1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cryptographic API.
4 *
5 * s390 implementation of the AES Cipher Algorithm.
6 *
7 * s390 Version:
8 * Copyright IBM Corp. 2005, 2017
9 * Author(s): Jan Glauber (jang@de.ibm.com)
10 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11 * Patrick Steuer <patrick.steuer@de.ibm.com>
12 * Harald Freudenberger <freude@de.ibm.com>
13 *
14 * Derived from "crypto/aes_generic.c"
15 */
16
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 kma_functions;
41
42 struct s390_aes_ctx {
43 u8 key[AES_MAX_KEY_SIZE];
44 int key_len;
45 unsigned long fc;
46 union {
47 struct crypto_skcipher *skcipher;
48 struct crypto_cipher *cip;
49 } fallback;
50 };
51
52 struct s390_xts_ctx {
53 u8 key[32];
54 u8 pcc_key[32];
55 int key_len;
56 unsigned long fc;
57 struct crypto_skcipher *fallback;
58 };
59
60 struct gcm_sg_walk {
61 struct scatter_walk walk;
62 unsigned int walk_bytes;
63 u8 *walk_ptr;
64 unsigned int walk_bytes_remain;
65 u8 buf[AES_BLOCK_SIZE];
66 unsigned int buf_bytes;
67 u8 *ptr;
68 unsigned int nbytes;
69 };
70
setkey_fallback_cip(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 unsigned int key_len)
73 {
74 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75
76 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
77 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
78 CRYPTO_TFM_REQ_MASK);
79
80 return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
81 }
82
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)83 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
84 unsigned int key_len)
85 {
86 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
87 unsigned long fc;
88
89 /* Pick the correct function code based on the key length */
90 fc = (key_len == 16) ? CPACF_KM_AES_128 :
91 (key_len == 24) ? CPACF_KM_AES_192 :
92 (key_len == 32) ? CPACF_KM_AES_256 : 0;
93
94 /* Check if the function code is available */
95 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
96 if (!sctx->fc)
97 return setkey_fallback_cip(tfm, in_key, key_len);
98
99 sctx->key_len = key_len;
100 memcpy(sctx->key, in_key, key_len);
101 return 0;
102 }
103
crypto_aes_encrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)104 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
105 {
106 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
107
108 if (unlikely(!sctx->fc)) {
109 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
110 return;
111 }
112 cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
113 }
114
crypto_aes_decrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)115 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
116 {
117 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
118
119 if (unlikely(!sctx->fc)) {
120 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
121 return;
122 }
123 cpacf_km(sctx->fc | CPACF_DECRYPT,
124 &sctx->key, out, in, AES_BLOCK_SIZE);
125 }
126
fallback_init_cip(struct crypto_tfm * tfm)127 static int fallback_init_cip(struct crypto_tfm *tfm)
128 {
129 const char *name = tfm->__crt_alg->cra_name;
130 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
131
132 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
133 CRYPTO_ALG_NEED_FALLBACK);
134
135 if (IS_ERR(sctx->fallback.cip)) {
136 pr_err("Allocating AES fallback algorithm %s failed\n",
137 name);
138 return PTR_ERR(sctx->fallback.cip);
139 }
140
141 return 0;
142 }
143
fallback_exit_cip(struct crypto_tfm * tfm)144 static void fallback_exit_cip(struct crypto_tfm *tfm)
145 {
146 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
147
148 crypto_free_cipher(sctx->fallback.cip);
149 sctx->fallback.cip = NULL;
150 }
151
152 static struct crypto_alg aes_alg = {
153 .cra_name = "aes",
154 .cra_driver_name = "aes-s390",
155 .cra_priority = 300,
156 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
157 CRYPTO_ALG_NEED_FALLBACK,
158 .cra_blocksize = AES_BLOCK_SIZE,
159 .cra_ctxsize = sizeof(struct s390_aes_ctx),
160 .cra_module = THIS_MODULE,
161 .cra_init = fallback_init_cip,
162 .cra_exit = fallback_exit_cip,
163 .cra_u = {
164 .cipher = {
165 .cia_min_keysize = AES_MIN_KEY_SIZE,
166 .cia_max_keysize = AES_MAX_KEY_SIZE,
167 .cia_setkey = aes_set_key,
168 .cia_encrypt = crypto_aes_encrypt,
169 .cia_decrypt = crypto_aes_decrypt,
170 }
171 }
172 };
173
setkey_fallback_skcipher(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)174 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
175 unsigned int len)
176 {
177 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
178
179 crypto_skcipher_clear_flags(sctx->fallback.skcipher,
180 CRYPTO_TFM_REQ_MASK);
181 crypto_skcipher_set_flags(sctx->fallback.skcipher,
182 crypto_skcipher_get_flags(tfm) &
183 CRYPTO_TFM_REQ_MASK);
184 return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
185 }
186
fallback_skcipher_crypt(struct s390_aes_ctx * sctx,struct skcipher_request * req,unsigned long modifier)187 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
188 struct skcipher_request *req,
189 unsigned long modifier)
190 {
191 struct skcipher_request *subreq = skcipher_request_ctx(req);
192
193 *subreq = *req;
194 skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
195 return (modifier & CPACF_DECRYPT) ?
