1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkStream.h"
9 #include "include/private/SkSLProgramElement.h"
10 #include "include/private/SkSLStatement.h"
11 #include "include/private/SkTArray.h"
12 #include "include/private/SkTPin.h"
13 #include "src/sksl/SkSLCompiler.h"
14 #include "src/sksl/SkSLOperators.h"
15 #include "src/sksl/codegen/SkSLCodeGenerator.h"
16 #include "src/sksl/codegen/SkSLVMCodeGenerator.h"
17 #include "src/sksl/ir/SkSLBinaryExpression.h"
18 #include "src/sksl/ir/SkSLBlock.h"
19 #include "src/sksl/ir/SkSLBreakStatement.h"
20 #include "src/sksl/ir/SkSLChildCall.h"
21 #include "src/sksl/ir/SkSLConstructor.h"
22 #include "src/sksl/ir/SkSLConstructorArray.h"
23 #include "src/sksl/ir/SkSLConstructorArrayCast.h"
24 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
25 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
26 #include "src/sksl/ir/SkSLConstructorSplat.h"
27 #include "src/sksl/ir/SkSLConstructorStruct.h"
28 #include "src/sksl/ir/SkSLContinueStatement.h"
29 #include "src/sksl/ir/SkSLDoStatement.h"
30 #include "src/sksl/ir/SkSLExpressionStatement.h"
31 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
32 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
33 #include "src/sksl/ir/SkSLFieldAccess.h"
34 #include "src/sksl/ir/SkSLForStatement.h"
35 #include "src/sksl/ir/SkSLFunctionCall.h"
36 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
37 #include "src/sksl/ir/SkSLFunctionDefinition.h"
38 #include "src/sksl/ir/SkSLIfStatement.h"
39 #include "src/sksl/ir/SkSLIndexExpression.h"
40 #include "src/sksl/ir/SkSLLiteral.h"
41 #include "src/sksl/ir/SkSLPostfixExpression.h"
42 #include "src/sksl/ir/SkSLPrefixExpression.h"
43 #include "src/sksl/ir/SkSLReturnStatement.h"
44 #include "src/sksl/ir/SkSLSwitchStatement.h"
45 #include "src/sksl/ir/SkSLSwizzle.h"
46 #include "src/sksl/ir/SkSLTernaryExpression.h"
47 #include "src/sksl/ir/SkSLVarDeclarations.h"
48 #include "src/sksl/ir/SkSLVariableReference.h"
49
50 #include <algorithm>
51 #include <unordered_map>
52
53 namespace {
54 // sksl allows the optimizations of fast_mul(), so we want to use that most of the time.
55 // This little sneaky snippet of code lets us use ** as a fast multiply infix operator.
56 struct FastF32 { skvm::F32 val; };
operator *(skvm::F32 y)57 static FastF32 operator*(skvm::F32 y) { return {y}; }
operator *(skvm::F32 x,FastF32 y)58 static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); }
operator *(float x,FastF32 y)59 static skvm::F32 operator*(float x, FastF32 y) { return fast_mul(x, y.val); }
60 }
61
62 namespace SkSL {
63
64 namespace {
65
66 // Holds scalars, vectors, or matrices
67 struct Value {
68 Value() = default;
ValueSkSL::__anond80167d30211::Value69 explicit Value(size_t slots) {
70 fVals.resize(slots);
71 }
ValueSkSL::__anond80167d30211::Value72 Value(skvm::F32 x) : fVals({ x.id }) {}
ValueSkSL::__anond80167d30211::Value73 Value(skvm::I32 x) : fVals({ x.id }) {}
74
operator boolSkSL::__anond80167d30211::Value75 explicit operator bool() const { return !fVals.empty(); }
76
slotsSkSL::__anond80167d30211::Value77 size_t slots() const { return fVals.size(); }
78
79 struct ValRef {
ValRefSkSL::__anond80167d30211::Value::ValRef80 ValRef(skvm::Val& val) : fVal(val) {}
81 // Required until C++17 copy elision
82 ValRef(const ValRef&) = default;
83
operator =SkSL::__anond80167d30211::Value::ValRef84 ValRef& operator=(ValRef v) { fVal = v.fVal; return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef85 ValRef& operator=(skvm::Val v) { fVal = v; return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef86 ValRef& operator=(skvm::F32 v) { fVal = v.id; return *this; }
operator =SkSL::__anond80167d30211::Value::ValRef87 ValRef& operator=(skvm::I32 v) { fVal = v.id; return *this; }
88
operator skvm::ValSkSL::__anond80167d30211::Value::ValRef89 operator skvm::Val() { return fVal; }
90
91 skvm::Val& fVal;
92 };
93
operator []SkSL::__anond80167d30211::Value94 ValRef operator[](size_t i) {
95 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
96 // 32-bit x86 Debug builds.
97 SkASSERT(i < fVals.size());
98 return fVals[i];
99 }
operator []SkSL::__anond80167d30211::Value100 skvm::Val operator[](size_t i) const {
101 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for
102 // 32-bit x86 Debug builds.
103 SkASSERT(i < fVals.size());
104 return fVals[i];
105 }
106
asSpanSkSL::__anond80167d30211::Value107 SkSpan<skvm::Val> asSpan() { return SkMakeSpan(fVals); }
108
109 private:
110 SkSTArray<4, skvm::Val, true> fVals;
111 };
112
113 } // namespace
114
115 class SkVMGenerator {
116 public:
117 SkVMGenerator(const Program& program,
118 skvm::Builder* builder,
119 SkVMDebugInfo* debugInfo,
120 SampleShaderFn sampleShader,
121 SampleColorFilterFn sampleColorFilter,
122 SampleBlenderFn sampleBlender);
123
124 void writeProgram(SkSpan<skvm::Val> uniforms,
125 skvm::Coord device,
126 const FunctionDefinition& function,
127 SkSpan<skvm::Val> arguments,
128 SkSpan<skvm::Val> outReturn);
129
130 private:
131 /**
132 * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc).
133 * Every Variable is mapped to one (or several, contiguous) indices into our vector of
134 * skvm::Val. Those skvm::Val entries hold the current actual value of that variable.
135 *
136 * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way,
137 * (and eliminate the indirection), but it would add overhead for each Variable,
138 * and add additional (different) bookkeeping for things like lvalue-swizzles.
139 *
140 * Any time a variable appears in an expression, that's a VariableReference, which is a kind of
141 * Expression. Evaluating that VariableReference (or any other Expression) produces a Value,
142 * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in
143 * addition to a scalar).
144 *
145 * For a VariableReference, producing a Value is straightforward - we get the slot of the
146 * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the
147 * variable's contents, and construct a Value with those ids.
148 */
149
150 /** Appends this variable to the SkVMSlotInfo array inside of SkVMDebugInfo. */
151 void addDebugSlotInfo(String varName, const Type& type, int line);
152
153 /**
154 * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is
155 * referenced. Compound variables (e.g. vectors) will consume more than one slot, with
156 * getSlot returning the start of the contiguous chunk of slots.
157 */
158 size_t getSlot(const Variable& v);
159
160 /**
161 * Writes a value to a slot previously created by getSlot.
162 */
163 void writeToSlot(int slot, skvm::Val value);
164
165 /**
166 * Emits an trace_line opcode. writeStatement already does this, but statements that alter
167 * control flow may need to explicitly add additional traces.
168 */
169 void emitTraceLine(int line);
170
171 /** Initializes uniforms and global variables at the start of main(). */
172 void setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device);
173
174 /** Emits an SkSL function. */
175 void writeFunction(const FunctionDefinition& function,
176 SkSpan<skvm::Val> arguments,
177 SkSpan<skvm::Val> outReturn);
178
f32(skvm::Val id)179 skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
i32(skvm::Val id)180 skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; }
181
182 // Shorthand for scalars
f32(const Value & v)183 skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); }
i32(const Value & v)184 skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); }
185
186 template <typename Fn>
unary(const Value & v,Fn && fn)187 Value unary(const Value& v, Fn&& fn) {
188 Value result(v.slots());
189 for (size_t i = 0; i < v.slots(); ++i) {
190 result[i] = fn({fBuilder, v[i]});
191 }
192 return result;
193 }
194
mask()195 skvm::I32 mask() {
196 // Mask off execution if we have encountered `break` or `continue` on this path.
197 skvm::I32 result = fConditionMask & fLoopMask;
198 if (!fFunctionStack.empty()) {
199 // As we encounter (possibly conditional) return statements, fReturned is updated to
200 // store the lanes that have already returned. For the remainder of the current
201 // function, those lanes should be disabled.
202 result = result & ~currentFunction().fReturned;
203 }
204 return result;
205 }
206
207 size_t fieldSlotOffset(const FieldAccess& expr);
208 size_t indexSlotOffset(const IndexExpression& expr);
209
210 Value writeExpression(const Expression& expr);
211 Value writeBinaryExpression(const BinaryExpression& b);
212 Value writeAggregationConstructor(const AnyConstructor& c);
213 Value writeChildCall(const ChildCall& c);
214 Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c);
215 Value writeConstructorMatrixResize(const ConstructorMatrixResize& c);
216 Value writeConstructorCast(const AnyConstructor& c);
217 Value writeConstructorSplat(const ConstructorSplat& c);
218 Value writeFunctionCall(const FunctionCall& c);
219 Value writeExternalFunctionCall(const ExternalFunctionCall& c);
220 Value writeFieldAccess(const FieldAccess& expr);
221 Value writeLiteral(const Literal& l);
222 Value writeIndexExpression(const IndexExpression& expr);
223 Value writeIntrinsicCall(const FunctionCall& c);
224 Value writePostfixExpression(const PostfixExpression& p);
225 Value writePrefixExpression(const PrefixExpression& p);
226 Value writeSwizzle(const Swizzle& swizzle);
227 Value writeTernaryExpression(const TernaryExpression& t);
228 Value writeVariableExpression(const VariableReference& expr);
229
230 Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind);
231
232 void writeStatement(const Statement& s);
233 void writeBlock(const Block& b);
234 void writeBreakStatement();
235 void writeContinueStatement();
236 void writeForStatement(const ForStatement& f);
237 void writeIfStatement(const IfStatement& stmt);
238 void writeReturnStatement(const ReturnStatement& r);
239 void writeSwitchStatement(const SwitchStatement& s);
240 void writeVarDeclaration(const VarDeclaration& decl);
241
242 Value writeStore(const Expression& lhs, const Value& rhs);
243 skvm::Val writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask);
244
245 Value writeMatrixInverse2x2(const Value& m);
246 Value writeMatrixInverse3x3(const Value& m);
247 Value writeMatrixInverse4x4(const Value& m);
248
249 //
250 // Global state for the lifetime of the generator:
251 //
252 const Program& fProgram;
253 skvm::Builder* fBuilder;
254 SkVMDebugInfo* fDebugInfo;
255
256 const SampleShaderFn fSampleShader;
257 const SampleColorFilterFn fSampleColorFilter;
258 const SampleBlenderFn fSampleBlender;
259
260 struct Slot {
261 skvm::Val val;
262 };
263 std::vector<Slot> fSlots;
264
265 std::unordered_map<const Variable*, size_t> fVariableMap; // [Variable, first slot in fSlots]
266
267 // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes)
268 skvm::I32 fConditionMask;
269
270 // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask).
