• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /*******************************************************************************
3  *
4  * Module Name: utstrsuppt - Support functions for string-to-integer conversion
5  *
6  ******************************************************************************/
7 
8 #include <acpi/acpi.h>
9 #include "accommon.h"
10 
11 #define _COMPONENT          ACPI_UTILITIES
12 ACPI_MODULE_NAME("utstrsuppt")
13 
14 /* Local prototypes */
15 static acpi_status
16 acpi_ut_insert_digit(u64 *accumulated_value, u32 base, int ascii_digit);
17 
18 static acpi_status
19 acpi_ut_strtoul_multiply64(u64 multiplicand, u32 base, u64 *out_product);
20 
21 static acpi_status acpi_ut_strtoul_add64(u64 addend1, u32 digit, u64 *out_sum);
22 
23 /*******************************************************************************
24  *
25  * FUNCTION:    acpi_ut_convert_octal_string
26  *
27  * PARAMETERS:  string                  - Null terminated input string
28  *              return_value_ptr        - Where the converted value is returned
29  *
30  * RETURN:      Status and 64-bit converted integer
31  *
32  * DESCRIPTION: Performs a base 8 conversion of the input string to an
33  *              integer value, either 32 or 64 bits.
34  *
35  * NOTE:        Maximum 64-bit unsigned octal value is 01777777777777777777777
36  *              Maximum 32-bit unsigned octal value is 037777777777
37  *
38  ******************************************************************************/
39 
acpi_ut_convert_octal_string(char * string,u64 * return_value_ptr)40 acpi_status acpi_ut_convert_octal_string(char *string, u64 *return_value_ptr)
41 {
42 	u64 accumulated_value = 0;
43 	acpi_status status = AE_OK;
44 
45 	/* Convert each ASCII byte in the input string */
46 
47 	while (*string) {
48 		/*
49 		 * Character must be ASCII 0-7, otherwise:
50 		 * 1) Runtime: terminate with no error, per the ACPI spec
51 		 * 2) Compiler: return an error
52 		 */
53 		if (!(ACPI_IS_OCTAL_DIGIT(*string))) {
54 #ifdef ACPI_ASL_COMPILER
55 			status = AE_BAD_OCTAL_CONSTANT;
56 #endif
57 			break;
58 		}
59 
60 		/* Convert and insert this octal digit into the accumulator */
61 
62 		status = acpi_ut_insert_digit(&accumulated_value, 8, *string);
63 		if (ACPI_FAILURE(status)) {
64 			status = AE_OCTAL_OVERFLOW;
65 			break;
66 		}
67 
68 		string++;
69 	}
70 
71 	/* Always return the value that has been accumulated */
72 
73 	*return_value_ptr = accumulated_value;
74 	return (status);
75 }
76 
77 /*******************************************************************************
78  *
79  * FUNCTION:    acpi_ut_convert_decimal_string
80  *
81  * PARAMETERS:  string                  - Null terminated input string
82  *              return_value_ptr        - Where the converted value is returned
83  *
84  * RETURN:      Status and 64-bit converted integer
85  *
86  * DESCRIPTION: Performs a base 10 conversion of the input string to an
87  *              integer value, either 32 or 64 bits.
