1 /*
2 * Wrapper functions for libnettle and libgmp
3 * Copyright (c) 2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <nettle/nettle-meta.h>
11 #include <nettle/des.h>
12 #undef des_encrypt
13 #include <nettle/hmac.h>
14 #include <nettle/aes.h>
15 #undef aes_encrypt
16 #undef aes_decrypt
17 #include <nettle/arcfour.h>
18 #include <nettle/bignum.h>
19
20 #include "common.h"
21 #include "md5.h"
22 #include "sha1.h"
23 #include "sha256.h"
24 #include "sha384.h"
25 #include "sha512.h"
26 #include "crypto.h"
27
28
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)29 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
30 {
31 struct des_ctx ctx;
32 u8 pkey[8], next, tmp;
33 int i;
34
35 /* Add parity bits to the key */
36 next = 0;
37 for (i = 0; i < 7; i++) {
38 tmp = key[i];
39 pkey[i] = (tmp >> i) | next | 1;
40 next = tmp << (7 - i);
41 }
42 pkey[i] = next | 1;
43
44 nettle_des_set_key(&ctx, pkey);
45 nettle_des_encrypt(&ctx, DES_BLOCK_SIZE, cypher, clear);
46 os_memset(&ctx, 0, sizeof(ctx));
47 return 0;
48 }
49
50
nettle_digest_vector(const struct nettle_hash * alg,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)51 static int nettle_digest_vector(const struct nettle_hash *alg, size_t num_elem,
52 const u8 *addr[], const size_t *len, u8 *mac)
53 {
54 void *ctx;
55 size_t i;
56
57 if (TEST_FAIL())
58 return -1;
59
60 ctx = os_malloc(alg->context_size);
61 if (!ctx)
62 return -1;
63 alg->init(ctx);
64 for (i = 0; i < num_elem; i++)
65 alg->update(ctx, len[i], addr[i]);
66 alg->digest(ctx, alg->digest_size, mac);
67 bin_clear_free(ctx, alg->context_size);
68 return 0;
69 }
70
71
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)72 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
73 {
74 return nettle_digest_vector(&nettle_md4, num_elem, addr, len, mac);
75 }
76
77
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)78 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
79 {
80 return nettle_digest_vector(&nettle_md5, num_elem, addr, len, mac);
81 }
82
83
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)84 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
85 {
86 return nettle_digest_vector(&nettle_sha1, num_elem, addr, len, mac);
87 }
88
89
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)90 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
91 {
92 return nettle_digest_vector(&nettle_sha256, num_elem, addr, len, mac);
93 }
94
95
sha384_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)96 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
97 {
98 return nettle_digest_vector(&nettle_sha384, num_elem, addr, len, mac);
99 }
100
101
sha512_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)102 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
103 {
104 return nettle_digest_vector(&nettle_sha512, num_elem, addr, len, mac);
105 }
106
107
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)108 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
109 const u8 *addr[], const size_t *len, u8 *mac)
110 {
111 struct hmac_md5_ctx ctx;
112 size_t i;
113
114 if (TEST_FAIL())
115 return -1;
116
117 hmac_md5_set_key(&ctx, key_len, key);
118 for (i = 0; i < num_elem; i++)
119 hmac_md5_update(&ctx, len[i], addr[i]);
120 hmac_md5_digest(&ctx, MD5_DIGEST_SIZE, mac);
121 os_memset(&ctx, 0, sizeof(ctx));
122 return 0;
123 }
124
125
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)126 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
127 u8 *mac)
128 {
129 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
130 }
131
132
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)133 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
134 const u8 *addr[], const size_t *len, u8 *mac)
135 {
136 struct hmac_sha1_ctx ctx;
137 size_t i;
138
139 if (TEST_FAIL())
140 return -1;
141
142 hmac_sha1_set_key(&ctx, key_len, key);
143 for (i = 0; i < num_elem; i++)
144 hmac_sha1_update(&ctx, len[i], addr[i]);
145 hmac_sha1_digest(&ctx, SHA1_DIGEST_SIZE, mac);
146 os_memset(&ctx, 0, sizeof(ctx));
147 return 0;
148 }
149
150
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)151 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
