1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TLB Management (flush/create/diagnostics) for ARC700
4 *
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 *
7 * vineetg: Aug 2011
8 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
9 *
10 * vineetg: May 2011
11 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
12 * some of the LMBench tests improved amazingly
13 * = page-fault thrice as fast (75 usec to 28 usec)
14 * = mmap twice as fast (9.6 msec to 4.6 msec),
15 * = fork (5.3 msec to 3.7 msec)
16 *
17 * vineetg: April 2011 :
18 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
19 * helps avoid a shift when preparing PD0 from PTE
20 *
21 * vineetg: April 2011 : Preparing for MMU V3
22 * -MMU v2/v3 BCRs decoded differently
23 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
24 * -tlb_entry_erase( ) can be void
25 * -local_flush_tlb_range( ):
26 * = need not "ceil" @end
27 * = walks MMU only if range spans < 32 entries, as opposed to 256
28 *
29 * Vineetg: Sept 10th 2008
30 * -Changes related to MMU v2 (Rel 4.8)
31 *
32 * Vineetg: Aug 29th 2008
33 * -In TLB Flush operations (Metal Fix MMU) there is a explicit command to
34 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
35 * it fails. Thus need to load it with ANY valid value before invoking
36 * TLBIVUTLB cmd
37 *
38 * Vineetg: Aug 21th 2008:
39 * -Reduced the duration of IRQ lockouts in TLB Flush routines
40 * -Multiple copies of TLB erase code separated into a "single" function
41 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
42 * in interrupt-safe region.
43 *
44 * Vineetg: April 23rd Bug #93131
45 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
46 * flush is more than the size of TLB itself.
47 *
48 * Rahul Trivedi : Codito Technologies 2004
49 */
50
51 #include <linux/module.h>
52 #include <linux/bug.h>
53 #include <linux/mm_types.h>
54
55 #include <asm/arcregs.h>
56 #include <asm/setup.h>
57 #include <asm/mmu_context.h>
58 #include <asm/mmu.h>
59
60 /* Need for ARC MMU v2
61 *
62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64 * map into same set, there would be contention for the 2 ways causing severe
65 * Thrashing.
66 *
67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69 * Given this, the thrashing problem should never happen because once the 3
70 * J-TLB entries are created (even though 3rd will knock out one of the prev
71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72 *
73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74 * This is a simple design for keeping them in sync. So what do we do?
75 * The solution which James came up was pretty neat. It utilised the assoc
76 * of uTLBs by not invalidating always but only when absolutely necessary.
77 *
78 * - Existing TLB commands work as before
79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80 * - New command (TLBIVUTLB) to invalidate uTLBs.
81 *
82 * The uTLBs need only be invalidated when pages are being removed from the
83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84 * as a result of a miss, the removed entry is still allowed to exist in the
85 * uTLBs as it is still valid and present in the OS page table. This allows the
86 * full associativity of the uTLBs to hide the limited associativity of the main
87 * TLB.
88 *
89 * During a miss handler, the new "TLBWriteNI" command is used to load
90 * entries without clearing the uTLBs.
91 *
92 * When the OS page table is updated, TLB entries that may be associated with a
93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
94 * circumstance, the uTLBs must also be cleared. This is done by using the
95 * existing TLBWrite command. An explicit IVUTLB is also required for those
96 * corner cases when TLBWrite was not executed at all because the corresp
97 * J-TLB entry got evicted/replaced.
98 */
99
100
101 /* A copy of the ASID from the PID reg is kept in asid_cache */
102 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
103
104 static int __read_mostly pae_exists;
105
106 /*
107 * Utility Routine to erase a J-TLB entry
108 * Caller needs to setup Index Reg (manually or via getIndex)
109 */
__tlb_entry_erase(void)110 static inline void __tlb_entry_erase(void)
111 {
112 write_aux_reg(ARC_REG_TLBPD1, 0);
113
114 if (is_pae40_enabled())
115 write_aux_reg(ARC_REG_TLBPD1HI, 0);
116
117 write_aux_reg(ARC_REG_TLBPD0, 0);
118 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
119 }
120
utlb_invalidate(void)121 static void utlb_invalidate(void)
122 {
123 #if (CONFIG_ARC_MMU_VER >= 2)
124
125 #if (CONFIG_ARC_MMU_VER == 2)
126 /* MMU v2 introduced the uTLB Flush command.
