 }
777                 return dst;
778             }
779             if (srcKind == Type::NumberKind::kBoolean) {
780                 // bool -> float
781                 for (size_t i = 0; i < src.slots(); ++i) {
782                     dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f);
783                 }
784                 return dst;
785             }
786             break;
787 
788         case Type::NumberKind::kSigned:
789             if (srcKind == Type::NumberKind::kFloat) {
790                 // float -> int
791                 for (size_t i = 0; i < src.slots(); ++i) {
792                     dst[i] = skvm::trunc(f32(src[i]));
793                 }
794                 return dst;
795             }
796             if (srcKind == Type::NumberKind::kBoolean) {
797                 // bool -> int
798                 for (size_t i = 0; i < src.slots(); ++i) {
799                     dst[i] = skvm::select(i32(src[i]), 1, 0);
800                 }
801                 return dst;
802             }
803             break;
804 
805         case Type::NumberKind::kBoolean:
806             if (srcKind == Type::NumberKind::kSigned) {
807                 // int -> bool
808                 for (size_t i = 0; i < src.slots(); ++i) {
809                     dst[i] = i32(src[i]) != 0;
810                 }
811                 return dst;
812             }
813             if (srcKind == Type::NumberKind::kFloat) {
814                 // float -> bool
815                 for (size_t i = 0; i < src.slots(); ++i) {
816                     dst[i] = f32(src[i]) != 0.0;
817                 }
818                 return dst;
819             }
820             break;
821 
822         default:
823             break;
824     }
825     SkDEBUGFAILF("Unsupported type conversion: %d -> %d", (int)srcKind, (int)dstKind);
826     return {};
827 }
828 
writeConstructorCast(const AnyConstructor & c)829 Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) {
830     auto arguments = c.argumentSpan();
831     SkASSERT(arguments.size() == 1);
832     const Expression& argument = *arguments.front();
833 
834     const Type& srcType = argument.type();
835     const Type& dstType = c.type();
836     Type::NumberKind srcKind = base_number_kind(srcType);
837     Type::NumberKind dstKind = base_number_kind(dstType);
838     Value src = this->writeExpression(argument);
839     return this->writeTypeConversion(src, srcKind, dstKind);
840 }
841 
writeConstructorSplat(const ConstructorSplat & c)842 Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) {
843     SkASSERT(c.type().isVector());
844     SkASSERT(c.argument()->type().isScalar());
845     int columns = c.type().columns();
846 
847     // Splat the argument across all components of a vector.
848     Value src = this->writeExpression(*c.argument());
849     Value dst(columns);
850     for (int i = 0; i < columns; ++i) {
851         dst[i] = src[0];
852     }
853     return dst;
854 }
855 
writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix & ctor)856 Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& ctor) {
857     const Type& dstType = ctor.type();
858     SkASSERT(dstType.isMatrix());
859     SkASSERT(ctor.argument()->type() == dstType.componentType());
860 
861     Value src = this->writeExpression(*ctor.argument());
862     Value dst(dstType.rows() * dstType.columns());
863     size_t dstIndex = 0;
864 
865     // Matrix-from-scalar builds a diagonal scale matrix
866     const skvm::F32 zero = fBuilder->splat(0.0f);
867     for (int c = 0; c < dstType.columns(); ++c) {
868         for (int r = 0; r < dstType.rows(); ++r) {
869             dst[dstIndex++] = (c == r ? f32(src) : zero);
870         }
871     }
872 
873     SkASSERT(dstIndex == dst.slots());
874     return dst;
875 }
876 
writeConstructorMatrixResize(const ConstructorMatrixResize & ctor)877 Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& ctor) {
878     const Type& srcType = ctor.argument()->type();
879     const Type& dstType = ctor.type();
880     Value src = this->writeExpression(*ctor.argument());
881     Value dst(dstType.rows() * dstType.columns());
882 
883     // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity.
884     size_t dstIndex = 0;
885     for (int c = 0; c < dstType.columns(); ++c) {
886         for (int r = 0; r < dstType.rows(); ++r) {
887             if (c < srcType.columns() && r < srcType.rows()) {
888                 dst[dstIndex++] = src[c * srcType.rows() + r];
889             } else {
890                 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f);
891             }
892         }
893     }
894 
895     SkASSERT(dstIndex == dst.slots());
896     return dst;
897 }
898 
fieldSlotOffset(const FieldAccess & expr)899 size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) {
900     size_t offset = 0;
901     for (int i = 0; i < expr.fieldIndex(); ++i) {
902         offset += (*expr.base()->type().fields()[i].fType).slotCount();
903     }
904     return offset;
905 }
906 
writeFieldAccess(const FieldAccess & expr)907 Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) {
908     Value base = this->writeExpression(*expr.base());
909     Value field(expr.type().slotCount());
910     size_t offset = this->fieldSlotOffset(expr);
911     for (size_t i = 0; i < field.slots(); ++i) {
912         field[i] = base[offset + i];
913     }
914     return field;
915 }
916 
indexSlotOffset(const IndexExpression & expr)917 size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) {
918     Value index = this->writeExpression(*expr.index());
919     int indexValue = -1;
920     SkAssertResult(fBuilder->allImm(index[0], &indexValue));
921 
922     // When indexing by a literal, the front-end guarantees that we don't go out of bounds.
923     // But when indexing by a loop variable, it's possible to generate out-of-bounds access.
924     // The GLSL spec leaves that behavior undefined - we'll just clamp everything here.
