1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16
17 #include <linux/kvm_host.h>
18 #include <asm/mtrr.h>
19
20 #include "cpuid.h"
21 #include "mmu.h"
22
23 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
msr_mtrr_valid(unsigned msr)27 static bool msr_mtrr_valid(unsigned msr)
28 {
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
45 }
46 return false;
47 }
48
valid_mtrr_type(unsigned t)49 static bool valid_mtrr_type(unsigned t)
50 {
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52 }
53
kvm_mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)54 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55 {
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
63 return kvm_pat_valid(data);
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87 if (data & mask) {
88 kvm_inject_gp(vcpu, 0);
89 return false;
90 }
91
92 return true;
93 }
94 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
95
mtrr_is_enabled(struct kvm_mtrr * mtrr_state)96 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
97 {
98 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
99 }
100
fixed_mtrr_is_enabled(struct kvm_mtrr * mtrr_state)101 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
102 {
103 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
104 }
105
mtrr_default_type(struct kvm_mtrr * mtrr_state)106 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
107 {
108 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
109 }
110
mtrr_disabled_type(struct kvm_vcpu * vcpu)111 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
112 {
113 /*
114 * Intel SDM 11.11.2.2: all MTRRs are disabled when
115 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
116 * memory type is applied to all of physical memory.
117 *
118 * However, virtual machines can be run with CPUID such that
119 * there are no MTRRs. In that case, the firmware will never
120 * enable MTRRs and it is obviously undesirable to run the
121 * guest entirely with UC memory and we use WB.
122 */
123 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
124 return MTRR_TYPE_UNCACHABLE;
125 else
126 return MTRR_TYPE_WRBACK;
127 }
128
129 /*
130 * Three terms are used in the following code:
131 * - segment, it indicates the address segments covered by fixed MTRRs.
132 * - unit, it corresponds to the MSR entry in the segment.
133 * - range, a range is covered in one memory cache type.
134 */
135 struct fixed_mtrr_segment {
136 u64 start;
137 u64 end;
138
139 int range_shift;
140
141 /* the start position in kvm_mtrr.fixed_ranges[]. */
142 int range_start;
143 };
144
145 static struct fixed_mtrr_segment fixed_seg_table[] = {
146 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147 {
148 .start = 0x0,
149 .end = 0x80000,
150 .range_shift = 16, /* 64K */
151 .range_start = 0,
152 },
153
154 /*
155 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
156 * 16K fixed mtrr.
157 */
158 {
159 .start = 0x80000,
160 .end = 0xc0000,
161 .range_shift = 14, /* 16K */
162 .range_start = 8,
163 },
164
165 /*
166 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
167 * 4K fixed mtrr.
168 */
169 {
170 .start = 0xc0000,
171 .end = 0x100000,
172 .range_shift = 12, /* 12K */
173 .range_start = 24,
174 }
175 };
176
177 /*
178 * The size of unit is covered in one MSR, one MSR entry contains
179 * 8 ranges so that unit size is always 8 * 2^range_shift.
180 */
fixed_mtrr_seg_unit_size(int seg)181 static u64 fixed_mtrr_seg_unit_size(int seg)
182 {
183 return 8 << fixed_seg_table[seg].range_shift;
184 }
185
fixed_msr_to_seg_unit(u32 msr,int * seg,int * unit)186 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
187 {
188 switch (msr) {
189 case MSR_MTRRfix64K_00000:
190 *seg = 0;
191 *unit = 0;
192 break;
193 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
194 *seg = 1;
195 *unit = array_index_nospec(
196 msr - MSR_MTRRfix16K_80000,
197 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
198 break;
199 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
200 *seg = 2;
201 *unit = array_index_nospec(
202 msr - MSR_MTRRfix4K_C0000,
203 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
204 break;
205 default:
206 return false;
207 }
208
209 return true;
210 }
211
fixed_mtrr_seg_unit_range(int seg,int unit,u64 * start,u64 * end)212 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213 {
214 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216
