1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_RANDOM_POISSON_DISTRIBUTION_H_
16 #define ABSL_RANDOM_POISSON_DISTRIBUTION_H_
17
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <ostream>
23 #include <type_traits>
24
25 #include "absl/random/internal/fast_uniform_bits.h"
26 #include "absl/random/internal/fastmath.h"
27 #include "absl/random/internal/generate_real.h"
28 #include "absl/random/internal/iostream_state_saver.h"
29
30 namespace absl {
31 ABSL_NAMESPACE_BEGIN
32
33 // absl::poisson_distribution:
34 // Generates discrete variates conforming to a Poisson distribution.
35 // p(n) = (mean^n / n!) exp(-mean)
36 //
37 // Depending on the parameter, the distribution selects one of the following
38 // algorithms:
39 // * The standard algorithm, attributed to Knuth, extended using a split method
40 // for larger values
41 // * The "Ratio of Uniforms as a convenient method for sampling from classical
42 // discrete distributions", Stadlober, 1989.
43 // http://www.sciencedirect.com/science/article/pii/0377042790903495
44 //
45 // NOTE: param_type.mean() is a double, which permits values larger than
46 // poisson_distribution<IntType>::max(), however this should be avoided and
47 // the distribution results are limited to the max() value.
48 //
49 // The goals of this implementation are to provide good performance while still
50 // beig thread-safe: This limits the implementation to not using lgamma provided
51 // by <math.h>.
52 //
53 template <typename IntType = int>
54 class poisson_distribution {
55 public:
56 using result_type = IntType;
57
58 class param_type {
59 public:
60 using distribution_type = poisson_distribution;
61 explicit param_type(double mean = 1.0);
62
mean()63 double mean() const { return mean_; }
64
65 friend bool operator==(const param_type& a, const param_type& b) {
66 return a.mean_ == b.mean_;
67 }
68
69 friend bool operator!=(const param_type& a, const param_type& b) {
70 return !(a == b);
71 }
72
73 private:
74 friend class poisson_distribution;
75
76 double mean_;
77 double emu_; // e ^ -mean_
78 double lmu_; // ln(mean_)
79 double s_;
80 double log_k_;
81 int split_;
82
83 static_assert(std::is_integral<IntType>::value,
84 "Class-template absl::poisson_distribution<> must be "
85 "parameterized using an integral type.");
86 };
87
poisson_distribution()88 poisson_distribution() : poisson_distribution(1.0) {}
89
poisson_distribution(double mean)90 explicit poisson_distribution(double mean) : param_(mean) {}
91
poisson_distribution(const param_type & p)92 explicit poisson_distribution(const param_type& p) : param_(p) {}
93
reset()94 void reset() {}
95
96 // generating functions
97 template <typename URBG>
operator()98 result_type operator()(URBG& g) { // NOLINT(runtime/references)
99 return (*this)(g, param_);
100 }
101
102 template <typename URBG>
103 result_type operator()(URBG& g, // NOLINT(runtime/references)
104 const param_type& p);
105
param()106 param_type param() const { return param_; }
param(const param_type & p)107 void param(const param_type& p) { param_ = p; }
108
result_type(min)109 result_type(min)() const { return 0; }
result_type(max)110 result_type(max)() const { return (std::numeric_limits<result_type>::max)(); }
111
mean()112 double mean() const { return param_.mean(); }
113
114 friend bool operator==(const poisson_distribution& a,
115 const poisson_distribution& b) {
116 return a.param_ == b.param_;
117 }
118 friend bool operator!=(const poisson_distribution& a,
119 const poisson_distribution& b) {
120 return a.param_ != b.param_;
121 }
122
123 private:
124 param_type param_;
125 random_internal::FastUniformBits<uint64_t> fast_u64_;
126 };
127
128 // -----------------------------------------------------------------------------
129 // Implementation details follow
130 // -----------------------------------------------------------------------------
131
132 template <typename IntType>
param_type(double mean)133 poisson_distribution<IntType>::param_type::param_type(double mean)
134 : mean_(mean), split_(0) {
135 assert(mean >= 0);
136 assert(mean <= (std::numeric_limits<result_type>::max)());
137 // As a defensive measure, avoid large values of the mean. The rejection
138 // algorithm used does not support very large values well. It my be worth
139 // changing algorithms to better deal with these cases.