196 crypto_skcipher_decrypt(subreq) :
197 crypto_skcipher_encrypt(subreq);
198 }
199
ecb_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)200 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
201 unsigned int key_len)
202 {
203 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
204 unsigned long fc;
205
206 /* Pick the correct function code based on the key length */
207 fc = (key_len == 16) ? CPACF_KM_AES_128 :
208 (key_len == 24) ? CPACF_KM_AES_192 :
209 (key_len == 32) ? CPACF_KM_AES_256 : 0;
210
211 /* Check if the function code is available */
212 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
213 if (!sctx->fc)
214 return setkey_fallback_skcipher(tfm, in_key, key_len);
215
216 sctx->key_len = key_len;
217 memcpy(sctx->key, in_key, key_len);
218 return 0;
219 }
220
ecb_aes_crypt(struct skcipher_request * req,unsigned long modifier)221 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
222 {
223 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
225 struct skcipher_walk walk;
226 unsigned int nbytes, n;
227 int ret;
228
229 if (unlikely(!sctx->fc))
230 return fallback_skcipher_crypt(sctx, req, modifier);
231
232 ret = skcipher_walk_virt(&walk, req, false);
233 while ((nbytes = walk.nbytes) != 0) {
234 /* only use complete blocks */
235 n = nbytes & ~(AES_BLOCK_SIZE - 1);
236 cpacf_km(sctx->fc | modifier, sctx->key,
237 walk.dst.virt.addr, walk.src.virt.addr, n);
238 ret = skcipher_walk_done(&walk, nbytes - n);
239 }
240 return ret;
241 }
242
ecb_aes_encrypt(struct skcipher_request * req)243 static int ecb_aes_encrypt(struct skcipher_request *req)
244 {
245 return ecb_aes_crypt(req, 0);
246 }
247
ecb_aes_decrypt(struct skcipher_request * req)248 static int ecb_aes_decrypt(struct skcipher_request *req)
249 {
250 return ecb_aes_crypt(req, CPACF_DECRYPT);
251 }
252
fallback_init_skcipher(struct crypto_skcipher * tfm)253 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
254 {
255 const char *name = crypto_tfm_alg_name(&tfm->base);
256 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
257
258 sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
259 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
260
261 if (IS_ERR(sctx->fallback.skcipher)) {
262 pr_err("Allocating AES fallback algorithm %s failed\n",
263 name);
264 return PTR_ERR(sctx->fallback.skcipher);
265 }
266
267 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
268 crypto_skcipher_reqsize(sctx->fallback.skcipher));
269 return 0;
270 }
271
fallback_exit_skcipher(struct crypto_skcipher * tfm)272 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
273 {
274 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
275
276 crypto_free_skcipher(sctx->fallback.skcipher);
277 }
278
279 static struct skcipher_alg ecb_aes_alg = {
280 .base.cra_name = "ecb(aes)",
281 .base.cra_driver_name = "ecb-aes-s390",
282 .base.cra_priority = 401, /* combo: aes + ecb + 1 */
283 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
284 .base.cra_blocksize = AES_BLOCK_SIZE,
285 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
286 .base.cra_module = THIS_MODULE,
287 .init = fallback_init_skcipher,
288 .exit = fallback_exit_skcipher,
289 .min_keysize = AES_MIN_KEY_SIZE,
290 .max_keysize = AES_MAX_KEY_SIZE,
291 .setkey = ecb_aes_set_key,
292 .encrypt = ecb_aes_encrypt,
293 .decrypt = ecb_aes_decrypt,
294 };
295
cbc_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)296 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
297 unsigned int key_len)
298 {
299 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
300 unsigned long fc;
301
302 /* Pick the correct function code based on the key length */
303 fc = (key_len == 16) ? CPACF_KMC_AES_128 :
304 (key_len == 24) ? CPACF_KMC_AES_192 :
305 (key_len == 32) ? CPACF_KMC_AES_256 : 0;
306