217 *start = mtrr_seg->start + unit * unit_size;
218 *end = *start + unit_size;
219 WARN_ON(*end > mtrr_seg->end);
220 }
221
fixed_mtrr_seg_unit_range_index(int seg,int unit)222 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223 {
224 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225
226 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227 > mtrr_seg->end);
228
229 /* each unit has 8 ranges. */
230 return mtrr_seg->range_start + 8 * unit;
231 }
232
fixed_mtrr_seg_end_range_index(int seg)233 static int fixed_mtrr_seg_end_range_index(int seg)
234 {
235 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236 int n;
237
238 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239 return mtrr_seg->range_start + n - 1;
240 }
241
fixed_msr_to_range(u32 msr,u64 * start,u64 * end)242 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243 {
244 int seg, unit;
245
246 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247 return false;
248
249 fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 return true;
251 }
252
fixed_msr_to_range_index(u32 msr)253 static int fixed_msr_to_range_index(u32 msr)
254 {
255 int seg, unit;
256
257 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 return -1;
259
260 return fixed_mtrr_seg_unit_range_index(seg, unit);
261 }
262
fixed_mtrr_addr_to_seg(u64 addr)263 static int fixed_mtrr_addr_to_seg(u64 addr)
264 {
265 struct fixed_mtrr_segment *mtrr_seg;
266 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267
268 for (seg = 0; seg < seg_num; seg++) {
269 mtrr_seg = &fixed_seg_table[seg];
270 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
271 return seg;
272 }
273
274 return -1;
275 }
276
fixed_mtrr_addr_seg_to_range_index(u64 addr,int seg)277 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278 {
279 struct fixed_mtrr_segment *mtrr_seg;
280 int index;
281
282 mtrr_seg = &fixed_seg_table[seg];
283 index = mtrr_seg->range_start;
284 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 return index;
286 }
287
fixed_mtrr_range_end_addr(int seg,int index)288 static u64 fixed_mtrr_range_end_addr(int seg, int index)
289 {
290 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291 int pos = index - mtrr_seg->range_start;
292
293 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294 }
295
var_mtrr_range(struct kvm_mtrr_range * range,u64 * start,u64 * end)296 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297 {
298 u64 mask;
299
300 *start = range->base & PAGE_MASK;
301
302 mask = range->mask & PAGE_MASK;
303
304 /* This cannot overflow because writing to the reserved bits of
305 * variable MTRRs causes a #GP.
306 */
307 *end = (*start | ~mask) + 1;
308 }
309
update_mtrr(struct kvm_vcpu * vcpu,u32 msr)310 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
311 {
312 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
313 gfn_t start, end;
314 int index;
315
316 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
317 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
318 return;
319
320 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
321 return;
322
323 /* fixed MTRRs. */
324 if (fixed_msr_to_range(msr, &start, &end)) {
325 if (!fixed_mtrr_is_enabled(mtrr_state))
326 return;
327 } else if (msr == MSR_MTRRdefType) {
328 start = 0x0;
329 end = ~0ULL;
330 } else {
331 /* variable range MTRRs. */
332 index = (msr - 0x200) / 2;
333 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
334 }
335
336 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
337 }
338
var_mtrr_range_is_valid(struct kvm_mtrr_range * range)339 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
340 {
341 return (range->mask & (1 << 11)) != 0;
342 }
343
set_var_mtrr_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)344 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
345 {
346 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
347 struct kvm_mtrr_range *tmp, *cur;
348 int index, is_mtrr_mask;
349
350 index = (msr - 0x200) / 2;
351 is_mtrr_mask = msr - 0x200 - 2 * index;
352 cur = &mtrr_state->var_ranges[index];
353
354 /* remove the entry if it's in the list. */
355 if (var_mtrr_range_is_valid(cur))
356 list_del(&mtrr_state->var_ranges[index].node);
357
358 /* Extend the mask with all 1 bits to the left, since those
359 * bits must implicitly be 0. The bits are then cleared
360 * when reading them.
