1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #ifdef CONFIG_X86_64
11 static bool __read_mostly tdp_mmu_enabled = false;
12 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
13 #endif
14
is_tdp_mmu_enabled(void)15 static bool is_tdp_mmu_enabled(void)
16 {
17 #ifdef CONFIG_X86_64
18 return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
19 #else
20 return false;
21 #endif /* CONFIG_X86_64 */
22 }
23
24 /* Initializes the TDP MMU for the VM, if enabled. */
kvm_mmu_init_tdp_mmu(struct kvm * kvm)25 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
26 {
27 if (!is_tdp_mmu_enabled())
28 return;
29
30 /* This should not be changed for the lifetime of the VM. */
31 kvm->arch.tdp_mmu_enabled = true;
32
33 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
34 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
35 }
36
kvm_mmu_uninit_tdp_mmu(struct kvm * kvm)37 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
38 {
39 if (!kvm->arch.tdp_mmu_enabled)
40 return;
41
42 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
43 }
44
tdp_mmu_put_root(struct kvm * kvm,struct kvm_mmu_page * root)45 static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
46 {
47 if (kvm_mmu_put_root(kvm, root))
48 kvm_tdp_mmu_free_root(kvm, root);
49 }
50
tdp_mmu_next_root_valid(struct kvm * kvm,struct kvm_mmu_page * root)51 static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
52 struct kvm_mmu_page *root)
53 {
54 lockdep_assert_held(&kvm->mmu_lock);
55
56 if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
57 return false;
58
59 kvm_mmu_get_root(kvm, root);
60 return true;
61
62 }
63
tdp_mmu_next_root(struct kvm * kvm,struct kvm_mmu_page * root)64 static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
65 struct kvm_mmu_page *root)
66 {
67 struct kvm_mmu_page *next_root;
68
69 next_root = list_next_entry(root, link);
70 tdp_mmu_put_root(kvm, root);
71 return next_root;
72 }
73
74 /*
75 * Note: this iterator gets and puts references to the roots it iterates over.
76 * This makes it safe to release the MMU lock and yield within the loop, but
77 * if exiting the loop early, the caller must drop the reference to the most
78 * recent root. (Unless keeping a live reference is desirable.)
79 */
80 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \
81 for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots, \
82 typeof(*_root), link); \
83 tdp_mmu_next_root_valid(_kvm, _root); \
84 _root = tdp_mmu_next_root(_kvm, _root))
85
86 #define for_each_tdp_mmu_root(_kvm, _root) \
87 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
88
is_tdp_mmu_root(struct kvm * kvm,hpa_t hpa)89 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
90 {
91 struct kvm_mmu_page *sp;
92
93 if (!kvm->arch.tdp_mmu_enabled)
94 return false;
95 if (WARN_ON(!VALID_PAGE(hpa)))
96 return false;
97
98 sp = to_shadow_page(hpa);
99 if (WARN_ON(!sp))
100 return false;
101
102 return sp->tdp_mmu_page && sp->root_count;
103 }
104
105 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
106 gfn_t start, gfn_t end, bool can_yield, bool flush);
107
kvm_tdp_mmu_free_root(struct kvm * kvm,struct kvm_mmu_page * root)108 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
109 {
110 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
111
112 lockdep_assert_held(&kvm->mmu_lock);
113
114 WARN_ON(root->root_count);
115 WARN_ON(!root->tdp_mmu_page);
116
117 list_del(&root->link);
118
119 zap_gfn_range(kvm, root, 0, max_gfn, false, false);
120
121 free_page((unsigned long)root->spt);
122 kmem_cache_free(mmu_page_header_cache, root);
123 }
124
page_role_for_level(struct kvm_vcpu * vcpu,int level)125 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
126 int level)
127 {
128 union kvm_mmu_page_role role;
129
130 role = vcpu->arch.mmu->mmu_role.base;
131 role.level = level;
132 role.direct = true;
133 role.gpte_is_8_bytes = true;
134 role.access = ACC_ALL;
135
136 return role;
137 }
138
alloc_tdp_mmu_page(struct kvm_vcpu * vcpu,gfn_t gfn,int level)139 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
140 int level)
141 {
142 struct kvm_mmu_page *sp;
143
144 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
145 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
146 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
147
148 sp->role.word = page_role_for_level(vcpu, level).word;
149 sp->gfn = gfn;
150 sp->tdp_mmu_page = true;
151
152 return sp;
153 }
154
get_tdp_mmu_vcpu_root(struct kvm_vcpu * vcpu)155 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
156 {
157 union kvm_mmu_page_role role;
158 struct kvm *kvm = vcpu->kvm;
159 struct kvm_mmu_page *root;
160
161 role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