271 // 'break' disables a lane in fLoopMask until the loop finishes
272 // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next
273 // iteration
274 skvm::I32 fLoopMask;
275 skvm::I32 fContinueMask;
276
277 //
278 // State that's local to the generation of a single function:
279 //
280 struct Function {
281 const SkSpan<skvm::Val> fReturnValue;
282 skvm::I32 fReturned;
283 };
284 std::vector<Function> fFunctionStack;
currentFunction()285 Function& currentFunction() { return fFunctionStack.back(); }
286
287 class ScopedCondition {
288 public:
ScopedCondition(SkVMGenerator * generator,skvm::I32 mask)289 ScopedCondition(SkVMGenerator* generator, skvm::I32 mask)
290 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) {
291 fGenerator->fConditionMask &= mask;
292 }
293
~ScopedCondition()294 ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; }
295
296 private:
297 SkVMGenerator* fGenerator;
298 skvm::I32 fOldConditionMask;
299 };
300 };
301
dump(SkWStream * o) const302 void SkVMDebugInfo::dump(SkWStream* o) const {
303 for (size_t index = 0; index < fSlotInfo.size(); ++index) {
304 const SkVMSlotInfo& info = fSlotInfo[index];
305
306 o->writeText("$");
307 o->writeDecAsText(index);
308 o->writeText(" = ");
309 o->writeText(info.name.c_str());
310 o->writeText(" (");
311 switch (info.numberKind) {
312 case Type::NumberKind::kFloat: o->writeText("float"); break;
313 case Type::NumberKind::kSigned: o->writeText("int"); break;
314 case Type::NumberKind::kUnsigned: o->writeText("uint"); break;
315 case Type::NumberKind::kBoolean: o->writeText("bool"); break;
316 case Type::NumberKind::kNonnumeric: o->writeText("???"); break;
317 }
318 if (info.rows * info.columns > 1) {
319 o->writeDecAsText(info.columns);
320 if (info.rows != 1) {
321 o->writeText("x");
322 o->writeDecAsText(info.rows);
323 }
324 o->writeText(" : ");
325 o->writeText("slot ");
326 o->writeDecAsText(info.componentIndex + 1);
327 o->writeText("/");
328 o->writeDecAsText(info.rows * info.columns);
329 }
330 o->writeText(", L");
331 o->writeDecAsText(info.line);
332 o->writeText(")");
333 o->newline();
334 }
335 o->newline();
336 }
337
base_number_kind(const Type & type)338 static Type::NumberKind base_number_kind(const Type& type) {
339 if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
340 return base_number_kind(type.componentType());
341 }
342 return type.numberKind();
343 }
344
is_uniform(const SkSL::Variable & var)345 static inline bool is_uniform(const SkSL::Variable& var) {
346 return var.modifiers().fFlags & Modifiers::kUniform_Flag;
347 }
348
SkVMGenerator(const Program & program,skvm::Builder * builder,SkVMDebugInfo * debugInfo,SampleShaderFn sampleShader,SampleColorFilterFn sampleColorFilter,SampleBlenderFn sampleBlender)349 SkVMGenerator::SkVMGenerator(const Program& program,
350 skvm::Builder* builder,
351 SkVMDebugInfo* debugInfo,
352 SampleShaderFn sampleShader,
353 SampleColorFilterFn sampleColorFilter,
354 SampleBlenderFn sampleBlender)
355 : fProgram(program)
356 , fBuilder(builder)
357 , fDebugInfo(debugInfo)
358 , fSampleShader(std::move(sampleShader))
359 , fSampleColorFilter(std::move(sampleColorFilter))
360 , fSampleBlender(std::move(sampleBlender)) {}
361
writeProgram(SkSpan<skvm::Val> uniforms,skvm::Coord device,const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)362 void SkVMGenerator::writeProgram(SkSpan<skvm::Val> uniforms,
363 skvm::Coord device,
364 const FunctionDefinition& function,
365 SkSpan<skvm::Val> arguments,
366 SkSpan<skvm::Val> outReturn) {
367 fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff);
368
369 this->setupGlobals(uniforms, device);
370 this->writeFunction(function, arguments, outReturn);
371 }
372
setupGlobals(SkSpan<skvm::Val> uniforms,skvm::Coord device)373 void SkVMGenerator::setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device) {
374 // Add storage for each global variable (including uniforms) to fSlots, and entries in
375 // fVariableMap to remember where every variable is stored.
376 const skvm::Val* uniformIter = uniforms.begin();
377 size_t fpCount = 0;
378 for (const ProgramElement* e : fProgram.elements()) {
379 if (e->is<GlobalVarDeclaration>()) {
380 const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>();
381 const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>();
382 const Variable& var = decl.var();
383 SkASSERT(fVariableMap.find(&var) == fVariableMap.end());
384
385 // For most variables, fVariableMap stores an index into fSlots, but for children,
386 // fVariableMap stores the index to pass to fSample(Shader|ColorFilter|Blender)
387 if (var.type().isEffectChild()) {
388 fVariableMap[&var] = fpCount++;
389 continue;
390 }
391
392 // Opaque types include fragment processors, GL objects (samplers, textures, etc), and
393 // special types like 'void'. Of those, only fragment processors are legal variables.
394 SkASSERT(!var.type().isOpaque());
395
396 // getSlot() allocates space for the variable's value in fSlots, initializes it to zero,
397 // and populates fVariableMap.
398 size_t slot = this->getSlot(var),
399 nslots = var.type().slotCount();
400
401 // builtin variables are system-defined, with special semantics. The only builtin
402 // variable exposed to runtime effects is sk_FragCoord.
403 if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) {
404 switch (builtin) {
405 case SK_FRAGCOORD_BUILTIN:
406 SkASSERT(nslots == 4);
407 this->writeToSlot(slot + 0, device.x.id);
408 this->writeToSlot(slot + 1, device.y.id);
409 this->writeToSlot(slot + 2, fBuilder->splat(0.0f).id);
410 this->writeToSlot(slot + 3, fBuilder->splat(1.0f).id);
411 break;
412 default:
413 SkDEBUGFAILF("Unsupported builtin %d", builtin);
414 }
415 continue;
416 }
417
418 // For uniforms, copy the supplied IDs over
419 if (is_uniform(var)) {
420 SkASSERT(uniformIter + nslots <= uniforms.end());
421 for (size_t i = 0; i < nslots; ++i) {
422 this->writeToSlot(slot + i, uniformIter[i]);
423 }
424 uniformIter += nslots;
425 continue;
426 }
427
428 // For other globals, populate with the initializer expression (if there is one)
429 if (decl.value()) {
430 Value val = this->writeExpression(*decl.value());
431 for (size_t i = 0; i < nslots; ++i) {
432 this->writeToSlot(slot + i, val[i]);
433 }
434 }
435 }
436 }
437 SkASSERT(uniformIter == uniforms.end());
438 }
439
writeFunction(const FunctionDefinition & function,SkSpan<skvm::Val> arguments,SkSpan<skvm::Val> outReturn)440 void SkVMGenerator::writeFunction(const FunctionDefinition& function,
441 SkSpan<skvm::Val> arguments,
442 SkSpan<skvm::Val> outReturn) {
443 const FunctionDeclaration& decl = function.declaration();
444 SkASSERT(decl.returnType().slotCount() == outReturn.size());
445
446 if (fDebugInfo) {
447 fBuilder->trace_call_enter(this->mask(), function.fLine);
448 }
449
450 fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)});
451
452 // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs
453 size_t argIdx = 0;
454 for (const Variable* p : decl.parameters()) {
455 size_t paramSlot = this->getSlot(*p),
456 nslots = p->type().slotCount();
457
458 for (size_t i = 0; i < nslots; ++i) {
459 this->writeToSlot(paramSlot + i, arguments[argIdx + i]);
460 }
461 argIdx += nslots;
462 }
463 SkASSERT(argIdx == arguments.size());
464
465 this->writeStatement(*function.body());
466
467 // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage
468 argIdx = 0;
469 for (const Variable* p : decl.parameters()) {
470 size_t nslots = p->type().slotCount();
471
472 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
473 size_t paramSlot = this->getSlot(*p);
474 for (size_t i = 0; i < nslots; ++i) {
475 arguments[argIdx + i] = fSlots[paramSlot + i].val;
476 }
477 }
478 argIdx += nslots;
479 }
480 SkASSERT(argIdx == arguments.size());
481
482 fFunctionStack.pop_back();
483
484 if (fDebugInfo) {
485 fBuilder->trace_call_exit(this->mask(), function.fLine);
486 }
487 }
488
writeToSlot(int slot,skvm::Val value)489 void SkVMGenerator::writeToSlot(int slot, skvm::Val value) {
490 if (fDebugInfo && fSlots[slot].val != value) {
491 if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kFloat) {
492 fBuilder->trace_var(this->mask(), slot, f32(value));
493 } else if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kBoolean) {
494 fBuilder->trace_var(this->mask(), slot, bool(value));
495 } else {
496 fBuilder->trace_var(this->mask(), slot, i32(value));
497 }
498 }
499
500 fSlots[slot].val = value;
501 }
502
addDebugSlotInfo(String varName,const Type & type,int line)503 void SkVMGenerator::addDebugSlotInfo(String varName, const Type& type, int line) {
504 SkASSERT(fDebugInfo);
505 switch (type.typeKind()) {
506 case Type::TypeKind::kArray: {
507 int nslots = type.columns();
508 const Type& elemType = type.componentType();
509 for (int slot = 0; slot < nslots; ++slot) {
510 this->addDebugSlotInfo(varName + "[" + to_string(slot) + "]",
511 elemType,
512 line);
513 }
514 break;
515 }
516 case Type::TypeKind::kStruct: {
517 for (const Type::Field& field : type.fields()) {
518 this->addDebugSlotInfo(varName + "." + field.fName,
519 *field.fType,
520 line);
521 }
522 break;
523 }
524 default:
525 SkASSERTF(0, "unsupported slot type %d", (int)type.typeKind());
526 [[fallthrough]];
527
528 case Type::TypeKind::kScalar:
529 case Type::TypeKind::kVector:
530 case Type::TypeKind::kMatrix: {
531 Type::NumberKind numberKind = type.componentType().numberKind();
532 int nslots = type.slotCount();
533
534 for (int slot = 0; slot < nslots; ++slot) {
535 SkVMSlotInfo slotInfo;
536 slotInfo.name = varName;
537 slotInfo.columns = type.columns();
538 slotInfo.rows = type.rows();
539 slotInfo.componentIndex = slot;
540 slotInfo.numberKind = numberKind;
541 slotInfo.line = line;
542 fDebugInfo->fSlotInfo.push_back(std::move(slotInfo));
543 }
544 break;
545 }
546 }
547 }
548
getSlot(const Variable & v)549 size_t SkVMGenerator::getSlot(const Variable& v) {
550 auto entry = fVariableMap.find(&v);
551 if (entry != fVariableMap.end()) {
552 return entry->second;
553 }
554
555 size_t slot = fSlots.size(),
556 nslots = v.type().slotCount();
557
558 if (fDebugInfo) {
559 // Our debug slot-info table should always have the same length as the actual slot table.