127 * There was however an obscure hardware bug, where uTLB flush would
128 * fail when a prior probe for J-TLB (both totally unrelated) would
129 * return lkup err - because the entry didn't exist in MMU.
130 * The Workaround was to set Index reg with some valid value, prior to
131 * flush. This was fixed in MMU v3
132 */
133 unsigned int idx;
134
135 /* make sure INDEX Reg is valid */
136 idx = read_aux_reg(ARC_REG_TLBINDEX);
137
138 /* If not write some dummy val */
139 if (unlikely(idx & TLB_LKUP_ERR))
140 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
141 #endif
142
143 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
144 #endif
145
146 }
147
148 #if (CONFIG_ARC_MMU_VER < 4)
149
tlb_entry_lkup(unsigned long vaddr_n_asid)150 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
151 {
152 unsigned int idx;
153
154 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
155
156 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
157 idx = read_aux_reg(ARC_REG_TLBINDEX);
158
159 return idx;
160 }
161
tlb_entry_erase(unsigned int vaddr_n_asid)162 static void tlb_entry_erase(unsigned int vaddr_n_asid)
163 {
164 unsigned int idx;
165
166 /* Locate the TLB entry for this vaddr + ASID */
167 idx = tlb_entry_lkup(vaddr_n_asid);
168
169 /* No error means entry found, zero it out */
170 if (likely(!(idx & TLB_LKUP_ERR))) {
171 __tlb_entry_erase();
172 } else {
173 /* Duplicate entry error */
174 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
175 vaddr_n_asid);
176 }
177 }
178
tlb_entry_insert(unsigned int pd0,pte_t pd1)179 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
180 {
181 unsigned int idx;
182
183 /*
184 * First verify if entry for this vaddr+ASID already exists
185 * This also sets up PD0 (vaddr, ASID..) for final commit
186 */
187 idx = tlb_entry_lkup(pd0);
188
189 /*
190 * If Not already present get a free slot from MMU.
191 * Otherwise, Probe would have located the entry and set INDEX Reg
192 * with existing location. This will cause Write CMD to over-write
193 * existing entry with new PD0 and PD1
194 */
195 if (likely(idx & TLB_LKUP_ERR))
196 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
197
198 /* setup the other half of TLB entry (pfn, rwx..) */
199 write_aux_reg(ARC_REG_TLBPD1, pd1);
200
201 /*
202 * Commit the Entry to MMU
203 * It doesn't sound safe to use the TLBWriteNI cmd here
204 * which doesn't flush uTLBs. I'd rather be safe than sorry.
205 */
206 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
207 }
208
209 #else /* CONFIG_ARC_MMU_VER >= 4) */
210
tlb_entry_erase(unsigned int vaddr_n_asid)211 static void tlb_entry_erase(unsigned int vaddr_n_asid)
212 {
213 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
214 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
215 }
216
tlb_entry_insert(unsigned int pd0,pte_t pd1)217 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
218 {
219 write_aux_reg(ARC_REG_TLBPD0, pd0);
220 write_aux_reg(ARC_REG_TLBPD1, pd1);
221
222 if (is_pae40_enabled())
223 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
224
225 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
226 }
227
228 #endif
229
230 /*
231 * Un-conditionally (without lookup) erase the entire MMU contents
232 */
233
local_flush_tlb_all(void)234 noinline void local_flush_tlb_all(void)
235 {
236 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
237 unsigned long flags;
238 unsigned int entry;
239 int num_tlb = mmu->sets * mmu->ways;
240
241 local_irq_save(flags);
242
243 /* Load PD0 and PD1 with template for a Blank Entry */
244 write_aux_reg(ARC_REG_TLBPD1, 0);
245
246 if (is_pae40_enabled())
247 write_aux_reg(ARC_REG_TLBPD1HI, 0);
248
249 write_aux_reg(ARC_REG_TLBPD0, 0);
250
251 for (entry = 0; entry < num_tlb; entry++) {
252 /* write this entry to the TLB */
253 write_aux_reg(ARC_REG_TLBINDEX, entry);
254 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
255 }
256
257 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
258 const int stlb_idx = 0x800;
259
260 /* Blank sTLB entry */
261 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
262
263 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
264 write_aux_reg(ARC_REG_TLBINDEX, entry);
265 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
266 }
267 }
268
269 utlb_invalidate();
270
271 local_irq_restore(flags);
272 }
273
274 /*
275 * Flush the entire MM for userland. The fastest way is to move to Next ASID
276 */
local_flush_tlb_mm(struct mm_struct * mm)277 noinline void local_flush_tlb_mm(struct mm_struct *mm)
278 {
279 /*
280 * Small optimisation courtesy IA64
281 * flush_mm called during fork,exit,munmap etc, multiple times as well.