140 assert(mean <= 1e10);
141 if (mean_ < 10) {
142 // For small lambda, use the knuth method.
143 split_ = 1;
144 emu_ = std::exp(-mean_);
145 } else if (mean_ <= 50) {
146 // Use split-knuth method.
147 split_ = 1 + static_cast<int>(mean_ / 10.0);
148 emu_ = std::exp(-mean_ / static_cast<double>(split_));
149 } else {
150 // Use ratio of uniforms method.
151 constexpr double k2E = 0.7357588823428846;
152 constexpr double kSA = 0.4494580810294493;
153
154 lmu_ = std::log(mean_);
155 double a = mean_ + 0.5;
156 s_ = kSA + std::sqrt(k2E * a);
157 const double mode = std::ceil(mean_) - 1;
158 log_k_ = lmu_ * mode - absl::random_internal::StirlingLogFactorial(mode);
159 }
160 }
161
162 template <typename IntType>
163 template <typename URBG>
164 typename poisson_distribution<IntType>::result_type
operator()165 poisson_distribution<IntType>::operator()(
166 URBG& g, // NOLINT(runtime/references)
167 const param_type& p) {
168 using random_internal::GeneratePositiveTag;
169 using random_internal::GenerateRealFromBits;
170 using random_internal::GenerateSignedTag;
171
172 if (p.split_ != 0) {
173 // Use Knuth's algorithm with range splitting to avoid floating-point
174 // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on
175 // (0,1); return the number of variates required for product(Ui) <
176 // exp(-lambda).
177 //
178 // The expected number of variates required for Knuth's method can be
179 // computed as follows:
180 // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives
181 // the expected number of uniform variates
182 // required for a given lambda, which is:
183 // lambda = [2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17]
184 // n = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25]
185 //
186 result_type n = 0;
187 for (int split = p.split_; split > 0; --split) {
188 double r = 1.0;
189 do {
190 r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(
191 fast_u64_(g)); // U(-1, 0)
192 ++n;
193 } while (r > p.emu_);
194 --n;
195 }
196 return n;
197 }
198
199 // Use ratio of uniforms method.
200 //
201 // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1),
202 // a = lambda + 1/2,
203 // s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e),
204 // x = s * v/u + a.
205 // P(floor(x) = k | u^2 < f(floor(x))/k), where
206 // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise,
207 // and k = max(f).
208 const double a = p.mean_ + 0.5;
209 for (;;) {
210 const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(
211 fast_u64_(g)); // U(0, 1)
212 const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(
213 fast_u64_(g)); // U(-1, 1)
214
215 const double x = std::floor(p.s_ * v / u + a);
216 if (x < 0) continue; // f(negative) = 0
217 const double rhs = x * p.lmu_;
218 // clang-format off
219 double s = (x <= 1.0) ? 0.0
220 : (x == 2.0) ? 0.693147180559945
221 : absl::random_internal::StirlingLogFactorial(x);
222 // clang-format on
223 const double lhs = 2.0 * std::log(u) + p.log_k_ + s;
224 if (lhs < rhs) {
225 return x > (max)() ? (max)()
226 : static_cast<result_type>(x); // f(x)/k >= u^2
227 }
228 }
229 }
230
231 template <typename CharT, typename Traits, typename IntType>
232 std::basic_ostream<CharT, Traits>& operator<<(
233 std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
234 const poisson_distribution<IntType>& x) {
235 auto saver = random_internal::make_ostream_state_saver(os);
236 os.precision(random_internal::stream_precision_helper<double>::kPrecision);
237 os << x.mean();
238 return os;
239 }
240
241 template <typename CharT, typename Traits, typename IntType>
242 std::basic_istream<CharT, Traits>& operator>>(
243 std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
244 poisson_distribution<IntType>& x) { // NOLINT(runtime/references)
245 using param_type = typename poisson_distribution<IntType>::param_type;
246
247 auto saver = random_internal::make_istream_state_saver(is);
248 double mean = random_internal::read_floating_point<double>(is);
249 if (!is.fail()) {
250 x.param(param_type(mean));
251 }
252 return is;
253 }
254
255 ABSL_NAMESPACE_END
256 } // namespace absl
257
258 #endif // ABSL_RANDOM_POISSON_DISTRIBUTION_H_
259