162
163 spin_lock(&kvm->mmu_lock);
164
165 /* Check for an existing root before allocating a new one. */
166 for_each_tdp_mmu_root(kvm, root) {
167 if (root->role.word == role.word) {
168 kvm_mmu_get_root(kvm, root);
169 spin_unlock(&kvm->mmu_lock);
170 return root;
171 }
172 }
173
174 root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
175 root->root_count = 1;
176
177 list_add(&root->link, &kvm->arch.tdp_mmu_roots);
178
179 spin_unlock(&kvm->mmu_lock);
180
181 return root;
182 }
183
kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu * vcpu)184 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
185 {
186 struct kvm_mmu_page *root;
187
188 root = get_tdp_mmu_vcpu_root(vcpu);
189 if (!root)
190 return INVALID_PAGE;
191
192 return __pa(root->spt);
193 }
194
195 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
196 u64 old_spte, u64 new_spte, int level);
197
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)198 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
199 {
200 return sp->role.smm ? 1 : 0;
201 }
202
handle_changed_spte_acc_track(u64 old_spte,u64 new_spte,int level)203 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
204 {
205 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
206
207 if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
208 return;
209
210 if (is_accessed_spte(old_spte) &&
211 (!is_accessed_spte(new_spte) || pfn_changed))
212 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
213 }
214
handle_changed_spte_dirty_log(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)215 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
216 u64 old_spte, u64 new_spte, int level)
217 {
218 bool pfn_changed;
219 struct kvm_memory_slot *slot;
220
221 if (level > PG_LEVEL_4K)
222 return;
223
224 pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
225
226 if ((!is_writable_pte(old_spte) || pfn_changed) &&
227 is_writable_pte(new_spte)) {
228 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
229 mark_page_dirty_in_slot(slot, gfn);
230 }
231 }
232
233 /**
234 * handle_changed_spte - handle bookkeeping associated with an SPTE change
235 * @kvm: kvm instance
236 * @as_id: the address space of the paging structure the SPTE was a part of
237 * @gfn: the base GFN that was mapped by the SPTE
238 * @old_spte: The value of the SPTE before the change
239 * @new_spte: The value of the SPTE after the change
240 * @level: the level of the PT the SPTE is part of in the paging structure
241 *
242 * Handle bookkeeping that might result from the modification of a SPTE.
243 * This function must be called for all TDP SPTE modifications.
244 */
__handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)245 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
246 u64 old_spte, u64 new_spte, int level)
247 {
248 bool was_present = is_shadow_present_pte(old_spte);
249 bool is_present = is_shadow_present_pte(new_spte);
250 bool was_leaf = was_present && is_last_spte(old_spte, level);
251 bool is_leaf = is_present && is_last_spte(new_spte, level);
252 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
253 u64 *pt;
254 struct kvm_mmu_page *sp;
255 u64 old_child_spte;
256 int i;
257
258 WARN_ON(level > PT64_ROOT_MAX_LEVEL);
259 WARN_ON(level < PG_LEVEL_4K);
260 WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
261
262 /*
263 * If this warning were to trigger it would indicate that there was a
264 * missing MMU notifier or a race with some notifier handler.
265 * A present, leaf SPTE should never be directly replaced with another
266 * present leaf SPTE pointing to a differnt PFN. A notifier handler
267 * should be zapping the SPTE before the main MM's page table is
268 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
269 * thread before replacement.
270 */
271 if (was_leaf && is_leaf && pfn_changed) {
272 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
273 "SPTE with another present leaf SPTE mapping a\n"
274 "different PFN!\n"
275 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
276 as_id, gfn, old_spte, new_spte, level);
277
278 /*
279 * Crash the host to prevent error propagation and guest data
280 * courruption.
281 */
282 BUG();
283 }
284
285 if (old_spte == new_spte)
286 return;
287
288 /*
289 * The only times a SPTE should be changed from a non-present to
290 * non-present state is when an MMIO entry is installed/modified/
291 * removed. In that case, there is nothing to do here.
292 */
293 if (!was_present && !is_present) {
294 /*
295 * If this change does not involve a MMIO SPTE, it is
296 * unexpected. Log the change, though it should not impact the
297 * guest since both the former and current SPTEs are nonpresent.
