• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
pending_result_dec(struct pending_result * pending,int * result)650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
rbd_open(struct block_device * bdev,fmode_t mode)663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
rbd_release(struct gendisk * disk,fmode_t mode)682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697 	int ro;
698 
699 	if (get_user(ro, (int __user *)arg))
700 		return -EFAULT;
701 
702 	/*
703 	 * Both images mapped read-only and snapshots can't be marked
704 	 * read-write.
705 	 */
706 	if (!ro) {
707 		if (rbd_is_ro(rbd_dev))
708 			return -EROFS;
709 
710 		rbd_assert(!rbd_is_snap(rbd_dev));
711 	}
712 
713 	/* Let blkdev_roset() handle it */
714 	return -ENOTTY;
715 }
716 
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 			unsigned int cmd, unsigned long arg)
719 {
720 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721 	int ret;
722 
723 	switch (cmd) {
724 	case BLKROSET:
725 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
726 		break;
727 	default:
728 		ret = -ENOTTY;
729 	}
730 
731 	return ret;
732 }
733 
734 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 				unsigned int cmd, unsigned long arg)
737 {
738 	return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741 
742 static const struct block_device_operations rbd_bd_ops = {
743 	.owner			= THIS_MODULE,
744 	.open			= rbd_open,
745 	.release		= rbd_release,
746 	.ioctl			= rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748 	.compat_ioctl		= rbd_compat_ioctl,
749 #endif
750 };
751 
752 /*
753  * Initialize an rbd client instance.  Success or not, this function
754  * consumes ceph_opts.  Caller holds client_mutex.
755  */
rbd_client_create(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc;
759 	int ret = -ENOMEM;
760 
761 	dout("%s:\n", __func__);
762 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763 	if (!rbdc)
764 		goto out_opt;
765 
766 	kref_init(&rbdc->kref);
767 	INIT_LIST_HEAD(&rbdc->node);
768 
769 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 	if (IS_ERR(rbdc->client))
771 		goto out_rbdc;
772 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773 
774 	ret = ceph_open_session(rbdc->client);
775 	if (ret < 0)
776 		goto out_client;
777 
778 	spin_lock(&rbd_client_list_lock);
779 	list_add_tail(&rbdc->node, &rbd_client_list);
780 	spin_unlock(&rbd_client_list_lock);
781 
782 	dout("%s: rbdc %p\n", __func__, rbdc);
783 
784 	return rbdc;
785 out_client:
786 	ceph_destroy_client(rbdc->client);
787 out_rbdc:
788 	kfree(rbdc);
789 out_opt:
790 	if (ceph_opts)
791 		ceph_destroy_options(ceph_opts);
792 	dout("%s: error %d\n", __func__, ret);
793 
794 	return ERR_PTR(ret);
795 }
796 
__rbd_get_client(struct rbd_client * rbdc)797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799 	kref_get(&rbdc->kref);
800 
801 	return rbdc;
802 }
803 
804 /*
805  * Find a ceph client with specific addr and configuration.  If
806  * found, bump its reference count.
807  */
rbd_client_find(struct ceph_options * ceph_opts)808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810 	struct rbd_client *client_node;
811 	bool found = false;
812 
813 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814 		return NULL;
815 
816 	spin_lock(&rbd_client_list_lock);
817 	list_for_each_entry(client_node, &rbd_client_list, node) {
818 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 			__rbd_get_client(client_node);
820 
821 			found = true;
822 			break;
823 		}
824 	}
825 	spin_unlock(&rbd_client_list_lock);
826 
827 	return found ? client_node : NULL;
828 }
829 
830 /*
831  * (Per device) rbd map options
832  */
833 enum {
834 	Opt_queue_depth,
835 	Opt_alloc_size,
836 	Opt_lock_timeout,
837 	/* int args above */
838 	Opt_pool_ns,
839 	Opt_compression_hint,
840 	/* string args above */
841 	Opt_read_only,
842 	Opt_read_write,
843 	Opt_lock_on_read,
844 	Opt_exclusive,
845 	Opt_notrim,
846 };
847 
848 enum {
849 	Opt_compression_hint_none,
850 	Opt_compression_hint_compressible,
851 	Opt_compression_hint_incompressible,
852 };
853 
854 static const struct constant_table rbd_param_compression_hint[] = {
855 	{"none",		Opt_compression_hint_none},
856 	{"compressible",	Opt_compression_hint_compressible},
857 	{"incompressible",	Opt_compression_hint_incompressible},
858 	{}
859 };
860 
861 static const struct fs_parameter_spec rbd_parameters[] = {
862 	fsparam_u32	("alloc_size",			Opt_alloc_size),
863 	fsparam_enum	("compression_hint",		Opt_compression_hint,
864 			 rbd_param_compression_hint),
865 	fsparam_flag	("exclusive",			Opt_exclusive),
866 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
867 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
868 	fsparam_flag	("notrim",			Opt_notrim),
869 	fsparam_string	("_pool_ns",			Opt_pool_ns),
870 	fsparam_u32	("queue_depth",			Opt_queue_depth),
871 	fsparam_flag	("read_only",			Opt_read_only),
872 	fsparam_flag	("read_write",			Opt_read_write),
873 	fsparam_flag	("ro",				Opt_read_only),
874 	fsparam_flag	("rw",				Opt_read_write),
875 	{}
876 };
877 
878 struct rbd_options {
879 	int	queue_depth;
880 	int	alloc_size;
881 	unsigned long	lock_timeout;
882 	bool	read_only;
883 	bool	lock_on_read;
884 	bool	exclusive;
885 	bool	trim;
886 
887 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889 
890 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT	false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT	false
896 #define RBD_TRIM_DEFAULT	true
897 
898 struct rbd_parse_opts_ctx {
899 	struct rbd_spec		*spec;
900 	struct ceph_options	*copts;
901 	struct rbd_options	*opts;
902 };
903 
obj_op_name(enum obj_operation_type op_type)904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906 	switch (op_type) {
907 	case OBJ_OP_READ:
908 		return "read";
909 	case OBJ_OP_WRITE:
910 		return "write";
911 	case OBJ_OP_DISCARD:
912 		return "discard";
913 	case OBJ_OP_ZEROOUT:
914 		return "zeroout";
915 	default:
916 		return "???";
917 	}
918 }
919 
920 /*
921  * Destroy ceph client
922  *
923  * Caller must hold rbd_client_list_lock.
924  */
rbd_client_release(struct kref * kref)925 static void rbd_client_release(struct kref *kref)
926 {
927 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928 
929 	dout("%s: rbdc %p\n", __func__, rbdc);
930 	spin_lock(&rbd_client_list_lock);
931 	list_del(&rbdc->node);
932 	spin_unlock(&rbd_client_list_lock);
933 
934 	ceph_destroy_client(rbdc->client);
935 	kfree(rbdc);
936 }
937 
938 /*
939  * Drop reference to ceph client node. If it's not referenced anymore, release
940  * it.
941  */
rbd_put_client(struct rbd_client * rbdc)942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944 	if (rbdc)
945 		kref_put(&rbdc->kref, rbd_client_release);
946 }
947 
948 /*
949  * Get a ceph client with specific addr and configuration, if one does
950  * not exist create it.  Either way, ceph_opts is consumed by this
951  * function.
952  */
rbd_get_client(struct ceph_options * ceph_opts)953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955 	struct rbd_client *rbdc;
956 	int ret;
957 
958 	mutex_lock(&client_mutex);
959 	rbdc = rbd_client_find(ceph_opts);
960 	if (rbdc) {
961 		ceph_destroy_options(ceph_opts);
962 
963 		/*
964 		 * Using an existing client.  Make sure ->pg_pools is up to
965 		 * date before we look up the pool id in do_rbd_add().
966 		 */
967 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
968 					rbdc->client->options->mount_timeout);
969 		if (ret) {
970 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971 			rbd_put_client(rbdc);
972 			rbdc = ERR_PTR(ret);
973 		}
974 	} else {
975 		rbdc = rbd_client_create(ceph_opts);
976 	}
977 	mutex_unlock(&client_mutex);
978 
979 	return rbdc;
980 }
981 
rbd_image_format_valid(u32 image_format)982 static bool rbd_image_format_valid(u32 image_format)
983 {
984 	return image_format == 1 || image_format == 2;
985 }
986 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989 	size_t size;
990 	u32 snap_count;
991 
992 	/* The header has to start with the magic rbd header text */
993 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994 		return false;
995 
996 	/* The bio layer requires at least sector-sized I/O */
997 
998 	if (ondisk->options.order < SECTOR_SHIFT)
999 		return false;
1000 
1001 	/* If we use u64 in a few spots we may be able to loosen this */
1002 
1003 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1004 		return false;
1005 
1006 	/*
1007 	 * The size of a snapshot header has to fit in a size_t, and
1008 	 * that limits the number of snapshots.
