1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Asm versions of Xen pv-ops, suitable for direct use. 4 * 5 * We only bother with direct forms (ie, vcpu in percpu data) of the 6 * operations here; the indirect forms are better handled in C. 7 */ 8 9#include <asm/errno.h> 10#include <asm/asm-offsets.h> 11#include <asm/percpu.h> 12#include <asm/processor-flags.h> 13#include <asm/segment.h> 14#include <asm/thread_info.h> 15#include <asm/asm.h> 16#include <asm/frame.h> 17#include <asm/unwind_hints.h> 18 19#include <xen/interface/xen.h> 20 21#include <linux/init.h> 22#include <linux/linkage.h> 23#include <../entry/calling.h> 24 25/* 26 * Enable events. This clears the event mask and tests the pending 27 * event status with one and operation. If there are pending events, 28 * then enter the hypervisor to get them handled. 29 */ 30SYM_FUNC_START(xen_irq_enable_direct) 31 FRAME_BEGIN 32 /* Unmask events */ 33 movb $0, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask 34 35 /* 36 * Preempt here doesn't matter because that will deal with any 37 * pending interrupts. The pending check may end up being run 38 * on the wrong CPU, but that doesn't hurt. 39 */ 40 41 /* Test for pending */ 42 testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending 43 jz 1f 44 45 call check_events 461: 47 FRAME_END 48 RET 49SYM_FUNC_END(xen_irq_enable_direct) 50 51 52/* 53 * Disabling events is simply a matter of making the event mask 54 * non-zero. 55 */ 56SYM_FUNC_START(xen_irq_disable_direct) 57 movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask 58 RET 59SYM_FUNC_END(xen_irq_disable_direct) 60 61/* 62 * (xen_)save_fl is used to get the current interrupt enable status. 63 * Callers expect the status to be in X86_EFLAGS_IF, and other bits 64 * may be set in the return value. We take advantage of this by 65 * making sure that X86_EFLAGS_IF has the right value (and other bits 66 * in that byte are 0), but other bits in the return value are 67 * undefined. We need to toggle the state of the bit, because Xen and 68 * x86 use opposite senses (mask vs enable). 69 */ 70SYM_FUNC_START(xen_save_fl_direct) 71 testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask 72 setz %ah 73 addb %ah, %ah 74 RET 75SYM_FUNC_END(xen_save_fl_direct) 76 77 78/* 79 * In principle the caller should be passing us a value return from 80 * xen_save_fl_direct, but for robustness sake we test only the 81 * X86_EFLAGS_IF flag rather than the whole byte. After setting the 82 * interrupt mask state, it checks for unmasked pending events and 83 * enters the hypervisor to get them delivered if so. 84 */ 85SYM_FUNC_START(xen_restore_fl_direct) 86 FRAME_BEGIN 87 testw $X86_EFLAGS_IF, %di 88 setz PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask 89 /* 90 * Preempt here doesn't matter because that will deal with any 91 * pending interrupts. The pending check may end up being run 92 * on the wrong CPU, but that doesn't hurt. 93 */ 94 95 /* check for unmasked and pending */ 96 cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending 97 jnz 1f 98 call check_events 991: 100 FRAME_END 101 RET 102SYM_FUNC_END(xen_restore_fl_direct) 103 104 105/* 106 * Force an event check by making a hypercall, but preserve regs 107 * before