925     indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1);
926 
927     size_t stride = expr.type().slotCount();
928     return indexValue * stride;
929 }
930 
writeIndexExpression(const IndexExpression & expr)931 Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) {
932     Value base = this->writeExpression(*expr.base());
933     Value element(expr.type().slotCount());
934     size_t offset = this->indexSlotOffset(expr);
935     for (size_t i = 0; i < element.slots(); ++i) {
936         element[i] = base[offset + i];
937     }
938     return element;
939 }
940 
writeVariableExpression(const VariableReference & expr)941 Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) {
942     size_t slot = this->getSlot(*expr.variable());
943     Value val(expr.type().slotCount());
944     for (size_t i = 0; i < val.slots(); ++i) {
945         val[i] = fSlots[slot + i].val;
946     }
947     return val;
948 }
949 
writeMatrixInverse2x2(const Value & m)950 Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) {
951     SkASSERT(m.slots() == 4);
952     skvm::F32 a = f32(m[0]),
953               b = f32(m[1]),
954               c = f32(m[2]),
955               d = f32(m[3]);
956     skvm::F32 idet = 1.0f / (a*d - b*c);
957 
958     Value result(m.slots());
959     result[0] = ( d ** idet);
960     result[1] = (-b ** idet);
961     result[2] = (-c ** idet);
962     result[3] = ( a ** idet);
963     return result;
964 }
965 
writeMatrixInverse3x3(const Value & m)966 Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) {
967     SkASSERT(m.slots() == 9);
968     skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]),
969               a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]),
970               a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]);
971     skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
972                              a11*a23*a32 - a12*a21*a33 - a13*a22*a31);
973 
974     Value result(m.slots());
975     result[0] = ((a22**a33 - a23**a32) ** idet);
976     result[1] = ((a23**a31 - a21**a33) ** idet);
977     result[2] = ((a21**a32 - a22**a31) ** idet);
978     result[3] = ((a13**a32 - a12**a33) ** idet);
979     result[4] = ((a11**a33 - a13**a31) ** idet);
980     result[5] = ((a12**a31 - a11**a32) ** idet);
981     result[6] = ((a12**a23 - a13**a22) ** idet);
982     result[7] = ((a13**a21 - a11**a23) ** idet);
983     result[8] = ((a11**a22 - a12**a21) ** idet);
984     return result;
985 }
986 
writeMatrixInverse4x4(const Value & m)987 Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) {
988     SkASSERT(m.slots() == 16);
989     skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]),
990               a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]),
991               a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]),
992               a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]);
993 
994     skvm::F32 b00 = a00**a11 - a01**a10,
995               b01 = a00**a12 - a02**a10,
996               b02 = a00**a13 - a03**a10,
997               b03 = a01**a12 - a02**a11,
998               b04 = a01**a13 - a03**a11,
999               b05 = a02**a13 - a03**a12,
1000               b06 = a20**a31 - a21**a30,
1001               b07 = a20**a32 - a22**a30,
1002               b08 = a20**a33 - a23**a30,
1003               b09 = a21**a32 - a22**a31,
1004               b10 = a21**a33 - a23**a31,
1005               b11 = a22**a33 - a23**a32;
1006 
1007     skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06);
1008 
1009     b00 *= idet;
1010     b01 *= idet;
1011     b02 *= idet;
1012     b03 *= idet;
1013     b04 *= idet;
1014     b05 *= idet;
1015     b06 *= idet;
1016     b07 *= idet;
1017     b08 *= idet;
1018     b09 *= idet;
1019     b10 *= idet;
1020     b11 *= idet;
1021 
1022     Value result(m.slots());
1023     result[ 0] = (a11*b11 - a12*b10 + a13*b09);
1024     result[ 1] = (a02*b10 - a01*b11 - a03*b09);
1025     result[ 2] = (a31*b05 - a32*b04 + a33*b03);
1026     result[ 3] = (a22*b04 - a21*b05 - a23*b03);
1027     result[ 4] = (a12*b08 - a10*b11 - a13*b07);
1028     result[ 5] = (a00*b11 - a02*b08 + a03*b07);
1029     result[ 6] = (a32*b02 - a30*b05 - a33*b01);
1030     result[ 7] = (a20*b05 - a22*b02 + a23*b01);
1031     result[ 8] = (a10*b10 - a11*b08 + a13*b06);
1032     result[ 9] = (a01*b08 - a00*b10 - a03*b06);
1033     result[10] = (a30*b04 - a31*b02 + a33*b00);
1034     result[11] = (a21*b02 - a20*b04 - a23*b00);
1035     result[12] = (a11*b07 - a10*b09 - a12*b06);
1036     result[13] = (a00*b09 - a01*b07 + a02*b06);
1037     result[14] = (a31*b01 - a30*b03 - a32*b00);
1038     result[15] = (a20*b03 - a21*b01 + a22*b00);
1039     return result;
1040 }
1041 
writeChildCall(const ChildCall & c)1042 Value SkVMGenerator::writeChildCall(const ChildCall& c) {
1043     auto child_it = fVariableMap.find(&c.child());
1044     SkASSERT(child_it != fVariableMap.end());
1045 
1046     const Expression* arg = c.arguments()[0].get();
1047     Value argVal = this->writeExpression(*arg);
1048     skvm::Color color;
1049 
1050     switch (c.child().type().typeKind()) {
1051         case Type::TypeKind::kShader: {
1052             SkASSERT(c.arguments().size() == 1);
1053             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fFloat2);
1054             skvm::Coord coord = {f32(argVal[0]), f32(argVal[1])};
1055             color = fSampleShader(child_it->second, coord);
1056             break;
1057         }
1058         case Type::TypeKind::kColorFilter: {
1059             SkASSERT(c.arguments().size() == 1);
1060             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1061                      arg->type() == *fProgram.fContext->fTypes.fFloat4);
1062             skvm::Color inColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1063             color = fSampleColorFilter(child_it->second, inColor);
1064             break;
1065         }
1066         case Type::TypeKind::kBlender: {
1067             SkASSERT(c.arguments().size() == 2);
1068             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1069                      arg->type() == *fProgram.fContext->fTypes.fFloat4);
1070             skvm::Color srcColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1071 
1072             arg = c.arguments()[1].get();
1073             argVal = this->writeExpression(*arg);
1074             SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1075                      arg->type() == *fProgram.fContext->fTypes.fFloat4);
1076             skvm::Color dstColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1077 
1078             color = fSampleBlender(child_it->second, srcColor, dstColor);
1079             break;
1080         }
1081         default: {
1082             SkDEBUGFAILF("cannot sample from type '%s'", c.child().type().description().c_str());
1083         }
1084     }
1085 
1086     Value result(4);
1087     result[0] = color.r;
1088     result[1] = color.g;
1089     result[2] = color.b;
1090     result[3] = color.a;
1091     return result;
1092 }
1093 
writeIntrinsicCall(const FunctionCall & c)1094 Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) {
1095     IntrinsicKind intrinsicKind = c.function().intrinsicKind();
1096     SkASSERT(intrinsicKind != kNotIntrinsic);
1097 
1098     const size_t nargs = c.arguments().size();
1099     const size_t kMaxArgs = 3;  // eg: clamp, mix, smoothstep
1100     Value args[kMaxArgs];
1101     SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args));
1102 
1103     // All other intrinsics have at most three args, and those can all be evaluated up front:
1104     for (size_t i = 0; i < nargs; ++i) {
1105         args[i] = this->writeExpression(*c.arguments()[i]);
1106     }
1107     Type::NumberKind nk = base_number_kind(c.arguments()[0]->type());
1108 
1109     auto binary = [&](auto&& fn) {