282 * Only for fork( ) do we need to move parent to a new MMU ctxt,
283 * all other cases are NOPs, hence this check.
284 */
285 if (atomic_read(&mm->mm_users) == 0)
286 return;
287
288 /*
289 * - Move to a new ASID, but only if the mm is still wired in
290 * (Android Binder ended up calling this for vma->mm != tsk->mm,
291 * causing h/w - s/w ASID to get out of sync)
292 * - Also get_new_mmu_context() new implementation allocates a new
293 * ASID only if it is not allocated already - so unallocate first
294 */
295 destroy_context(mm);
296 if (current->mm == mm)
297 get_new_mmu_context(mm);
298 }
299
300 /*
301 * Flush a Range of TLB entries for userland.
302 * @start is inclusive, while @end is exclusive
303 * Difference between this and Kernel Range Flush is
304 * -Here the fastest way (if range is too large) is to move to next ASID
305 * without doing any explicit Shootdown
306 * -In case of kernel Flush, entry has to be shot down explicitly
307 */
local_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)308 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
309 unsigned long end)
310 {
311 const unsigned int cpu = smp_processor_id();
312 unsigned long flags;
313
314 /* If range @start to @end is more than 32 TLB entries deep,
315 * its better to move to a new ASID rather than searching for
316 * individual entries and then shooting them down
317 *
318 * The calc above is rough, doesn't account for unaligned parts,
319 * since this is heuristics based anyways
320 */
321 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
322 local_flush_tlb_mm(vma->vm_mm);
323 return;
324 }
325
326 /*
327 * @start moved to page start: this alone suffices for checking
328 * loop end condition below, w/o need for aligning @end to end
329 * e.g. 2000 to 4001 will anyhow loop twice
330 */
331 start &= PAGE_MASK;
332
333 local_irq_save(flags);
334
335 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
336 while (start < end) {
337 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
338 start += PAGE_SIZE;
339 }
340 }
341
342 local_irq_restore(flags);
343 }
344
345 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
346 * @start, @end interpreted as kvaddr
347 * Interestingly, shared TLB entries can also be flushed using just
348 * @start,@end alone (interpreted as user vaddr), although technically SASID
349 * is also needed. However our smart TLbProbe lookup takes care of that.