307 /* Check if the function code is available */
308 sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
309 if (!sctx->fc)
310 return setkey_fallback_skcipher(tfm, in_key, key_len);
311
312 sctx->key_len = key_len;
313 memcpy(sctx->key, in_key, key_len);
314 return 0;
315 }
316
cbc_aes_crypt(struct skcipher_request * req,unsigned long modifier)317 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
318 {
319 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
320 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
321 struct skcipher_walk walk;
322 unsigned int nbytes, n;
323 int ret;
324 struct {
325 u8 iv[AES_BLOCK_SIZE];
326 u8 key[AES_MAX_KEY_SIZE];
327 } param;
328
329 if (unlikely(!sctx->fc))
330 return fallback_skcipher_crypt(sctx, req, modifier);
331
332 ret = skcipher_walk_virt(&walk, req, false);
333 if (ret)
334 return ret;
335 memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
336 memcpy(param.key, sctx->key, sctx->key_len);
337 while ((nbytes = walk.nbytes) != 0) {
338 /* only use complete blocks */
339 n = nbytes & ~(AES_BLOCK_SIZE - 1);
340 cpacf_kmc(sctx->fc | modifier, ¶m,
341 walk.dst.virt.addr, walk.src.virt.addr, n);
342 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
343 ret = skcipher_walk_done(&walk, nbytes - n);
344 }
345 memzero_explicit(¶m, sizeof(param));
346 return ret;
347 }
348
cbc_aes_encrypt(struct skcipher_request * req)349 static int cbc_aes_encrypt(struct skcipher_request *req)
350 {
351 return cbc_aes_crypt(req, 0);
352 }
353
cbc_aes_decrypt(struct skcipher_request * req)354 static int cbc_aes_decrypt(struct skcipher_request *req)
355 {
356 return cbc_aes_crypt(req, CPACF_DECRYPT);
357 }
358
359 static struct skcipher_alg cbc_aes_alg = {
360 .base.cra_name = "cbc(aes)",
361 .base.cra_driver_name = "cbc-aes-s390",
362 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
363 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
364 .base.cra_blocksize = AES_BLOCK_SIZE,
365 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
366 .base.cra_module = THIS_MODULE,
367 .init = fallback_init_skcipher,
368 .exit = fallback_exit_skcipher,
369 .min_keysize = AES_MIN_KEY_SIZE,
370 .max_keysize = AES_MAX_KEY_SIZE,
371 .ivsize = AES_BLOCK_SIZE,
372 .setkey = cbc_aes_set_key,
373 .encrypt = cbc_aes_encrypt,
374 .decrypt = cbc_aes_decrypt,
375 };
376
xts_fallback_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)377 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
378 unsigned int len)
379 {
380 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
381
382 crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
383 crypto_skcipher_set_flags(xts_ctx->fallback,
384 crypto_skcipher_get_flags(tfm) &
385 CRYPTO_TFM_REQ_MASK);
386 return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
387 }
388
xts_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)389 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
390 unsigned int key_len)
391 {
392 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
393 unsigned long fc;
394 int err;
395
396 err = xts_fallback_setkey(tfm, in_key, key_len);
397 if (err)
398 return err;
399
400 /* In fips mode only 128 bit or 256 bit keys are valid */
401 if (fips_enabled && key_len != 32 && key_len != 64)
402 return -EINVAL;
403
404 /* Pick the correct function code based on the key length */
405 fc = (key_len == 32) ? CPACF_KM_XTS_128 :
406 (key_len == 64) ? CPACF_KM_XTS_256 : 0;
407
408 /* Check if the function code is available */
409 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
410 if (!xts_ctx->fc)
411 return 0;
412
413 /* Split the XTS key into the two subkeys */
414 key_len = key_len / 2;
415 xts_ctx->key_len = key_len;
416 memcpy(xts_ctx->key, in_key, key_len);
417 memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