1110         // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN)
1111         size_t nslots = std::max(args[0].slots(), args[1].slots());
1112         Value result(nslots);
1113         SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1114         SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1115 
1116         for (size_t i = 0; i < nslots; ++i) {
1117             result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1118                            {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]});
1119         }
1120         return result;
1121     };
1122 
1123     auto ternary = [&](auto&& fn) {
1124         // Ternary intrinsics are some combination of vecN and float
1125         size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()});
1126         Value result(nslots);
1127         SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1128         SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1129         SkASSERT(args[2].slots() == nslots || args[2].slots() == 1);
1130 
1131         for (size_t i = 0; i < nslots; ++i) {
1132             result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1133                            {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]},
1134                            {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]});
1135         }
1136         return result;
1137     };
1138 
1139     auto dot = [&](const Value& x, const Value& y) {
1140         SkASSERT(x.slots() == y.slots());
1141         skvm::F32 result = f32(x[0]) * f32(y[0]);
1142         for (size_t i = 1; i < x.slots(); ++i) {
1143             result += f32(x[i]) * f32(y[i]);
1144         }
1145         return result;
1146     };
1147 
1148     switch (intrinsicKind) {
1149         case k_radians_IntrinsicKind:
1150             return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); });
1151         case k_degrees_IntrinsicKind:
1152             return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); });
1153 
1154         case k_sin_IntrinsicKind: return unary(args[0], skvm::approx_sin);
1155         case k_cos_IntrinsicKind: return unary(args[0], skvm::approx_cos);
1156         case k_tan_IntrinsicKind: return unary(args[0], skvm::approx_tan);
1157 
1158         case k_asin_IntrinsicKind: return unary(args[0], skvm::approx_asin);
1159         case k_acos_IntrinsicKind: return unary(args[0], skvm::approx_acos);
1160 
1161         case k_atan_IntrinsicKind: return nargs == 1 ? unary(args[0], skvm::approx_atan)
1162                                                  : binary(skvm::approx_atan2);
1163 
1164         case k_pow_IntrinsicKind:
1165             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); });
1166         case k_exp_IntrinsicKind:  return unary(args[0], skvm::approx_exp);
1167         case k_log_IntrinsicKind:  return unary(args[0], skvm::approx_log);
1168         case k_exp2_IntrinsicKind: return unary(args[0], skvm::approx_pow2);
1169         case k_log2_IntrinsicKind: return unary(args[0], skvm::approx_log2);
1170 
1171         case k_sqrt_IntrinsicKind: return unary(args[0], skvm::sqrt);
1172         case k_inversesqrt_IntrinsicKind:
1173             return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); });
1174 
1175         case k_abs_IntrinsicKind: return unary(args[0], skvm::abs);
1176         case k_sign_IntrinsicKind:
1177             return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f,
1178                                                            select(x > 0, +1.0f, 0.0f)); });
1179         case k_floor_IntrinsicKind: return unary(args[0], skvm::floor);
1180         case k_ceil_IntrinsicKind:  return unary(args[0], skvm::ceil);
1181         case k_fract_IntrinsicKind: return unary(args[0], skvm::fract);
1182         case k_mod_IntrinsicKind:
1183             return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); });
1184 
1185         case k_min_IntrinsicKind:
1186             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); });
1187         case k_max_IntrinsicKind:
1188             return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); });
1189         case k_clamp_IntrinsicKind:
1190             return ternary(
1191                     [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); });
1192         case k_saturate_IntrinsicKind:
1193             return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); });
1194         case k_mix_IntrinsicKind:
1195             return ternary(
1196                     [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); });
1197         case k_step_IntrinsicKind:
1198             return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); });
1199         case k_smoothstep_IntrinsicKind:
1200             return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) {
1201                 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0));
1202                 return t ** t ** (3 - 2 ** t);
1203             });
1204 
1205         case k_length_IntrinsicKind: return skvm::sqrt(dot(args[0], args[0]));
1206         case k_distance_IntrinsicKind: {
1207             Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; });
1208             return skvm::sqrt(dot(vec, vec));
1209         }
1210         case k_dot_IntrinsicKind: return dot(args[0], args[1]);
1211         case k_cross_IntrinsicKind: {
1212             skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]),
1213                       bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]);
1214             Value result(3);
1215             result[0] = ay**bz - az**by;
1216             result[1] = az**bx - ax**bz;
1217             result[2] = ax**by - ay**bx;
1218             return result;
1219         }
1220         case k_normalize_IntrinsicKind: {
1221             skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0]));
1222             return unary(args[0], [&](skvm::F32 x) { return x ** invLen; });
1223         }
1224         case k_faceforward_IntrinsicKind: {
1225             const Value &N    = args[0],
1226                         &I    = args[1],
1227                         &Nref = args[2];
1228 
1229             skvm::F32 dotNrefI = dot(Nref, I);
1230             return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); });
1231         }
1232         case k_reflect_IntrinsicKind: {
1233             const Value &I = args[0],
1234                         &N = args[1];
1235 
1236             skvm::F32 dotNI = dot(N, I);
1237             return binary([&](skvm::F32 i, skvm::F32 n) {
1238                 return i - 2**dotNI**n;
1239             });
1240         }
1241         case k_refract_IntrinsicKind: {
1242             const Value &I  = args[0],
1243                         &N  = args[1];
1244             skvm::F32   eta = f32(args[2]);
1245 
1246             skvm::F32 dotNI = dot(N, I),
1247                       k     = 1 - eta**eta**(1 - dotNI**dotNI);
1248             return binary([&](skvm::F32 i, skvm::F32 n) {
1249                 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n);
1250             });
1251         }
1252 
1253         case k_matrixCompMult_IntrinsicKind:
1254             return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; });
1255         case k_inverse_IntrinsicKind: {
1256             switch (args[0].slots()) {
1257                 case  4: return this->writeMatrixInverse2x2(args[0]);
1258                 case  9: return this->writeMatrixInverse3x3(args[0]);
1259                 case 16: return this->writeMatrixInverse4x4(args[0]);
1260                 default:
1261                     SkDEBUGFAIL("Invalid call to inverse");
1262                     return {};
1263             }
1264         }
1265 
1266         case k_lessThan_IntrinsicKind:
1267             return nk == Type::NumberKind::kFloat
1268                            ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; })