350 */
local_flush_tlb_kernel_range(unsigned long start,unsigned long end)351 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
352 {
353 unsigned long flags;
354
355 /* exactly same as above, except for TLB entry not taking ASID */
356
357 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
358 local_flush_tlb_all();
359 return;
360 }
361
362 start &= PAGE_MASK;
363
364 local_irq_save(flags);
365 while (start < end) {
366 tlb_entry_erase(start);
367 start += PAGE_SIZE;
368 }
369
370 local_irq_restore(flags);
371 }
372
373 /*
374 * Delete TLB entry in MMU for a given page (??? address)
375 * NOTE One TLB entry contains translation for single PAGE
376 */
377
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)378 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
379 {
380 const unsigned int cpu = smp_processor_id();
381 unsigned long flags;
382
383 /* Note that it is critical that interrupts are DISABLED between
384 * checking the ASID and using it flush the TLB entry
385 */
386 local_irq_save(flags);
387
388 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
389 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
390 }
391
392 local_irq_restore(flags);
393 }
394
395 #ifdef CONFIG_SMP
396
397 struct tlb_args {
398 struct vm_area_struct *ta_vma;
399 unsigned long ta_start;
400 unsigned long ta_end;
401 };
402
ipi_flush_tlb_page(void * arg)403 static inline void ipi_flush_tlb_page(void *arg)
404 {
405 struct tlb_args *ta = arg;
406
407 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
408 }
409
ipi_flush_tlb_range(void * arg)410 static inline void ipi_flush_tlb_range(void *arg)
411 {
412 struct tlb_args *ta = arg;
413
414 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
415 }
416
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ipi_flush_pmd_tlb_range(void * arg)418 static inline void ipi_flush_pmd_tlb_range(void *arg)
419 {
420 struct tlb_args *ta = arg;
421
422 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
423 }
424 #endif
425
ipi_flush_tlb_kernel_range(void * arg)426 static inline void ipi_flush_tlb_kernel_range(void *arg)
427 {
428 struct tlb_args *ta = (struct tlb_args *)arg;
429
430 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
431 }
432
flush_tlb_all(void)433 void flush_tlb_all(void)
434 {
435 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
436 }
437
flush_tlb_mm(struct mm_struct * mm)438 void flush_tlb_mm(struct mm_struct *mm)
439 {
440 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
441 mm, 1);
442 }
443
flush_tlb_page(struct vm_area_struct * vma,unsigned long uaddr)444 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
445 {
446 struct tlb_args ta = {
447 .ta_vma = vma,
448 .ta_start = uaddr
449 };
450
451 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
452 }
453
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)454 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
455 unsigned long end)
456 {
457 struct tlb_args ta = {
458 .ta_vma = vma,
459 .ta_start = start,
460 .ta_end = end
461 };
462
463 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
464 }
465
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)467 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
468 unsigned long end)
469 {
470 struct tlb_args ta = {
471 .ta_vma = vma,
472 .ta_start = start,
473 .ta_end = end
474 };
475
476 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
477 }
478 #endif
479
flush_tlb_kernel_range(unsigned long start,unsigned long end)480 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
481 {
482 struct tlb_args ta = {
483 .ta_start = start,
484 .ta_end = end
485 };
486
487 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
488 }
489 #endif
490
491 /*
492 * Routine to create a TLB entry
493 */
create_tlb(struct vm_area_struct * vma,unsigned long vaddr,pte_t * ptep)494 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
495 {
496 unsigned long flags;
497 unsigned int asid_or_sasid, rwx;
498 unsigned long pd0;
499 pte_t pd1;
500
501 /*
502 * create_tlb() assumes that current->mm == vma->mm, since
503 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
504 * -completes the lazy write to SASID reg (again valid for curr tsk)
505 *
506 * Removing the assumption involves
507 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
508 * -Fix the TLB paranoid debug code to not trigger false negatives.
509 * -More importantly it makes this handler inconsistent with fast-path
510 * TLB Refill handler which always deals with "current"
511 *
512 * Lets see the use cases when current->mm != vma->mm and we land here
513 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
514 * Here VM wants to pre-install a TLB entry for user stack while
515 * current->mm still points to pre-execve mm (hence the condition).
516 * However the stack vaddr is soon relocated (randomization) and
517 * move_page_tables() tries to undo that TLB entry.
518 * Thus not creating TLB entry is not any worse.
519 *
520 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
521 * breakpoint in debugged task. Not creating a TLB now is not
522 * performance critical.
523 *
524 * Both the cases above are not good enough for code churn.