88  *
89  * NOTE:        Maximum 64-bit unsigned decimal value is 18446744073709551615
90  *              Maximum 32-bit unsigned decimal value is 4294967295
91  *
92  ******************************************************************************/
93 
acpi_ut_convert_decimal_string(char * string,u64 * return_value_ptr)94 acpi_status acpi_ut_convert_decimal_string(char *string, u64 *return_value_ptr)
95 {
96 	u64 accumulated_value = 0;
97 	acpi_status status = AE_OK;
98 
99 	/* Convert each ASCII byte in the input string */
100 
101 	while (*string) {
102 		/*
103 		 * Character must be ASCII 0-9, otherwise:
104 		 * 1) Runtime: terminate with no error, per the ACPI spec
105 		 * 2) Compiler: return an error
106 		 */
107 		if (!isdigit(*string)) {
108 #ifdef ACPI_ASL_COMPILER
109 			status = AE_BAD_DECIMAL_CONSTANT;
110 #endif
111 			break;
112 		}
113 
114 		/* Convert and insert this decimal digit into the accumulator */
115 
116 		status = acpi_ut_insert_digit(&accumulated_value, 10, *string);
117 		if (ACPI_FAILURE(status)) {
118 			status = AE_DECIMAL_OVERFLOW;
119 			break;
120 		}
121 
122 		string++;
123 	}
124 
125 	/* Always return the value that has been accumulated */
126 
127 	*return_value_ptr = accumulated_value;
128 	return (status);
129 }
130 
131 /*******************************************************************************
132  *
133  * FUNCTION:    acpi_ut_convert_hex_string
134  *
135  * PARAMETERS:  string                  - Null terminated input string
136  *              return_value_ptr        - Where the converted value is returned
137  *
138  * RETURN:      Status and 64-bit converted integer
139  *
140  * DESCRIPTION: Performs a base 16 conversion of the input string to an
141  *              integer value, either 32 or 64 bits.
142  *
143  * NOTE:        Maximum 64-bit unsigned hex value is 0xFFFFFFFFFFFFFFFF
144  *              Maximum 32-bit unsigned hex value is 0xFFFFFFFF
145  *
146  ******************************************************************************/
147 
acpi_ut_convert_hex_string(char * string,u64 * return_value_ptr)148 acpi_status acpi_ut_convert_hex_string(char *string, u64 *return_value_ptr)
149 {
150 	u64 accumulated_value = 0;
151 	acpi_status status = AE_OK;
152 
153 	/* Convert each ASCII byte in the input string */
154 
155 	while (*string) {
156 		/*
157 		 * Character must be ASCII A-F, a-f, or 0-9, otherwise:
158 		 * 1) Runtime: terminate with no error, per the ACPI spec
159 		 * 2) Compiler: return an error
160 		 */
161 		if (!isxdigit(*string)) {
162 #ifdef ACPI_ASL_COMPILER
163 			status = AE_BAD_HEX_CONSTANT;
164 #endif
165 			break;
166 		}
167 
168 		/* Convert and insert this hex digit into the accumulator */
169 
170 		status = acpi_ut_insert_digit(&accumulated_value, 16, *string);
171 		if (ACPI_FAILURE(status)) {
172 			status = AE_HEX_OVERFLOW;
173 			break;
174 		}
175 
176 		string++;
177 	}
178 
179 	/* Always return the value that has been accumulated */
180 
181 	*return_value_ptr = accumulated_value;
182 	return (status);
183 }
184 
185 /*******************************************************************************
186  *
187  * FUNCTION:    acpi_ut_remove_leading_zeros
188  *
189  * PARAMETERS:  string                  - Pointer to input ASCII string
190  *
191  * RETURN:      Next character after any leading zeros. This character may be
192  *              used by the caller to detect end-of-string.
193  *
194  * DESCRIPTION: Remove any leading zeros in the input string. Return the
195  *              next character after the final ASCII zero to enable the caller
196  *              to check for the end of the string (NULL terminator).
197  *
198  ******************************************************************************/
199 
acpi_ut_remove_leading_zeros(char ** string)200 char acpi_ut_remove_leading_zeros(char **string)
201 {
202 
203 	while (**string == ACPI_ASCII_ZERO) {
204 		*string += 1;
205 	}
206 
207 	return (**string);
208 }
209 
210 /*******************************************************************************
211  *
212  * FUNCTION:    acpi_ut_remove_whitespace
213  *
214  * PARAMETERS:  string                  - Pointer to input ASCII string
215  *
216  * RETURN:      Next character after any whitespace. This character may be
217  *              used by the caller to detect end-of-string.
218  *
219  * DESCRIPTION: Remove any leading whitespace in the input string. Return the
220  *              next character after the final ASCII zero to enable the caller
221  *              to check for the end of the string (NULL terminator).