361 */
362 if (!is_mtrr_mask)
363 cur->base = data;
364 else
365 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
366
367 /* add it to the list if it's enabled. */
368 if (var_mtrr_range_is_valid(cur)) {
369 list_for_each_entry(tmp, &mtrr_state->head, node)
370 if (cur->base >= tmp->base)
371 break;
372 list_add_tail(&cur->node, &tmp->node);
373 }
374 }
375
kvm_mtrr_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)376 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
377 {
378 int index;
379
380 if (!kvm_mtrr_valid(vcpu, msr, data))
381 return 1;
382
383 index = fixed_msr_to_range_index(msr);
384 if (index >= 0)
385 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
386 else if (msr == MSR_MTRRdefType)
387 vcpu->arch.mtrr_state.deftype = data;
388 else if (msr == MSR_IA32_CR_PAT)
389 vcpu->arch.pat = data;
390 else
391 set_var_mtrr_msr(vcpu, msr, data);
392
393 update_mtrr(vcpu, msr);
394 return 0;
395 }
396
kvm_mtrr_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)397 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398 {
399 int index;
400
401 /* MSR_MTRRcap is a readonly MSR. */
402 if (msr == MSR_MTRRcap) {
403 /*
404 * SMRR = 0
405 * WC = 1
406 * FIX = 1
407 * VCNT = KVM_NR_VAR_MTRR
408 */
409 *pdata = 0x500 | KVM_NR_VAR_MTRR;
410 return 0;
411 }
412
413 if (!msr_mtrr_valid(msr))
414 return 1;
415
416 index = fixed_msr_to_range_index(msr);
417 if (index >= 0)
418 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
419 else if (msr == MSR_MTRRdefType)
420 *pdata = vcpu->arch.mtrr_state.deftype;
421 else if (msr == MSR_IA32_CR_PAT)
422 *pdata = vcpu->arch.pat;
423 else { /* Variable MTRRs */
424 int is_mtrr_mask;
425
426 index = (msr - 0x200) / 2;
427 is_mtrr_mask = msr - 0x200 - 2 * index;
428 if (!is_mtrr_mask)
429 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
430 else
431 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
432
433 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
434 }
435
436 return 0;
437 }
438
kvm_vcpu_mtrr_init(struct kvm_vcpu * vcpu)439 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
440 {
441 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
442 }
443
444 struct mtrr_iter {
445 /* input fields. */
446 struct kvm_mtrr *mtrr_state;
447 u64 start;
448 u64 end;
449
450 /* output fields. */
451 int mem_type;
452 /* mtrr is completely disabled? */
453 bool mtrr_disabled;
454 /* [start, end) is not fully covered in MTRRs? */
455 bool partial_map;
456
457 /* private fields. */
458 union {
459 /* used for fixed MTRRs. */
460 struct {
461 int index;
462 int seg;
463 };
464
465 /* used for var MTRRs. */
466 struct {
467 struct kvm_mtrr_range *range;
468 /* max address has been covered in var MTRRs. */
469 u64 start_max;
470 };
471 };
472
473 bool fixed;
474 };
475
mtrr_lookup_fixed_start(struct mtrr_iter * iter)476 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
477 {
478 int seg, index;
479
480 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
481 return false;
482
483 seg = fixed_mtrr_addr_to_seg(iter->start);
484 if (seg < 0)
485 return false;
486
487 iter->fixed = true;
488 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
489 iter->index = index;
490 iter->seg = seg;
491 return true;
492 }
493
match_var_range(struct mtrr_iter * iter,struct kvm_mtrr_range * range)494 static bool match_var_range(struct mtrr_iter *iter,
495 struct kvm_mtrr_range *range)
496 {
497 u64 start, end;
498
499 var_mtrr_range(range, &start, &end);
500 if (!(start >= iter->end || end <= iter->start)) {
501 iter->range = range;
502
503 /*
504 * the function is called when we do kvm_mtrr.head walking.
505 * Range has the minimum base address which interleaves
506 * [looker->start_max, looker->end).