525 */
526 if (current->active_mm != vma->vm_mm)
527 return;
528
529 local_irq_save(flags);
530
531 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
532
533 vaddr &= PAGE_MASK;
534
535 /* update this PTE credentials */
536 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
537
538 /* Create HW TLB(PD0,PD1) from PTE */
539
540 /* ASID for this task */
541 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
542
543 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
544
545 /*
546 * ARC MMU provides fully orthogonal access bits for K/U mode,
547 * however Linux only saves 1 set to save PTE real-estate
548 * Here we convert 3 PTE bits into 6 MMU bits:
549 * -Kernel only entries have Kr Kw Kx 0 0 0
550 * -User entries have mirrored K and U bits
551 */
552 rwx = pte_val(*ptep) & PTE_BITS_RWX;
553
554 if (pte_val(*ptep) & _PAGE_GLOBAL)
555 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
556 else
557 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
558
559 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
560
561 tlb_entry_insert(pd0, pd1);
562
563 local_irq_restore(flags);
564 }
565
566 /*
567 * Called at the end of pagefault, for a userspace mapped page
568 * -pre-install the corresponding TLB entry into MMU
569 * -Finalize the delayed D-cache flush of kernel mapping of page due to
570 * flush_dcache_page(), copy_user_page()
571 *
572 * Note that flush (when done) involves both WBACK - so physical page is
573 * in sync as well as INV - so any non-congruent aliases don't remain
574 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long vaddr_unaligned,pte_t * ptep)575 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
576 pte_t *ptep)
577 {
578 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
579 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
580 struct page *page = pfn_to_page(pte_pfn(*ptep));
581
582 create_tlb(vma, vaddr, ptep);
583
584 if (page == ZERO_PAGE(0)) {
585 return;
586 }
587
588 /*
589 * Exec page : Independent of aliasing/page-color considerations,
590 * since icache doesn't snoop dcache on ARC, any dirty
591 * K-mapping of a code page needs to be wback+inv so that
592 * icache fetch by userspace sees code correctly.
593 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
594 * so userspace sees the right data.
595 * (Avoids the flush for Non-exec + congruent mapping case)
596 */
597 if ((vma->vm_flags & VM_EXEC) ||
598 addr_not_cache_congruent(paddr, vaddr)) {
599
600 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
601 if (dirty) {
602 /* wback + inv dcache lines (K-mapping) */
603 __flush_dcache_page(paddr, paddr);
604
605 /* invalidate any existing icache lines (U-mapping) */
606 if (vma->vm_flags & VM_EXEC)
607 __inv_icache_page(paddr, vaddr);
608 }
609 }
610 }
611
612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
613
614 /*
615 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
616 * support.
617 *
618 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
619 * new bit "SZ" in TLB page descriptor to distinguish between them.
620 * Super Page size is configurable in hardware (4K to 16M), but fixed once
621 * RTL builds.
622 *
623 * The exact THP size a Linux configuration will support is a function of:
624 * - MMU page size (typical 8K, RTL fixed)
625 * - software page walker address split between PGD:PTE:PFN (typical
626 * 11:8:13, but can be changed with 1 line)
627 * So for above default, THP size supported is 8K * (2^8) = 2M
628 *
629 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
630 * reduces to 1 level (as PTE is folded into PGD and canonically referred
631 * to as PMD).
632 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
633 */
634
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)635 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
636 pmd_t *pmd)
637 {
638 pte_t pte = __pte(pmd_val(*pmd));
639 update_mmu_cache(vma, addr, &pte);
640 }
641
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)642 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
643 pgtable_t pgtable)
644 {
645 struct list_head *lh = (struct list_head *) pgtable;
646
647 assert_spin_locked(&mm->page_table_lock);
648
649 /* FIFO */
650 if (!pmd_huge_pte(mm, pmdp))
651 INIT_LIST_HEAD(lh);
652 else
653 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
654 pmd_huge_pte(mm, pmdp) = pgtable;
655 }
656
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)657 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
658 {
659 struct list_head *lh;
660 pgtable_t pgtable;
661
662 assert_spin_locked(&mm->page_table_lock);
663
664 pgtable = pmd_huge_pte(mm, pmdp);
665 lh = (struct list_head *) pgtable;
666 if (list_empty(lh))
667 pmd_huge_pte(mm, pmdp) = NULL;
668 else {
669 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
670 list_del(lh);
671 }
672
673 pte_val(pgtable[0]) = 0;
674 pte_val(pgtable[1]) = 0;
675
676 return pgtable;
677 }
678
local_flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)679 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
680 unsigned long end)
681 {
682 unsigned int cpu;
683 unsigned long flags;
684
685 local_irq_save(flags);
686
687 cpu = smp_processor_id();
688
689 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
690 unsigned int asid = hw_pid(vma->vm_mm, cpu);
691
692 /* No need to loop here: this will always be for 1 Huge Page */
693 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
694 }
695
696 local_irq_restore(flags);
697 }
698
699 #endif
700
701 /* Read the Cache Build Configuration Registers, Decode them and save into
702 * the cpuinfo structure for later use.