298 */
299 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
300 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
301 "should not be replaced with another,\n"
302 "different nonpresent SPTE, unless one or both\n"
303 "are MMIO SPTEs.\n"
304 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
305 as_id, gfn, old_spte, new_spte, level);
306 return;
307 }
308
309
310 if (was_leaf && is_dirty_spte(old_spte) &&
311 (!is_dirty_spte(new_spte) || pfn_changed))
312 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
313
314 /*
315 * Recursively handle child PTs if the change removed a subtree from
316 * the paging structure.
317 */
318 if (was_present && !was_leaf && (pfn_changed || !is_present)) {
319 pt = spte_to_child_pt(old_spte, level);
320 sp = sptep_to_sp(pt);
321
322 list_del(&sp->link);
323
324 if (sp->lpage_disallowed)
325 unaccount_huge_nx_page(kvm, sp);
326
327 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
328 old_child_spte = READ_ONCE(*(pt + i));
329 WRITE_ONCE(*(pt + i), 0);
330 handle_changed_spte(kvm, as_id,
331 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
332 old_child_spte, 0, level - 1);
333 }
334
335 kvm_flush_remote_tlbs_with_address(kvm, gfn,
336 KVM_PAGES_PER_HPAGE(level));
337
338 free_page((unsigned long)pt);
339 kmem_cache_free(mmu_page_header_cache, sp);
340 }
341 }
342
handle_changed_spte(struct kvm * kvm,int as_id,gfn_t gfn,u64 old_spte,u64 new_spte,int level)343 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
344 u64 old_spte, u64 new_spte, int level)
345 {
346 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
347 handle_changed_spte_acc_track(old_spte, new_spte, level);
348 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
349 new_spte, level);
350 }
351
__tdp_mmu_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte,bool record_acc_track,bool record_dirty_log)352 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
353 u64 new_spte, bool record_acc_track,
354 bool record_dirty_log)
355 {
356 u64 *root_pt = tdp_iter_root_pt(iter);
357 struct kvm_mmu_page *root = sptep_to_sp(root_pt);
358 int as_id = kvm_mmu_page_as_id(root);
359
360 WRITE_ONCE(*iter->sptep, new_spte);
361
362 __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
363 iter->level);
364 if (record_acc_track)
365 handle_changed_spte_acc_track(iter->old_spte, new_spte,
366 iter->level);
367 if (record_dirty_log)
368 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
369 iter->old_spte, new_spte,
370 iter->level);
371 }
372
tdp_mmu_set_spte(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)373 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
374 u64 new_spte)
375 {
376 __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
377 }
378
tdp_mmu_set_spte_no_acc_track(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)379 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
380 struct tdp_iter *iter,
381 u64 new_spte)
382 {
383 __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
384 }
385
tdp_mmu_set_spte_no_dirty_log(struct kvm * kvm,struct tdp_iter * iter,u64 new_spte)386 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
387 struct tdp_iter *iter,
388 u64 new_spte)
389 {
390 __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
391 }
392
393 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
394 for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
395
396 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
397 tdp_root_for_each_pte(_iter, _root, _start, _end) \
398 if (!is_shadow_present_pte(_iter.old_spte) || \
399 !is_last_spte(_iter.old_spte, _iter.level)) \
400 continue; \
401 else
402
403 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
404 for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
405 _mmu->shadow_root_level, _start, _end)
406
407 /*
408 * Yield if the MMU lock is contended or this thread needs to return control
409 * to the scheduler.
410 *
411 * If this function should yield and flush is set, it will perform a remote
412 * TLB flush before yielding.
413 *
414 * If this function yields, it will also reset the tdp_iter's walk over the
415 * paging structure and the calling function should skip to the next
416 * iteration to allow the iterator to continue its traversal from the
417 * paging structure root.
418 *
419 * Return true if this function yielded and the iterator's traversal was reset.
420 * Return false if a yield was not needed.
421 */
tdp_mmu_iter_cond_resched(struct kvm * kvm,struct tdp_iter * iter,bool flush)422 static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
423 struct tdp_iter *iter, bool flush)
424 {
425 /* Ensure forward progress has been made before yielding. */
426 if (iter->next_last_level_gfn == iter->yielded_gfn)
427 return false;
428
429 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
430 if (flush)
431 kvm_flush_remote_tlbs(kvm);
432
433 cond_resched_lock(&kvm->mmu_lock);
434
435 WARN_ON(iter->gfn > iter->next_last_level_gfn);
436
437 tdp_iter_start(iter, iter->pt_path[iter->root_level - 1],
438 iter->root_level, iter->min_level,
439 iter->next_last_level_gfn);
440
441 return true;
442 }
443
444 return false;
445 }
446
447 /*
448 * Tears down the mappings for the range of gfns, [start, end), and frees the
449 * non-root pages mapping GFNs strictly within that range. Returns true if
450 * SPTEs have been cleared and a TLB flush is needed before releasing the
451 * MMU lock.