222  *
223  ******************************************************************************/
224 
acpi_ut_remove_whitespace(char ** string)225 char acpi_ut_remove_whitespace(char **string)
226 {
227 
228 	while (isspace((u8)**string)) {
229 		*string += 1;
230 	}
231 
232 	return (**string);
233 }
234 
235 /*******************************************************************************
236  *
237  * FUNCTION:    acpi_ut_detect_hex_prefix
238  *
239  * PARAMETERS:  string                  - Pointer to input ASCII string
240  *
241  * RETURN:      TRUE if a "0x" prefix was found at the start of the string
242  *
243  * DESCRIPTION: Detect and remove a hex "0x" prefix
244  *
245  ******************************************************************************/
246 
acpi_ut_detect_hex_prefix(char ** string)247 u8 acpi_ut_detect_hex_prefix(char **string)
248 {
249 	char *initial_position = *string;
250 
251 	acpi_ut_remove_hex_prefix(string);
252 	if (*string != initial_position) {
253 		return (TRUE);	/* String is past leading 0x */
254 	}
255 
256 	return (FALSE);		/* Not a hex string */
257 }
258 
259 /*******************************************************************************
260  *
261  * FUNCTION:    acpi_ut_remove_hex_prefix
262  *
263  * PARAMETERS:  string                  - Pointer to input ASCII string
264  *
265  * RETURN:      none
266  *
267  * DESCRIPTION: Remove a hex "0x" prefix
268  *
269  ******************************************************************************/
270 
acpi_ut_remove_hex_prefix(char ** string)271 void acpi_ut_remove_hex_prefix(char **string)
272 {
273 	if ((**string == ACPI_ASCII_ZERO) &&
274 	    (tolower((int)*(*string + 1)) == 'x')) {
275 		*string += 2;	/* Go past the leading 0x */
276 	}
277 }
278 
279 /*******************************************************************************
280  *
281  * FUNCTION:    acpi_ut_detect_octal_prefix
282  *
283  * PARAMETERS:  string                  - Pointer to input ASCII string
284  *
285  * RETURN:      True if an octal "0" prefix was found at the start of the
286  *              string
287  *
288  * DESCRIPTION: Detect and remove an octal prefix (zero)
289  *
290  ******************************************************************************/
291 
acpi_ut_detect_octal_prefix(char ** string)292 u8 acpi_ut_detect_octal_prefix(char **string)
293 {
294 
295 	if (**string == ACPI_ASCII_ZERO) {
296 		*string += 1;	/* Go past the leading 0 */
297 		return (TRUE);
298 	}
299 
300 	return (FALSE);		/* Not an octal string */
301 }
302 
303 /*******************************************************************************
304  *
305  * FUNCTION:    acpi_ut_insert_digit
306  *
307  * PARAMETERS:  accumulated_value       - Current value of the integer value
308  *                                        accumulator. The new value is
309  *                                        returned here.
310  *              base                    - Radix, either 8/10/16
311  *              ascii_digit             - ASCII single digit to be inserted
312  *
313  * RETURN:      Status and result of the convert/insert operation. The only
314  *              possible returned exception code is numeric overflow of
315  *              either the multiply or add conversion operations.
316  *
317  * DESCRIPTION: Generic conversion and insertion function for all bases:
318  *
319  *              1) Multiply the current accumulated/converted value by the
320  *              base in order to make room for the new character.
321  *
322  *              2) Convert the new character to binary and add it to the
323  *              current accumulated value.
