• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013, Kenneth MacKay
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 #ifndef _CRYPTO_ECC_H
27 #define _CRYPTO_ECC_H
28 
29 /* One digit is u64 qword. */
30 #define ECC_CURVE_NIST_P192_DIGITS  3
31 #define ECC_CURVE_NIST_P256_DIGITS  4
32 #define ECC_CURVE_NIST_P384_DIGITS  6
33 #define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
34 
35 #define ECC_DIGITS_TO_BYTES_SHIFT 3
36 
37 #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
38 
39 /**
40  * struct ecc_point - elliptic curve point in affine coordinates
41  *
42  * @x:		X coordinate in vli form.
43  * @y:		Y coordinate in vli form.
44  * @ndigits:	Length of vlis in u64 qwords.
45  */
46 struct ecc_point {
47 	u64 *x;
48 	u64 *y;
49 	u8 ndigits;
50 };
51 
52 #define ECC_POINT_INIT(x, y, ndigits)	(struct ecc_point) { x, y, ndigits }
53 
54 /**
55  * struct ecc_curve - definition of elliptic curve
56  *
57  * @name:	Short name of the curve.
58  * @g:		Generator point of the curve.
59  * @p:		Prime number, if Barrett's reduction is used for this curve
60  *		pre-calculated value 'mu' is appended to the @p after ndigits.
61  *		Use of Barrett's reduction is heuristically determined in
62  *		vli_mmod_fast().
63  * @n:		Order of the curve group.
64  * @a:		Curve parameter a.
65  * @b:		Curve parameter b.
66  */
67 struct ecc_curve {
68 	char *name;
69 	struct ecc_point g;
70 	u64 *p;
71 	u64 *n;
72 	u64 *a;
73 	u64 *b;
74 };
75 
76 /**
77  * ecc_swap_digits() - Copy ndigits from big endian array to native array
78  * @in:       Input array
79  * @out:      Output array
80  * @ndigits:  Number of digits to copy
81  */
ecc_swap_digits(const u64 * in,u64 * out,unsigned int ndigits)82 static inline void ecc_swap_digits(const u64 *in, u64 *out, unsigned int ndigits)
83 {
84 	const __be64 *src = (__force __be64 *)in;
85 	int i;
86 
87 	for (i = 0; i < ndigits; i++)
88 		out[i] = be64_to_cpu(src[ndigits - 1 - i]);
89 }
90 
91 /**
92  * ecc_get_curve()  - Get a curve given its curve_id
93  * @curve_id:  Id of the curve
94  *
95  * Returns pointer to the curve data, NULL if curve is not available
96  */
97 const struct ecc_curve *ecc_get_curve(unsigned int curve_id);
98 
99 /**
100  * ecc_is_key_valid() - Validate a given ECDH private key
101  *
102  * @curve_id:		id representing the curve to use
103  * @ndigits:		curve's number of digits
104  * @private_key:	private key to be used for the given curve
105  * @private_key_len:	private key length
106  *
107  * Returns 0 if the key is acceptable, a negative value otherwise
108  */
109 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
110 		     const u64 *private_key, unsigned int private_key_len);
111 
112 /**
113  * ecc_gen_privkey() -  Generates an ECC private key.
114  * The private key is a random integer in the range 0 < random < n, where n is a
115  * prime that is the order of the cyclic subgroup generated by the distinguished
116  * point G.
117  * @curve_id:		id representing the curve to use
118  * @ndigits:		curve number of digits
119  * @private_key:	buffer for storing the generated private key
120  *
121  * Returns 0 if the private key was generated successfully, a negative value
122  * if an error occurred.
123  */
124 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
125 
126 /**
127  * ecc_make_pub_key() - Compute an ECC public key
128  *
129  * @curve_id:		id representing the curve to use
130  * @ndigits:		curve's number of digits
131  * @private_key:	pregenerated private key for the given curve
132  * @public_key:		buffer for storing the generated public key
133  *
134  * Returns 0 if the public key was generated successfully, a negative value
135  * if an error occurred.