1009 	 */
1010 	snap_count = le32_to_cpu(ondisk->snap_count);
1011 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012 	if (snap_count > size / sizeof (__le64))
1013 		return false;
1014 
1015 	/*
1016 	 * Not only that, but the size of the entire the snapshot
1017 	 * header must also be representable in a size_t.
1018 	 */
1019 	size -= snap_count * sizeof (__le64);
1020 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021 		return false;
1022 
1023 	return true;
1024 }
1025 
1026 /*
1027  * returns the size of an object in the image
1028  */
rbd_obj_bytes(struct rbd_image_header * header)1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031 	return 1U << header->obj_order;
1032 }
1033 
rbd_init_layout(struct rbd_device * rbd_dev)1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036 	if (rbd_dev->header.stripe_unit == 0 ||
1037 	    rbd_dev->header.stripe_count == 0) {
1038 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039 		rbd_dev->header.stripe_count = 1;
1040 	}
1041 
1042 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049 
1050 /*
1051  * Fill an rbd image header with information from the given format 1
1052  * on-disk header.
1053  */
rbd_header_from_disk(struct rbd_device * rbd_dev,struct rbd_image_header_ondisk * ondisk)1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055 				 struct rbd_image_header_ondisk *ondisk)
1056 {
1057 	struct rbd_image_header *header = &rbd_dev->header;
1058 	bool first_time = header->object_prefix == NULL;
1059 	struct ceph_snap_context *snapc;
1060 	char *object_prefix = NULL;
1061 	char *snap_names = NULL;
1062 	u64 *snap_sizes = NULL;
1063 	u32 snap_count;
1064 	int ret = -ENOMEM;
1065 	u32 i;
1066 
1067 	/* Allocate this now to avoid having to handle failure below */
1068 
1069 	if (first_time) {
1070 		object_prefix = kstrndup(ondisk->object_prefix,
1071 					 sizeof(ondisk->object_prefix),
1072 					 GFP_KERNEL);
1073 		if (!object_prefix)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	/* Allocate the snapshot context and fill it in */
1078 
1079 	snap_count = le32_to_cpu(ondisk->snap_count);
1080 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081 	if (!snapc)
1082 		goto out_err;
1083 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084 	if (snap_count) {
1085 		struct rbd_image_snap_ondisk *snaps;
1086 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087 
1088 		/* We'll keep a copy of the snapshot names... */
1089 
1090 		if (snap_names_len > (u64)SIZE_MAX)
1091 			goto out_2big;
1092 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093 		if (!snap_names)
1094 			goto out_err;
1095 
1096 		/* ...as well as the array of their sizes. */
1097 		snap_sizes = kmalloc_array(snap_count,
1098 					   sizeof(*header->snap_sizes),
1099 					   GFP_KERNEL);
1100 		if (!snap_sizes)
1101 			goto out_err;
1102 
1103 		/*
1104 		 * Copy the names, and fill in each snapshot's id
1105 		 * and size.
1106 		 *
1107 		 * Note that rbd_dev_v1_header_info() guarantees the
1108 		 * ondisk buffer we're working with has
1109 		 * snap_names_len bytes beyond the end of the
1110 		 * snapshot id array, this memcpy() is safe.
1111 		 */
1112 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113 		snaps = ondisk->snaps;
1114 		for (i = 0; i < snap_count; i++) {
1115 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117 		}
1118 	}
1119 
1120 	/* We won't fail any more, fill in the header */
1121 
1122 	if (first_time) {
1123 		header->object_prefix = object_prefix;
1124 		header->obj_order = ondisk->options.order;
1125 		rbd_init_layout(rbd_dev);
1126 	} else {
1127 		ceph_put_snap_context(header->snapc);
1128 		kfree(header->snap_names);
1129 		kfree(header->snap_sizes);
1130 	}
1131 
1132 	/* The remaining fields always get updated (when we refresh) */
1133 
1134 	header->image_size = le64_to_cpu(ondisk->image_size);
1135 	header->snapc = snapc;
1136 	header->snap_names = snap_names;
1137 	header->snap_sizes = snap_sizes;
1138 
1139 	return 0;
1140 out_2big:
1141 	ret = -EIO;
1142 out_err:
1143 	kfree(snap_sizes);
1144 	kfree(snap_names);
1145 	ceph_put_snap_context(snapc);
1146 	kfree(object_prefix);
1147 
1148 	return ret;
1149 }
1150 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153 	const char *snap_name;
1154 
1155 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156 
1157 	/* Skip over names until we find the one we are looking for */
1158 
1159 	snap_name = rbd_dev->header.snap_names;
1160 	while (which--)
1161 		snap_name += strlen(snap_name) + 1;
1162 
1163 	return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165 
1166 /*
1167  * Snapshot id comparison function for use with qsort()/bsearch().
1168  * Note that result is for snapshots in *descending* order.
1169  */
snapid_compare_reverse(const void * s1,const void * s2)1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172 	u64 snap_id1 = *(u64 *)s1;
1173 	u64 snap_id2 = *(u64 *)s2;
1174 
1175 	if (snap_id1 < snap_id2)
1176 		return 1;
1177 	return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179 
1180 /*
1181  * Search a snapshot context to see if the given snapshot id is
1182  * present.
1183  *
1184  * Returns the position of the snapshot id in the array if it's found,
1185  * or BAD_SNAP_INDEX otherwise.
1186  *
1187  * Note: The snapshot array is in kept sorted (by the osd) in
1188  * reverse order, highest snapshot id first.
1189  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193 	u64 *found;
1194 
1195 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196 				sizeof (snap_id), snapid_compare_reverse);
1197 
1198 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202 					u64 snap_id)
1203 {
1204 	u32 which;
1205 	const char *snap_name;
1206 
1207 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1208 	if (which == BAD_SNAP_INDEX)
1209 		return ERR_PTR(-ENOENT);
1210 
1211 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217 	if (snap_id == CEPH_NOSNAP)
1218 		return RBD_SNAP_HEAD_NAME;
1219 
1220 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221 	if (rbd_dev->image_format == 1)
1222 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223 
1224 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228 				u64 *snap_size)
1229 {
1230 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231 	if (snap_id == CEPH_NOSNAP) {
1232 		*snap_size = rbd_dev->header.image_size;
1233 	} else if (rbd_dev->image_format == 1) {
1234 		u32 which;
1235 
1236 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1237 		if (which == BAD_SNAP_INDEX)
1238 			return -ENOENT;
1239 
1240 		*snap_size = rbd_dev->header.snap_sizes[which];
1241 	} else {
1242 		u64 size = 0;
1243 		int ret;
1244 
1245 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246 		if (ret)
1247 			return ret;
1248 
1249 		*snap_size = size;
1250 	}
1251 	return 0;
1252 }
1253 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256 	u64 snap_id = rbd_dev->spec->snap_id;
1257 	u64 size = 0;
1258 	int ret;
1259 
1260 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261 	if (ret)
1262 		return ret;
1263 
1264 	rbd_dev->mapping.size = size;
1265 	return 0;
1266 }
1267 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270 	rbd_dev->mapping.size = 0;
1271 }
1272 
zero_bvec(struct bio_vec * bv)1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275 	void *buf;
1276 	unsigned long flags;
1277 
1278 	buf = bvec_kmap_irq(bv, &flags);
1279 	memset(buf, 0, bv->bv_len);
1280 	flush_dcache_page(bv->bv_page);
1281 	bvec_kunmap_irq(buf, &flags);
1282 }
1283 
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286 	struct ceph_bio_iter it = *bio_pos;
1287 
1288 	ceph_bio_iter_advance(&it, off);
1289 	ceph_bio_iter_advance_step(&it, bytes, ({
1290 		zero_bvec(&bv);
1291 	}));
1292 }
1293 
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296 	struct ceph_bvec_iter it = *bvec_pos;
1297 
1298 	ceph_bvec_iter_advance(&it, off);
1299 	ceph_bvec_iter_advance_step(&it, bytes, ({
1300 		zero_bvec(&bv);
1301 	}));
1302 }
1303 
1304 /*
1305  * Zero a range in @obj_req data buffer defined by a bio (list) or
1306  * (private) bio_vec array.