418 return 0;
419 }
420
xts_aes_crypt(struct skcipher_request * req,unsigned long modifier)421 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
422 {
423 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
424 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
425 struct skcipher_walk walk;
426 unsigned int offset, nbytes, n;
427 int ret;
428 struct {
429 u8 key[32];
430 u8 tweak[16];
431 u8 block[16];
432 u8 bit[16];
433 u8 xts[16];
434 } pcc_param;
435 struct {
436 u8 key[32];
437 u8 init[16];
438 } xts_param;
439
440 if (req->cryptlen < AES_BLOCK_SIZE)
441 return -EINVAL;
442
443 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
444 struct skcipher_request *subreq = skcipher_request_ctx(req);
445
446 *subreq = *req;
447 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
448 return (modifier & CPACF_DECRYPT) ?
449 crypto_skcipher_decrypt(subreq) :
450 crypto_skcipher_encrypt(subreq);
451 }
452
453 ret = skcipher_walk_virt(&walk, req, false);
454 if (ret)
455 return ret;
456 offset = xts_ctx->key_len & 0x10;
457 memset(pcc_param.block, 0, sizeof(pcc_param.block));
458 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
459 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
460 memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
461 memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
462 cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
463
464 memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
465 memcpy(xts_param.init, pcc_param.xts, 16);
466
467 while ((nbytes = walk.nbytes) != 0) {
468 /* only use complete blocks */
469 n = nbytes & ~(AES_BLOCK_SIZE - 1);
470 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
471 walk.dst.virt.addr, walk.src.virt.addr, n);
472 ret = skcipher_walk_done(&walk, nbytes - n);
473 }
474 memzero_explicit(&pcc_param, sizeof(pcc_param));
475 memzero_explicit(&xts_param, sizeof(xts_param));
476 return ret;
477 }
478
xts_aes_encrypt(struct skcipher_request * req)479 static int xts_aes_encrypt(struct skcipher_request *req)
480 {
481 return xts_aes_crypt(req, 0);
482 }
483
xts_aes_decrypt(struct skcipher_request * req)484 static int xts_aes_decrypt(struct skcipher_request *req)
485 {
486 return xts_aes_crypt(req, CPACF_DECRYPT);
487 }
488
xts_fallback_init(struct crypto_skcipher * tfm)489 static int xts_fallback_init(struct crypto_skcipher *tfm)
490 {
491 const char *name = crypto_tfm_alg_name(&tfm->base);
492 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
493
494 xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
495 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
496
497 if (IS_ERR(xts_ctx->fallback)) {
498 pr_err("Allocating XTS fallback algorithm %s failed\n",
499 name);
500 return PTR_ERR(xts_ctx->fallback);
501 }
502 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
503 crypto_skcipher_reqsize(xts_ctx->fallback));
504 return 0;
505 }
506
xts_fallback_exit(struct crypto_skcipher * tfm)507 static void xts_fallback_exit(struct crypto_skcipher *tfm)
508 {
509 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
510
511 crypto_free_skcipher(xts_ctx->fallback);
512 }
513
514 static struct skcipher_alg xts_aes_alg = {
515 .base.cra_name = "xts(aes)",
516 .base.cra_driver_name = "xts-aes-s390",
517 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
518 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
519 .base.cra_blocksize = AES_BLOCK_SIZE,
520 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
521 .base.cra_module = THIS_MODULE,
522 .init = xts_fallback_init,
523 .exit = xts_fallback_exit,
524 .min_keysize = 2 * AES_MIN_KEY_SIZE,
525 .max_keysize = 2 * AES_MAX_KEY_SIZE,
526 .ivsize = AES_BLOCK_SIZE,
527 .setkey = xts_aes_set_key,
528 .encrypt = xts_aes_encrypt,
529 .decrypt = xts_aes_decrypt,
530 };
531