136  */
137 int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
138 		     const u64 *private_key, u64 *public_key);
139 
140 /**
141  * crypto_ecdh_shared_secret() - Compute a shared secret
142  *
143  * @curve_id:		id representing the curve to use
144  * @ndigits:		curve's number of digits
145  * @private_key:	private key of part A
146  * @public_key:		public key of counterpart B
147  * @secret:		buffer for storing the calculated shared secret
148  *
149  * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
150  * before using it for symmetric encryption or HMAC.
151  *
152  * Returns 0 if the shared secret was generated successfully, a negative value
153  * if an error occurred.
154  */
155 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
156 			      const u64 *private_key, const u64 *public_key,
157 			      u64 *secret);
158 
159 /**
160  * ecc_is_pubkey_valid_partial() - Partial public key validation
161  *
162  * @curve:		elliptic curve domain parameters
163  * @pk:			public key as a point
164  *
165  * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
166  * Public-Key Validation Routine.
167  *
168  * Note: There is no check that the public key is in the correct elliptic curve
169  * subgroup.
170  *
171  * Return: 0 if validation is successful, -EINVAL if validation is failed.
172  */
173 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
174 				struct ecc_point *pk);
175 
176 /**
177  * ecc_is_pubkey_valid_full() - Full public key validation
178  *
179  * @curve:		elliptic curve domain parameters
180  * @pk:			public key as a point
181  *
182  * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
183  * Public-Key Validation Routine.
184  *
185  * Return: 0 if validation is successful, -EINVAL if validation is failed.
186  */
187 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
188 			     struct ecc_point *pk);
189 
190 /**
191  * vli_is_zero() - Determine is vli is zero
192  *
193  * @vli:		vli to check.
194  * @ndigits:		length of the @vli
195  */
196 bool vli_is_zero(const u64 *vli, unsigned int ndigits);
197 
198 /**
199  * vli_cmp() - compare left and right vlis
200  *
201  * @left:		vli
202  * @right:		vli
203  * @ndigits:		length of both vlis
204  *
205  * Returns sign of @left - @right, i.e. -1 if @left < @right,
206  * 0 if @left == @right, 1 if @left > @right.
207  */
208 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
209 
210 /**
211  * vli_sub() - Subtracts right from left
212  *
213  * @result:		where to write result
214  * @left:		vli
215  * @right		vli
216  * @ndigits:		length of all vlis
217  *
218  * Note: can modify in-place.
219  *
220  * Return: carry bit.
221  */
222 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
223 	    unsigned int ndigits);
224 
225 /**
226  * vli_from_be64() - Load vli from big-endian u64 array
227  *
228  * @dest:		destination vli
229  * @src:		source array of u64 BE values
230  * @ndigits:		length of both vli and array
231  */
232 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
233 
234 /**
235  * vli_from_le64() - Load vli from little-endian u64 array
236  *
237  * @dest:		destination vli
238  * @src:		source array of u64 LE values
239  * @ndigits:		length of both vli and array
240  */
241 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
242 
243 /**
244  * vli_mod_inv() - Modular inversion
245  *
246  * @result:		where to write vli number
247  * @input:		vli value to operate on
248  * @mod:		modulus
249  * @ndigits:		length of all vlis
250  */
251 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
252 		 unsigned int ndigits);
253 
254 /**
255  * vli_mod_mult_slow() - Modular multiplication
256  *
257  * @result:		where to write result value
258  * @left:		vli number to multiply with @right
259  * @right:		vli number to multiply with @left
260  * @mod:		modulus
261  * @ndigits:		length of all vlis
262  *
263  * Note: Assumes that mod is big enough curve order.
264  */
265 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
266 		       const u64 *mod, unsigned int ndigits);
267 
268 /**
269  * ecc_point_mult_shamir() - Add two points multiplied by scalars
270  *
271  * @result:		resulting point
272  * @x:			scalar to multiply with @p
273  * @p:			point to multiply with @x
274  * @y:			scalar to multiply with @q
275  * @q:			point to multiply with @y
276  * @curve:		curve
277  *
278  * Returns result = x * p + x * q over the curve.
279  * This works faster than two multiplications and addition.
280  */
281 void ecc_point_mult_shamir(const struct ecc_point *result,
282 			   const u64 *x, const struct ecc_point *p,
283 			   const u64 *y, const struct ecc_point *q,
284 			   const struct ecc_curve *curve);
285 #endif
286