1307  *
1308  * @off is relative to the start of the data buffer.
1309  */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311 			       u32 bytes)
1312 {
1313 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314 
1315 	switch (obj_req->img_request->data_type) {
1316 	case OBJ_REQUEST_BIO:
1317 		zero_bios(&obj_req->bio_pos, off, bytes);
1318 		break;
1319 	case OBJ_REQUEST_BVECS:
1320 	case OBJ_REQUEST_OWN_BVECS:
1321 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322 		break;
1323 	default:
1324 		BUG();
1325 	}
1326 }
1327 
1328 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331 	rbd_assert(obj_request != NULL);
1332 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333 		kref_read(&obj_request->kref));
1334 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338 					struct rbd_obj_request *obj_request)
1339 {
1340 	rbd_assert(obj_request->img_request == NULL);
1341 
1342 	/* Image request now owns object's original reference */
1343 	obj_request->img_request = img_request;
1344 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348 					struct rbd_obj_request *obj_request)
1349 {
1350 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 	list_del(&obj_request->ex.oe_item);
1352 	rbd_assert(obj_request->img_request == img_request);
1353 	rbd_obj_request_put(obj_request);
1354 }
1355 
rbd_osd_submit(struct ceph_osd_request * osd_req)1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1359 
1360 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1363 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365 
1366 /*
1367  * The default/initial value for all image request flags is 0.  Each
1368  * is conditionally set to 1 at image request initialization time
1369  * and currently never change thereafter.
1370  */
img_request_layered_set(struct rbd_img_request * img_request)1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375 
img_request_layered_test(struct rbd_img_request * img_request)1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380 
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384 
1385 	return !obj_req->ex.oe_off &&
1386 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388 
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392 
1393 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394 					rbd_dev->layout.object_size;
1395 }
1396 
1397 /*
1398  * Must be called after rbd_obj_calc_img_extents().
1399  */
rbd_obj_copyup_enabled(struct rbd_obj_request * obj_req)1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402 	if (!obj_req->num_img_extents ||
1403 	    (rbd_obj_is_entire(obj_req) &&
1404 	     !obj_req->img_request->snapc->num_snaps))
1405 		return false;
1406 
1407 	return true;
1408 }
1409 
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412 	return ceph_file_extents_bytes(obj_req->img_extents,
1413 				       obj_req->num_img_extents);
1414 }
1415 
rbd_img_is_write(struct rbd_img_request * img_req)1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418 	switch (img_req->op_type) {
1419 	case OBJ_OP_READ:
1420 		return false;
1421 	case OBJ_OP_WRITE:
1422 	case OBJ_OP_DISCARD:
1423 	case OBJ_OP_ZEROOUT:
1424 		return true;
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1433 	int result;
1434 
1435 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436 	     osd_req->r_result, obj_req);
1437 
1438 	/*
1439 	 * Writes aren't allowed to return a data payload.  In some
1440 	 * guarded write cases (e.g. stat + zero on an empty object)
1441 	 * a stat response makes it through, but we don't care.
1442 	 */
1443 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444 		result = 0;
1445 	else
1446 		result = osd_req->r_result;
1447 
1448 	rbd_obj_handle_request(obj_req, result);
1449 }
1450 
rbd_osd_format_read(struct ceph_osd_request * osd_req)1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1454 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1455 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1456 
1457 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1458 	osd_req->r_snapid = obj_request->img_request->snap_id;
1459 }
1460 
rbd_osd_format_write(struct ceph_osd_request * osd_req)1461 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1462 {
1463 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1464 
1465 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1466 	ktime_get_real_ts64(&osd_req->r_mtime);
1467 	osd_req->r_data_offset = obj_request->ex.oe_off;
1468 }
1469 
1470 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1471 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1472 			  struct ceph_snap_context *snapc, int num_ops)
1473 {
1474 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1475 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1476 	struct ceph_osd_request *req;
1477 	const char *name_format = rbd_dev->image_format == 1 ?
1478 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1479 	int ret;
1480 
1481 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1482 	if (!req)
1483 		return ERR_PTR(-ENOMEM);
1484 
1485 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1486 	req->r_callback = rbd_osd_req_callback;
1487 	req->r_priv = obj_req;
1488 
1489 	/*
1490 	 * Data objects may be stored in a separate pool, but always in
1491 	 * the same namespace in that pool as the header in its pool.
1492 	 */
1493 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1494 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1495 
1496 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1497 			       rbd_dev->header.object_prefix,
1498 			       obj_req->ex.oe_objno);
1499 	if (ret)
1500 		return ERR_PTR(ret);
1501 
1502 	return req;
1503 }
1504 
1505 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1506 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1507 {
1508 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1509 					 num_ops);
1510 }
1511 
rbd_obj_request_create(void)1512 static struct rbd_obj_request *rbd_obj_request_create(void)
1513 {
1514 	struct rbd_obj_request *obj_request;
1515 
1516 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1517 	if (!obj_request)
1518 		return NULL;
1519 
1520 	ceph_object_extent_init(&obj_request->ex);
1521 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1522 	mutex_init(&obj_request->state_mutex);
1523 	kref_init(&obj_request->kref);
1524 
1525 	dout("%s %p\n", __func__, obj_request);
1526 	return obj_request;
1527 }
1528 
rbd_obj_request_destroy(struct kref * kref)1529 static void rbd_obj_request_destroy(struct kref *kref)
1530 {
1531 	struct rbd_obj_request *obj_request;
1532 	struct ceph_osd_request *osd_req;
1533 	u32 i;
1534 
1535 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1536 
1537 	dout("%s: obj %p\n", __func__, obj_request);
1538 
1539 	while (!list_empty(&obj_request->osd_reqs)) {
1540 		osd_req = list_first_entry(&obj_request->osd_reqs,
1541 				    struct ceph_osd_request, r_private_item);
1542 		list_del_init(&osd_req->r_private_item);
1543 		ceph_osdc_put_request(osd_req);
1544 	}
1545 
1546 	switch (obj_request->img_request->data_type) {
1547 	case OBJ_REQUEST_NODATA:
1548 	case OBJ_REQUEST_BIO:
1549 	case OBJ_REQUEST_BVECS:
1550 		break;		/* Nothing to do */
1551 	case OBJ_REQUEST_OWN_BVECS:
1552 		kfree(obj_request->bvec_pos.bvecs);
1553 		break;
1554 	default:
1555 		BUG();
1556 	}
1557 
1558 	kfree(obj_request->img_extents);
1559 	if (obj_request->copyup_bvecs) {
1560 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1561 			if (obj_request->copyup_bvecs[i].bv_page)
1562 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1563 		}
1564 		kfree(obj_request->copyup_bvecs);
1565 	}
1566 
1567 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1568 }
1569 
1570 /* It's OK to call this for a device with no parent */
1571 
1572 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1573 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1574 {
1575 	rbd_dev_remove_parent(rbd_dev);
1576 	rbd_spec_put(rbd_dev->parent_spec);
1577 	rbd_dev->parent_spec = NULL;
1578 	rbd_dev->parent_overlap = 0;
1579 }
1580 
1581 /*
1582  * Parent image reference counting is used to determine when an
1583  * image's parent fields can be safely torn down--after there are no
1584  * more in-flight requests to the parent image.  When the last
1585  * reference is dropped, cleaning them up is safe.
1586  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1587 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1588 {
1589 	int counter;
1590 
1591 	if (!rbd_dev->parent_spec)
1592 		return;
1593 
1594 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1595 	if (counter > 0)
1596 		return;
1597 
1598 	/* Last reference; clean up parent data structures */
1599 
1600 	if (!counter)
1601 		rbd_dev_unparent(rbd_dev);
1602 	else
1603 		rbd_warn(rbd_dev, "parent reference underflow");
1604 }
1605 
1606 /*
1607  * If an image has a non-zero parent overlap, get a reference to its
1608  * parent.
1609  *
1610  * Returns true if the rbd device has a parent with a non-zero
1611  * overlap and a reference for it was successfully taken, or
1612  * false otherwise.