ctr_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)532 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
533 unsigned int key_len)
534 {
535 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
536 unsigned long fc;
537
538 /* Pick the correct function code based on the key length */
539 fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
540 (key_len == 24) ? CPACF_KMCTR_AES_192 :
541 (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
542
543 /* Check if the function code is available */
544 sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
545 if (!sctx->fc)
546 return setkey_fallback_skcipher(tfm, in_key, key_len);
547
548 sctx->key_len = key_len;
549 memcpy(sctx->key, in_key, key_len);
550 return 0;
551 }
552
__ctrblk_init(u8 * ctrptr,u8 * iv,unsigned int nbytes)553 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
554 {
555 unsigned int i, n;
556
557 /* only use complete blocks, max. PAGE_SIZE */
558 memcpy(ctrptr, iv, AES_BLOCK_SIZE);
559 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
560 for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
561 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
562 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
563 ctrptr += AES_BLOCK_SIZE;
564 }
565 return n;
566 }
567
ctr_aes_crypt(struct skcipher_request * req)568 static int ctr_aes_crypt(struct skcipher_request *req)
569 {
570 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
571 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
572 u8 buf[AES_BLOCK_SIZE], *ctrptr;
573 struct skcipher_walk walk;
574 unsigned int n, nbytes;
575 int ret, locked;
576
577 if (unlikely(!sctx->fc))
578 return fallback_skcipher_crypt(sctx, req, 0);
579
580 locked = mutex_trylock(&ctrblk_lock);
581
582 ret = skcipher_walk_virt(&walk, req, false);
583 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
584 n = AES_BLOCK_SIZE;
585
586 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
587 n = __ctrblk_init(ctrblk, walk.iv, nbytes);
588 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
589 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
590 walk.src.virt.addr, n, ctrptr);
591 if (ctrptr == ctrblk)
592 memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
593 AES_BLOCK_SIZE);
594 crypto_inc(walk.iv, AES_BLOCK_SIZE);
595 ret = skcipher_walk_done(&walk, nbytes - n);
596 }
597 if (locked)
598 mutex_unlock(&ctrblk_lock);
599 /*
600 * final block may be < AES_BLOCK_SIZE, copy only nbytes
601 */
602 if (nbytes) {
603 cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr,
604 AES_BLOCK_SIZE, walk.iv);
605 memcpy(walk.dst.virt.addr, buf, nbytes);
606 crypto_inc(walk.iv, AES_BLOCK_SIZE);
607 ret = skcipher_walk_done(&walk, 0);
608 }
609
610 return ret;
611 }
612
613 static struct skcipher_alg ctr_aes_alg = {
614 .base.cra_name = "ctr(aes)",
615 .base.cra_driver_name = "ctr-aes-s390",
616 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
617 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
618 .base.cra_blocksize = 1,
619 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
620 .base.cra_module = THIS_MODULE,
621 .init = fallback_init_skcipher,
622 .exit = fallback_exit_skcipher,
623 .min_keysize = AES_MIN_KEY_SIZE,
624 .max_keysize = AES_MAX_KEY_SIZE,
625 .ivsize = AES_BLOCK_SIZE,
626 .setkey = ctr_aes_set_key,
627 .encrypt = ctr_aes_crypt,
628 .decrypt = ctr_aes_crypt,
629 .chunksize = AES_BLOCK_SIZE,
630 };
631
gcm_aes_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)632 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
633 unsigned int keylen)
634 {
635 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
636
637 switch (keylen) {
638 case AES_KEYSIZE_128:
639 ctx->fc = CPACF_KMA_GCM_AES_128;
640 break;
641 case AES_KEYSIZE_192:
642 ctx->fc = CPACF_KMA_GCM_AES_192;
643 break;