560 SkASSERT(fDebugInfo->fSlotInfo.size() == slot);
561
562 // Append slots for this variable to our debug slot-info table.
563 fDebugInfo->fSlotInfo.reserve(slot + nslots);
564 this->addDebugSlotInfo(String(v.name()), v.type(), v.fLine);
565
566 // Confirm that we added the expected number of slots.
567 SkASSERT(fDebugInfo->fSlotInfo.size() == (slot + nslots));
568 }
569
570 // Create zeroed-out slots for this new variable.
571 skvm::Val initialValue = fBuilder->splat(0.0f).id;
572 fSlots.insert(fSlots.end(), nslots, Slot{initialValue});
573 fVariableMap[&v] = slot;
574 return slot;
575 }
576
writeBinaryExpression(const BinaryExpression & b)577 Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) {
578 const Expression& left = *b.left();
579 const Expression& right = *b.right();
580 Operator op = b.getOperator();
581 if (op.kind() == Token::Kind::TK_EQ) {
582 return this->writeStore(left, this->writeExpression(right));
583 }
584
585 const Type& lType = left.type();
586 const Type& rType = right.type();
587 bool lVecOrMtx = (lType.isVector() || lType.isMatrix());
588 bool rVecOrMtx = (rType.isVector() || rType.isMatrix());
589 bool isAssignment = op.isAssignment();
590 if (isAssignment) {
591 op = op.removeAssignment();
592 }
593 Type::NumberKind nk = base_number_kind(lType);
594
595 // A few ops require special treatment:
596 switch (op.kind()) {
597 case Token::Kind::TK_LOGICALAND: {
598 SkASSERT(!isAssignment);
599 SkASSERT(nk == Type::NumberKind::kBoolean);
600 skvm::I32 lVal = i32(this->writeExpression(left));
601 ScopedCondition shortCircuit(this, lVal);
602 skvm::I32 rVal = i32(this->writeExpression(right));
603 return lVal & rVal;
604 }
605 case Token::Kind::TK_LOGICALOR: {
606 SkASSERT(!isAssignment);
607 SkASSERT(nk == Type::NumberKind::kBoolean);
608 skvm::I32 lVal = i32(this->writeExpression(left));
609 ScopedCondition shortCircuit(this, ~lVal);
610 skvm::I32 rVal = i32(this->writeExpression(right));
611 return lVal | rVal;
612 }
613 case Token::Kind::TK_COMMA:
614 // We write the left side of the expression to preserve its side effects, even though we
615 // immediately discard the result.
616 this->writeExpression(left);
617 return this->writeExpression(right);
618 default:
619 break;
620 }
621
622 // All of the other ops always evaluate both sides of the expression
623 Value lVal = this->writeExpression(left),
624 rVal = this->writeExpression(right);
625
626 // Special case for M*V, V*M, M*M (but not V*V!)
627 if (op.kind() == Token::Kind::TK_STAR
628 && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) {
629 int rCols = rType.columns(),
630 rRows = rType.rows(),
631 lCols = lType.columns(),
632 lRows = lType.rows();
633 // M*V treats the vector as a column
634 if (rType.isVector()) {
635 std::swap(rCols, rRows);
636 }
637 SkASSERT(lCols == rRows);
638 SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols));
639 Value result(lRows * rCols);
640 size_t resultIdx = 0;
641 const skvm::F32 zero = fBuilder->splat(0.0f);
642 for (int c = 0; c < rCols; ++c)
643 for (int r = 0; r < lRows; ++r) {
644 skvm::F32 sum = zero;
645 for (int j = 0; j < lCols; ++j) {
646 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]);
647 }
648 result[resultIdx++] = sum;
649 }
650 SkASSERT(resultIdx == result.slots());
651 return isAssignment ? this->writeStore(left, result) : result;
652 }
653
654 size_t nslots = std::max(lVal.slots(), rVal.slots());
655
656 auto binary = [&](auto&& f_fn, auto&& i_fn) {
657 Value result(nslots);
658 for (size_t i = 0; i < nslots; ++i) {
659 // If one side is scalar, replicate it to all channels
660 skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i],
661 R = rVal.slots() == 1 ? rVal[0] : rVal[i];
662 if (nk == Type::NumberKind::kFloat) {
663 result[i] = f_fn(f32(L), f32(R));
664 } else {
665 result[i] = i_fn(i32(L), i32(R));
666 }
667 }
668 return isAssignment ? this->writeStore(left, result) : result;
669 };
670
671 auto unsupported_f = [&](skvm::F32, skvm::F32) {
672 SkDEBUGFAIL("Unsupported operator");
673 return skvm::F32{};
674 };
675
676 switch (op.kind()) {
677 case Token::Kind::TK_EQEQ: {
678 SkASSERT(!isAssignment);
679 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; },
680 [](skvm::I32 x, skvm::I32 y) { return x == y; });
681 skvm::I32 folded = i32(cmp[0]);
682 for (size_t i = 1; i < nslots; ++i) {
683 folded &= i32(cmp[i]);
684 }
685 return folded;
686 }
687 case Token::Kind::TK_NEQ: {
688 SkASSERT(!isAssignment);
689 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; },
690 [](skvm::I32 x, skvm::I32 y) { return x != y; });
691 skvm::I32 folded = i32(cmp[0]);
692 for (size_t i = 1; i < nslots; ++i) {
693 folded |= i32(cmp[i]);
694 }
695 return folded;
696 }
697 case Token::Kind::TK_GT:
698 return binary([](skvm::F32 x, skvm::F32 y) { return x > y; },
699 [](skvm::I32 x, skvm::I32 y) { return x > y; });
700 case Token::Kind::TK_GTEQ:
701 return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; },
702 [](skvm::I32 x, skvm::I32 y) { return x >= y; });
703 case Token::Kind::TK_LT:
704 return binary([](skvm::F32 x, skvm::F32 y) { return x < y; },
705 [](skvm::I32 x, skvm::I32 y) { return x < y; });
706 case Token::Kind::TK_LTEQ:
707 return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; },
708 [](skvm::I32 x, skvm::I32 y) { return x <= y; });
709
710 case Token::Kind::TK_PLUS:
711 return binary([](skvm::F32 x, skvm::F32 y) { return x + y; },
712 [](skvm::I32 x, skvm::I32 y) { return x + y; });
713 case Token::Kind::TK_MINUS:
714 return binary([](skvm::F32 x, skvm::F32 y) { return x - y; },
715 [](skvm::I32 x, skvm::I32 y) { return x - y; });
716 case Token::Kind::TK_STAR:
717 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; },
718 [](skvm::I32 x, skvm::I32 y) { return x * y; });
719 case Token::Kind::TK_SLASH:
720 // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations.
721 // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating
722 // point division plus rounding. Section 10.28 of the spec even clarifies that the
723 // rounding mode is undefined (but round-towards-zero is the obvious/common choice).
724 return binary([](skvm::F32 x, skvm::F32 y) { return x / y; },
725 [](skvm::I32 x, skvm::I32 y) {
726 return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y));
727 });
728
729 case Token::Kind::TK_BITWISEXOR:
730 case Token::Kind::TK_LOGICALXOR:
731 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; });
732 case Token::Kind::TK_BITWISEAND:
733 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; });
734 case Token::Kind::TK_BITWISEOR:
735 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; });
736
737 // These three operators are all 'reserved' (illegal) in our minimum spec, but will require
738 // implementation in the future.
739 case Token::Kind::TK_PERCENT:
740 case Token::Kind::TK_SHL:
741 case Token::Kind::TK_SHR:
742 default:
743 SkDEBUGFAIL("Unsupported operator");
744 return {};
745 }
746 }
747
writeAggregationConstructor(const AnyConstructor & c)748 Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) {
749 Value result(c.type().slotCount());
750 size_t resultIdx = 0;
751 for (const auto &arg : c.argumentSpan()) {
752 Value tmp = this->writeExpression(*arg);
753 for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) {
754 result[resultIdx++] = tmp[tmpSlot];
755 }
756 }
757 return result;
758 }
759
writeTypeConversion(const Value & src,Type::NumberKind srcKind,Type::NumberKind dstKind)760 Value SkVMGenerator::writeTypeConversion(const Value& src,
761 Type::NumberKind srcKind,
762 Type::NumberKind dstKind) {
763 // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op.
764 if (srcKind == dstKind) {
765 return src;
766 }
767
768 // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet.