1613  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1614 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1615 {
1616 	int counter = 0;
1617 
1618 	if (!rbd_dev->parent_spec)
1619 		return false;
1620 
1621 	if (rbd_dev->parent_overlap)
1622 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623 
1624 	if (counter < 0)
1625 		rbd_warn(rbd_dev, "parent reference overflow");
1626 
1627 	return counter > 0;
1628 }
1629 
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1630 static void rbd_img_request_init(struct rbd_img_request *img_request,
1631 				 struct rbd_device *rbd_dev,
1632 				 enum obj_operation_type op_type)
1633 {
1634 	memset(img_request, 0, sizeof(*img_request));
1635 
1636 	img_request->rbd_dev = rbd_dev;
1637 	img_request->op_type = op_type;
1638 
1639 	INIT_LIST_HEAD(&img_request->lock_item);
1640 	INIT_LIST_HEAD(&img_request->object_extents);
1641 	mutex_init(&img_request->state_mutex);
1642 }
1643 
rbd_img_capture_header(struct rbd_img_request * img_req)1644 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1645 {
1646 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1647 
1648 	lockdep_assert_held(&rbd_dev->header_rwsem);
1649 
1650 	if (rbd_img_is_write(img_req))
1651 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1652 	else
1653 		img_req->snap_id = rbd_dev->spec->snap_id;
1654 
1655 	if (rbd_dev_parent_get(rbd_dev))
1656 		img_request_layered_set(img_req);
1657 }
1658 
rbd_img_request_destroy(struct rbd_img_request * img_request)1659 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1660 {
1661 	struct rbd_obj_request *obj_request;
1662 	struct rbd_obj_request *next_obj_request;
1663 
1664 	dout("%s: img %p\n", __func__, img_request);
1665 
1666 	WARN_ON(!list_empty(&img_request->lock_item));
1667 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1668 		rbd_img_obj_request_del(img_request, obj_request);
1669 
1670 	if (img_request_layered_test(img_request))
1671 		rbd_dev_parent_put(img_request->rbd_dev);
1672 
1673 	if (rbd_img_is_write(img_request))
1674 		ceph_put_snap_context(img_request->snapc);
1675 
1676 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1677 		kmem_cache_free(rbd_img_request_cache, img_request);
1678 }
1679 
1680 #define BITS_PER_OBJ	2
1681 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1682 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1683 
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1684 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1685 				   u64 *index, u8 *shift)
1686 {
1687 	u32 off;
1688 
1689 	rbd_assert(objno < rbd_dev->object_map_size);
1690 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1691 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1692 }
1693 
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1694 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696 	u64 index;
1697 	u8 shift;
1698 
1699 	lockdep_assert_held(&rbd_dev->object_map_lock);
1700 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1701 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1702 }
1703 
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1704 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1705 {
1706 	u64 index;
1707 	u8 shift;
1708 	u8 *p;
1709 
1710 	lockdep_assert_held(&rbd_dev->object_map_lock);
1711 	rbd_assert(!(val & ~OBJ_MASK));
1712 
1713 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1714 	p = &rbd_dev->object_map[index];
1715 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1716 }
1717 
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1718 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1719 {
1720 	u8 state;
1721 
1722 	spin_lock(&rbd_dev->object_map_lock);
1723 	state = __rbd_object_map_get(rbd_dev, objno);
1724 	spin_unlock(&rbd_dev->object_map_lock);
1725 	return state;
1726 }
1727 
use_object_map(struct rbd_device * rbd_dev)1728 static bool use_object_map(struct rbd_device *rbd_dev)
1729 {
1730 	/*
1731 	 * An image mapped read-only can't use the object map -- it isn't
1732 	 * loaded because the header lock isn't acquired.  Someone else can
1733 	 * write to the image and update the object map behind our back.
1734 	 *
1735 	 * A snapshot can't be written to, so using the object map is always
1736 	 * safe.
1737 	 */
1738 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1739 		return false;
1740 
1741 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1742 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1743 }
1744 
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1745 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1746 {
1747 	u8 state;
1748 
1749 	/* fall back to default logic if object map is disabled or invalid */
1750 	if (!use_object_map(rbd_dev))
1751 		return true;
1752 
1753 	state = rbd_object_map_get(rbd_dev, objno);
1754 	return state != OBJECT_NONEXISTENT;
1755 }
1756 
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1757 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1758 				struct ceph_object_id *oid)
1759 {
1760 	if (snap_id == CEPH_NOSNAP)
1761 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1762 				rbd_dev->spec->image_id);
1763 	else
1764 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1765 				rbd_dev->spec->image_id, snap_id);
1766 }
1767 
rbd_object_map_lock(struct rbd_device * rbd_dev)1768 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1769 {
1770 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1771 	CEPH_DEFINE_OID_ONSTACK(oid);
1772 	u8 lock_type;
1773 	char *lock_tag;
1774 	struct ceph_locker *lockers;
1775 	u32 num_lockers;
1776 	bool broke_lock = false;
1777 	int ret;
1778 
1779 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1780 
1781 again:
1782 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1783 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1784 	if (ret != -EBUSY || broke_lock) {
1785 		if (ret == -EEXIST)
1786 			ret = 0; /* already locked by myself */
1787 		if (ret)
1788 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1789 		return ret;
1790 	}
1791 
1792 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1793 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1794 				 &lockers, &num_lockers);
1795 	if (ret) {
1796 		if (ret == -ENOENT)
1797 			goto again;
1798 
1799 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1800 		return ret;
1801 	}
1802 
1803 	kfree(lock_tag);
1804 	if (num_lockers == 0)
1805 		goto again;
1806 
1807 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1808 		 ENTITY_NAME(lockers[0].id.name));
1809 
1810 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1811 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1812 				  &lockers[0].id.name);
1813 	ceph_free_lockers(lockers, num_lockers);
1814 	if (ret) {
1815 		if (ret == -ENOENT)
1816 			goto again;
1817 
1818 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1819 		return ret;
1820 	}
1821 
1822 	broke_lock = true;
1823 	goto again;
1824 }
1825 
rbd_object_map_unlock(struct rbd_device * rbd_dev)1826 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1827 {
1828 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 	CEPH_DEFINE_OID_ONSTACK(oid);
1830 	int ret;
1831 
1832 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1833 
1834 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1835 			      "");
1836 	if (ret && ret != -ENOENT)
1837 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1838 }
1839 
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1840 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1841 {
1842 	u8 struct_v;
1843 	u32 struct_len;
1844 	u32 header_len;
1845 	void *header_end;
1846 	int ret;
1847 
1848 	ceph_decode_32_safe(p, end, header_len, e_inval);
1849 	header_end = *p + header_len;
1850 
1851 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1852 				  &struct_len);
1853 	if (ret)
1854 		return ret;
1855 
1856 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1857 
1858 	*p = header_end;
1859 	return 0;
1860 
1861 e_inval:
1862 	return -EINVAL;
1863 }
1864 
__rbd_object_map_load(struct rbd_device * rbd_dev)1865 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1866 {
1867 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1868 	CEPH_DEFINE_OID_ONSTACK(oid);
1869 	struct page **pages;
1870 	void *p, *end;
1871 	size_t reply_len;
1872 	u64 num_objects;
1873 	u64 object_map_bytes;
1874 	u64 object_map_size;
1875 	int num_pages;
1876 	int ret;
1877 
1878 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1879 
1880 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1881 					   rbd_dev->mapping.size);
1882 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1883 					    BITS_PER_BYTE);
1884 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1885 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1886 	if (IS_ERR(pages))
1887 		return PTR_ERR(pages);
1888 
1889 	reply_len = num_pages * PAGE_SIZE;
1890 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1891 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1892 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1893 			     NULL, 0, pages, &reply_len);
1894 	if (ret)
1895 		goto out;
1896 
1897 	p = page_address(pages[0]);
1898 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1899 	ret = decode_object_map_header(&p, end, &object_map_size);
1900 	if (ret)
1901 		goto out;
1902 
1903 	if (object_map_size != num_objects) {
1904 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1905 			 object_map_size, num_objects);
1906 		ret = -EINVAL;
1907 		goto out;
1908 	}
1909 
1910 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1911 		ret = -EINVAL;
1912 		goto out;
1913 	}
1914 
1915 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1916 	if (!rbd_dev->object_map) {
1917 		ret = -ENOMEM;
1918 		goto out;
1919 	}
1920 
1921 	rbd_dev->object_map_size = object_map_size;
1922 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1923 				   offset_in_page(p), object_map_bytes);
1924 
1925 out:
1926 	ceph_release_page_vector(pages, num_pages);
1927 	return ret;
1928 }
1929 
rbd_object_map_free(struct rbd_device * rbd_dev)1930 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1931 {
1932 	kvfree(rbd_dev->object_map);
1933 	rbd_dev->object_map = NULL;
1934 	rbd_dev->object_map_size = 0;
1935 }
1936 
rbd_object_map_load(struct rbd_device * rbd_dev)1937 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1938 {
1939 	int ret;
1940 
1941 	ret = __rbd_object_map_load(rbd_dev);
1942 	if (ret)
1943 		return ret;
1944 
1945 	ret = rbd_dev_v2_get_flags(rbd_dev);
1946 	if (ret) {
1947 		rbd_object_map_free(rbd_dev);
1948 		return ret;
1949 	}
1950 
1951 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1952 		rbd_warn(rbd_dev, "object map is invalid");
1953 
1954 	return 0;
1955 }
1956 
rbd_object_map_open(struct rbd_device * rbd_dev)1957 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1958 {
1959 	int ret;
1960 
1961 	ret = rbd_object_map_lock(rbd_dev);
1962 	if (ret)
1963 		return ret;
1964 
1965 	ret = rbd_object_map_load(rbd_dev);
1966 	if (ret) {
1967 		rbd_object_map_unlock(rbd_dev);
1968 		return ret;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
rbd_object_map_close(struct rbd_device * rbd_dev)1974 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1975 {
1976 	rbd_object_map_free(rbd_dev);
1977 	rbd_object_map_unlock(rbd_dev);
1978 }
1979 
1980 /*
1981  * This function needs snap_id (or more precisely just something to
1982  * distinguish between HEAD and snapshot object maps), new_state and
1983  * current_state that were passed to rbd_object_map_update().