644 case AES_KEYSIZE_256:
645 ctx->fc = CPACF_KMA_GCM_AES_256;
646 break;
647 default:
648 return -EINVAL;
649 }
650
651 memcpy(ctx->key, key, keylen);
652 ctx->key_len = keylen;
653 return 0;
654 }
655
gcm_aes_setauthsize(struct crypto_aead * tfm,unsigned int authsize)656 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
657 {
658 switch (authsize) {
659 case 4:
660 case 8:
661 case 12:
662 case 13:
663 case 14:
664 case 15:
665 case 16:
666 break;
667 default:
668 return -EINVAL;
669 }
670
671 return 0;
672 }
673
gcm_walk_start(struct gcm_sg_walk * gw,struct scatterlist * sg,unsigned int len)674 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
675 unsigned int len)
676 {
677 memset(gw, 0, sizeof(*gw));
678 gw->walk_bytes_remain = len;
679 scatterwalk_start(&gw->walk, sg);
680 }
681
_gcm_sg_clamp_and_map(struct gcm_sg_walk * gw)682 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
683 {
684 struct scatterlist *nextsg;
685
686 gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
687 while (!gw->walk_bytes) {
688 nextsg = sg_next(gw->walk.sg);
689 if (!nextsg)
690 return 0;
691 scatterwalk_start(&gw->walk, nextsg);
692 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
693 gw->walk_bytes_remain);
694 }
695 gw->walk_ptr = scatterwalk_map(&gw->walk);
696 return gw->walk_bytes;
697 }
698
_gcm_sg_unmap_and_advance(struct gcm_sg_walk * gw,unsigned int nbytes)699 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
700 unsigned int nbytes)
701 {
702 gw->walk_bytes_remain -= nbytes;
703 scatterwalk_unmap(gw->walk_ptr);
704 scatterwalk_advance(&gw->walk, nbytes);
705 scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
706 gw->walk_ptr = NULL;
707 }
708
gcm_in_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)709 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
710 {
711 int n;
712
713 if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
714 gw->ptr = gw->buf;
715 gw->nbytes = gw->buf_bytes;
716 goto out;
717 }
718
719 if (gw->walk_bytes_remain == 0) {
720 gw->ptr = NULL;
721 gw->nbytes = 0;
722 goto out;
723 }
724
725 if (!_gcm_sg_clamp_and_map(gw)) {
726 gw->ptr = NULL;
727 gw->nbytes = 0;
728 goto out;
729 }
730
731 if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
732 gw->ptr = gw->walk_ptr;
733 gw->nbytes = gw->walk_bytes;
734 goto out;
735 }
736
737 while (1) {
738 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
739 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
740 gw->buf_bytes += n;
741 _gcm_sg_unmap_and_advance(gw, n);
742 if (gw->buf_bytes >= minbytesneeded) {
743 gw->ptr = gw->buf;
744 gw->nbytes = gw->buf_bytes;
745 goto out;
746 }
747 if (!_gcm_sg_clamp_and_map(gw)) {
748 gw->ptr = NULL;
749 gw->nbytes = 0;
750 goto out;
751 }
752 }
753
754 out:
755 return gw->nbytes;
756 }
757
gcm_out_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)758 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
759 {
760 if (gw->walk_bytes_remain == 0) {
761 gw->ptr = NULL;
762 gw->nbytes = 0;
763 goto out;
764 }
765
766 if (!_gcm_sg_clamp_and_map(gw)) {
767 gw->ptr = NULL;
768 gw->nbytes = 0;
769 goto out;
770 }
771
772 if (gw->walk_bytes >= minbytesneeded) {
773 gw->ptr = gw->walk_ptr;
774 gw->nbytes = gw->walk_bytes;
775 goto out;
776 }
777
778 scatterwalk_unmap(gw->walk_ptr);
779 gw->walk_ptr = NULL;
780
781 gw->ptr = gw->buf;
782 gw->nbytes = sizeof(gw->buf);
783
784 out:
785 return gw->nbytes;
786 }
787
gcm_in_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)788 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
789 {
790 if (gw->ptr == NULL)
791 return 0;
792
793 if (gw->ptr == gw->buf) {
794 int n = gw->buf_bytes - bytesdone;
795 if (n > 0) {
796 memmove(gw->buf, gw->buf + bytesdone, n);
797 gw->buf_bytes = n;
798 } else
799 gw->buf_bytes = 0;
800 } else