703 * No Validation is done here, simply read/convert the BCRs
704 */
read_decode_mmu_bcr(void)705 void read_decode_mmu_bcr(void)
706 {
707 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
708 unsigned int tmp;
709 struct bcr_mmu_1_2 {
710 #ifdef CONFIG_CPU_BIG_ENDIAN
711 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
712 #else
713 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
714 #endif
715 } *mmu2;
716
717 struct bcr_mmu_3 {
718 #ifdef CONFIG_CPU_BIG_ENDIAN
719 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
720 u_itlb:4, u_dtlb:4;
721 #else
722 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
723 ways:4, ver:8;
724 #endif
725 } *mmu3;
726
727 struct bcr_mmu_4 {
728 #ifdef CONFIG_CPU_BIG_ENDIAN
729 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
730 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
731 #else
732 /* DTLB ITLB JES JE JA */
733 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
734 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
735 #endif
736 } *mmu4;
737
738 tmp = read_aux_reg(ARC_REG_MMU_BCR);
739 mmu->ver = (tmp >> 24);
740
741 if (is_isa_arcompact()) {
742 if (mmu->ver <= 2) {
743 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
744 mmu->pg_sz_k = TO_KB(0x2000);
745 mmu->sets = 1 << mmu2->sets;
746 mmu->ways = 1 << mmu2->ways;
747 mmu->u_dtlb = mmu2->u_dtlb;
748 mmu->u_itlb = mmu2->u_itlb;
749 } else {
750 mmu3 = (struct bcr_mmu_3 *)&tmp;
751 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
752 mmu->sets = 1 << mmu3->sets;
753 mmu->ways = 1 << mmu3->ways;
754 mmu->u_dtlb = mmu3->u_dtlb;
755 mmu->u_itlb = mmu3->u_itlb;
756 mmu->sasid = mmu3->sasid;
757 }
758 } else {
759 mmu4 = (struct bcr_mmu_4 *)&tmp;
760 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
761 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
762 mmu->sets = 64 << mmu4->n_entry;
763 mmu->ways = mmu4->n_ways * 2;
764 mmu->u_dtlb = mmu4->u_dtlb * 4;
765 mmu->u_itlb = mmu4->u_itlb * 4;
766 mmu->sasid = mmu4->sasid;
767 pae_exists = mmu->pae = mmu4->pae;
768 }
769 }
770
arc_mmu_mumbojumbo(int cpu_id,char * buf,int len)771 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
772 {
773 int n = 0;
774 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
775 char super_pg[64] = "";
776
777 if (p_mmu->s_pg_sz_m)
778 scnprintf(super_pg, 64, "%dM Super Page %s",
779 p_mmu->s_pg_sz_m,
780 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
781
782 n += scnprintf(buf + n, len - n,
783 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
784 p_mmu->ver, p_mmu->pg_sz_k, super_pg,
785 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
786 p_mmu->u_dtlb, p_mmu->u_itlb,
787 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
788
789 return buf;
790 }
791
pae40_exist_but_not_enab(void)792 int pae40_exist_but_not_enab(void)
793 {
794 return pae_exists && !is_pae40_enabled();
795 }
796
arc_mmu_init(void)797 void arc_mmu_init(void)
798 {
799 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
800 char str[256];
801 int compat = 0;
802
803 pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
804
805 /*
806 * Can't be done in processor.h due to header include dependencies
807 */
808 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
809
810 /*
811 * stack top size sanity check,
812 * Can't be done in processor.h due to header include dependencies
813 */
814 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
815
816 /*
817 * Ensure that MMU features assumed by kernel exist in hardware.
818 * For older ARC700 cpus, it has to be exact match, since the MMU
819 * revisions were not backwards compatible (MMUv3 TLB layout changed
820 * so even if kernel for v2 didn't use any new cmds of v3, it would
821 * still not work.
822 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
823 * (will run older software).