1269                            : binary([](skvm::I32 x, skvm::I32 y) { return x < y; });
1270         case k_lessThanEqual_IntrinsicKind:
1271             return nk == Type::NumberKind::kFloat
1272                            ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; })
1273                            : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; });
1274         case k_greaterThan_IntrinsicKind:
1275             return nk == Type::NumberKind::kFloat
1276                            ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; })
1277                            : binary([](skvm::I32 x, skvm::I32 y) { return x > y; });
1278         case k_greaterThanEqual_IntrinsicKind:
1279             return nk == Type::NumberKind::kFloat
1280                            ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; })
1281                            : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; });
1282 
1283         case k_equal_IntrinsicKind:
1284             return nk == Type::NumberKind::kFloat
1285                            ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; })
1286                            : binary([](skvm::I32 x, skvm::I32 y) { return x == y; });
1287         case k_notEqual_IntrinsicKind:
1288             return nk == Type::NumberKind::kFloat
1289                            ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; })
1290                            : binary([](skvm::I32 x, skvm::I32 y) { return x != y; });
1291 
1292         case k_any_IntrinsicKind: {
1293             skvm::I32 result = i32(args[0][0]);
1294             for (size_t i = 1; i < args[0].slots(); ++i) {
1295                 result |= i32(args[0][i]);
1296             }
1297             return result;
1298         }
1299         case k_all_IntrinsicKind: {
1300             skvm::I32 result = i32(args[0][0]);
1301             for (size_t i = 1; i < args[0].slots(); ++i) {
1302                 result &= i32(args[0][i]);
1303             }
1304             return result;
1305         }
1306         case k_not_IntrinsicKind: return unary(args[0], [](skvm::I32 x) { return ~x; });
1307 
1308         default:
1309             SkDEBUGFAILF("unsupported intrinsic %s", c.function().description().c_str());
1310             return {};
1311     }
1312     SkUNREACHABLE;
1313 }
1314 
writeFunctionCall(const FunctionCall & f)1315 Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) {
1316     if (f.function().isIntrinsic() && !f.function().definition()) {
1317         return this->writeIntrinsicCall(f);
1318     }
1319 
1320     const FunctionDeclaration& decl = f.function();
1321 
1322     // Evaluate all arguments, gather the results into a contiguous list of IDs
1323     std::vector<skvm::Val> argVals;
1324     for (const auto& arg : f.arguments()) {
1325         Value v = this->writeExpression(*arg);
1326         for (size_t i = 0; i < v.slots(); ++i) {
1327             argVals.push_back(v[i]);
1328         }
1329     }
1330 
1331     // Create storage for the return value
1332     const skvm::F32 zero = fBuilder->splat(0.0f);
1333     size_t nslots = f.type().slotCount();
1334     Value result(nslots);
1335     for (size_t i = 0; i < nslots; ++i) {
1336         result[i] = zero;
1337     }
1338 
1339     {
1340         // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally
1341         // returned in the current function would otherwise resume execution within the child.
1342         ScopedCondition m(this, ~currentFunction().fReturned);
1343         SkASSERTF(f.function().definition(), "no definition for function '%s'",
1344                   f.function().description().c_str());
1345         this->writeFunction(*f.function().definition(), SkMakeSpan(argVals), result.asSpan());
1346     }
1347 
1348     // Propagate new values of any 'out' params back to the original arguments
1349     const std::unique_ptr<Expression>* argIter = f.arguments().begin();
1350     size_t valIdx = 0;
1351     for (const Variable* p : decl.parameters()) {
1352         nslots = p->type().slotCount();
1353         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1354             Value v(nslots);
1355             for (size_t i = 0; i < nslots; ++i) {
1356                 v[i] = argVals[valIdx + i];
1357             }
1358             const std::unique_ptr<Expression>& arg = *argIter;
1359             this->writeStore(*arg, v);
1360         }
1361         valIdx += nslots;
1362         argIter++;
1363     }
1364 
1365     return result;
1366 }
1367 
writeExternalFunctionCall(const ExternalFunctionCall & c)1368 Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) {
1369     // Evaluate all arguments, gather the results into a contiguous list of F32
1370     std::vector<skvm::F32> args;
1371     for (const auto& arg : c.arguments()) {
1372         Value v = this->writeExpression(*arg);
1373         for (size_t i = 0; i < v.slots(); ++i) {
1374             args.push_back(f32(v[i]));
1375         }
1376     }
1377 
1378     // Create storage for the return value
1379     size_t nslots = c.type().slotCount();
1380     std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f));
1381 
1382     c.function().call(fBuilder, args.data(), result.data(), this->mask());
1383 
1384     // Convert from 'vector of F32' to Value
1385     Value resultVal(nslots);
1386     for (size_t i = 0; i < nslots; ++i) {
1387         resultVal[i] = result[i];
1388     }
1389 
1390     return resultVal;
1391 }
1392 
writeLiteral(const Literal & l)1393 Value SkVMGenerator::writeLiteral(const Literal& l) {
1394     if (l.type().isFloat()) {
1395         return fBuilder->splat(l.as<Literal>().floatValue());
1396     }
1397     if (l.type().isInteger()) {
1398         return fBuilder->splat(static_cast<int>(l.as<Literal>().intValue()));
1399     }
1400     SkASSERT(l.type().isBoolean());
1401     return fBuilder->splat(l.as<Literal>().boolValue() ? ~0 : 0);
1402 }
1403 
writePrefixExpression(const PrefixExpression & p)1404 Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) {
1405     Value val = this->writeExpression(*p.operand());
1406 
1407     switch (p.getOperator().kind()) {
1408         case Token::Kind::TK_PLUSPLUS:
1409         case Token::Kind::TK_MINUSMINUS: {
1410             bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1411 
1412             switch (base_number_kind(p.type())) {
1413                 case Type::NumberKind::kFloat:
1414                     val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1415                     break;
1416                 case Type::NumberKind::kSigned:
1417                     val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1418                     break;
1419                 default:
1420                     SkASSERT(false);
1421                     return {};
1422             }
1423             return this->writeStore(*p.operand(), val);
1424         }
1425         case Token::Kind::TK_MINUS: {
1426             switch (base_number_kind(p.type())) {
1427                 case Type::NumberKind::kFloat:
1428                     return this->unary(val, [](skvm::F32 x) { return -x; });
1429                 case Type::NumberKind::kSigned:
1430                     return this->unary(val, [](skvm::I32 x) { return -x; });
1431                 default:
1432                     SkASSERT(false);
1433                     return {};
1434             }
1435         }
1436         case Token::Kind::TK_LOGICALNOT:
1437         case Token::Kind::TK_BITWISENOT:
1438             return this->unary(val, [](skvm::I32 x) { return ~x; });
1439         default:
1440             SkASSERT(false);
1441             return {};
1442     }
1443 }
1444 
writePostfixExpression(const PostfixExpression & p)1445 Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) {
1446     switch (p.getOperator().kind()) {
1447         case Token::Kind::TK_PLUSPLUS:
1448         case Token::Kind::TK_MINUSMINUS: {
1449             Value old = this->writeExpression(*p.operand()),
1450                   val = old;
1451             SkASSERT(val.slots() == 1);
1452             bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1453 
1454             switch (base_number_kind(p.type())) {
1455                 case Type::NumberKind::kFloat:
1456                     val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1457                     break;
1458                 case Type::NumberKind::kSigned:
1459                     val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1460                     break;
1461                 default:
1462                     SkASSERT(false);
1463                     return {};
1464             }
1465             this->writeStore(*p.operand(), val);
1466             return old;
1467         }
1468         default:
1469             SkASSERT(false);
1470             return {};
1471     }
1472 }
1473 
writeSwizzle(const Swizzle & s)1474 Value SkVMGenerator::writeSwizzle(const Swizzle& s) {
1475     Value base = this->writeExpression(*s.base());
1476     Value swizzled(s.components().size());
1477     for (size_t i = 0; i < s.components().size(); ++i) {
1478         swizzled[i] = base[s.components()[i]];
1479     }
1480     return swizzled;
1481 }
1482 
writeTernaryExpression(const TernaryExpression & t)1483 Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) {
1484     skvm::I32 test = i32(this->writeExpression(*t.test()));
1485     Value ifTrue, ifFalse;
1486 
1487     {
1488         ScopedCondition m(this, test);
1489         ifTrue = this->writeExpression(*t.ifTrue());
1490     }
1491     {
1492         ScopedCondition m(this, ~test);
1493         ifFalse = this->writeExpression(*t.ifFalse());
1494     }
1495 
1496     size_t nslots = ifTrue.slots();
1497     SkASSERT(nslots == ifFalse.slots());
1498 
1499     Value result(nslots);
1500     for (size_t i = 0; i < nslots; ++i) {
1501         result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i]));
1502     }
1503     return result;
1504 }
1505 
writeExpression(const Expression & e)1506 Value SkVMGenerator::writeExpression(const Expression& e) {
1507     switch (e.kind()) {
1508         case Expression::Kind::kBinary:
1509             return this->writeBinaryExpression(e.as<BinaryExpression>());
1510         case Expression::Kind::kChildCall:
1511             return this->writeChildCall(e.as<ChildCall>());
1512         case Expression::Kind::kConstructorArray:
1513         case Expression::Kind::kConstructorCompound:
1514         case Expression::Kind::kConstructorStruct:
1515             return this->writeAggregationConstructor(e.asAnyConstructor());
1516         case Expression::Kind::kConstructorArrayCast:
1517             return this->writeExpression(*e.as<ConstructorArrayCast>().argument());
1518         case Expression::Kind::kConstructorDiagonalMatrix:
1519             return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>());
1520         case Expression::Kind::kConstructorMatrixResize:
1521             return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>());
1522         case Expression::Kind::kConstructorScalarCast:
1523         case Expression::Kind::kConstructorCompoundCast:
1524             return this->writeConstructorCast(e.asAnyConstructor());
1525         case Expression::Kind::kConstructorSplat:
1526             return this->writeConstructorSplat(e.as<ConstructorSplat>());
1527         case Expression::Kind::kFieldAccess:
1528             return this->writeFieldAccess(e.as<FieldAccess>());
1529         case Expression::Kind::kIndex:
1530             return this->writeIndexExpression(e.as<IndexExpression>());
1531         case Expression::Kind::kVariableReference:
1532             return this->writeVariableExpression(e.as<VariableReference>());
1533         case Expression::Kind::kLiteral:
1534             return this->writeLiteral(e.as<Literal>());
1535         case Expression::Kind::kFunctionCall:
1536             return this->writeFunctionCall(e.as<FunctionCall>());
1537         case Expression::Kind::kExternalFunctionCall:
1538             return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
1539         case Expression::Kind::kPrefix:
1540             return this->writePrefixExpression(e.as<PrefixExpression>());
1541         case Expression::Kind::kPostfix:
1542             return this->writePostfixExpression(e.as<PostfixExpression>());
1543         case Expression::Kind::kSwizzle:
1544             return this->writeSwizzle(e.as<Swizzle>());
1545         case Expression::Kind::kTernary:
1546             return this->writeTernaryExpression(e.as<TernaryExpression>());
1547         case Expression::Kind::kExternalFunctionReference:
1548         default:
1549             SkDEBUGFAIL("Unsupported expression");
1550             return {};
1551     }
1552 }
1553 
writeStore(const Expression & lhs,const Value & rhs)1554 Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) {
1555     SkASSERTF(rhs.slots() == lhs.type().slotCount(),
1556               "lhs=%s (%s)\nrhs=%zu slot",
1557               lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots());
1558 
1559     // We need to figure out the collection of slots that we're storing into. The l-value (lhs)
1560     // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or
1561     // IndexExpressions. The underlying VariableReference has a range of slots for its storage,
1562     // and each expression wrapped around that selects a sub-set of those slots (Field/Index),
1563     // or rearranges them (Swizzle).
1564     SkSTArray<4, size_t, true> slots;
1565     slots.resize(rhs.slots());
1566 
1567     // Start with the identity slot map - this basically says that the values from rhs belong in
1568     // slots [0, 1, 2 ... N] of the lhs.
1569     for (size_t i = 0; i < slots.size(); ++i) {
1570         slots[i] = i;
1571     }
1572 
1573     // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to
1574     // the next (inner) expression:
1575     const Expression* expr = &lhs;
1576     while (!expr->is<VariableReference>()) {
1577         switch (expr->kind()) {
1578             case Expression::Kind::kFieldAccess: {
1579                 const FieldAccess& fld = expr->as<FieldAccess>();
1580                 size_t offset = this->fieldSlotOffset(fld);
1581                 for (size_t& s : slots) {
1582                     s += offset;
1583                 }
1584                 expr = fld.base().get();
1585             } break;
1586             case Expression::Kind::kIndex: {
1587                 const IndexExpression& idx = expr->as<IndexExpression>();
1588                 size_t offset = this->indexSlotOffset(idx);
1589                 for (size_t& s : slots) {
1590                     s += offset;
1591                 }
1592                 expr = idx.base().get();
1593             } break;
1594             case Expression::Kind::kSwizzle: {
1595                 const Swizzle& swz = expr->as<Swizzle>();
1596                 for (size_t& s : slots) {
1597                     s = swz.components()[s];
1598                 }
1599                 expr = swz.base().get();
1600             } break;
1601             default:
1602                 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable)
1603                 SkDEBUGFAIL("Invalid expression type");
1604                 return {};
1605         }
1606     }
1607 
1608     // When we get here, 'slots' are all relative to the first slot holding 'var's storage
1609     const Variable& var = *expr->as<VariableReference>().variable();
1610     size_t varSlot = this->getSlot(var);
1611     for (size_t& slot : slots) {
1612         SkASSERT(slot < var.type().slotCount());
1613         slot += varSlot;
1614     }
1615 
1616     // `slots` are now absolute indices into `fSlots`.