769 Value dst(src.slots());
770 switch (dstKind) {
771 case Type::NumberKind::kFloat:
772 if (srcKind == Type::NumberKind::kSigned) {
773 // int -> float
774 for (size_t i = 0; i < src.slots(); ++i) {
775 dst[i] = skvm::to_F32(i32(src[i]));
776 }
777 return dst;
778 }
779 if (srcKind == Type::NumberKind::kBoolean) {
780 // bool -> float
781 for (size_t i = 0; i < src.slots(); ++i) {
782 dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f);
783 }
784 return dst;
785 }
786 break;
787
788 case Type::NumberKind::kSigned:
789 if (srcKind == Type::NumberKind::kFloat) {
790 // float -> int
791 for (size_t i = 0; i < src.slots(); ++i) {
792 dst[i] = skvm::trunc(f32(src[i]));
793 }
794 return dst;
795 }
796 if (srcKind == Type::NumberKind::kBoolean) {
797 // bool -> int
798 for (size_t i = 0; i < src.slots(); ++i) {
799 dst[i] = skvm::select(i32(src[i]), 1, 0);
800 }
801 return dst;
802 }
803 break;
804
805 case Type::NumberKind::kBoolean:
806 if (srcKind == Type::NumberKind::kSigned) {
807 // int -> bool
808 for (size_t i = 0; i < src.slots(); ++i) {
809 dst[i] = i32(src[i]) != 0;
810 }
811 return dst;
812 }
813 if (srcKind == Type::NumberKind::kFloat) {
814 // float -> bool
815 for (size_t i = 0; i < src.slots(); ++i) {
816 dst[i] = f32(src[i]) != 0.0;
817 }
818 return dst;
819 }
820 break;
821
822 default:
823 break;
824 }
825 SkDEBUGFAILF("Unsupported type conversion: %d -> %d", (int)srcKind, (int)dstKind);
826 return {};
827 }
828
writeConstructorCast(const AnyConstructor & c)829 Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) {
830 auto arguments = c.argumentSpan();
831 SkASSERT(arguments.size() == 1);
832 const Expression& argument = *arguments.front();
833
834 const Type& srcType = argument.type();
835 const Type& dstType = c.type();
836 Type::NumberKind srcKind = base_number_kind(srcType);
837 Type::NumberKind dstKind = base_number_kind(dstType);
838 Value src = this->writeExpression(argument);
839 return this->writeTypeConversion(src, srcKind, dstKind);
840 }
841
writeConstructorSplat(const ConstructorSplat & c)842 Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) {
843 SkASSERT(c.type().isVector());
844 SkASSERT(c.argument()->type().isScalar());
845 int columns = c.type().columns();
846
847 // Splat the argument across all components of a vector.
848 Value src = this->writeExpression(*c.argument());
849 Value dst(columns);
850 for (int i = 0; i < columns; ++i) {
851 dst[i] = src[0];
852 }
853 return dst;
854 }
855
writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix & ctor)856 Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& ctor) {
857 const Type& dstType = ctor.type();
858 SkASSERT(dstType.isMatrix());
859 SkASSERT(ctor.argument()->type() == dstType.componentType());
860
861 Value src = this->writeExpression(*ctor.argument());
862 Value dst(dstType.rows() * dstType.columns());
863 size_t dstIndex = 0;
864
865 // Matrix-from-scalar builds a diagonal scale matrix
866 const skvm::F32 zero = fBuilder->splat(0.0f);
867 for (int c = 0; c < dstType.columns(); ++c) {
868 for (int r = 0; r < dstType.rows(); ++r) {
869 dst[dstIndex++] = (c == r ? f32(src) : zero);
870 }
871 }
872
873 SkASSERT(dstIndex == dst.slots());
874 return dst;
875 }
876
writeConstructorMatrixResize(const ConstructorMatrixResize & ctor)877 Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& ctor) {
878 const Type& srcType = ctor.argument()->type();
879 const Type& dstType = ctor.type();
880 Value src = this->writeExpression(*ctor.argument());
881 Value dst(dstType.rows() * dstType.columns());
882
883 // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity.
884 size_t dstIndex = 0;
885 for (int c = 0; c < dstType.columns(); ++c) {
886 for (int r = 0; r < dstType.rows(); ++r) {
887 if (c < srcType.columns() && r < srcType.rows()) {
888 dst[dstIndex++] = src[c * srcType.rows() + r];
889 } else {
890 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f);
891 }
892 }
893 }
894
895 SkASSERT(dstIndex == dst.slots());
896 return dst;
897 }
898
fieldSlotOffset(const FieldAccess & expr)899 size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) {
900 size_t offset = 0;
901 for (int i = 0; i < expr.fieldIndex(); ++i) {
902 offset += (*expr.base()->type().fields()[i].fType).slotCount();
903 }
904 return offset;
905 }
906
writeFieldAccess(const FieldAccess & expr)907 Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) {
908 Value base = this->writeExpression(*expr.base());
909 Value field(expr.type().slotCount());
910 size_t offset = this->fieldSlotOffset(expr);
911 for (size_t i = 0; i < field.slots(); ++i) {
912 field[i] = base[offset + i];
913 }
914 return field;
915 }
916
indexSlotOffset(const IndexExpression & expr)917 size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) {
918 Value index = this->writeExpression(*expr.index());
919 int indexValue = -1;
920 SkAssertResult(fBuilder->allImm(index[0], &indexValue));
921
922 // When indexing by a literal, the front-end guarantees that we don't go out of bounds.
923 // But when indexing by a loop variable, it's possible to generate out-of-bounds access.
924 // The GLSL spec leaves that behavior undefined - we'll just clamp everything here.
925 indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1);
926
927 size_t stride = expr.type().slotCount();
928 return indexValue * stride;
929 }
930
writeIndexExpression(const IndexExpression & expr)931 Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) {
932 Value base = this->writeExpression(*expr.base());
933 Value element(expr.type().slotCount());
934 size_t offset = this->indexSlotOffset(expr);
935 for (size_t i = 0; i < element.slots(); ++i) {
936 element[i] = base[offset + i];
937 }
938 return element;
939 }
940
writeVariableExpression(const VariableReference & expr)941 Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) {
942 size_t slot = this->getSlot(*expr.variable());
943 Value val(expr.type().slotCount());
944 for (size_t i = 0; i < val.slots(); ++i) {
945 val[i] = fSlots[slot + i].val;
946 }
947 return val;
948 }
949
writeMatrixInverse2x2(const Value & m)950 Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) {
951 SkASSERT(m.slots() == 4);
952 skvm::F32 a = f32(m[0]),
953 b = f32(m[1]),
954 c = f32(m[2]),
955 d = f32(m[3]);
956 skvm::F32 idet = 1.0f / (a*d - b*c);
957
958 Value result(m.slots());
959 result[0] = ( d ** idet);
960 result[1] = (-b ** idet);
961 result[2] = (-c ** idet);
962 result[3] = ( a ** idet);
963 return result;
964 }
965
writeMatrixInverse3x3(const Value & m)966 Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) {
967 SkASSERT(m.slots() == 9);
968 skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]),
969 a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]),
970 a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]);
971 skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
972 a11*a23*a32 - a12*a21*a33 - a13*a22*a31);
973
974 Value result(m.slots());
975 result[0] = ((a22**a33 - a23**a32) ** idet);
976 result[1] = ((a23**a31 - a21**a33) ** idet);
977 result[2] = ((a21**a32 - a22**a31) ** idet);
978 result[3] = ((a13**a32 - a12**a33) ** idet);
979 result[4] = ((a11**a33 - a13**a31) ** idet);
980 result[5] = ((a12**a31 - a11**a32) ** idet);
981 result[6] = ((a12**a23 - a13**a22) ** idet);
982 result[7] = ((a13**a21 - a11**a23) ** idet);
983 result[8] = ((a11**a22 - a12**a21) ** idet);
984 return result;
985 }
986
writeMatrixInverse4x4(const Value & m)987 Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) {
988 SkASSERT(m.slots() == 16);
989 skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]),
990 a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]),
991 a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]),
992 a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]);
993
994 skvm::F32 b00 = a00**a11 - a01**a10,
995 b01 = a00**a12 - a02**a10,
996 b02 = a00**a13 - a03**a10,
997 b03 = a01**a12 - a02**a11,
998 b04 = a01**a13 - a03**a11,
999 b05 = a02**a13 - a03**a12,
1000 b06 = a20**a31 - a21**a30,
1001 b07 = a20**a32 - a22**a30,
1002 b08 = a20**a33 - a23**a30,
1003 b09 = a21**a32 - a22**a31,
1004 b10 = a21**a33 - a23**a31,
1005 b11 = a22**a33 - a23**a32;
1006
1007 skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06);
1008
1009 b00 *= idet;
1010 b01 *= idet;
1011 b02 *= idet;
1012 b03 *= idet;
1013 b04 *= idet;
1014 b05 *= idet;
1015 b06 *= idet;
1016 b07 *= idet;
1017 b08 *= idet;
1018 b09 *= idet;
1019 b10 *= idet;
1020 b11 *= idet;
1021
1022 Value result(m.slots());
1023 result[ 0] = (a11*b11 - a12*b10 + a13*b09);
1024 result[ 1] = (a02*b10 - a01*b11 - a03*b09);
1025 result[ 2] = (a31*b05 - a32*b04 + a33*b03);
1026 result[ 3] = (a22*b04 - a21*b05 - a23*b03);
1027 result[ 4] = (a12*b08 - a10*b11 - a13*b07);
1028 result[ 5] = (a00*b11 - a02*b08 + a03*b07);
1029 result[ 6] = (a32*b02 - a30*b05 - a33*b01);
1030 result[ 7] = (a20*b05 - a22*b02 + a23*b01);
1031 result[ 8] = (a10*b10 - a11*b08 + a13*b06);
1032 result[ 9] = (a01*b08 - a00*b10 - a03*b06);
1033 result[10] = (a30*b04 - a31*b02 + a33*b00);
1034 result[11] = (a21*b02 - a20*b04 - a23*b00);
1035 result[12] = (a11*b07 - a10*b09 - a12*b06);
1036 result[13] = (a00*b09 - a01*b07 + a02*b06);
1037 result[14] = (a31*b01 - a30*b03 - a32*b00);
1038 result[15] = (a20*b03 - a21*b01 + a22*b00);
1039 return result;
1040 }
1041
writeChildCall(const ChildCall & c)1042 Value SkVMGenerator::writeChildCall(const ChildCall& c) {
1043 auto child_it = fVariableMap.find(&c.child());
1044 SkASSERT(child_it != fVariableMap.end());
1045
1046 const Expression* arg = c.arguments()[0].get();
1047 Value argVal = this->writeExpression(*arg);
1048 skvm::Color color;
1049
1050 switch (c.child().type().typeKind()) {
1051 case Type::TypeKind::kShader: {
1052 SkASSERT(c.arguments().size() == 1);
1053 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fFloat2);
1054 skvm::Coord coord = {f32(argVal[0]), f32(argVal[1])};
1055 color = fSampleShader(child_it->second, coord);
1056 break;
1057 }
1058 case Type::TypeKind::kColorFilter: {
1059 SkASSERT(c.arguments().size() == 1);
1060 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1061 arg->type() == *fProgram.fContext->fTypes.fFloat4);
1062 skvm::Color inColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1063 color = fSampleColorFilter(child_it->second, inColor);
1064 break;
1065 }
1066 case Type::TypeKind::kBlender: {
1067 SkASSERT(c.arguments().size() == 2);
1068 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1069 arg->type() == *fProgram.fContext->fTypes.fFloat4);