824 */
825 if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
826 compat = 1;
827 else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
828 compat = 1;
829
830 if (!compat) {
831 panic("MMU ver %d doesn't match kernel built for %d...\n",
832 mmu->ver, CONFIG_ARC_MMU_VER);
833 }
834
835 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
836 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
837
838 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
839 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
840 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
841 (unsigned long)TO_MB(HPAGE_PMD_SIZE));
842
843 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
844 panic("Hardware doesn't support PAE40\n");
845
846 /* Enable the MMU */
847 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
848
849 /* In smp we use this reg for interrupt 1 scratch */
850 #ifdef ARC_USE_SCRATCH_REG
851 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
852 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
853 #endif
854
855 if (pae40_exist_but_not_enab())
856 write_aux_reg(ARC_REG_TLBPD1HI, 0);
857 }
858
859 /*
860 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
861 * The mapping is Column-first.
862 * --------------------- -----------
863 * |way0|way1|way2|way3| |way0|way1|
864 * --------------------- -----------
865 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
866 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
867 * ~ ~ ~ ~
868 * [set127] | 508| 509| 510| 511| | 254| 255|
869 * --------------------- -----------
870 * For normal operations we don't(must not) care how above works since
871 * MMU cmd getIndex(vaddr) abstracts that out.
872 * However for walking WAYS of a SET, we need to know this
873 */
874 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
875
876 /* Handling of Duplicate PD (TLB entry) in MMU.
877 * -Could be due to buggy customer tapeouts or obscure kernel bugs
878 * -MMU complaints not at the time of duplicate PD installation, but at the
879 * time of lookup matching multiple ways.
880 * -Ideally these should never happen - but if they do - workaround by deleting
881 * the duplicate one.
882 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
883 */
884 volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
885
do_tlb_overlap_fault(unsigned long cause,unsigned long address,struct pt_regs * regs)886 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
887 struct pt_regs *regs)
888 {
889 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
890 unsigned long flags;
891 int set, n_ways = mmu->ways;
892
893 n_ways = min(n_ways, 4);
894 BUG_ON(mmu->ways > 4);
895
896 local_irq_save(flags);
897
898 /* loop thru all sets of TLB */
899 for (set = 0; set < mmu->sets; set++) {
900
901 int is_valid, way;
902 unsigned int pd0[4];
903
904 /* read out all the ways of current set */
905 for (way = 0, is_valid = 0; way < n_ways; way++) {
906 write_aux_reg(ARC_REG_TLBINDEX,
907 SET_WAY_TO_IDX(mmu, set, way));
908 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
909 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
910 is_valid |= pd0[way] & _PAGE_PRESENT;
911 pd0[way] &= PAGE_MASK;
912 }
913
914 /* If all the WAYS in SET are empty, skip to next SET */
915 if (!is_valid)
916 continue;
917
918 /* Scan the set for duplicate ways: needs a nested loop */
919 for (way = 0; way < n_ways - 1; way++) {
920
921 int n;
922
923 if (!pd0[way])
924 continue;
925
926 for (n = way + 1; n < n_ways; n++) {
927 if (pd0[way] != pd0[n])
928 continue;
929
930 if (!dup_pd_silent)
931 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
932 pd0[way], set, way, n);
933
934 /*
935 * clear entry @way and not @n.
936 * This is critical to our optimised loop
937 */
938 pd0[way] = 0;
939 write_aux_reg(ARC_REG_TLBINDEX,
940 SET_WAY_TO_IDX(mmu, set, way));
941 __tlb_entry_erase();
942 }
943 }
944 }
945
946 local_irq_restore(flags);
947 }
948
949 /***********************************************************************
950 * Diagnostic Routines
951 * -Called from Low Level TLB Handlers if things don;t look good
952 **********************************************************************/
953
954 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
955
956 /*
957 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
958 * don't match
959 */
print_asid_mismatch(int mm_asid,int mmu_asid,int is_fast_path)960 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
961 {
962 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
963 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
964
965 __asm__ __volatile__("flag 1");
966 }
967
tlb_paranoid_check(unsigned int mm_asid,unsigned long addr)968 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
969 {
970 unsigned int mmu_asid;
971
972 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
973
974 /*
975 * At the time of a TLB miss/installation
976 * - HW version needs to match SW version
977 * - SW needs to have a valid ASID
978 */
979 if (addr < 0x70000000 &&
980 ((mm_asid == MM_CTXT_NO_ASID) ||
981 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
982 print_asid_mismatch(mm_asid, mmu_asid, 0);
983 }
984 #endif
985