1617     skvm::I32 mask = this->mask();
1618     for (size_t i = 0; i < rhs.slots(); ++i) {
1619         int slotNum = slots[i];
1620         skvm::Val conditionalStore = this->writeConditionalStore(fSlots[slotNum].val, rhs[i], mask);
1621         this->writeToSlot(slotNum, conditionalStore);
1622     }
1623 
1624     return rhs;
1625 }
1626 
writeConditionalStore(skvm::Val lhs,skvm::Val rhs,skvm::I32 mask)1627 skvm::Val SkVMGenerator::writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask) {
1628     return select(mask, f32(rhs), f32(lhs)).id;
1629 }
1630 
writeBlock(const Block & b)1631 void SkVMGenerator::writeBlock(const Block& b) {
1632     for (const std::unique_ptr<Statement>& stmt : b.children()) {
1633         this->writeStatement(*stmt);
1634     }
1635 }
1636 
writeBreakStatement()1637 void SkVMGenerator::writeBreakStatement() {
1638     // Any active lanes stop executing for the duration of the current loop
1639     fLoopMask &= ~this->mask();
1640 }
1641 
writeContinueStatement()1642 void SkVMGenerator::writeContinueStatement() {
1643     // Any active lanes stop executing for the current iteration.
1644     // Remember them in fContinueMask, to be re-enabled later.
1645     skvm::I32 mask = this->mask();
1646     fLoopMask &= ~mask;
1647     fContinueMask |= mask;
1648 }
1649 
writeForStatement(const ForStatement & f)1650 void SkVMGenerator::writeForStatement(const ForStatement& f) {
1651     // We require that all loops be ES2-compliant (unrollable), and actually unroll them here
1652     SkASSERT(f.unrollInfo());
1653     const LoopUnrollInfo& loop = *f.unrollInfo();
1654     SkASSERT(loop.fIndex->type().slotCount() == 1);
1655 
1656     size_t indexSlot = this->getSlot(*loop.fIndex);
1657     double val = loop.fStart;
1658 
1659     const skvm::I32 zero      = fBuilder->splat(0);
1660     skvm::I32 oldLoopMask     = fLoopMask,
1661               oldContinueMask = fContinueMask;
1662 
1663     const Type::NumberKind indexKind = base_number_kind(loop.fIndex->type());
1664 
1665     for (int i = 0; i < loop.fCount; ++i) {
1666         this->writeToSlot(indexSlot, (indexKind == Type::NumberKind::kFloat)
1667                                         ? fBuilder->splat(static_cast<float>(val)).id
1668                                         : fBuilder->splat(static_cast<int>(val)).id);
1669 
1670         fContinueMask = zero;
1671         this->writeStatement(*f.statement());
1672         fLoopMask |= fContinueMask;
1673 
1674         this->emitTraceLine(f.test() ? f.test()->fLine : f.fLine);
1675         val += loop.fDelta;
1676     }
1677 
1678     fLoopMask     = oldLoopMask;
1679     fContinueMask = oldContinueMask;
1680 }
1681 
writeIfStatement(const IfStatement & i)1682 void SkVMGenerator::writeIfStatement(const IfStatement& i) {
1683     Value test = this->writeExpression(*i.test());
1684     {
1685         ScopedCondition ifTrue(this, i32(test));
1686         this->writeStatement(*i.ifTrue());
1687     }
1688     if (i.ifFalse()) {
1689         ScopedCondition ifFalse(this, ~i32(test));
1690         this->writeStatement(*i.ifFalse());
1691     }
1692 }
1693 
writeReturnStatement(const ReturnStatement & r)1694 void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) {
1695     skvm::I32 returnsHere = this->mask();
1696 
1697     if (r.expression()) {
1698         Value val = this->writeExpression(*r.expression());
1699 
1700         int i = 0;
1701         for (skvm::Val& slot : currentFunction().fReturnValue) {
1702             slot = select(returnsHere, f32(val[i]), f32(slot)).id;
1703             i++;
1704         }
1705     }
1706 
1707     currentFunction().fReturned |= returnsHere;
1708 }
1709 
writeSwitchStatement(const SwitchStatement & s)1710 void SkVMGenerator::writeSwitchStatement(const SwitchStatement& s) {
1711     skvm::I32 falseValue = fBuilder->splat( 0);
1712     skvm::I32 trueValue  = fBuilder->splat(~0);
1713 
1714     // Create a "switchFallthough" scratch variable, initialized to false.
1715     skvm::I32 switchFallthrough = falseValue;
1716 
1717     // Loop masks behave just like for statements. When a break is encountered, it masks off all
1718     // lanes for the rest of the body of the switch.
1719     skvm::I32 oldLoopMask       = fLoopMask;
1720     Value switchValue           = this->writeExpression(*s.value());
1721 
1722     for (const std::unique_ptr<Statement>& stmt : s.cases()) {
1723         const SwitchCase& c = stmt->as<SwitchCase>();
1724         if (c.value()) {
1725             Value caseValue = this->writeExpression(*c.value());
1726 
1727             // We want to execute this switch case if we're falling through from a previous case, or
1728             // if the case value matches.
1729             ScopedCondition conditionalCaseBlock(
1730                     this,
1731                     switchFallthrough | (i32(caseValue) == i32(switchValue)));
1732             this->writeStatement(*c.statement());
1733 
1734             // If we are inside the case block, we set the fallthrough flag to true (`break` still
1735             // works to stop the flow of execution regardless, since it zeroes out the loop-mask).
1736             switchFallthrough.id = this->writeConditionalStore(switchFallthrough.id, trueValue.id,
1737                                                                this->mask());
1738         } else {
1739             // This is the default case. Since it's always last, we can just dump in the code.
1740             this->writeStatement(*c.statement());
1741         }
1742     }
1743 
1744     // Restore state.