801 _gcm_sg_unmap_and_advance(gw, bytesdone);
802
803 return bytesdone;
804 }
805
gcm_out_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)806 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
807 {
808 int i, n;
809
810 if (gw->ptr == NULL)
811 return 0;
812
813 if (gw->ptr == gw->buf) {
814 for (i = 0; i < bytesdone; i += n) {
815 if (!_gcm_sg_clamp_and_map(gw))
816 return i;
817 n = min(gw->walk_bytes, bytesdone - i);
818 memcpy(gw->walk_ptr, gw->buf + i, n);
819 _gcm_sg_unmap_and_advance(gw, n);
820 }
821 } else
822 _gcm_sg_unmap_and_advance(gw, bytesdone);
823
824 return bytesdone;
825 }
826
gcm_aes_crypt(struct aead_request * req,unsigned int flags)827 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
828 {
829 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
830 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
831 unsigned int ivsize = crypto_aead_ivsize(tfm);
832 unsigned int taglen = crypto_aead_authsize(tfm);
833 unsigned int aadlen = req->assoclen;
834 unsigned int pclen = req->cryptlen;
835 int ret = 0;
836
837 unsigned int n, len, in_bytes, out_bytes,
838 min_bytes, bytes, aad_bytes, pc_bytes;
839 struct gcm_sg_walk gw_in, gw_out;
840 u8 tag[GHASH_DIGEST_SIZE];
841
842 struct {
843 u32 _[3]; /* reserved */
844 u32 cv; /* Counter Value */
845 u8 t[GHASH_DIGEST_SIZE];/* Tag */
846 u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
847 u64 taadl; /* Total AAD Length */
848 u64 tpcl; /* Total Plain-/Cipher-text Length */
849 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
850 u8 k[AES_MAX_KEY_SIZE]; /* Key */
851 } param;
852
853 /*
854 * encrypt
855 * req->src: aad||plaintext
856 * req->dst: aad||ciphertext||tag
857 * decrypt
858 * req->src: aad||ciphertext||tag
859 * req->dst: aad||plaintext, return 0 or -EBADMSG
860 * aad, plaintext and ciphertext may be empty.
861 */
862 if (flags & CPACF_DECRYPT)
863 pclen -= taglen;
864 len = aadlen + pclen;
865
866 memset(¶m, 0, sizeof(param));
867 param.cv = 1;
868 param.taadl = aadlen * 8;
869 param.tpcl = pclen * 8;
870 memcpy(param.j0, req->iv, ivsize);
871 *(u32 *)(param.j0 + ivsize) = 1;
872 memcpy(param.k, ctx->key, ctx->key_len);
873
874 gcm_walk_start(&gw_in, req->src, len);
875 gcm_walk_start(&gw_out, req->dst, len);
876
877 do {
878 min_bytes = min_t(unsigned int,
879 aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
880 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
881 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
882 bytes = min(in_bytes, out_bytes);
883
884 if (aadlen + pclen <= bytes) {
885 aad_bytes = aadlen;
886 pc_bytes = pclen;
887 flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
888 } else {
889 if (aadlen <= bytes) {
890 aad_bytes = aadlen;
891 pc_bytes = (bytes - aadlen) &
892 ~(AES_BLOCK_SIZE - 1);
893 flags |= CPACF_KMA_LAAD;
894 } else {
895 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
896 pc_bytes = 0;
897 }
898 }
899
900 if (aad_bytes > 0)
901 memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
902
903 cpacf_kma(ctx->fc | flags, ¶m,
904 gw_out.ptr + aad_bytes,
905 gw_in.ptr + aad_bytes, pc_bytes,
906 gw_in.ptr, aad_bytes);
907
908 n = aad_bytes + pc_bytes;
909 if (gcm_in_walk_done(&gw_in, n) != n)
910 return -ENOMEM;
911 if (gcm_out_walk_done(&gw_out, n) != n)
912 return -ENOMEM;
913 aadlen -= aad_bytes;
914 pclen -= pc_bytes;
915 } while (aadlen + pclen > 0);
916
917 if (flags & CPACF_DECRYPT) {
918 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
919 if (crypto_memneq(tag, param.t, taglen))
920 ret = -EBADMSG;
921 } else
922 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
923
924 memzero_explicit(¶m, sizeof(param));
925 return ret;
926 }
927
gcm_aes_encrypt(struct aead_request * req)928 static int gcm_aes_encrypt(struct aead_request *req)
929 {