1984  *
1985  * To avoid allocating and stashing a context we piggyback on the OSD
1986  * request.  A HEAD update has two ops (assert_locked).  For new_state
1987  * and current_state we decode our own object_map_update op, encoded in
1988  * rbd_cls_object_map_update().
1989  */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1990 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1991 					struct ceph_osd_request *osd_req)
1992 {
1993 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1994 	struct ceph_osd_data *osd_data;
1995 	u64 objno;
1996 	u8 state, new_state, current_state;
1997 	bool has_current_state;
1998 	void *p;
1999 
2000 	if (osd_req->r_result)
2001 		return osd_req->r_result;
2002 
2003 	/*
2004 	 * Nothing to do for a snapshot object map.
2005 	 */
2006 	if (osd_req->r_num_ops == 1)
2007 		return 0;
2008 
2009 	/*
2010 	 * Update in-memory HEAD object map.
2011 	 */
2012 	rbd_assert(osd_req->r_num_ops == 2);
2013 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2014 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2015 
2016 	p = page_address(osd_data->pages[0]);
2017 	objno = ceph_decode_64(&p);
2018 	rbd_assert(objno == obj_req->ex.oe_objno);
2019 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2020 	new_state = ceph_decode_8(&p);
2021 	has_current_state = ceph_decode_8(&p);
2022 	if (has_current_state)
2023 		current_state = ceph_decode_8(&p);
2024 
2025 	spin_lock(&rbd_dev->object_map_lock);
2026 	state = __rbd_object_map_get(rbd_dev, objno);
2027 	if (!has_current_state || current_state == state ||
2028 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2029 		__rbd_object_map_set(rbd_dev, objno, new_state);
2030 	spin_unlock(&rbd_dev->object_map_lock);
2031 
2032 	return 0;
2033 }
2034 
rbd_object_map_callback(struct ceph_osd_request * osd_req)2035 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2036 {
2037 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2038 	int result;
2039 
2040 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2041 	     osd_req->r_result, obj_req);
2042 
2043 	result = rbd_object_map_update_finish(obj_req, osd_req);
2044 	rbd_obj_handle_request(obj_req, result);
2045 }
2046 
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2047 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2048 {
2049 	u8 state = rbd_object_map_get(rbd_dev, objno);
2050 
2051 	if (state == new_state ||
2052 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2053 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2054 		return false;
2055 
2056 	return true;
2057 }
2058 
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2059 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2060 				     int which, u64 objno, u8 new_state,
2061 				     const u8 *current_state)
2062 {
2063 	struct page **pages;
2064 	void *p, *start;
2065 	int ret;
2066 
2067 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2068 	if (ret)
2069 		return ret;
2070 
2071 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2072 	if (IS_ERR(pages))
2073 		return PTR_ERR(pages);
2074 
2075 	p = start = page_address(pages[0]);
2076 	ceph_encode_64(&p, objno);
2077 	ceph_encode_64(&p, objno + 1);
2078 	ceph_encode_8(&p, new_state);
2079 	if (current_state) {
2080 		ceph_encode_8(&p, 1);
2081 		ceph_encode_8(&p, *current_state);
2082 	} else {
2083 		ceph_encode_8(&p, 0);
2084 	}
2085 
2086 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2087 					  false, true);
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Return:
2093  *   0 - object map update sent
2094  *   1 - object map update isn't needed
2095  *  <0 - error
2096  */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2097 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2098 				 u8 new_state, const u8 *current_state)
2099 {
2100 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2101 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2102 	struct ceph_osd_request *req;
2103 	int num_ops = 1;
2104 	int which = 0;
2105 	int ret;
2106 
2107 	if (snap_id == CEPH_NOSNAP) {
2108 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2109 			return 1;
2110 
2111 		num_ops++; /* assert_locked */
2112 	}
2113 
2114 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2115 	if (!req)
2116 		return -ENOMEM;
2117 
2118 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2119 	req->r_callback = rbd_object_map_callback;
2120 	req->r_priv = obj_req;
2121 
2122 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2123 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2124 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2125 	ktime_get_real_ts64(&req->r_mtime);
2126 
2127 	if (snap_id == CEPH_NOSNAP) {
2128 		/*
2129 		 * Protect against possible race conditions during lock
2130 		 * ownership transitions.
2131 		 */
2132 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2133 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2134 		if (ret)
2135 			return ret;
2136 	}
2137 
2138 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2139 					new_state, current_state);
2140 	if (ret)
2141 		return ret;
2142 
2143 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2144 	if (ret)
2145 		return ret;
2146 
2147 	ceph_osdc_start_request(osdc, req, false);
2148 	return 0;
2149 }
2150 
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2151 static void prune_extents(struct ceph_file_extent *img_extents,
2152 			  u32 *num_img_extents, u64 overlap)
2153 {
2154 	u32 cnt = *num_img_extents;
2155 
2156 	/* drop extents completely beyond the overlap */
2157 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2158 		cnt--;
2159 
2160 	if (cnt) {
2161 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2162 
2163 		/* trim final overlapping extent */
2164 		if (ex->fe_off + ex->fe_len > overlap)
2165 			ex->fe_len = overlap - ex->fe_off;
2166 	}
2167 
2168 	*num_img_extents = cnt;
2169 }
2170 
2171 /*
2172  * Determine the byte range(s) covered by either just the object extent
2173  * or the entire object in the parent image.