1745     fLoopMask = oldLoopMask;
1746 }
1747 
writeVarDeclaration(const VarDeclaration & decl)1748 void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) {
1749     size_t slot   = this->getSlot(decl.var()),
1750            nslots = decl.var().type().slotCount();
1751 
1752     Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{};
1753     for (size_t i = 0; i < nslots; ++i) {
1754         this->writeToSlot(slot + i, val ? val[i] : fBuilder->splat(0.0f).id);
1755     }
1756 }
1757 
emitTraceLine(int line)1758 void SkVMGenerator::emitTraceLine(int line) {
1759     if (fDebugInfo && line > 0) {
1760         fBuilder->trace_line(this->mask(), line);
1761     }
1762 }
1763 
writeStatement(const Statement & s)1764 void SkVMGenerator::writeStatement(const Statement& s) {
1765     this->emitTraceLine(s.fLine);
1766 
1767     switch (s.kind()) {
1768         case Statement::Kind::kBlock:
1769             this->writeBlock(s.as<Block>());
1770             break;
1771         case Statement::Kind::kBreak:
1772             this->writeBreakStatement();
1773             break;
1774         case Statement::Kind::kContinue:
1775             this->writeContinueStatement();
1776             break;
1777         case Statement::Kind::kExpression:
1778             this->writeExpression(*s.as<ExpressionStatement>().expression());
1779             break;
1780         case Statement::Kind::kFor:
1781             this->writeForStatement(s.as<ForStatement>());
1782             break;
1783         case Statement::Kind::kIf:
1784             this->writeIfStatement(s.as<IfStatement>());
1785             break;
1786         case Statement::Kind::kReturn:
1787             this->writeReturnStatement(s.as<ReturnStatement>());
1788             break;
1789         case Statement::Kind::kSwitch:
1790             this->writeSwitchStatement(s.as<SwitchStatement>());
1791             break;
1792         case Statement::Kind::kVarDeclaration:
1793             this->writeVarDeclaration(s.as<VarDeclaration>());
1794             break;
1795         case Statement::Kind::kDiscard:
1796         case Statement::Kind::kDo:
1797             SkDEBUGFAIL("Unsupported control flow");
1798             break;
1799         case Statement::Kind::kInlineMarker:
1800         case Statement::Kind::kNop:
1801             break;
1802         default:
1803             SkDEBUGFAIL("Unrecognized statement");
1804             break;
1805     }
1806 }
1807 
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * builder,SkVMDebugInfo * debugInfo,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,skvm::Color destColor,SampleShaderFn sampleShader,SampleColorFilterFn sampleColorFilter,SampleBlenderFn sampleBlender)1808 skvm::Color ProgramToSkVM(const Program& program,
1809                           const FunctionDefinition& function,
1810                           skvm::Builder* builder,
1811                           SkVMDebugInfo* debugInfo,
1812                           SkSpan<skvm::Val> uniforms,
1813                           skvm::Coord device,
1814                           skvm::Coord local,
1815                           skvm::Color inputColor,
1816                           skvm::Color destColor,
1817                           SampleShaderFn sampleShader,
1818                           SampleColorFilterFn sampleColorFilter,
1819                           SampleBlenderFn sampleBlender) {
1820     skvm::Val zero = builder->splat(0.0f).id;
1821     skvm::Val result[4] = {zero,zero,zero,zero};
1822 
1823     skvm::Val args[8];  // At most 8 arguments (half4 srcColor, half4 dstColor)
1824     size_t argSlots = 0;
1825     for (const SkSL::Variable* param : function.declaration().parameters()) {
1826         switch (param->modifiers().fLayout.fBuiltin) {
1827             case SK_MAIN_COORDS_BUILTIN:
1828                 SkASSERT(param->type().slotCount() == 2);
1829                 SkASSERT((argSlots + 2) <= SK_ARRAY_COUNT(args));
1830                 args[argSlots++] = local.x.id;
1831                 args[argSlots++] = local.y.id;
1832                 break;
1833             case SK_INPUT_COLOR_BUILTIN:
1834                 SkASSERT(param->type().slotCount() == 4);
1835                 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args));
1836                 args[argSlots++] = inputColor.r.id;
1837                 args[argSlots++] = inputColor.g.id;
1838                 args[argSlots++] = inputColor.b.id;
1839                 args[argSlots++] = inputColor.a.id;
1840                 break;
1841             case SK_DEST_COLOR_BUILTIN:
1842                 SkASSERT(param->type().slotCount() == 4);
1843                 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args));
1844                 args[argSlots++] = destColor.r.id;
1845                 args[argSlots++] = destColor.g.id;
1846                 args[argSlots++] = destColor.b.id;
1847                 args[argSlots++] = destColor.a.id;
1848                 break;
1849             default:
1850                 SkDEBUGFAIL("Invalid parameter to main()");
1851                 return {};
1852         }
1853     }
1854     SkASSERT(argSlots <= SK_ARRAY_COUNT(args));
1855 
1856     SkVMGenerator generator(program, builder, debugInfo, std::move(sampleShader),
1857                             std::move(sampleColorFilter), std::move(sampleBlender));
1858     generator.writeProgram(uniforms, device, function, {args, argSlots}, SkMakeSpan(result));
1859 
1860     return skvm::Color{{builder, result[0]},
1861                        {builder, result[1]},
1862                        {builder, result[2]},
1863                        {builder, result[3]}};
1864 }
1865 
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * b,SkVMDebugInfo * debugInfo,SkSpan<skvm::Val> uniforms,SkVMSignature * outSignature)1866 bool ProgramToSkVM(const Program& program,
1867                    const FunctionDefinition& function,
1868                    skvm::Builder* b,
1869                    SkVMDebugInfo* debugInfo,
1870                    SkSpan<skvm::Val> uniforms,
1871                    SkVMSignature* outSignature) {
1872     SkVMSignature ignored,
1873                   *signature = outSignature ? outSignature : &ignored;
1874 
1875     std::vector<skvm::Ptr> argPtrs;
1876     std::vector<skvm::Val> argVals;
1877 
1878     for (const Variable* p : function.declaration().parameters()) {
1879         size_t slots = p->type().slotCount();
1880         signature->fParameterSlots += slots;
1881         for (size_t i = 0; i < slots; ++i) {
1882             argPtrs.push_back(b->varying<float>());
1883             argVals.push_back(b->loadF(argPtrs.back()).id);
1884         }
1885     }
1886 
1887     std::vector<skvm::Ptr> returnPtrs;
1888     std::vector<skvm::Val> returnVals;
1889 
1890     signature->fReturnSlots = function.declaration().returnType().slotCount();
1891     for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1892         returnPtrs.push_back(b->varying<float>());
1893         returnVals.push_back(b->splat(0.0f).id);
1894     }
1895 
1896     bool sampledChildEffects = false;
1897     auto sampleShader = [&](int, skvm::Coord) {
1898         sampledChildEffects = true;
1899         return skvm::Color{};
1900     };
1901     auto sampleColorFilter = [&](int, skvm::Color) {
1902         sampledChildEffects = true;
1903         return skvm::Color{};
1904     };
1905     auto sampleBlender = [&](int, skvm::Color, skvm::Color) {
1906         sampledChildEffects = true;
1907         return skvm::Color{};
1908     };
1909 
1910     skvm::F32 zero = b->splat(0.0f);
1911     skvm::Coord zeroCoord = {zero, zero};
1912     SkVMGenerator generator(program, b, debugInfo, sampleShader, sampleColorFilter, sampleBlender);
1913     generator.writeProgram(uniforms, /*device=*/zeroCoord,
1914                            function, SkMakeSpan(argVals), SkMakeSpan(returnVals));
1915 
1916     // If the SkSL tried to use any shader, colorFilter, or blender objects - we don't have a
1917     // mechanism (yet) for binding to those.