452 * If can_yield is true, will release the MMU lock and reschedule if the
453 * scheduler needs the CPU or there is contention on the MMU lock. If this
454 * function cannot yield, it will not release the MMU lock or reschedule and
455 * the caller must ensure it does not supply too large a GFN range, or the
456 * operation can cause a soft lockup. Note, in some use cases a flush may be
457 * required by prior actions. Ensure the pending flush is performed prior to
458 * yielding.
459 */
zap_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,bool can_yield,bool flush)460 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
461 gfn_t start, gfn_t end, bool can_yield, bool flush)
462 {
463 struct tdp_iter iter;
464
465 tdp_root_for_each_pte(iter, root, start, end) {
466 if (can_yield &&
467 tdp_mmu_iter_cond_resched(kvm, &iter, flush)) {
468 flush = false;
469 continue;
470 }
471
472 if (!is_shadow_present_pte(iter.old_spte))
473 continue;
474
475 /*
476 * If this is a non-last-level SPTE that covers a larger range
477 * than should be zapped, continue, and zap the mappings at a
478 * lower level.
479 */
480 if ((iter.gfn < start ||
481 iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
482 !is_last_spte(iter.old_spte, iter.level))
483 continue;
484
485 tdp_mmu_set_spte(kvm, &iter, 0);
486 flush = true;
487 }
488
489 return flush;
490 }
491
492 /*
493 * Tears down the mappings for the range of gfns, [start, end), and frees the
494 * non-root pages mapping GFNs strictly within that range. Returns true if
495 * SPTEs have been cleared and a TLB flush is needed before releasing the
496 * MMU lock.
497 */
__kvm_tdp_mmu_zap_gfn_range(struct kvm * kvm,gfn_t start,gfn_t end,bool can_yield)498 bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end,
499 bool can_yield)
500 {
501 struct kvm_mmu_page *root;
502 bool flush = false;
503
504 for_each_tdp_mmu_root_yield_safe(kvm, root)
505 flush = zap_gfn_range(kvm, root, start, end, can_yield, flush);
506
507 return flush;
508 }
509
kvm_tdp_mmu_zap_all(struct kvm * kvm)510 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
511 {
512 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
513 bool flush;
514
515 flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
516 if (flush)
517 kvm_flush_remote_tlbs(kvm);
518 }
519
520 /*
521 * Installs a last-level SPTE to handle a TDP page fault.
522 * (NPT/EPT violation/misconfiguration)
523 */
tdp_mmu_map_handle_target_level(struct kvm_vcpu * vcpu,int write,int map_writable,struct tdp_iter * iter,kvm_pfn_t pfn,bool prefault)524 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
525 int map_writable,
526 struct tdp_iter *iter,
527 kvm_pfn_t pfn, bool prefault)
528 {
529 u64 new_spte;
530 int ret = RET_PF_FIXED;
531 int make_spte_ret = 0;
532
533 if (unlikely(is_noslot_pfn(pfn))) {
534 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
535 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
536 } else
537 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
538 pfn, iter->old_spte, prefault, true,
539 map_writable, !shadow_accessed_mask,
540 &new_spte);
541
542 if (new_spte == iter->old_spte)
543 ret = RET_PF_SPURIOUS;
544 else
545 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
546
547 /*
548 * If the page fault was caused by a write but the page is write
549 * protected, emulation is needed. If the emulation was skipped,
550 * the vCPU would have the same fault again.
551 */
552 if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
553 if (write)
554 ret = RET_PF_EMULATE;
555 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
556 }
557
558 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
559 if (unlikely(is_mmio_spte(new_spte)))
560 ret = RET_PF_EMULATE;
561
562 trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
563 if (!prefault)
564 vcpu->stat.pf_fixed++;
565
566 return ret;
567 }
568
569 /*
570 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
571 * page tables and SPTEs to translate the faulting guest physical address.