2174  */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2175 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2176 				    bool entire)
2177 {
2178 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2179 	int ret;
2180 
2181 	if (!rbd_dev->parent_overlap)
2182 		return 0;
2183 
2184 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2185 				  entire ? 0 : obj_req->ex.oe_off,
2186 				  entire ? rbd_dev->layout.object_size :
2187 							obj_req->ex.oe_len,
2188 				  &obj_req->img_extents,
2189 				  &obj_req->num_img_extents);
2190 	if (ret)
2191 		return ret;
2192 
2193 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2194 		      rbd_dev->parent_overlap);
2195 	return 0;
2196 }
2197 
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2198 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2199 {
2200 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2201 
2202 	switch (obj_req->img_request->data_type) {
2203 	case OBJ_REQUEST_BIO:
2204 		osd_req_op_extent_osd_data_bio(osd_req, which,
2205 					       &obj_req->bio_pos,
2206 					       obj_req->ex.oe_len);
2207 		break;
2208 	case OBJ_REQUEST_BVECS:
2209 	case OBJ_REQUEST_OWN_BVECS:
2210 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2211 							obj_req->ex.oe_len);
2212 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2213 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2214 						    &obj_req->bvec_pos);
2215 		break;
2216 	default:
2217 		BUG();
2218 	}
2219 }
2220 
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2221 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2222 {
2223 	struct page **pages;
2224 
2225 	/*
2226 	 * The response data for a STAT call consists of:
2227 	 *     le64 length;
2228 	 *     struct {
2229 	 *         le32 tv_sec;
2230 	 *         le32 tv_nsec;
2231 	 *     } mtime;
2232 	 */
2233 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2234 	if (IS_ERR(pages))
2235 		return PTR_ERR(pages);
2236 
2237 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2238 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2239 				     8 + sizeof(struct ceph_timespec),
2240 				     0, false, true);
2241 	return 0;
2242 }
2243 
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2244 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2245 				u32 bytes)
2246 {
2247 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2248 	int ret;
2249 
2250 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2251 	if (ret)
2252 		return ret;
2253 
2254 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2255 					  obj_req->copyup_bvec_count, bytes);
2256 	return 0;
2257 }
2258 
rbd_obj_init_read(struct rbd_obj_request * obj_req)2259 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2260 {
2261 	obj_req->read_state = RBD_OBJ_READ_START;
2262 	return 0;
2263 }
2264 
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2265 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2266 				      int which)
2267 {
2268 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2269 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2270 	u16 opcode;
2271 
2272 	if (!use_object_map(rbd_dev) ||
2273 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2274 		osd_req_op_alloc_hint_init(osd_req, which++,
2275 					   rbd_dev->layout.object_size,
2276 					   rbd_dev->layout.object_size,
2277 					   rbd_dev->opts->alloc_hint_flags);
2278 	}
2279 
2280 	if (rbd_obj_is_entire(obj_req))
2281 		opcode = CEPH_OSD_OP_WRITEFULL;
2282 	else
2283 		opcode = CEPH_OSD_OP_WRITE;
2284 
2285 	osd_req_op_extent_init(osd_req, which, opcode,
2286 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2287 	rbd_osd_setup_data(osd_req, which);
2288 }
2289 
rbd_obj_init_write(struct rbd_obj_request * obj_req)2290 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2291 {
2292 	int ret;
2293 
2294 	/* reverse map the entire object onto the parent */
2295 	ret = rbd_obj_calc_img_extents(obj_req, true);
2296 	if (ret)
2297 		return ret;
2298 
2299 	if (rbd_obj_copyup_enabled(obj_req))
2300 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2301 
2302 	obj_req->write_state = RBD_OBJ_WRITE_START;
2303 	return 0;
2304 }
2305 
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2306 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2307 {
2308 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2309 					  CEPH_OSD_OP_ZERO;
2310 }
2311 
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2312 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2313 					int which)
2314 {
2315 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2316 
2317 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2318 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2319 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2320 	} else {
2321 		osd_req_op_extent_init(osd_req, which,
2322 				       truncate_or_zero_opcode(obj_req),
2323 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2324 				       0, 0);
2325 	}
2326 }
2327 
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2328 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2329 {
2330 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2331 	u64 off, next_off;
2332 	int ret;
2333 
2334 	/*
2335 	 * Align the range to alloc_size boundary and punt on discards
2336 	 * that are too small to free up any space.
2337 	 *
2338 	 * alloc_size == object_size && is_tail() is a special case for
2339 	 * filestore with filestore_punch_hole = false, needed to allow
2340 	 * truncate (in addition to delete).
2341 	 */
2342 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2343 	    !rbd_obj_is_tail(obj_req)) {
2344 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2345 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2346 				      rbd_dev->opts->alloc_size);
2347 		if (off >= next_off)
2348 			return 1;
2349 
2350 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2351 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 		     off, next_off - off);
2353 		obj_req->ex.oe_off = off;
2354 		obj_req->ex.oe_len = next_off - off;
2355 	}
2356 
2357 	/* reverse map the entire object onto the parent */
2358 	ret = rbd_obj_calc_img_extents(obj_req, true);
2359 	if (ret)
2360 		return ret;
2361 
2362 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2364 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365 
2366 	obj_req->write_state = RBD_OBJ_WRITE_START;
2367 	return 0;
2368 }
2369 
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2370 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2371 					int which)
2372 {
2373 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2374 	u16 opcode;
2375 
2376 	if (rbd_obj_is_entire(obj_req)) {
2377 		if (obj_req->num_img_extents) {
2378 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2379 				osd_req_op_init(osd_req, which++,
2380 						CEPH_OSD_OP_CREATE, 0);
2381 			opcode = CEPH_OSD_OP_TRUNCATE;
2382 		} else {
2383 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2384 			osd_req_op_init(osd_req, which++,
2385 					CEPH_OSD_OP_DELETE, 0);
2386 			opcode = 0;
2387 		}
2388 	} else {
2389 		opcode = truncate_or_zero_opcode(obj_req);
2390 	}
2391 
2392 	if (opcode)
2393 		osd_req_op_extent_init(osd_req, which, opcode,
2394 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2395 				       0, 0);
2396 }
2397 
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2398 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2399 {
2400 	int ret;
2401 
2402 	/* reverse map the entire object onto the parent */
2403 	ret = rbd_obj_calc_img_extents(obj_req, true);
2404 	if (ret)
2405 		return ret;
2406 
2407 	if (rbd_obj_copyup_enabled(obj_req))
2408 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2409 	if (!obj_req->num_img_extents) {
2410 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2411 		if (rbd_obj_is_entire(obj_req))
2412 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2413 	}
2414 
2415 	obj_req->write_state = RBD_OBJ_WRITE_START;
2416 	return 0;
2417 }
2418 
count_write_ops(struct rbd_obj_request * obj_req)2419 static int count_write_ops(struct rbd_obj_request *obj_req)
2420 {
2421 	struct rbd_img_request *img_req = obj_req->img_request;
2422 
2423 	switch (img_req->op_type) {
2424 	case OBJ_OP_WRITE:
2425 		if (!use_object_map(img_req->rbd_dev) ||
2426 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2427 			return 2; /* setallochint + write/writefull */
2428 
2429 		return 1; /* write/writefull */
2430 	case OBJ_OP_DISCARD:
2431 		return 1; /* delete/truncate/zero */
2432 	case OBJ_OP_ZEROOUT:
2433 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2434 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2435 			return 2; /* create + truncate */
2436 
2437 		return 1; /* delete/truncate/zero */
2438 	default:
2439 		BUG();
2440 	}
2441 }
2442 
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2443 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2444 				    int which)
2445 {
2446 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2447 
2448 	switch (obj_req->img_request->op_type) {
2449 	case OBJ_OP_WRITE:
2450 		__rbd_osd_setup_write_ops(osd_req, which);
2451 		break;
2452 	case OBJ_OP_DISCARD:
2453 		__rbd_osd_setup_discard_ops(osd_req, which);
2454 		break;
2455 	case OBJ_OP_ZEROOUT:
2456 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2457 		break;
2458 	default:
2459 		BUG();
2460 	}
2461 }
2462 
2463 /*
2464  * Prune the list of object requests (adjust offset and/or length, drop
2465  * redundant requests).  Prepare object request state machines and image
2466  * request state machine for execution.