930 return gcm_aes_crypt(req, CPACF_ENCRYPT);
931 }
932
gcm_aes_decrypt(struct aead_request * req)933 static int gcm_aes_decrypt(struct aead_request *req)
934 {
935 return gcm_aes_crypt(req, CPACF_DECRYPT);
936 }
937
938 static struct aead_alg gcm_aes_aead = {
939 .setkey = gcm_aes_setkey,
940 .setauthsize = gcm_aes_setauthsize,
941 .encrypt = gcm_aes_encrypt,
942 .decrypt = gcm_aes_decrypt,
943
944 .ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
945 .maxauthsize = GHASH_DIGEST_SIZE,
946 .chunksize = AES_BLOCK_SIZE,
947
948 .base = {
949 .cra_blocksize = 1,
950 .cra_ctxsize = sizeof(struct s390_aes_ctx),
951 .cra_priority = 900,
952 .cra_name = "gcm(aes)",
953 .cra_driver_name = "gcm-aes-s390",
954 .cra_module = THIS_MODULE,
955 },
956 };
957
958 static struct crypto_alg *aes_s390_alg;
959 static struct skcipher_alg *aes_s390_skcipher_algs[4];
960 static int aes_s390_skciphers_num;
961 static struct aead_alg *aes_s390_aead_alg;
962
aes_s390_register_skcipher(struct skcipher_alg * alg)963 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
964 {
965 int ret;
966
967 ret = crypto_register_skcipher(alg);
968 if (!ret)
969 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
970 return ret;
971 }
972
aes_s390_fini(void)973 static void aes_s390_fini(void)
974 {
975 if (aes_s390_alg)
976 crypto_unregister_alg(aes_s390_alg);
977 while (aes_s390_skciphers_num--)
978 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
979 if (ctrblk)
980 free_page((unsigned long) ctrblk);
981
982 if (aes_s390_aead_alg)
983 crypto_unregister_aead(aes_s390_aead_alg);
984 }
985
aes_s390_init(void)986 static int __init aes_s390_init(void)
987 {
988 int ret;
989
990 /* Query available functions for KM, KMC, KMCTR and KMA */
991 cpacf_query(CPACF_KM, &km_functions);
992 cpacf_query(CPACF_KMC, &kmc_functions);
993 cpacf_query(CPACF_KMCTR, &kmctr_functions);
994 cpacf_query(CPACF_KMA, &kma_functions);
995
996 if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
997 cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
998 cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
999 ret = crypto_register_alg(&aes_alg);
1000 if (ret)
1001 goto out_err;
1002 aes_s390_alg = &aes_alg;
1003 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1004 if (ret)
1005 goto out_err;
1006 }
1007
1008 if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1009 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1010 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1011 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1012 if (ret)
1013 goto out_err;
1014 }
1015
1016 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1017 cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1018 ret = aes_s390_register_skcipher(&xts_aes_alg);
1019 if (ret)
1020 goto out_err;
1021 }
1022
1023 if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1024 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1025 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1026 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1027 if (!ctrblk) {
1028 ret = -ENOMEM;
1029 goto out_err;
1030 }
1031 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1032 if (ret)
1033 goto out_err;
1034 }
1035
1036 if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1037 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1038 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1039 ret = crypto_register_aead(&gcm_aes_aead);
1040 if (ret)
1041 goto out_err;
1042 aes_s390_aead_alg = &gcm_aes_aead;
1043 }
1044
1045 return 0;
1046 out_err:
1047 aes_s390_fini();
1048 return ret;
1049 }
1050
1051 module_cpu_feature_match(MSA, aes_s390_init);
1052 module_exit(aes_s390_fini);
1053
1054 MODULE_ALIAS_CRYPTO("aes-all");
1055
1056 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1057 MODULE_LICENSE("GPL");
1058