1070 skvm::Color srcColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1071
1072 arg = c.arguments()[1].get();
1073 argVal = this->writeExpression(*arg);
1074 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 ||
1075 arg->type() == *fProgram.fContext->fTypes.fFloat4);
1076 skvm::Color dstColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])};
1077
1078 color = fSampleBlender(child_it->second, srcColor, dstColor);
1079 break;
1080 }
1081 default: {
1082 SkDEBUGFAILF("cannot sample from type '%s'", c.child().type().description().c_str());
1083 }
1084 }
1085
1086 Value result(4);
1087 result[0] = color.r;
1088 result[1] = color.g;
1089 result[2] = color.b;
1090 result[3] = color.a;
1091 return result;
1092 }
1093
writeIntrinsicCall(const FunctionCall & c)1094 Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) {
1095 IntrinsicKind intrinsicKind = c.function().intrinsicKind();
1096 SkASSERT(intrinsicKind != kNotIntrinsic);
1097
1098 const size_t nargs = c.arguments().size();
1099 const size_t kMaxArgs = 3; // eg: clamp, mix, smoothstep
1100 Value args[kMaxArgs];
1101 SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args));
1102
1103 // All other intrinsics have at most three args, and those can all be evaluated up front:
1104 for (size_t i = 0; i < nargs; ++i) {
1105 args[i] = this->writeExpression(*c.arguments()[i]);
1106 }
1107 Type::NumberKind nk = base_number_kind(c.arguments()[0]->type());
1108
1109 auto binary = [&](auto&& fn) {
1110 // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN)
1111 size_t nslots = std::max(args[0].slots(), args[1].slots());
1112 Value result(nslots);
1113 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1114 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1115
1116 for (size_t i = 0; i < nslots; ++i) {
1117 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1118 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]});
1119 }
1120 return result;
1121 };
1122
1123 auto ternary = [&](auto&& fn) {
1124 // Ternary intrinsics are some combination of vecN and float
1125 size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()});
1126 Value result(nslots);
1127 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1);
1128 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1);
1129 SkASSERT(args[2].slots() == nslots || args[2].slots() == 1);
1130
1131 for (size_t i = 0; i < nslots; ++i) {
1132 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]},
1133 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]},
1134 {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]});
1135 }
1136 return result;
1137 };
1138
1139 auto dot = [&](const Value& x, const Value& y) {
1140 SkASSERT(x.slots() == y.slots());
1141 skvm::F32 result = f32(x[0]) * f32(y[0]);
1142 for (size_t i = 1; i < x.slots(); ++i) {
1143 result += f32(x[i]) * f32(y[i]);
1144 }
1145 return result;
1146 };
1147
1148 switch (intrinsicKind) {
1149 case k_radians_IntrinsicKind:
1150 return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); });
1151 case k_degrees_IntrinsicKind:
1152 return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); });
1153
1154 case k_sin_IntrinsicKind: return unary(args[0], skvm::approx_sin);
1155 case k_cos_IntrinsicKind: return unary(args[0], skvm::approx_cos);
1156 case k_tan_IntrinsicKind: return unary(args[0], skvm::approx_tan);
1157
1158 case k_asin_IntrinsicKind: return unary(args[0], skvm::approx_asin);
1159 case k_acos_IntrinsicKind: return unary(args[0], skvm::approx_acos);
1160
1161 case k_atan_IntrinsicKind: return nargs == 1 ? unary(args[0], skvm::approx_atan)
1162 : binary(skvm::approx_atan2);
1163
1164 case k_pow_IntrinsicKind:
1165 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); });
1166 case k_exp_IntrinsicKind: return unary(args[0], skvm::approx_exp);
1167 case k_log_IntrinsicKind: return unary(args[0], skvm::approx_log);
1168 case k_exp2_IntrinsicKind: return unary(args[0], skvm::approx_pow2);
1169 case k_log2_IntrinsicKind: return unary(args[0], skvm::approx_log2);
1170
1171 case k_sqrt_IntrinsicKind: return unary(args[0], skvm::sqrt);
1172 case k_inversesqrt_IntrinsicKind:
1173 return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); });
1174
1175 case k_abs_IntrinsicKind: return unary(args[0], skvm::abs);
1176 case k_sign_IntrinsicKind:
1177 return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f,
1178 select(x > 0, +1.0f, 0.0f)); });
1179 case k_floor_IntrinsicKind: return unary(args[0], skvm::floor);
1180 case k_ceil_IntrinsicKind: return unary(args[0], skvm::ceil);
1181 case k_fract_IntrinsicKind: return unary(args[0], skvm::fract);
1182 case k_mod_IntrinsicKind:
1183 return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); });
1184
1185 case k_min_IntrinsicKind:
1186 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); });
1187 case k_max_IntrinsicKind:
1188 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); });
1189 case k_clamp_IntrinsicKind:
1190 return ternary(
1191 [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); });
1192 case k_saturate_IntrinsicKind:
1193 return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); });
1194 case k_mix_IntrinsicKind:
1195 return ternary(
1196 [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); });
1197 case k_step_IntrinsicKind:
1198 return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); });
1199 case k_smoothstep_IntrinsicKind:
1200 return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) {
1201 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0));
1202 return t ** t ** (3 - 2 ** t);
1203 });
1204
1205 case k_length_IntrinsicKind: return skvm::sqrt(dot(args[0], args[0]));
1206 case k_distance_IntrinsicKind: {
1207 Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; });
1208 return skvm::sqrt(dot(vec, vec));
1209 }
1210 case k_dot_IntrinsicKind: return dot(args[0], args[1]);
1211 case k_cross_IntrinsicKind: {
1212 skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]),
1213 bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]);
1214 Value result(3);
1215 result[0] = ay**bz - az**by;
1216 result[1] = az**bx - ax**bz;
1217 result[2] = ax**by - ay**bx;
1218 return result;
1219 }
1220 case k_normalize_IntrinsicKind: {
1221 skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0]));
1222 return unary(args[0], [&](skvm::F32 x) { return x ** invLen; });
1223 }
1224 case k_faceforward_IntrinsicKind: {
1225 const Value &N = args[0],
1226 &I = args[1],
1227 &Nref = args[2];
1228
1229 skvm::F32 dotNrefI = dot(Nref, I);
1230 return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); });
1231 }
1232 case k_reflect_IntrinsicKind: {
1233 const Value &I = args[0],
1234 &N = args[1];
1235
1236 skvm::F32 dotNI = dot(N, I);
1237 return binary([&](skvm::F32 i, skvm::F32 n) {
1238 return i - 2**dotNI**n;
1239 });
1240 }
1241 case k_refract_IntrinsicKind: {
1242 const Value &I = args[0],
1243 &N = args[1];
1244 skvm::F32 eta = f32(args[2]);
1245
1246 skvm::F32 dotNI = dot(N, I),
1247 k = 1 - eta**eta**(1 - dotNI**dotNI);
1248 return binary([&](skvm::F32 i, skvm::F32 n) {
1249 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n);
1250 });
1251 }
1252
1253 case k_matrixCompMult_IntrinsicKind:
1254 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; });
1255 case k_inverse_IntrinsicKind: {
1256 switch (args[0].slots()) {
1257 case 4: return this->writeMatrixInverse2x2(args[0]);
1258 case 9: return this->writeMatrixInverse3x3(args[0]);
1259 case 16: return this->writeMatrixInverse4x4(args[0]);
1260 default:
1261 SkDEBUGFAIL("Invalid call to inverse");
1262 return {};
1263 }
1264 }
1265
1266 case k_lessThan_IntrinsicKind:
1267 return nk == Type::NumberKind::kFloat
1268 ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; })
1269 : binary([](skvm::I32 x, skvm::I32 y) { return x < y; });
1270 case k_lessThanEqual_IntrinsicKind:
1271 return nk == Type::NumberKind::kFloat
1272 ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; })
1273 : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; });
1274 case k_greaterThan_IntrinsicKind:
1275 return nk == Type::NumberKind::kFloat
1276 ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; })
1277 : binary([](skvm::I32 x, skvm::I32 y) { return x > y; });
1278 case k_greaterThanEqual_IntrinsicKind:
1279 return nk == Type::NumberKind::kFloat
1280 ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; })
1281 : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; });
1282
1283 case k_equal_IntrinsicKind:
1284 return nk == Type::NumberKind::kFloat
1285 ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; })
1286 : binary([](skvm::I32 x, skvm::I32 y) { return x == y; });
1287 case k_notEqual_IntrinsicKind:
1288 return nk == Type::NumberKind::kFloat
1289 ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; })
1290 : binary([](skvm::I32 x, skvm::I32 y) { return x != y; });
1291
1292 case k_any_IntrinsicKind: {
1293 skvm::I32 result = i32(args[0][0]);
1294 for (size_t i = 1; i < args[0].slots(); ++i) {
1295 result |= i32(args[0][i]);
1296 }
1297 return result;
1298 }
1299 case k_all_IntrinsicKind: {
1300 skvm::I32 result = i32(args[0][0]);
1301 for (size_t i = 1; i < args[0].slots(); ++i) {
1302 result &= i32(args[0][i]);
1303 }
1304 return result;
1305 }
1306 case k_not_IntrinsicKind: return unary(args[0], [](skvm::I32 x) { return ~x; });
1307
1308 default:
1309 SkDEBUGFAILF("unsupported intrinsic %s", c.function().description().c_str());
1310 return {};
1311 }
1312 SkUNREACHABLE;
1313 }
1314
writeFunctionCall(const FunctionCall & f)1315 Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) {
1316 if (f.function().isIntrinsic() && !f.function().definition()) {
1317 return this->writeIntrinsicCall(f);
1318 }
1319
1320 const FunctionDeclaration& decl = f.function();
1321
1322 // Evaluate all arguments, gather the results into a contiguous list of IDs
1323 std::vector<skvm::Val> argVals;
1324 for (const auto& arg : f.arguments()) {
1325 Value v = this->writeExpression(*arg);
1326 for (size_t i = 0; i < v.slots(); ++i) {
1327 argVals.push_back(v[i]);
1328 }
1329 }
1330
1331 // Create storage for the return value
1332 const skvm::F32 zero = fBuilder->splat(0.0f);
1333 size_t nslots = f.type().slotCount();
1334 Value result(nslots);
1335 for (size_t i = 0; i < nslots; ++i) {
1336 result[i] = zero;
1337 }
1338
1339 {
1340 // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally
1341 // returned in the current function would otherwise resume execution within the child.