2467  */
__rbd_img_fill_request(struct rbd_img_request * img_req)2468 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2469 {
2470 	struct rbd_obj_request *obj_req, *next_obj_req;
2471 	int ret;
2472 
2473 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2474 		switch (img_req->op_type) {
2475 		case OBJ_OP_READ:
2476 			ret = rbd_obj_init_read(obj_req);
2477 			break;
2478 		case OBJ_OP_WRITE:
2479 			ret = rbd_obj_init_write(obj_req);
2480 			break;
2481 		case OBJ_OP_DISCARD:
2482 			ret = rbd_obj_init_discard(obj_req);
2483 			break;
2484 		case OBJ_OP_ZEROOUT:
2485 			ret = rbd_obj_init_zeroout(obj_req);
2486 			break;
2487 		default:
2488 			BUG();
2489 		}
2490 		if (ret < 0)
2491 			return ret;
2492 		if (ret > 0) {
2493 			rbd_img_obj_request_del(img_req, obj_req);
2494 			continue;
2495 		}
2496 	}
2497 
2498 	img_req->state = RBD_IMG_START;
2499 	return 0;
2500 }
2501 
2502 union rbd_img_fill_iter {
2503 	struct ceph_bio_iter	bio_iter;
2504 	struct ceph_bvec_iter	bvec_iter;
2505 };
2506 
2507 struct rbd_img_fill_ctx {
2508 	enum obj_request_type	pos_type;
2509 	union rbd_img_fill_iter	*pos;
2510 	union rbd_img_fill_iter	iter;
2511 	ceph_object_extent_fn_t	set_pos_fn;
2512 	ceph_object_extent_fn_t	count_fn;
2513 	ceph_object_extent_fn_t	copy_fn;
2514 };
2515 
alloc_object_extent(void * arg)2516 static struct ceph_object_extent *alloc_object_extent(void *arg)
2517 {
2518 	struct rbd_img_request *img_req = arg;
2519 	struct rbd_obj_request *obj_req;
2520 
2521 	obj_req = rbd_obj_request_create();
2522 	if (!obj_req)
2523 		return NULL;
2524 
2525 	rbd_img_obj_request_add(img_req, obj_req);
2526 	return &obj_req->ex;
2527 }
2528 
2529 /*
2530  * While su != os && sc == 1 is technically not fancy (it's the same
2531  * layout as su == os && sc == 1), we can't use the nocopy path for it
2532  * because ->set_pos_fn() should be called only once per object.
2533  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2534  * treat su != os && sc == 1 as fancy.
2535  */
rbd_layout_is_fancy(struct ceph_file_layout * l)2536 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2537 {
2538 	return l->stripe_unit != l->object_size;
2539 }
2540 
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2541 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2542 				       struct ceph_file_extent *img_extents,
2543 				       u32 num_img_extents,
2544 				       struct rbd_img_fill_ctx *fctx)
2545 {
2546 	u32 i;
2547 	int ret;
2548 
2549 	img_req->data_type = fctx->pos_type;
2550 
2551 	/*
2552 	 * Create object requests and set each object request's starting
2553 	 * position in the provided bio (list) or bio_vec array.
2554 	 */
2555 	fctx->iter = *fctx->pos;
2556 	for (i = 0; i < num_img_extents; i++) {
2557 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2558 					   img_extents[i].fe_off,
2559 					   img_extents[i].fe_len,
2560 					   &img_req->object_extents,
2561 					   alloc_object_extent, img_req,
2562 					   fctx->set_pos_fn, &fctx->iter);
2563 		if (ret)
2564 			return ret;
2565 	}
2566 
2567 	return __rbd_img_fill_request(img_req);
2568 }
2569 
2570 /*
2571  * Map a list of image extents to a list of object extents, create the
2572  * corresponding object requests (normally each to a different object,
2573  * but not always) and add them to @img_req.  For each object request,
2574  * set up its data descriptor to point to the corresponding chunk(s) of
2575  * @fctx->pos data buffer.
2576  *
2577  * Because ceph_file_to_extents() will merge adjacent object extents
2578  * together, each object request's data descriptor may point to multiple
2579  * different chunks of @fctx->pos data buffer.
2580  *
2581  * @fctx->pos data buffer is assumed to be large enough.
2582  */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2583 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2584 				struct ceph_file_extent *img_extents,
2585 				u32 num_img_extents,
2586 				struct rbd_img_fill_ctx *fctx)
2587 {
2588 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2589 	struct rbd_obj_request *obj_req;
2590 	u32 i;
2591 	int ret;
2592 
2593 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2594 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2595 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2596 						   num_img_extents, fctx);
2597 
2598 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2599 
2600 	/*
2601 	 * Create object requests and determine ->bvec_count for each object
2602 	 * request.  Note that ->bvec_count sum over all object requests may
2603 	 * be greater than the number of bio_vecs in the provided bio (list)
2604 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2605 	 * stripe unit boundaries.
2606 	 */
2607 	fctx->iter = *fctx->pos;
2608 	for (i = 0; i < num_img_extents; i++) {
2609 		ret = ceph_file_to_extents(&rbd_dev->layout,
2610 					   img_extents[i].fe_off,
2611 					   img_extents[i].fe_len,
2612 					   &img_req->object_extents,
2613 					   alloc_object_extent, img_req,
2614 					   fctx->count_fn, &fctx->iter);
2615 		if (ret)
2616 			return ret;
2617 	}
2618 
2619 	for_each_obj_request(img_req, obj_req) {
2620 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2621 					      sizeof(*obj_req->bvec_pos.bvecs),
2622 					      GFP_NOIO);
2623 		if (!obj_req->bvec_pos.bvecs)
2624 			return -ENOMEM;
2625 	}
2626 
2627 	/*
2628 	 * Fill in each object request's private bio_vec array, splitting and
2629 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2630 	 */
2631 	fctx->iter = *fctx->pos;
2632 	for (i = 0; i < num_img_extents; i++) {
2633 		ret = ceph_iterate_extents(&rbd_dev->layout,
2634 					   img_extents[i].fe_off,
2635 					   img_extents[i].fe_len,
2636 					   &img_req->object_extents,
2637 					   fctx->copy_fn, &fctx->iter);
2638 		if (ret)
2639 			return ret;
2640 	}
2641 
2642 	return __rbd_img_fill_request(img_req);
2643 }
2644 
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2645 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2646 			       u64 off, u64 len)
2647 {
2648 	struct ceph_file_extent ex = { off, len };
2649 	union rbd_img_fill_iter dummy = {};
2650 	struct rbd_img_fill_ctx fctx = {
2651 		.pos_type = OBJ_REQUEST_NODATA,
2652 		.pos = &dummy,
2653 	};
2654 
2655 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2656 }
2657 
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2658 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660 	struct rbd_obj_request *obj_req =
2661 	    container_of(ex, struct rbd_obj_request, ex);
2662 	struct ceph_bio_iter *it = arg;
2663 
2664 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2665 	obj_req->bio_pos = *it;
2666 	ceph_bio_iter_advance(it, bytes);
2667 }
2668 
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2669 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671 	struct rbd_obj_request *obj_req =
2672 	    container_of(ex, struct rbd_obj_request, ex);
2673 	struct ceph_bio_iter *it = arg;
2674 
2675 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2676 	ceph_bio_iter_advance_step(it, bytes, ({
2677 		obj_req->bvec_count++;
2678 	}));
2679 
2680 }
2681 
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2682 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 {
2684 	struct rbd_obj_request *obj_req =
2685 	    container_of(ex, struct rbd_obj_request, ex);
2686 	struct ceph_bio_iter *it = arg;
2687 
2688 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2689 	ceph_bio_iter_advance_step(it, bytes, ({
2690 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2691 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2692 	}));
2693 }
2694 
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2695 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2696 				   struct ceph_file_extent *img_extents,
2697 				   u32 num_img_extents,
2698 				   struct ceph_bio_iter *bio_pos)
2699 {
2700 	struct rbd_img_fill_ctx fctx = {
2701 		.pos_type = OBJ_REQUEST_BIO,
2702 		.pos = (union rbd_img_fill_iter *)bio_pos,
2703 		.set_pos_fn = set_bio_pos,
2704 		.count_fn = count_bio_bvecs,
2705 		.copy_fn = copy_bio_bvecs,
2706 	};
2707 
2708 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2709 				    &fctx);
2710 }
2711 
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2712 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2713 				 u64 off, u64 len, struct bio *bio)
2714 {
2715 	struct ceph_file_extent ex = { off, len };
2716 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2717 
2718 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2719 }
2720 
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2721 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2722 {
2723 	struct rbd_obj_request *obj_req =
2724 	    container_of(ex, struct rbd_obj_request, ex);
2725 	struct ceph_bvec_iter *it = arg;
2726 
2727 	obj_req->bvec_pos = *it;
2728 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2729 	ceph_bvec_iter_advance(it, bytes);
2730 }
2731 
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2732 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2733 {
2734 	struct rbd_obj_request *obj_req =
2735 	    container_of(ex, struct rbd_obj_request, ex);
2736 	struct ceph_bvec_iter *it = arg;
2737 
2738 	ceph_bvec_iter_advance_step(it, bytes, ({
2739 		obj_req->bvec_count++;
2740 	}));
2741 }
2742 
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2743 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2744 {
2745 	struct rbd_obj_request *obj_req =