572 */
kvm_tdp_mmu_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault)573 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
574 int map_writable, int max_level, kvm_pfn_t pfn,
575 bool prefault)
576 {
577 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
578 bool write = error_code & PFERR_WRITE_MASK;
579 bool exec = error_code & PFERR_FETCH_MASK;
580 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
581 struct kvm_mmu *mmu = vcpu->arch.mmu;
582 struct tdp_iter iter;
583 struct kvm_mmu_page *sp;
584 u64 *child_pt;
585 u64 new_spte;
586 int ret;
587 gfn_t gfn = gpa >> PAGE_SHIFT;
588 int level;
589 int req_level;
590
591 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
592 return RET_PF_RETRY;
593 if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
594 return RET_PF_RETRY;
595
596 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
597 huge_page_disallowed, &req_level);
598
599 trace_kvm_mmu_spte_requested(gpa, level, pfn);
600 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
601 if (nx_huge_page_workaround_enabled)
602 disallowed_hugepage_adjust(iter.old_spte, gfn,
603 iter.level, &pfn, &level);
604
605 if (iter.level == level)
606 break;
607
608 /*
609 * If there is an SPTE mapping a large page at a higher level
610 * than the target, that SPTE must be cleared and replaced
611 * with a non-leaf SPTE.
612 */
613 if (is_shadow_present_pte(iter.old_spte) &&
614 is_large_pte(iter.old_spte)) {
615 tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
616
617 kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
618 KVM_PAGES_PER_HPAGE(iter.level));
619
620 /*
621 * The iter must explicitly re-read the spte here
622 * because the new value informs the !present
623 * path below.
624 */
625 iter.old_spte = READ_ONCE(*iter.sptep);
626 }
627
628 if (!is_shadow_present_pte(iter.old_spte)) {
629 sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
630 list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
631 child_pt = sp->spt;
632 clear_page(child_pt);
633 new_spte = make_nonleaf_spte(child_pt,
634 !shadow_accessed_mask);
635
636 trace_kvm_mmu_get_page(sp, true);
637 if (huge_page_disallowed && req_level >= iter.level)
638 account_huge_nx_page(vcpu->kvm, sp);
639
640 tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
641 }
642 }
643
644 if (WARN_ON(iter.level != level))
645 return RET_PF_RETRY;
646
647 ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
648 pfn, prefault);
649
650 return ret;
651 }
652
kvm_tdp_mmu_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long data))653 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
654 unsigned long end, unsigned long data,
655 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
656 struct kvm_mmu_page *root, gfn_t start,
657 gfn_t end, unsigned long data))
658 {
659 struct kvm_memslots *slots;
660 struct kvm_memory_slot *memslot;
661 struct kvm_mmu_page *root;
662 int ret = 0;
663 int as_id;
664
665 for_each_tdp_mmu_root_yield_safe(kvm, root) {
666 as_id = kvm_mmu_page_as_id(root);
667 slots = __kvm_memslots(kvm, as_id);
668 kvm_for_each_memslot(memslot, slots) {
669 unsigned long hva_start, hva_end;
670 gfn_t gfn_start, gfn_end;
671
672 hva_start = max(start, memslot->userspace_addr);
673 hva_end = min(end, memslot->userspace_addr +
674 (memslot->npages << PAGE_SHIFT));
675 if (hva_start >= hva_end)
676 continue;
677 /*
678 * {gfn(page) | page intersects with [hva_start, hva_end)} =
679 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
680 */
681 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
682 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
683
684 ret |= handler(kvm, memslot, root, gfn_start,
685 gfn_end, data);
686 }
687 }
688
689 return ret;
690 }
691
zap_gfn_range_hva_wrapper(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long unused)692 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
693 struct kvm_memory_slot *slot,
694 struct kvm_mmu_page *root, gfn_t start,
695 gfn_t end, unsigned long unused)
696 {
697 return zap_gfn_range(kvm, root, start, end, false, false);
698 }
699
kvm_tdp_mmu_zap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)700 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
701 unsigned long end)
702 {
703 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
704 zap_gfn_range_hva_wrapper);
705 }
706
707 /*
708 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
709 * if any of the GFNs in the range have been accessed.
710 */
age_gfn_range(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t start,gfn_t end,unsigned long unused)711 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
712 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
713 unsigned long unused)
714 {
715 struct tdp_iter iter;
716 int young = 0;
717 u64 new_spte = 0;
718
719 tdp_root_for_each_leaf_pte(iter, root, start, end) {
720 /*
721 * If we have a non-accessed entry we don't need to change the
722 * pte.