1342 ScopedCondition m(this, ~currentFunction().fReturned);
1343 SkASSERTF(f.function().definition(), "no definition for function '%s'",
1344 f.function().description().c_str());
1345 this->writeFunction(*f.function().definition(), SkMakeSpan(argVals), result.asSpan());
1346 }
1347
1348 // Propagate new values of any 'out' params back to the original arguments
1349 const std::unique_ptr<Expression>* argIter = f.arguments().begin();
1350 size_t valIdx = 0;
1351 for (const Variable* p : decl.parameters()) {
1352 nslots = p->type().slotCount();
1353 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1354 Value v(nslots);
1355 for (size_t i = 0; i < nslots; ++i) {
1356 v[i] = argVals[valIdx + i];
1357 }
1358 const std::unique_ptr<Expression>& arg = *argIter;
1359 this->writeStore(*arg, v);
1360 }
1361 valIdx += nslots;
1362 argIter++;
1363 }
1364
1365 return result;
1366 }
1367
writeExternalFunctionCall(const ExternalFunctionCall & c)1368 Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) {
1369 // Evaluate all arguments, gather the results into a contiguous list of F32
1370 std::vector<skvm::F32> args;
1371 for (const auto& arg : c.arguments()) {
1372 Value v = this->writeExpression(*arg);
1373 for (size_t i = 0; i < v.slots(); ++i) {
1374 args.push_back(f32(v[i]));
1375 }
1376 }
1377
1378 // Create storage for the return value
1379 size_t nslots = c.type().slotCount();
1380 std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f));
1381
1382 c.function().call(fBuilder, args.data(), result.data(), this->mask());
1383
1384 // Convert from 'vector of F32' to Value
1385 Value resultVal(nslots);
1386 for (size_t i = 0; i < nslots; ++i) {
1387 resultVal[i] = result[i];
1388 }
1389
1390 return resultVal;
1391 }
1392
writeLiteral(const Literal & l)1393 Value SkVMGenerator::writeLiteral(const Literal& l) {
1394 if (l.type().isFloat()) {
1395 return fBuilder->splat(l.as<Literal>().floatValue());
1396 }
1397 if (l.type().isInteger()) {
1398 return fBuilder->splat(static_cast<int>(l.as<Literal>().intValue()));
1399 }
1400 SkASSERT(l.type().isBoolean());
1401 return fBuilder->splat(l.as<Literal>().boolValue() ? ~0 : 0);
1402 }
1403
writePrefixExpression(const PrefixExpression & p)1404 Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) {
1405 Value val = this->writeExpression(*p.operand());
1406
1407 switch (p.getOperator().kind()) {
1408 case Token::Kind::TK_PLUSPLUS:
1409 case Token::Kind::TK_MINUSMINUS: {
1410 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1411
1412 switch (base_number_kind(p.type())) {
1413 case Type::NumberKind::kFloat:
1414 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1415 break;
1416 case Type::NumberKind::kSigned:
1417 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1418 break;
1419 default:
1420 SkASSERT(false);
1421 return {};
1422 }
1423 return this->writeStore(*p.operand(), val);
1424 }
1425 case Token::Kind::TK_MINUS: {
1426 switch (base_number_kind(p.type())) {
1427 case Type::NumberKind::kFloat:
1428 return this->unary(val, [](skvm::F32 x) { return -x; });
1429 case Type::NumberKind::kSigned:
1430 return this->unary(val, [](skvm::I32 x) { return -x; });
1431 default:
1432 SkASSERT(false);
1433 return {};
1434 }
1435 }
1436 case Token::Kind::TK_LOGICALNOT:
1437 case Token::Kind::TK_BITWISENOT:
1438 return this->unary(val, [](skvm::I32 x) { return ~x; });
1439 default:
1440 SkASSERT(false);
1441 return {};
1442 }
1443 }
1444
writePostfixExpression(const PostfixExpression & p)1445 Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) {
1446 switch (p.getOperator().kind()) {
1447 case Token::Kind::TK_PLUSPLUS:
1448 case Token::Kind::TK_MINUSMINUS: {
1449 Value old = this->writeExpression(*p.operand()),
1450 val = old;
1451 SkASSERT(val.slots() == 1);
1452 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS;
1453
1454 switch (base_number_kind(p.type())) {
1455 case Type::NumberKind::kFloat:
1456 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f);
1457 break;
1458 case Type::NumberKind::kSigned:
1459 val = i32(val) + fBuilder->splat(incr ? 1 : -1);
1460 break;
1461 default:
1462 SkASSERT(false);
1463 return {};
1464 }
1465 this->writeStore(*p.operand(), val);
1466 return old;
1467 }
1468 default:
1469 SkASSERT(false);
1470 return {};
1471 }
1472 }
1473
writeSwizzle(const Swizzle & s)1474 Value SkVMGenerator::writeSwizzle(const Swizzle& s) {
1475 Value base = this->writeExpression(*s.base());
1476 Value swizzled(s.components().size());
1477 for (size_t i = 0; i < s.components().size(); ++i) {
1478 swizzled[i] = base[s.components()[i]];
1479 }
1480 return swizzled;
1481 }
1482
writeTernaryExpression(const TernaryExpression & t)1483 Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) {
1484 skvm::I32 test = i32(this->writeExpression(*t.test()));
1485 Value ifTrue, ifFalse;
1486
1487 {
1488 ScopedCondition m(this, test);
1489 ifTrue = this->writeExpression(*t.ifTrue());
1490 }
1491 {
1492 ScopedCondition m(this, ~test);
1493 ifFalse = this->writeExpression(*t.ifFalse());
1494 }
1495
1496 size_t nslots = ifTrue.slots();
1497 SkASSERT(nslots == ifFalse.slots());
1498
1499 Value result(nslots);
1500 for (size_t i = 0; i < nslots; ++i) {
1501 result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i]));
1502 }
1503 return result;
1504 }
1505
writeExpression(const Expression & e)1506 Value SkVMGenerator::writeExpression(const Expression& e) {
1507 switch (e.kind()) {
1508 case Expression::Kind::kBinary:
1509 return this->writeBinaryExpression(e.as<BinaryExpression>());
1510 case Expression::Kind::kChildCall:
1511 return this->writeChildCall(e.as<ChildCall>());
1512 case Expression::Kind::kConstructorArray:
1513 case Expression::Kind::kConstructorCompound:
1514 case Expression::Kind::kConstructorStruct:
1515 return this->writeAggregationConstructor(e.asAnyConstructor());
1516 case Expression::Kind::kConstructorArrayCast:
1517 return this->writeExpression(*e.as<ConstructorArrayCast>().argument());
1518 case Expression::Kind::kConstructorDiagonalMatrix:
1519 return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>());
1520 case Expression::Kind::kConstructorMatrixResize:
1521 return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>());
1522 case Expression::Kind::kConstructorScalarCast:
1523 case Expression::Kind::kConstructorCompoundCast:
1524 return this->writeConstructorCast(e.asAnyConstructor());
1525 case Expression::Kind::kConstructorSplat:
1526 return this->writeConstructorSplat(e.as<ConstructorSplat>());
1527 case Expression::Kind::kFieldAccess:
1528 return this->writeFieldAccess(e.as<FieldAccess>());
1529 case Expression::Kind::kIndex:
1530 return this->writeIndexExpression(e.as<IndexExpression>());
1531 case Expression::Kind::kVariableReference:
1532 return this->writeVariableExpression(e.as<VariableReference>());
1533 case Expression::Kind::kLiteral:
1534 return this->writeLiteral(e.as<Literal>());
1535 case Expression::Kind::kFunctionCall:
1536 return this->writeFunctionCall(e.as<FunctionCall>());
1537 case Expression::Kind::kExternalFunctionCall:
1538 return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>());
1539 case Expression::Kind::kPrefix:
1540 return this->writePrefixExpression(e.as<PrefixExpression>());
1541 case Expression::Kind::kPostfix:
1542 return this->writePostfixExpression(e.as<PostfixExpression>());
1543 case Expression::Kind::kSwizzle:
1544 return this->writeSwizzle(e.as<Swizzle>());
1545 case Expression::Kind::kTernary:
1546 return this->writeTernaryExpression(e.as<TernaryExpression>());
1547 case Expression::Kind::kExternalFunctionReference:
1548 default:
1549 SkDEBUGFAIL("Unsupported expression");
1550 return {};
1551 }
1552 }
1553
writeStore(const Expression & lhs,const Value & rhs)1554 Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) {
1555 SkASSERTF(rhs.slots() == lhs.type().slotCount(),
1556 "lhs=%s (%s)\nrhs=%zu slot",
1557 lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots());
1558
1559 // We need to figure out the collection of slots that we're storing into. The l-value (lhs)
1560 // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or
1561 // IndexExpressions. The underlying VariableReference has a range of slots for its storage,
1562 // and each expression wrapped around that selects a sub-set of those slots (Field/Index),
1563 // or rearranges them (Swizzle).