152 u8 *mac)
153 {
154 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
155 }
156
157
158 #ifdef CONFIG_SHA256
159
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)160 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
161 const u8 *addr[], const size_t *len, u8 *mac)
162 {
163 struct hmac_sha256_ctx ctx;
164 size_t i;
165
166 if (TEST_FAIL())
167 return -1;
168
169 hmac_sha256_set_key(&ctx, key_len, key);
170 for (i = 0; i < num_elem; i++)
171 hmac_sha256_update(&ctx, len[i], addr[i]);
172 hmac_sha256_digest(&ctx, SHA256_DIGEST_SIZE, mac);
173 os_memset(&ctx, 0, sizeof(ctx));
174 return 0;
175 }
176
177
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)178 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
179 size_t data_len, u8 *mac)
180 {
181 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
182 }
183
184 #endif /* CONFIG_SHA256 */
185
186
187 #ifdef CONFIG_SHA384
188
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)189 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
190 const u8 *addr[], const size_t *len, u8 *mac)
191 {
192 struct hmac_sha384_ctx ctx;
193 size_t i;
194
195 if (TEST_FAIL())
196 return -1;
197
198 hmac_sha384_set_key(&ctx, key_len, key);
199 for (i = 0; i < num_elem; i++)
200 hmac_sha384_update(&ctx, len[i], addr[i]);
201 hmac_sha384_digest(&ctx, SHA384_DIGEST_SIZE, mac);
202 os_memset(&ctx, 0, sizeof(ctx));
203 return 0;
204 }
205
206
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)207 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
208 size_t data_len, u8 *mac)
209 {
210 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
211 }
212
213 #endif /* CONFIG_SHA384 */
214
215
216 #ifdef CONFIG_SHA512
217
hmac_sha512_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)218 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
219 const u8 *addr[], const size_t *len, u8 *mac)
220 {
221 struct hmac_sha512_ctx ctx;
222 size_t i;
223
224 if (TEST_FAIL())
225 return -1;
226
227 hmac_sha512_set_key(&ctx, key_len, key);
228 for (i = 0; i < num_elem; i++)
229 hmac_sha512_update(&ctx, len[i], addr[i]);
230 hmac_sha512_digest(&ctx, SHA512_DIGEST_SIZE, mac);
231 os_memset(&ctx, 0, sizeof(ctx));
232 return 0;
233 }
234
235
hmac_sha512(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)236 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
237 size_t data_len, u8 *mac)
238 {
239 return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
240 }
241
242 #endif /* CONFIG_SHA512 */
243
244
aes_encrypt_init(const u8 * key,size_t len)245 void * aes_encrypt_init(const u8 *key, size_t len)
246 {
247 struct aes_ctx *ctx;
248
249 if (TEST_FAIL())
250 return NULL;
251 ctx = os_malloc(sizeof(*ctx));
252 if (!ctx)
253 return NULL;
254
255 nettle_aes_set_encrypt_key(ctx, len, key);
256
257 return ctx;
258 }
259
260
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)261 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
262 {
263 struct aes_ctx *actx = ctx;
264 nettle_aes_encrypt(actx, AES_BLOCK_SIZE, crypt, plain);
265 return 0;
266 }
267
268
aes_encrypt_deinit(void * ctx)269 void aes_encrypt_deinit(void *ctx)
270 {
271 struct aes_ctx *actx = ctx;
272 bin_clear_free(actx, sizeof(*actx));
273 }
274
275
aes_decrypt_init(const u8 * key,size_t len)276 void * aes_decrypt_init(const u8 *key, size_t len)
277 {
278 struct aes_ctx *ctx;
279
280 if (TEST_FAIL())
281 return NULL;
282 ctx = os_malloc(sizeof(*ctx));
283 if (!ctx)
284 return NULL;
285
286 nettle_aes_set_decrypt_key(ctx, len, key);
287
288 return ctx;
289 }
290
291
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)292 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
293 {
294 struct aes_ctx *actx = ctx;
295 nettle_aes_decrypt(actx, AES_BLOCK_SIZE, plain, crypt);
296 return 0;
297 }
298
299
aes_decrypt_deinit(void * ctx)300 void aes_decrypt_deinit(void *ctx)
301 {
302 struct aes_ctx *actx = ctx;
303 bin_clear_free(actx, sizeof(*actx));
304 }
305
306
crypto_dh_init(u8 generator,const u8 * prime,size_t prime_len,u8 * privkey,u8 * pubkey)307 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
308 u8 *pubkey)
309 {
310 size_t pubkey_len, pad;
311