723 */
724 if (!is_accessed_spte(iter.old_spte))
725 continue;
726
727 new_spte = iter.old_spte;
728
729 if (spte_ad_enabled(new_spte)) {
730 clear_bit((ffs(shadow_accessed_mask) - 1),
731 (unsigned long *)&new_spte);
732 } else {
733 /*
734 * Capture the dirty status of the page, so that it doesn't get
735 * lost when the SPTE is marked for access tracking.
736 */
737 if (is_writable_pte(new_spte))
738 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
739
740 new_spte = mark_spte_for_access_track(new_spte);
741 }
742 new_spte &= ~shadow_dirty_mask;
743
744 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
745 young = 1;
746 }
747
748 return young;
749 }
750
kvm_tdp_mmu_age_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)751 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
752 unsigned long end)
753 {
754 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
755 age_gfn_range);
756 }
757
test_age_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t gfn,gfn_t unused,unsigned long unused2)758 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
759 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
760 unsigned long unused2)
761 {
762 struct tdp_iter iter;
763
764 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
765 if (is_accessed_spte(iter.old_spte))
766 return 1;
767
768 return 0;
769 }
770
kvm_tdp_mmu_test_age_hva(struct kvm * kvm,unsigned long hva)771 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
772 {
773 return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
774 test_age_gfn);
775 }
776
777 /*
778 * Handle the changed_pte MMU notifier for the TDP MMU.
779 * data is a pointer to the new pte_t mapping the HVA specified by the MMU
780 * notifier.
781 * Returns non-zero if a flush is needed before releasing the MMU lock.
782 */
set_tdp_spte(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_mmu_page * root,gfn_t gfn,gfn_t unused,unsigned long data)783 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
784 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
785 unsigned long data)
786 {
787 struct tdp_iter iter;
788 pte_t *ptep = (pte_t *)data;
789 kvm_pfn_t new_pfn;
790 u64 new_spte;
791 int need_flush = 0;
792
793 WARN_ON(pte_huge(*ptep));
794
795 new_pfn = pte_pfn(*ptep);
796
797 tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
798 if (iter.level != PG_LEVEL_4K)
799 continue;
800
801 if (!is_shadow_present_pte(iter.old_spte))
802 break;
803
804 tdp_mmu_set_spte(kvm, &iter, 0);
805
806 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
807
808 if (!pte_write(*ptep)) {
809 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
810 iter.old_spte, new_pfn);
811
812 tdp_mmu_set_spte(kvm, &iter, new_spte);
813 }
814
815 need_flush = 1;
816 }
817
818 if (need_flush)
819 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
820
821 return 0;
822 }
823
kvm_tdp_mmu_set_spte_hva(struct kvm * kvm,unsigned long address,pte_t * host_ptep)824 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
825 pte_t *host_ptep)
826 {
827 return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
828 (unsigned long)host_ptep,
829 set_tdp_spte);
830 }
831
832 /*
833 * Remove write access from all the SPTEs mapping GFNs [start, end). If
834 * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
835 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
836 */
wrprot_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end,int min_level)837 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
838 gfn_t start, gfn_t end, int min_level)
839 {
840 struct tdp_iter iter;
841 u64 new_spte;
842 bool spte_set = false;
843
844 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
845
846 for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
847 min_level, start, end) {
848 if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
849 continue;
850
851 if (!is_shadow_present_pte(iter.old_spte) ||
852 !is_last_spte(iter.old_spte, iter.level))
853 continue;
854
855 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
856
857 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
858 spte_set = true;
859 }
860 return spte_set;
861 }
862
863 /*
864 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
865 * only affect leaf SPTEs down to min_level.
866 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
867 */
kvm_tdp_mmu_wrprot_slot(struct kvm * kvm,struct kvm_memory_slot * slot,int min_level)868 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
869 int min_level)
870 {
871 struct kvm_mmu_page *root;
872 int root_as_id;
873 bool spte_set = false;
874
875 for_each_tdp_mmu_root_yield_safe(kvm, root) {
876 root_as_id = kvm_mmu_page_as_id(root);
877 if (root_as_id != slot->as_id)
878 continue;
879
880 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
881 slot->base_gfn + slot->npages, min_level);
882 }
883
884 return spte_set;
885 }
886
887 /*
888 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
889 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
890 * If AD bits are not enabled, this will require clearing the writable bit on
891 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
892 * be flushed.