1564 SkSTArray<4, size_t, true> slots;
1565 slots.resize(rhs.slots());
1566
1567 // Start with the identity slot map - this basically says that the values from rhs belong in
1568 // slots [0, 1, 2 ... N] of the lhs.
1569 for (size_t i = 0; i < slots.size(); ++i) {
1570 slots[i] = i;
1571 }
1572
1573 // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to
1574 // the next (inner) expression:
1575 const Expression* expr = &lhs;
1576 while (!expr->is<VariableReference>()) {
1577 switch (expr->kind()) {
1578 case Expression::Kind::kFieldAccess: {
1579 const FieldAccess& fld = expr->as<FieldAccess>();
1580 size_t offset = this->fieldSlotOffset(fld);
1581 for (size_t& s : slots) {
1582 s += offset;
1583 }
1584 expr = fld.base().get();
1585 } break;
1586 case Expression::Kind::kIndex: {
1587 const IndexExpression& idx = expr->as<IndexExpression>();
1588 size_t offset = this->indexSlotOffset(idx);
1589 for (size_t& s : slots) {
1590 s += offset;
1591 }
1592 expr = idx.base().get();
1593 } break;
1594 case Expression::Kind::kSwizzle: {
1595 const Swizzle& swz = expr->as<Swizzle>();
1596 for (size_t& s : slots) {
1597 s = swz.components()[s];
1598 }
1599 expr = swz.base().get();
1600 } break;
1601 default:
1602 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable)
1603 SkDEBUGFAIL("Invalid expression type");
1604 return {};
1605 }
1606 }
1607
1608 // When we get here, 'slots' are all relative to the first slot holding 'var's storage
1609 const Variable& var = *expr->as<VariableReference>().variable();
1610 size_t varSlot = this->getSlot(var);
1611 for (size_t& slot : slots) {
1612 SkASSERT(slot < var.type().slotCount());
1613 slot += varSlot;
1614 }
1615
1616 // `slots` are now absolute indices into `fSlots`.
1617 skvm::I32 mask = this->mask();
1618 for (size_t i = 0; i < rhs.slots(); ++i) {
1619 int slotNum = slots[i];
1620 skvm::Val conditionalStore = this->writeConditionalStore(fSlots[slotNum].val, rhs[i], mask);
1621 this->writeToSlot(slotNum, conditionalStore);
1622 }
1623
1624 return rhs;
1625 }
1626
writeConditionalStore(skvm::Val lhs,skvm::Val rhs,skvm::I32 mask)1627 skvm::Val SkVMGenerator::writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask) {
1628 return select(mask, f32(rhs), f32(lhs)).id;
1629 }
1630
writeBlock(const Block & b)1631 void SkVMGenerator::writeBlock(const Block& b) {
1632 for (const std::unique_ptr<Statement>& stmt : b.children()) {
1633 this->writeStatement(*stmt);
1634 }
1635 }
1636
writeBreakStatement()1637 void SkVMGenerator::writeBreakStatement() {
1638 // Any active lanes stop executing for the duration of the current loop
1639 fLoopMask &= ~this->mask();
1640 }
1641
writeContinueStatement()1642 void SkVMGenerator::writeContinueStatement() {
1643 // Any active lanes stop executing for the current iteration.
1644 // Remember them in fContinueMask, to be re-enabled later.
1645 skvm::I32 mask = this->mask();
1646 fLoopMask &= ~mask;
1647 fContinueMask |= mask;
1648 }
1649
writeForStatement(const ForStatement & f)1650 void SkVMGenerator::writeForStatement(const ForStatement& f) {
1651 // We require that all loops be ES2-compliant (unrollable), and actually unroll them here
1652 SkASSERT(f.unrollInfo());
1653 const LoopUnrollInfo& loop = *f.unrollInfo();
1654 SkASSERT(loop.fIndex->type().slotCount() == 1);
1655
1656 size_t indexSlot = this->getSlot(*loop.fIndex);
1657 double val = loop.fStart;
1658
1659 const skvm::I32 zero = fBuilder->splat(0);
1660 skvm::I32 oldLoopMask = fLoopMask,
1661 oldContinueMask = fContinueMask;
1662
1663 const Type::NumberKind indexKind = base_number_kind(loop.fIndex->type());
1664
1665 for (int i = 0; i < loop.fCount; ++i) {
1666 this->writeToSlot(indexSlot, (indexKind == Type::NumberKind::kFloat)
1667 ? fBuilder->splat(static_cast<float>(val)).id
1668 : fBuilder->splat(static_cast<int>(val)).id);
1669
1670 fContinueMask = zero;
1671 this->writeStatement(*f.statement());
1672 fLoopMask |= fContinueMask;
1673
1674 this->emitTraceLine(f.test() ? f.test()->fLine : f.fLine);
1675 val += loop.fDelta;
1676 }
1677
1678 fLoopMask = oldLoopMask;
1679 fContinueMask = oldContinueMask;
1680 }
1681
writeIfStatement(const IfStatement & i)1682 void SkVMGenerator::writeIfStatement(const IfStatement& i) {
1683 Value test = this->writeExpression(*i.test());
1684 {
1685 ScopedCondition ifTrue(this, i32(test));
1686 this->writeStatement(*i.ifTrue());
1687 }
1688 if (i.ifFalse()) {
1689 ScopedCondition ifFalse(this, ~i32(test));
1690 this->writeStatement(*i.ifFalse());
1691 }
1692 }
1693
writeReturnStatement(const ReturnStatement & r)1694 void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) {
1695 skvm::I32 returnsHere = this->mask();
1696
1697 if (r.expression()) {
1698 Value val = this->writeExpression(*r.expression());
1699
1700 int i = 0;
1701 for (skvm::Val& slot : currentFunction().fReturnValue) {
1702 slot = select(returnsHere, f32(val[i]), f32(slot)).id;
1703 i++;
1704 }
1705 }
1706
1707 currentFunction().fReturned |= returnsHere;
1708 }
1709
writeSwitchStatement(const SwitchStatement & s)1710 void SkVMGenerator::writeSwitchStatement(const SwitchStatement& s) {
1711 skvm::I32 falseValue = fBuilder->splat( 0);
1712 skvm::I32 trueValue = fBuilder->splat(~0);
1713
1714 // Create a "switchFallthough" scratch variable, initialized to false.
1715 skvm::I32 switchFallthrough = falseValue;
1716
1717 // Loop masks behave just like for statements. When a break is encountered, it masks off all
1718 // lanes for the rest of the body of the switch.
1719 skvm::I32 oldLoopMask = fLoopMask;
1720 Value switchValue = this->writeExpression(*s.value());
1721
1722 for (const std::unique_ptr<Statement>& stmt : s.cases()) {
1723 const SwitchCase& c = stmt->as<SwitchCase>();
1724 if (c.value()) {
1725 Value caseValue = this->writeExpression(*c.value());
1726
1727 // We want to execute this switch case if we're falling through from a previous case, or
1728 // if the case value matches.
1729 ScopedCondition conditionalCaseBlock(
1730 this,
1731 switchFallthrough | (i32(caseValue) == i32(switchValue)));
1732 this->writeStatement(*c.statement());
1733
1734 // If we are inside the case block, we set the fallthrough flag to true (`break` still
1735 // works to stop the flow of execution regardless, since it zeroes out the loop-mask).
1736 switchFallthrough.id = this->writeConditionalStore(switchFallthrough.id, trueValue.id,
1737 this->mask());
1738 } else {
1739 // This is the default case. Since it's always last, we can just dump in the code.
1740 this->writeStatement(*c.statement());
1741 }
1742 }
1743
1744 // Restore state.