making the call. 108 */ 109SYM_FUNC_START(check_events) 110 FRAME_BEGIN 111 push %rax 112 push %rcx 113 push %rdx 114 push %rsi 115 push %rdi 116 push %r8 117 push %r9 118 push %r10 119 push %r11 120 call xen_force_evtchn_callback 121 pop %r11 122 pop %r10 123 pop %r9 124 pop %r8 125 pop %rdi 126 pop %rsi 127 pop %rdx 128 pop %rcx 129 pop %rax 130 FRAME_END 131 RET 132SYM_FUNC_END(check_events) 133 134SYM_FUNC_START(xen_read_cr2) 135 FRAME_BEGIN 136 _ASM_MOV PER_CPU_VAR(xen_vcpu), %_ASM_AX 137 _ASM_MOV XEN_vcpu_info_arch_cr2(%_ASM_AX), %_ASM_AX 138 FRAME_END 139 RET 140SYM_FUNC_END(xen_read_cr2); 141 142SYM_FUNC_START(xen_read_cr2_direct) 143 FRAME_BEGIN 144 _ASM_MOV PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_arch_cr2, %_ASM_AX 145 FRAME_END 146 RET 147SYM_FUNC_END(xen_read_cr2_direct); 148 149.macro xen_pv_trap name 150SYM_CODE_START(xen_\name) 151 UNWIND_HINT_ENTRY 152 pop %rcx 153 pop %r11 154 jmp \name 155SYM_CODE_END(xen_\name) 156_ASM_NOKPROBE(xen_\name) 157.endm 158 159xen_pv_trap asm_exc_divide_error 160xen_pv_trap asm_xenpv_exc_debug 161xen_pv_trap asm_exc_int3 162xen_pv_trap asm_xenpv_exc_nmi 163xen_pv_trap asm_exc_overflow 164xen_pv_trap asm_exc_bounds 165xen_pv_trap asm_exc_invalid_op 166xen_pv_trap asm_exc_device_not_available 167xen_pv_trap asm_exc_double_fault 168xen_pv_trap asm_exc_coproc_segment_overrun 169xen_pv_trap asm_exc_invalid_tss 170xen_pv_trap asm_exc_segment_not_present 171xen_pv_trap asm_exc_stack_segment 172xen_pv_trap asm_exc_general_protection 173xen_pv_trap asm_exc_page_fault 174xen_pv_trap asm_exc_spurious_interrupt_bug 175xen_pv_trap asm_exc_coprocessor_error 176xen_pv_trap asm_exc_alignment_check 177#ifdef CONFIG_X86_MCE 178xen_pv_trap asm_exc_machine_check 179#endif /* CONFIG_X86_MCE */ 180xen_pv_trap asm_exc_simd_coprocessor_error 181#ifdef CONFIG_IA32_EMULATION 182xen_pv_trap entry_INT80_compat 183#endif 184xen_pv_trap asm_exc_xen_unknown_trap 185xen_pv_trap asm_exc_xen_hypervisor_callback 186 187 __INIT 188SYM_CODE_START(xen_early_idt_handler_array) 189 i = 0 190 .rept NUM_EXCEPTION_VECTORS 191 UNWIND_HINT_EMPTY 192 pop %rcx 193 pop %r11 194 jmp early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE 195 i = i + 1 196 .fill xen_early_idt_handler_array + i*XEN_EARLY_IDT_HANDLER_SIZE - ., 1, 0xcc 197 .endr 198SYM_CODE_END(xen_early_idt_handler_array) 199 __FINIT 200 201hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32 202/* 203 * Xen64 iret frame: 204 * 205 * ss 206 * rsp 207 * rflags 208 * cs 209 * rip <-- standard iret frame 210 * 211 * flags 212 * 213 * rcx } 214 * r11 }<-- pushed by hypercall page 215 * rsp->rax } 216 */ 217SYM_CODE_START(xen_iret) 218 UNWIND_HINT_EMPTY 219 pushq $0 220 jmp hypercall_iret 221SYM_CODE_END(xen_iret) 222 223SYM_CODE_START(xen_sysret64) 224 UNWIND_HINT_EMPTY 225 /* 226 * We're already on the usermode stack at this point, but 227 * still with the kernel gs, so we can easily switch back. 228 * 229 * tss.sp2 is scratch space. 