1918     if (sampledChildEffects) {
1919         return false;
1920     }
1921 
1922     // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters.
1923     // Propagate those changes back to our varying buffers:
1924     size_t argIdx = 0;
1925     for (const Variable* p : function.declaration().parameters()) {
1926         size_t nslots = p->type().slotCount();
1927         if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1928             for (size_t i = 0; i < nslots; ++i) {
1929                 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]});
1930             }
1931         }
1932         argIdx += nslots;
1933     }
1934 
1935     // It's also updated the contents of 'returnVals' with the return value of the entry point.
1936     // Store that as well:
1937     for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1938         b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]});
1939     }
1940 
1941     return true;
1942 }
1943 
Program_GetFunction(const Program & program,const char * function)1944 const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) {
1945     for (const ProgramElement* e : program.elements()) {
1946         if (e->is<FunctionDefinition>() &&
1947             e->as<FunctionDefinition>().declaration().name() == function) {
1948             return &e->as<FunctionDefinition>();
1949         }
1950     }
1951     return nullptr;
1952 }
1953 
gather_uniforms(UniformInfo * info,const Type & type,const String & name)1954 static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) {
1955     switch (type.typeKind()) {
1956         case Type::TypeKind::kStruct:
1957             for (const auto& f : type.fields()) {
1958                 gather_uniforms(info, *f.fType, name + "." + f.fName);
1959             }
1960             break;
1961         case Type::TypeKind::kArray:
1962             for (int i = 0; i < type.columns(); ++i) {
1963                 gather_uniforms(info, type.componentType(),
1964                                 String::printf("%s[%d]", name.c_str(), i));
1965             }
1966             break;
1967         case Type::TypeKind::kScalar:
1968         case Type::TypeKind::kVector:
1969         case Type::TypeKind::kMatrix:
1970             info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(),
1971                                        info->fUniformSlotCount});
1972             info->fUniformSlotCount += type.columns() * type.rows();
1973             break;
1974         default:
1975             break;
1976     }
1977 }
1978 
Program_GetUniformInfo(const Program & program)1979 std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) {
1980     auto info = std::make_unique<UniformInfo>();
1981     for (const ProgramElement* e : program.elements()) {
1982         if (!e->is<GlobalVarDeclaration>()) {
1983             continue;
1984         }
1985         const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1986         const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1987         if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1988             gather_uniforms(info.get(), var.type(), String(var.name()));
1989         }
1990     }
1991     return info;
1992 }
1993 
1994 /*
1995  * Testing utility function that emits program's "main" with a minimal harness. Used to create
1996  * representative skvm op sequences for SkSL tests.
1997  */
testingOnly_ProgramToSkVMShader(const Program & program,skvm::Builder * builder,SkVMDebugInfo * debugInfo)1998 bool testingOnly_ProgramToSkVMShader(const Program& program,
1999                                      skvm::Builder* builder,
2000                                      SkVMDebugInfo* debugInfo) {
2001     const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main");
2002     if (!main) {
2003         return false;
2004     }
2005 
2006     size_t uniformSlots = 0;
2007     int childSlots = 0;
2008     for (const SkSL::ProgramElement* e : program.elements()) {
2009         if (e->is<GlobalVarDeclaration>()) {
2010             const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
2011             const Variable& var = decl.declaration()->as<VarDeclaration>().var();
2012             if (var.type().isEffectChild()) {
2013                 childSlots++;
2014             } else if (is_uniform(var)) {
2015                 uniformSlots += var.type().slotCount();
2016             }
2017         }
2018     }
2019 
2020     skvm::Uniforms uniforms(builder->uniform(), 0);
2021 
2022     auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); };
2023 
2024     // Assume identity CTM
2025     skvm::Coord device = {pun_to_F32(builder->index()), new_uni()};
2026     skvm::Coord local  = device;
2027 
2028     struct Child {
2029         skvm::Uniform addr;
2030         skvm::I32     rowBytesAsPixels;
2031     };
2032 
2033     std::vector<Child> children;
2034     for (int i = 0; i < childSlots; ++i) {
2035         children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))});
2036     }
2037 
2038     auto sampleShader = [&](int i, skvm::Coord coord) {
2039         skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType);
2040         skvm::I32 index  = trunc(coord.x);
2041                   index += trunc(coord.y) * children[i].rowBytesAsPixels;
2042         return gather(pixelFormat, children[i].addr, index);
2043     };
2044 
2045     std::vector<skvm::Val> uniformVals;
2046     for (size_t i = 0; i < uniformSlots; ++i) {
2047         uniformVals.push_back(new_uni().id);
2048     }
2049 
2050     skvm::Color inColor = builder->uniformColor(SkColors::kWhite, &uniforms);
2051     skvm::Color destColor = builder->uniformColor(SkColors::kBlack, &uniforms);
2052 
2053     skvm::Color result = SkSL::ProgramToSkVM(program, *main, builder, debugInfo,
2054                                              SkMakeSpan(uniformVals), device, local, inColor,
2055                                              destColor, sampleShader, /*sampleColorFilter=*/nullptr,
2056                                              /*sampleBlender=*/nullptr);
2057 
2058     storeF(builder->varying<float>(), result.r);
2059     storeF(builder->varying<float>(), result.g);
2060     storeF(builder->varying<float>(), result.b);
2061     storeF(builder->varying<float>(), result.a);
2062 
2063     return true;
2064 }
2065 
2066 }  // namespace SkSL
2067