893 */
clear_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)894 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
895 gfn_t start, gfn_t end)
896 {
897 struct tdp_iter iter;
898 u64 new_spte;
899 bool spte_set = false;
900
901 tdp_root_for_each_leaf_pte(iter, root, start, end) {
902 if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
903 continue;
904
905 if (!is_shadow_present_pte(iter.old_spte))
906 continue;
907
908 if (spte_ad_need_write_protect(iter.old_spte)) {
909 if (is_writable_pte(iter.old_spte))
910 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
911 else
912 continue;
913 } else {
914 if (iter.old_spte & shadow_dirty_mask)
915 new_spte = iter.old_spte & ~shadow_dirty_mask;
916 else
917 continue;
918 }
919
920 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
921 spte_set = true;
922 }
923 return spte_set;
924 }
925
926 /*
927 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
928 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
929 * If AD bits are not enabled, this will require clearing the writable bit on
930 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
931 * be flushed.
932 */
kvm_tdp_mmu_clear_dirty_slot(struct kvm * kvm,struct kvm_memory_slot * slot)933 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
934 {
935 struct kvm_mmu_page *root;
936 int root_as_id;
937 bool spte_set = false;
938
939 for_each_tdp_mmu_root_yield_safe(kvm, root) {
940 root_as_id = kvm_mmu_page_as_id(root);
941 if (root_as_id != slot->as_id)
942 continue;
943
944 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
945 slot->base_gfn + slot->npages);
946 }
947
948 return spte_set;
949 }
950
951 /*
952 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
953 * set in mask, starting at gfn. The given memslot is expected to contain all
954 * the GFNs represented by set bits in the mask. If AD bits are enabled,
955 * clearing the dirty status will involve clearing the dirty bit on each SPTE
956 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
957 */
clear_dirty_pt_masked(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn,unsigned long mask,bool wrprot)958 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
959 gfn_t gfn, unsigned long mask, bool wrprot)
960 {
961 struct tdp_iter iter;
962 u64 new_spte;
963
964 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
965 gfn + BITS_PER_LONG) {
966 if (!mask)
967 break;
968
969 if (iter.level > PG_LEVEL_4K ||
970 !(mask & (1UL << (iter.gfn - gfn))))
971 continue;
972
973 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
974 if (is_writable_pte(iter.old_spte))
975 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
976 else
977 continue;
978 } else {
979 if (iter.old_spte & shadow_dirty_mask)
980 new_spte = iter.old_spte & ~shadow_dirty_mask;
981 else
982 continue;
983 }
984
985 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
986
987 mask &= ~(1UL << (iter.gfn - gfn));
988 }
989 }
990
991 /*
992 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
993 * set in mask, starting at gfn. The given memslot is expected to contain all
994 * the GFNs represented by set bits in the mask. If AD bits are enabled,
995 * clearing the dirty status will involve clearing the dirty bit on each SPTE
996 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
997 */
kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,unsigned long mask,bool wrprot)998 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
999 struct kvm_memory_slot *slot,
1000 gfn_t gfn, unsigned long mask,
1001 bool wrprot)
1002 {
1003 struct kvm_mmu_page *root;
1004 int root_as_id;
1005
1006 lockdep_assert_held(&kvm->mmu_lock);
1007 for_each_tdp_mmu_root(kvm, root) {
1008 root_as_id = kvm_mmu_page_as_id(root);
1009 if (root_as_id != slot->as_id)
1010 continue;
1011
1012 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1013 }
1014 }
1015
1016 /*
1017 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1018 * only used for PML, and so will involve setting the dirty bit on each SPTE.
1019 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1020 */
set_dirty_gfn_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)1021 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1022 gfn_t start, gfn_t end)
1023 {
1024 struct tdp_iter iter;
1025 u64 new_spte;
1026 bool spte_set = false;
1027
1028 tdp_root_for_each_pte(iter, root, start, end) {
1029 if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
1030 continue;
1031
1032 if (!is_shadow_present_pte(iter.old_spte))
1033 continue;
1034
1035 new_spte = iter.old_spte | shadow_dirty_mask;
1036
1037 tdp_mmu_set_spte(kvm, &iter, new_spte);
1038 spte_set = true;
1039 }
1040
1041 return spte_set;
1042 }
1043
1044 /*
1045 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1046 * only used for PML, and so will involve setting the dirty bit on each SPTE.
1047 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1048 */
kvm_tdp_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)1049 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1050 {
1051 struct kvm_mmu_page *root;
1052 int root_as_id;
1053 bool spte_set = false;
1054
1055 for_each_tdp_mmu_root_yield_safe(kvm, root) {
1056 root_as_id = kvm_mmu_page_as_id(root);
1057 if (root_as_id != slot->as_id)
1058 continue;
1059
1060 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1061 slot->base_gfn + slot->npages);
1062 }
1063 return spte_set;
1064 }
1065
1066 /*
1067 * Clear leaf entries which could be replaced by large mappings, for
1068 * GFNs within the slot.