507 */
508 iter->partial_map |= iter->start_max < start;
509
510 /* update the max address has been covered. */
511 iter->start_max = max(iter->start_max, end);
512 return true;
513 }
514
515 return false;
516 }
517
__mtrr_lookup_var_next(struct mtrr_iter * iter)518 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
519 {
520 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
521
522 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
523 if (match_var_range(iter, iter->range))
524 return;
525
526 iter->range = NULL;
527 iter->partial_map |= iter->start_max < iter->end;
528 }
529
mtrr_lookup_var_start(struct mtrr_iter * iter)530 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
531 {
532 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
533
534 iter->fixed = false;
535 iter->start_max = iter->start;
536 iter->range = NULL;
537 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
538
539 __mtrr_lookup_var_next(iter);
540 }
541
mtrr_lookup_fixed_next(struct mtrr_iter * iter)542 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
543 {
544 /* terminate the lookup. */
545 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
546 iter->fixed = false;
547 iter->range = NULL;
548 return;
549 }
550
551 iter->index++;
552
553 /* have looked up for all fixed MTRRs. */
554 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
555 return mtrr_lookup_var_start(iter);
556
557 /* switch to next segment. */
558 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
559 iter->seg++;
560 }
561
mtrr_lookup_var_next(struct mtrr_iter * iter)562 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
563 {
564 __mtrr_lookup_var_next(iter);
565 }
566
mtrr_lookup_start(struct mtrr_iter * iter)567 static void mtrr_lookup_start(struct mtrr_iter *iter)
568 {
569 if (!mtrr_is_enabled(iter->mtrr_state)) {
570 iter->mtrr_disabled = true;
571 return;
572 }
573
574 if (!mtrr_lookup_fixed_start(iter))
575 mtrr_lookup_var_start(iter);
576 }
577
mtrr_lookup_init(struct mtrr_iter * iter,struct kvm_mtrr * mtrr_state,u64 start,u64 end)578 static void mtrr_lookup_init(struct mtrr_iter *iter,
579 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
580 {
581 iter->mtrr_state = mtrr_state;
582 iter->start = start;
583 iter->end = end;
584 iter->mtrr_disabled = false;
585 iter->partial_map = false;
586 iter->fixed = false;
587 iter->range = NULL;
588
589 mtrr_lookup_start(iter);
590 }
591
mtrr_lookup_okay(struct mtrr_iter * iter)592 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
593 {
594 if (iter->fixed) {
595 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
596 return true;
597 }
598
599 if (iter->range) {
600 iter->mem_type = iter->range->base & 0xff;
601 return true;
602 }
603
604 return false;
605 }
606
mtrr_lookup_next(struct mtrr_iter * iter)607 static void mtrr_lookup_next(struct mtrr_iter *iter)
608 {
609 if (iter->fixed)
610 mtrr_lookup_fixed_next(iter);
611 else
612 mtrr_lookup_var_next(iter);
613 }
614
615 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
616 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
617 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
618
kvm_mtrr_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)619 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
620 {
621 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
622 struct mtrr_iter iter;
623 u64 start, end;
624 int type = -1;
625 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
626 | (1 << MTRR_TYPE_WRTHROUGH);
627
628 start = gfn_to_gpa(gfn);
629 end = start + PAGE_SIZE;
630
631 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
632 int curr_type = iter.mem_type;
633
634 /*
635 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
636 * Precedences.
637 */
638
639 if (type == -1) {
640 type = curr_type;
641 continue;
642 }
643
644 /*
645 * If two or more variable memory ranges match and the
646 * memory types are identical, then that memory type is
647 * used.
648 */
649 if (type == curr_type)
650 continue;
651
652 /*
653 * If two or more variable memory ranges match and one of
654 * the memory types is UC, the UC memory type used.
655 */
656 if (curr_type == MTRR_TYPE_UNCACHABLE)
657 return MTRR_TYPE_UNCACHABLE;
658
659 /*
660 * If two or more variable memory ranges match and the
661 * memory types are WT and WB, the WT memory type is used.
662 */
663 if (((1 << type) & wt_wb_mask) &&
664 ((1 << curr_type) & wt_wb_mask)) {
665 type = MTRR_TYPE_WRTHROUGH;
666 continue;
667 }
668
669 /*
670 * For overlaps not defined by the above rules, processor
671 * behavior is undefined.
672 */
673
674 /* We use WB for this undefined behavior. :( */
675 return MTRR_TYPE_WRBACK;
676 }
677
678 if (iter.mtrr_disabled)
679 return mtrr_disabled_type(vcpu);
680
681 /* not contained in any MTRRs. */
682 if (type == -1)
683 return mtrr_default_type(mtrr_state);
684
685 /*
686 * We just check one page, partially covered by MTRRs is
687 * impossible.
688 */
689 WARN_ON(iter.partial_map);
690
691 return type;
692 }
693 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
694
kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int page_num)695 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
696 int page_num)
697 {
698 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
699 struct mtrr_iter iter;
700 u64 start, end;
701 int type = -1;
702
703 start = gfn_to_gpa(gfn);
704 end = gfn_to_gpa(gfn + page_num);
705 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
706 if (type == -1) {
707 type = iter.mem_type;
708 continue;
709 }
710
711 if (type != iter.mem_type)
712 return false;
713 }
714
715 if (iter.mtrr_disabled)
716 return true;
717
718 if (!iter.partial_map)
719 return true;
720
721 if (type == -1)
722 return true;
723
724 return type == mtrr_default_type(mtrr_state);
725 }
726