324  *
325  *              Note: The only possible exception indicates an integer
326  *              overflow (AE_NUMERIC_OVERFLOW)
327  *
328  ******************************************************************************/
329 
330 static acpi_status
acpi_ut_insert_digit(u64 * accumulated_value,u32 base,int ascii_digit)331 acpi_ut_insert_digit(u64 *accumulated_value, u32 base, int ascii_digit)
332 {
333 	acpi_status status;
334 	u64 product;
335 
336 	/* Make room in the accumulated value for the incoming digit */
337 
338 	status = acpi_ut_strtoul_multiply64(*accumulated_value, base, &product);
339 	if (ACPI_FAILURE(status)) {
340 		return (status);
341 	}
342 
343 	/* Add in the new digit, and store the sum to the accumulated value */
344 
345 	status =
346 	    acpi_ut_strtoul_add64(product,
347 				  acpi_ut_ascii_char_to_hex(ascii_digit),
348 				  accumulated_value);
349 
350 	return (status);
351 }
352 
353 /*******************************************************************************
354  *
355  * FUNCTION:    acpi_ut_strtoul_multiply64
356  *
357  * PARAMETERS:  multiplicand            - Current accumulated converted integer
358  *              base                    - Base/Radix
359  *              out_product             - Where the product is returned
360  *
361  * RETURN:      Status and 64-bit product
362  *
363  * DESCRIPTION: Multiply two 64-bit values, with checking for 64-bit overflow as
364  *              well as 32-bit overflow if necessary (if the current global
365  *              integer width is 32).
366  *
367  ******************************************************************************/
368 
369 static acpi_status
acpi_ut_strtoul_multiply64(u64 multiplicand,u32 base,u64 * out_product)370 acpi_ut_strtoul_multiply64(u64 multiplicand, u32 base, u64 *out_product)
371 {
372 	u64 product;
373 	u64 quotient;
374 
375 	/* Exit if either operand is zero */
376 
377 	*out_product = 0;
378 	if (!multiplicand || !base) {
379 		return (AE_OK);
380 	}
381 
382 	/*
383 	 * Check for 64-bit overflow before the actual multiplication.
384 	 *
385 	 * Notes: 64-bit division is often not supported on 32-bit platforms
386 	 * (it requires a library function), Therefore ACPICA has a local
387 	 * 64-bit divide function. Also, Multiplier is currently only used
388 	 * as the radix (8/10/16), to the 64/32 divide will always work.
389 	 */
390 	acpi_ut_short_divide(ACPI_UINT64_MAX, base, &quotient, NULL);
391 	if (multiplicand > quotient) {
392 		return (AE_NUMERIC_OVERFLOW);
393 	}
394 
395 	product = multiplicand * base;
396 
397 	/* Check for 32-bit overflow if necessary */
398 
399 	if ((acpi_gbl_integer_bit_width == 32) && (product > ACPI_UINT32_MAX)) {
400 		return (AE_NUMERIC_OVERFLOW);
401 	}
402 
403 	*out_product = product;
404 	return (AE_OK);
405 }
406 
407 /*******************************************************************************
408  *
409  * FUNCTION:    acpi_ut_strtoul_add64
410  *
411  * PARAMETERS:  addend1                 - Current accumulated converted integer
412  *              digit                   - New hex value/char
413  *              out_sum                 - Where sum is returned (Accumulator)
414  *
415  * RETURN:      Status and 64-bit sum
416  *
417  * DESCRIPTION: Add two 64-bit values, with checking for 64-bit overflow as
418  *              well as 32-bit overflow if necessary (if the current global
419  *              integer width is 32).
420  *
421  ******************************************************************************/
422 
acpi_ut_strtoul_add64(u64 addend1,u32 digit,u64 * out_sum)423 static acpi_status acpi_ut_strtoul_add64(u64 addend1, u32 digit, u64 *out_sum)
424 {
425 	u64 sum;
426 
427 	/* Check for 64-bit overflow before the actual addition */
428 
429 	if ((addend1 > 0) && (digit > (ACPI_UINT64_MAX - addend1))) {
430 		return (AE_NUMERIC_OVERFLOW);
431 	}
432 
433 	sum = addend1 + digit;
434 
435 	/* Check for 32-bit overflow if necessary */
436 
437 	if ((acpi_gbl_integer_bit_width == 32) && (sum > ACPI_UINT32_MAX)) {
438 		return (AE_NUMERIC_OVERFLOW);
439 	}
440 
441 	*out_sum = sum;
442 	return (AE_OK);
443 }
444