1069 */
zap_collapsible_spte_range(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t start,gfn_t end)1070 static void zap_collapsible_spte_range(struct kvm *kvm,
1071 struct kvm_mmu_page *root,
1072 gfn_t start, gfn_t end)
1073 {
1074 struct tdp_iter iter;
1075 kvm_pfn_t pfn;
1076 bool spte_set = false;
1077
1078 tdp_root_for_each_pte(iter, root, start, end) {
1079 if (tdp_mmu_iter_cond_resched(kvm, &iter, spte_set)) {
1080 spte_set = false;
1081 continue;
1082 }
1083
1084 if (!is_shadow_present_pte(iter.old_spte) ||
1085 !is_last_spte(iter.old_spte, iter.level))
1086 continue;
1087
1088 pfn = spte_to_pfn(iter.old_spte);
1089 if (kvm_is_reserved_pfn(pfn) ||
1090 (!PageCompound(pfn_to_page(pfn)) &&
1091 !kvm_is_zone_device_pfn(pfn)))
1092 continue;
1093
1094 tdp_mmu_set_spte(kvm, &iter, 0);
1095
1096 spte_set = true;
1097 }
1098
1099 if (spte_set)
1100 kvm_flush_remote_tlbs(kvm);
1101 }
1102
1103 /*
1104 * Clear non-leaf entries (and free associated page tables) which could
1105 * be replaced by large mappings, for GFNs within the slot.
1106 */
kvm_tdp_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)1107 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1108 const struct kvm_memory_slot *slot)
1109 {
1110 struct kvm_mmu_page *root;
1111 int root_as_id;
1112
1113 for_each_tdp_mmu_root_yield_safe(kvm, root) {
1114 root_as_id = kvm_mmu_page_as_id(root);
1115 if (root_as_id != slot->as_id)
1116 continue;
1117
1118 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1119 slot->base_gfn + slot->npages);
1120 }
1121 }
1122
1123 /*
1124 * Removes write access on the last level SPTE mapping this GFN and unsets the
1125 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1126 * Returns true if an SPTE was set and a TLB flush is needed.
1127 */
write_protect_gfn(struct kvm * kvm,struct kvm_mmu_page * root,gfn_t gfn)1128 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1129 gfn_t gfn)
1130 {
1131 struct tdp_iter iter;
1132 u64 new_spte;
1133 bool spte_set = false;
1134
1135 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1136 new_spte = iter.old_spte &
1137 ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1138
1139 if (new_spte == iter.old_spte)
1140 break;
1141
1142 tdp_mmu_set_spte(kvm, &iter, new_spte);
1143 spte_set = true;
1144 }
1145
1146 return spte_set;
1147 }
1148
1149 /*
1150 * Removes write access on the last level SPTE mapping this GFN and unsets the
1151 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1152 * Returns true if an SPTE was set and a TLB flush is needed.
1153 */
kvm_tdp_mmu_write_protect_gfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1154 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1155 struct kvm_memory_slot *slot, gfn_t gfn)
1156 {
1157 struct kvm_mmu_page *root;
1158 int root_as_id;
1159 bool spte_set = false;
1160
1161 lockdep_assert_held(&kvm->mmu_lock);
1162 for_each_tdp_mmu_root(kvm, root) {
1163 root_as_id = kvm_mmu_page_as_id(root);
1164 if (root_as_id != slot->as_id)
1165 continue;
1166
1167 spte_set |= write_protect_gfn(kvm, root, gfn);
1168 }
1169 return spte_set;
1170 }
1171
1172 /*
1173 * Return the level of the lowest level SPTE added to sptes.
1174 * That SPTE may be non-present.
1175 */
kvm_tdp_mmu_get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)1176 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1177 int *root_level)
1178 {
1179 struct tdp_iter iter;
1180 struct kvm_mmu *mmu = vcpu->arch.mmu;
1181 gfn_t gfn = addr >> PAGE_SHIFT;
1182 int leaf = -1;
1183
1184 *root_level = vcpu->arch.mmu->shadow_root_level;
1185
1186 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1187 leaf = iter.level;
1188 sptes[leaf - 1] = iter.old_spte;
1189 }
1190
1191 return leaf;
1192 }
1193