230 */ 231 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 232 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 233 234 pushq $__USER_DS 235 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 236 pushq %r11 237 pushq $__USER_CS 238 pushq %rcx 239 240 pushq $VGCF_in_syscall 241 jmp hypercall_iret 242SYM_CODE_END(xen_sysret64) 243 244/* 245 * XEN pv doesn't use trampoline stack, PER_CPU_VAR(cpu_tss_rw + TSS_sp0) is 246 * also the kernel stack. Reusing swapgs_restore_regs_and_return_to_usermode() 247 * in XEN pv would cause %rsp to move up to the top of the kernel stack and 248 * leave the IRET frame below %rsp, which is dangerous to be corrupted if #NMI 249 * interrupts. And swapgs_restore_regs_and_return_to_usermode() pushing the IRET 250 * frame at the same address is useless. 251 */ 252SYM_CODE_START(xenpv_restore_regs_and_return_to_usermode) 253 UNWIND_HINT_REGS 254 POP_REGS 255 256 /* stackleak_erase() can work safely on the kernel stack. */ 257 STACKLEAK_ERASE_NOCLOBBER 258 259 addq $8, %rsp /* skip regs->orig_ax */ 260 jmp xen_iret 261SYM_CODE_END(xenpv_restore_regs_and_return_to_usermode) 262 263/* 264 * Xen handles syscall callbacks much like ordinary exceptions, which 265 * means we have: 266 * - kernel gs 267 * - kernel rsp 268 * - an iret-like stack frame on the stack (including rcx and r11): 269 * ss 270 * rsp 271 * rflags 272 * cs 273 * rip 274 * r11 275 * rsp->rcx 276 */ 277 278/* Normal 64-bit system call target */ 279SYM_CODE_START(xen_entry_SYSCALL_64) 280 UNWIND_HINT_ENTRY 281 popq %rcx 282 popq %r11 283 284 /* 285 * Neither Xen nor the kernel really knows what the old SS and 286 * CS were. The kernel expects __USER_DS and __USER_CS, so 287 * report those values even though Xen will guess its own values. 288 */ 289 movq $__USER_DS, 4*8(%rsp) 290 movq $__USER_CS, 1*8(%rsp) 291 292 jmp entry_SYSCALL_64_after_hwframe 293SYM_CODE_END(xen_entry_SYSCALL_64) 294 295#ifdef CONFIG_IA32_EMULATION 296 297/* 32-bit compat syscall target */ 298SYM_CODE_START(xen_entry_SYSCALL_compat) 299 UNWIND_HINT_ENTRY 300 popq %rcx 301 popq %r11 302 303 /* 304 * Neither Xen nor the kernel really knows what the old SS and 305 * CS were. The kernel expects __USER32_DS and __USER32_CS, so 306 * report those values even though Xen will guess its own values. 307 */ 308 movq $__USER32_DS, 4*8(%rsp) 309 movq $__USER32_CS, 1*8(%rsp) 310 311 jmp entry_SYSCALL_compat_after_hwframe 312SYM_CODE_END(xen_entry_SYSCALL_compat) 313 314/* 32-bit compat sysenter target */ 315SYM_CODE_START(xen_entry_SYSENTER_compat) 316 UNWIND_HINT_ENTRY 317 /* 318 * NB: Xen is polite and clears TF from EFLAGS for us. This means 319 * that we don't need to guard against single step exceptions here. 320 */ 321 popq %rcx 322 popq %r11 323 324 /* 325 * Neither Xen nor the kernel really knows what the old SS and 326 * CS were. The kernel expects __USER32_DS and __USER32_CS, so 327 * report those values even though Xen will guess its own values. 328 */ 329 movq $__USER32_DS, 4*8(%rsp) 330 movq $__USER32_CS, 1*8(%rsp) 331 332 jmp entry_SYSENTER_compat_after_hwframe 333SYM_CODE_END(xen_entry_SYSENTER_compat) 334 335#else /* !CONFIG_IA32_EMULATION */ 336 337SYM_CODE_START(xen_entry_SYSCALL_compat) 338SYM_CODE_START(xen_entry_SYSENTER_compat) 339 UNWIND_HINT_ENTRY 340 lea 16(%rsp), %rsp /* strip %rcx, %r11 */ 341 mov $-ENOSYS, %rax 342 pushq $0 343 jmp hypercall_iret 344SYM_CODE_END(xen_entry_SYSENTER_compat) 345SYM_CODE_END(xen_entry_SYSCALL_compat) 346 347#endif /* CONFIG_IA32_EMULATION */ 348