1745 fLoopMask = oldLoopMask;
1746 }
1747
writeVarDeclaration(const VarDeclaration & decl)1748 void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) {
1749 size_t slot = this->getSlot(decl.var()),
1750 nslots = decl.var().type().slotCount();
1751
1752 Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{};
1753 for (size_t i = 0; i < nslots; ++i) {
1754 this->writeToSlot(slot + i, val ? val[i] : fBuilder->splat(0.0f).id);
1755 }
1756 }
1757
emitTraceLine(int line)1758 void SkVMGenerator::emitTraceLine(int line) {
1759 if (fDebugInfo && line > 0) {
1760 fBuilder->trace_line(this->mask(), line);
1761 }
1762 }
1763
writeStatement(const Statement & s)1764 void SkVMGenerator::writeStatement(const Statement& s) {
1765 this->emitTraceLine(s.fLine);
1766
1767 switch (s.kind()) {
1768 case Statement::Kind::kBlock:
1769 this->writeBlock(s.as<Block>());
1770 break;
1771 case Statement::Kind::kBreak:
1772 this->writeBreakStatement();
1773 break;
1774 case Statement::Kind::kContinue:
1775 this->writeContinueStatement();
1776 break;
1777 case Statement::Kind::kExpression:
1778 this->writeExpression(*s.as<ExpressionStatement>().expression());
1779 break;
1780 case Statement::Kind::kFor:
1781 this->writeForStatement(s.as<ForStatement>());
1782 break;
1783 case Statement::Kind::kIf:
1784 this->writeIfStatement(s.as<IfStatement>());
1785 break;
1786 case Statement::Kind::kReturn:
1787 this->writeReturnStatement(s.as<ReturnStatement>());
1788 break;
1789 case Statement::Kind::kSwitch:
1790 this->writeSwitchStatement(s.as<SwitchStatement>());
1791 break;
1792 case Statement::Kind::kVarDeclaration:
1793 this->writeVarDeclaration(s.as<VarDeclaration>());
1794 break;
1795 case Statement::Kind::kDiscard:
1796 case Statement::Kind::kDo:
1797 SkDEBUGFAIL("Unsupported control flow");
1798 break;
1799 case Statement::Kind::kInlineMarker:
1800 case Statement::Kind::kNop:
1801 break;
1802 default:
1803 SkDEBUGFAIL("Unrecognized statement");
1804 break;
1805 }
1806 }
1807
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * builder,SkVMDebugInfo * debugInfo,SkSpan<skvm::Val> uniforms,skvm::Coord device,skvm::Coord local,skvm::Color inputColor,skvm::Color destColor,SampleShaderFn sampleShader,SampleColorFilterFn sampleColorFilter,SampleBlenderFn sampleBlender)1808 skvm::Color ProgramToSkVM(const Program& program,
1809 const FunctionDefinition& function,
1810 skvm::Builder* builder,
1811 SkVMDebugInfo* debugInfo,
1812 SkSpan<skvm::Val> uniforms,
1813 skvm::Coord device,
1814 skvm::Coord local,
1815 skvm::Color inputColor,
1816 skvm::Color destColor,
1817 SampleShaderFn sampleShader,
1818 SampleColorFilterFn sampleColorFilter,
1819 SampleBlenderFn sampleBlender) {
1820 skvm::Val zero = builder->splat(0.0f).id;
1821 skvm::Val result[4] = {zero,zero,zero,zero};
1822
1823 skvm::Val args[8]; // At most 8 arguments (half4 srcColor, half4 dstColor)
1824 size_t argSlots = 0;
1825 for (const SkSL::Variable* param : function.declaration().parameters()) {
1826 switch (param->modifiers().fLayout.fBuiltin) {
1827 case SK_MAIN_COORDS_BUILTIN:
1828 SkASSERT(param->type().slotCount() == 2);
1829 SkASSERT((argSlots + 2) <= SK_ARRAY_COUNT(args));
1830 args[argSlots++] = local.x.id;
1831 args[argSlots++] = local.y.id;
1832 break;
1833 case SK_INPUT_COLOR_BUILTIN:
1834 SkASSERT(param->type().slotCount() == 4);
1835 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args));
1836 args[argSlots++] = inputColor.r.id;
1837 args[argSlots++] = inputColor.g.id;
1838 args[argSlots++] = inputColor.b.id;
1839 args[argSlots++] = inputColor.a.id;
1840 break;
1841 case SK_DEST_COLOR_BUILTIN:
1842 SkASSERT(param->type().slotCount() == 4);
1843 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args));
1844 args[argSlots++] = destColor.r.id;
1845 args[argSlots++] = destColor.g.id;
1846 args[argSlots++] = destColor.b.id;
1847 args[argSlots++] = destColor.a.id;
1848 break;
1849 default:
1850 SkDEBUGFAIL("Invalid parameter to main()");
1851 return {};
1852 }
1853 }
1854 SkASSERT(argSlots <= SK_ARRAY_COUNT(args));
1855
1856 SkVMGenerator generator(program, builder, debugInfo, std::move(sampleShader),
1857 std::move(sampleColorFilter), std::move(sampleBlender));
1858 generator.writeProgram(uniforms, device, function, {args, argSlots}, SkMakeSpan(result));
1859
1860 return skvm::Color{{builder, result[0]},
1861 {builder, result[1]},
1862 {builder, result[2]},
1863 {builder, result[3]}};
1864 }
1865
ProgramToSkVM(const Program & program,const FunctionDefinition & function,skvm::Builder * b,SkVMDebugInfo * debugInfo,SkSpan<skvm::Val> uniforms,SkVMSignature * outSignature)1866 bool ProgramToSkVM(const Program& program,
1867 const FunctionDefinition& function,
1868 skvm::Builder* b,
1869 SkVMDebugInfo* debugInfo,
1870 SkSpan<skvm::Val> uniforms,
1871 SkVMSignature* outSignature) {
1872 SkVMSignature ignored,
1873 *signature = outSignature ? outSignature : &ignored;
1874
1875 std::vector<skvm::Ptr> argPtrs;
1876 std::vector<skvm::Val> argVals;
1877
1878 for (const Variable* p : function.declaration().parameters()) {
1879 size_t slots = p->type().slotCount();
1880 signature->fParameterSlots += slots;
1881 for (size_t i = 0; i < slots; ++i) {
1882 argPtrs.push_back(b->varying<float>());
1883 argVals.push_back(b->loadF(argPtrs.back()).id);
1884 }
1885 }
1886
1887 std::vector<skvm::Ptr> returnPtrs;
1888 std::vector<skvm::Val> returnVals;
1889
1890 signature->fReturnSlots = function.declaration().returnType().slotCount();
1891 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1892 returnPtrs.push_back(b->varying<float>());
1893 returnVals.push_back(b->splat(0.0f).id);
1894 }
1895
1896 bool sampledChildEffects = false;
1897 auto sampleShader = [&](int, skvm::Coord) {
1898 sampledChildEffects = true;
1899 return skvm::Color{};
1900 };
1901 auto sampleColorFilter = [&](int, skvm::Color) {
1902 sampledChildEffects = true;
1903 return skvm::Color{};
1904 };
1905 auto sampleBlender = [&](int, skvm::Color, skvm::Color) {
1906 sampledChildEffects = true;
1907 return skvm::Color{};
1908 };
1909
1910 skvm::F32 zero = b->splat(0.0f);
1911 skvm::Coord zeroCoord = {zero, zero};
1912 SkVMGenerator generator(program, b, debugInfo, sampleShader, sampleColorFilter, sampleBlender);
1913 generator.writeProgram(uniforms, /*device=*/zeroCoord,
1914 function, SkMakeSpan(argVals), SkMakeSpan(returnVals));
1915
1916 // If the SkSL tried to use any shader, colorFilter, or blender objects - we don't have a
1917 // mechanism (yet) for binding to those.
1918 if (sampledChildEffects) {
1919 return false;
1920 }
1921
1922 // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters.
1923 // Propagate those changes back to our varying buffers:
1924 size_t argIdx = 0;
1925 for (const Variable* p : function.declaration().parameters()) {
1926 size_t nslots = p->type().slotCount();
1927 if (p->modifiers().fFlags & Modifiers::kOut_Flag) {
1928 for (size_t i = 0; i < nslots; ++i) {
1929 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]});
1930 }
1931 }
1932 argIdx += nslots;
1933 }
1934
1935 // It's also updated the contents of 'returnVals' with the return value of the entry point.
1936 // Store that as well:
1937 for (size_t i = 0; i < signature->fReturnSlots; ++i) {
1938 b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]});
1939 }
1940
1941 return true;
1942 }
1943
Program_GetFunction(const Program & program,const char * function)1944 const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) {
1945 for (const ProgramElement* e : program.elements()) {
1946 if (e->is<FunctionDefinition>() &&
1947 e->as<FunctionDefinition>().declaration().name() == function) {
1948 return &e->as<FunctionDefinition>();
1949 }
1950 }
1951 return nullptr;
1952 }
1953
gather_uniforms(UniformInfo * info,const Type & type,const String & name)1954 static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) {
1955 switch (type.typeKind()) {
1956 case Type::TypeKind::kStruct:
1957 for (const auto& f : type.fields()) {
1958 gather_uniforms(info, *f.fType, name + "." + f.fName);
1959 }
1960 break;
1961 case Type::TypeKind::kArray:
1962 for (int i = 0; i < type.columns(); ++i) {
1963 gather_uniforms(info, type.componentType(),
1964 String::printf("%s[%d]", name.c_str(), i));
1965 }
1966 break;
1967 case Type::TypeKind::kScalar:
1968 case Type::TypeKind::kVector:
1969 case Type::TypeKind::kMatrix:
1970 info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(),
1971 info->fUniformSlotCount});
1972 info->fUniformSlotCount += type.columns() * type.rows();
1973 break;
1974 default:
1975 break;
1976 }
1977 }
1978
Program_GetUniformInfo(const Program & program)1979 std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) {
1980 auto info = std::make_unique<UniformInfo>();
1981 for (const ProgramElement* e : program.elements()) {
1982 if (!e->is<GlobalVarDeclaration>()) {
1983 continue;
1984 }
1985 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
1986 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
1987 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1988 gather_uniforms(info.get(), var.type(), String(var.name()));
1989 }
1990 }
1991 return info;
1992 }
1993
1994 /*
1995 * Testing utility function that emits program's "main" with a minimal harness. Used to create
1996 * representative skvm op sequences for SkSL tests.
1997 */
testingOnly_ProgramToSkVMShader(const Program & program,skvm::Builder * builder,SkVMDebugInfo * debugInfo)1998 bool testingOnly_ProgramToSkVMShader(const Program& program,
1999 skvm::Builder* builder,
2000 SkVMDebugInfo* debugInfo) {
2001 const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main");
2002 if (!main) {
2003 return false;
2004 }
2005
2006 size_t uniformSlots = 0;
2007 int childSlots = 0;
2008 for (const SkSL::ProgramElement* e : program.elements()) {
2009 if (e->is<GlobalVarDeclaration>()) {
2010 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>();
2011 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
2012 if (var.type().isEffectChild()) {
2013 childSlots++;
2014 } else if (is_uniform(var)) {
2015 uniformSlots += var.type().slotCount();
2016 }
2017 }
2018 }
2019
2020 skvm::Uniforms uniforms(builder->uniform(), 0);
2021
2022 auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); };
2023
2024 // Assume identity CTM
2025 skvm::Coord device = {pun_to_F32(builder->index()), new_uni()};
2026 skvm::Coord local = device;
2027
2028 struct Child {
2029 skvm::Uniform addr;
2030 skvm::I32 rowBytesAsPixels;
2031 };
2032
2033 std::vector<Child> children;
2034 for (int i = 0; i < childSlots; ++i) {
2035 children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))});
2036 }
2037
2038 auto sampleShader = [&](int i, skvm::Coord coord) {
2039 skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType);
2040 skvm::I32 index = trunc(coord.x);
2041 index += trunc(coord.y) * children[i].rowBytesAsPixels;
2042 return gather(pixelFormat, children[i].addr, index);
2043 };
2044
2045 std::vector<skvm::Val> uniformVals;
2046 for (size_t i = 0; i < uniformSlots; ++i) {
2047 uniformVals.push_back(new_uni().id);
2048 }
2049
2050 skvm::Color inColor = builder->uniformColor(SkColors::kWhite, &uniforms);
2051 skvm::Color destColor = builder->uniformColor(SkColors::kBlack, &uniforms);
2052
2053 skvm::Color result = SkSL::ProgramToSkVM(program, *main, builder, debugInfo,
2054 SkMakeSpan(uniformVals), device, local, inColor,
2055 destColor, sampleShader, /*sampleColorFilter=*/nullptr,
2056 /*sampleBlender=*/nullptr);
2057
2058 storeF(builder->varying<float>(), result.r);
2059 storeF(builder->varying<float>(), result.g);
2060 storeF(builder->varying<float>(), result.b);
2061 storeF(builder->varying<float>(), result.a);
2062
2063 return true;
2064 }
2065
2066 } // namespace SkSL
2067