312 if (os_get_random(privkey, prime_len) < 0)
313 return -1;
314 if (os_memcmp(privkey, prime, prime_len) > 0) {
315 /* Make sure private value is smaller than prime */
316 privkey[0] = 0;
317 }
318
319 pubkey_len = prime_len;
320 if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
321 pubkey, &pubkey_len) < 0)
322 return -1;
323 if (pubkey_len < prime_len) {
324 pad = prime_len - pubkey_len;
325 os_memmove(pubkey + pad, pubkey, pubkey_len);
326 os_memset(pubkey, 0, pad);
327 }
328
329 return 0;
330 }
331
332
crypto_dh_derive_secret(u8 generator,const u8 * prime,size_t prime_len,const u8 * order,size_t order_len,const u8 * privkey,size_t privkey_len,const u8 * pubkey,size_t pubkey_len,u8 * secret,size_t * len)333 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
334 const u8 *order, size_t order_len,
335 const u8 *privkey, size_t privkey_len,
336 const u8 *pubkey, size_t pubkey_len,
337 u8 *secret, size_t *len)
338 {
339 mpz_t pub;
340 int res = -1;
341
342 if (pubkey_len > prime_len ||
343 (pubkey_len == prime_len &&
344 os_memcmp(pubkey, prime, prime_len) >= 0))
345 return -1;
346
347 mpz_init(pub);
348 mpz_import(pub, pubkey_len, 1, 1, 1, 0, pubkey);
349 if (mpz_cmp_d(pub, 1) <= 0)
350 goto fail;
351
352 if (order) {
353 mpz_t p, q, tmp;
354 int failed;
355
356 /* verify: pubkey^q == 1 mod p */
357 mpz_inits(p, q, tmp, NULL);
358 mpz_import(p, prime_len, 1, 1, 1, 0, prime);
359 mpz_import(q, order_len, 1, 1, 1, 0, order);
360 mpz_powm(tmp, pub, q, p);
361 failed = mpz_cmp_d(tmp, 1) != 0;
362 mpz_clears(p, q, tmp, NULL);
363 if (failed)
364 goto fail;
365 }
366
367 res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len,
368 prime, prime_len, secret, len);
369 fail:
370 mpz_clear(pub);
371 return res;
372 }
373
374
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)375 int crypto_mod_exp(const u8 *base, size_t base_len,
376 const u8 *power, size_t power_len,
377 const u8 *modulus, size_t modulus_len,
378 u8 *result, size_t *result_len)
379 {
380 mpz_t bn_base, bn_exp, bn_modulus, bn_result;
381 int ret = -1;
382 size_t len;
383
384 mpz_inits(bn_base, bn_exp, bn_modulus, bn_result, NULL);
385 mpz_import(bn_base, base_len, 1, 1, 1, 0, base);
386 mpz_import(bn_exp, power_len, 1, 1, 1, 0, power);
387 mpz_import(bn_modulus, modulus_len, 1, 1, 1, 0, modulus);
388
389 mpz_powm(bn_result, bn_base, bn_exp, bn_modulus);
390 len = mpz_sizeinbase(bn_result, 2);
391 len = (len + 7) / 8;
392 if (*result_len < len)
393 goto error;
394 mpz_export(result, result_len, 1, 1, 1, 0, bn_result);
395 ret = 0;
396
397 error:
398 mpz_clears(bn_base, bn_exp, bn_modulus, bn_result, NULL);
399 return ret;
400 }
401
402
403 struct crypto_cipher {
404 enum crypto_cipher_alg alg;
405 union {
406 struct arcfour_ctx arcfour_ctx;
407 } u;
408 };
409
410
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)411 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
412 const u8 *iv, const u8 *key,
413 size_t key_len)
414 {
415 struct crypto_cipher *ctx;
416
417 ctx = os_zalloc(sizeof(*ctx));
418 if (!ctx)
419 return NULL;
420
421 ctx->alg = alg;
422
423 switch (alg) {
424 case CRYPTO_CIPHER_ALG_RC4:
425 nettle_arcfour_set_key(&ctx->u.arcfour_ctx, key_len, key);
426 break;
427 default:
428 os_free(ctx);
429 return NULL;
430 }
431
432 return ctx;
433 }
434
435
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)436 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
437 u8 *crypt, size_t len)
438 {
439 switch (ctx->alg) {
440 case CRYPTO_CIPHER_ALG_RC4:
441 nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, crypt, plain);
442 break;
443 default:
444 return -1;
445 }
446
447 return 0;
448 }
449
450
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)451 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
452 u8 *plain, size_t len)
453 {
454 switch (ctx->alg) {
455 case CRYPTO_CIPHER_ALG_RC4:
456 nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, plain, crypt);
457 break;
458 default:
459 return -1;
460 }
461
462 return 0;
463 }
464
465
crypto_cipher_deinit(struct crypto_cipher * ctx)466 void crypto_cipher_deinit(struct crypto_cipher *ctx)
467 {
468 bin_clear_free(ctx, sizeof(*ctx));
469 }
470