2746 	    container_of(ex, struct rbd_obj_request, ex);
2747 	struct ceph_bvec_iter *it = arg;
2748 
2749 	ceph_bvec_iter_advance_step(it, bytes, ({
2750 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2751 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2752 	}));
2753 }
2754 
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2755 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2756 				     struct ceph_file_extent *img_extents,
2757 				     u32 num_img_extents,
2758 				     struct ceph_bvec_iter *bvec_pos)
2759 {
2760 	struct rbd_img_fill_ctx fctx = {
2761 		.pos_type = OBJ_REQUEST_BVECS,
2762 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2763 		.set_pos_fn = set_bvec_pos,
2764 		.count_fn = count_bvecs,
2765 		.copy_fn = copy_bvecs,
2766 	};
2767 
2768 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2769 				    &fctx);
2770 }
2771 
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2772 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2773 				   struct ceph_file_extent *img_extents,
2774 				   u32 num_img_extents,
2775 				   struct bio_vec *bvecs)
2776 {
2777 	struct ceph_bvec_iter it = {
2778 		.bvecs = bvecs,
2779 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2780 							     num_img_extents) },
2781 	};
2782 
2783 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2784 					 &it);
2785 }
2786 
rbd_img_handle_request_work(struct work_struct * work)2787 static void rbd_img_handle_request_work(struct work_struct *work)
2788 {
2789 	struct rbd_img_request *img_req =
2790 	    container_of(work, struct rbd_img_request, work);
2791 
2792 	rbd_img_handle_request(img_req, img_req->work_result);
2793 }
2794 
rbd_img_schedule(struct rbd_img_request * img_req,int result)2795 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2796 {
2797 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2798 	img_req->work_result = result;
2799 	queue_work(rbd_wq, &img_req->work);
2800 }
2801 
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2802 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2803 {
2804 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2805 
2806 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2807 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2808 		return true;
2809 	}
2810 
2811 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2812 	     obj_req->ex.oe_objno);
2813 	return false;
2814 }
2815 
rbd_obj_read_object(struct rbd_obj_request * obj_req)2816 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2817 {
2818 	struct ceph_osd_request *osd_req;
2819 	int ret;
2820 
2821 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2822 	if (IS_ERR(osd_req))
2823 		return PTR_ERR(osd_req);
2824 
2825 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2826 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2827 	rbd_osd_setup_data(osd_req, 0);
2828 	rbd_osd_format_read(osd_req);
2829 
2830 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2831 	if (ret)
2832 		return ret;
2833 
2834 	rbd_osd_submit(osd_req);
2835 	return 0;
2836 }
2837 
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2838 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2839 {
2840 	struct rbd_img_request *img_req = obj_req->img_request;
2841 	struct rbd_device *parent = img_req->rbd_dev->parent;
2842 	struct rbd_img_request *child_img_req;
2843 	int ret;
2844 
2845 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2846 	if (!child_img_req)
2847 		return -ENOMEM;
2848 
2849 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2850 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2851 	child_img_req->obj_request = obj_req;
2852 
2853 	down_read(&parent->header_rwsem);
2854 	rbd_img_capture_header(child_img_req);
2855 	up_read(&parent->header_rwsem);
2856 
2857 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2858 	     obj_req);
2859 
2860 	if (!rbd_img_is_write(img_req)) {
2861 		switch (img_req->data_type) {
2862 		case OBJ_REQUEST_BIO:
2863 			ret = __rbd_img_fill_from_bio(child_img_req,
2864 						      obj_req->img_extents,
2865 						      obj_req->num_img_extents,
2866 						      &obj_req->bio_pos);
2867 			break;
2868 		case OBJ_REQUEST_BVECS:
2869 		case OBJ_REQUEST_OWN_BVECS:
2870 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2871 						      obj_req->img_extents,
2872 						      obj_req->num_img_extents,
2873 						      &obj_req->bvec_pos);
2874 			break;
2875 		default:
2876 			BUG();
2877 		}
2878 	} else {
2879 		ret = rbd_img_fill_from_bvecs(child_img_req,
2880 					      obj_req->img_extents,
2881 					      obj_req->num_img_extents,
2882 					      obj_req->copyup_bvecs);
2883 	}
2884 	if (ret) {
2885 		rbd_img_request_destroy(child_img_req);
2886 		return ret;
2887 	}
2888 
2889 	/* avoid parent chain recursion */
2890 	rbd_img_schedule(child_img_req, 0);
2891 	return 0;
2892 }
2893 
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2894 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2895 {
2896 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2897 	int ret;
2898 
2899 again:
2900 	switch (obj_req->read_state) {
2901 	case RBD_OBJ_READ_START:
2902 		rbd_assert(!*result);
2903 
2904 		if (!rbd_obj_may_exist(obj_req)) {
2905 			*result = -ENOENT;
2906 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2907 			goto again;
2908 		}
2909 
2910 		ret = rbd_obj_read_object(obj_req);
2911 		if (ret) {
2912 			*result = ret;
2913 			return true;
2914 		}
2915 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2916 		return false;
2917 	case RBD_OBJ_READ_OBJECT:
2918 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2919 			/* reverse map this object extent onto the parent */
2920 			ret = rbd_obj_calc_img_extents(obj_req, false);
2921 			if (ret) {
2922 				*result = ret;
2923 				return true;
2924 			}
2925 			if (obj_req->num_img_extents) {
2926 				ret = rbd_obj_read_from_parent(obj_req);
2927 				if (ret) {
2928 					*result = ret;
2929 					return true;
2930 				}
2931 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2932 				return false;
2933 			}
2934 		}
2935 
2936 		/*
2937 		 * -ENOENT means a hole in the image -- zero-fill the entire
2938 		 * length of the request.  A short read also implies zero-fill
2939 		 * to the end of the request.
2940 		 */
2941 		if (*result == -ENOENT) {
2942 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2943 			*result = 0;
2944 		} else if (*result >= 0) {
2945 			if (*result < obj_req->ex.oe_len)
2946 				rbd_obj_zero_range(obj_req, *result,
2947 						obj_req->ex.oe_len - *result);
2948 			else
2949 				rbd_assert(*result == obj_req->ex.oe_len);
2950 			*result = 0;
2951 		}
2952 		return true;
2953 	case RBD_OBJ_READ_PARENT:
2954 		/*
2955 		 * The parent image is read only up to the overlap -- zero-fill
2956 		 * from the overlap to the end of the request.
2957 		 */
2958 		if (!*result) {
2959 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2960 
2961 			if (obj_overlap < obj_req->ex.oe_len)
2962 				rbd_obj_zero_range(obj_req, obj_overlap,
2963 					    obj_req->ex.oe_len - obj_overlap);
2964 		}
2965 		return true;
2966 	default:
2967 		BUG();
2968 	}
2969 }
2970 
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2971 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2972 {
2973 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2974 
2975 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2976 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2977 
2978 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2979 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2980 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2981 		return true;
2982 	}
2983 
2984 	return false;
2985 }
2986 
2987 /*
2988  * Return:
2989  *   0 - object map update sent
2990  *   1 - object map update isn't needed
2991  *  <0 - error
2992  */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2993 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2994 {
2995 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2996 	u8 new_state;
2997 
2998 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2999 		return 1;
3000 
3001 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3002 		new_state = OBJECT_PENDING;
3003 	else
3004 		new_state = OBJECT_EXISTS;
3005 
3006 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3007 }
3008 
rbd_obj_write_object(struct rbd_obj_request * obj_req)3009 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3010 {
3011 	struct ceph_osd_request *osd_req;
3012 	int num_ops = count_write_ops(obj_req);
3013 	int which = 0;
3014 	int ret;
3015 
3016 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3017 		num_ops++; /* stat */
3018 
3019 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3020 	if (IS_ERR(osd_req))
3021 		return PTR_ERR(osd_req);
3022 
3023 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3024 		ret = rbd_osd_setup_stat(osd_req, which++);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	rbd_osd_setup_write_ops(osd_req, which);
3030 	rbd_osd_format_write(osd_req);
3031 
3032 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3033 	if (ret)
3034 		return ret;
3035 
3036 	rbd_osd_submit(osd_req);
3037 	return 0;
3038 }
3039 
3040 /*
3041  * copyup_bvecs pages are never highmem pages
3042  */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)3043 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3044 {
3045 	struct ceph_bvec_iter it = {
3046 		.bvecs = bvecs,
3047 		.iter = { .bi_size = bytes },
3048 	};
3049 
3050 	ceph_bvec_iter_advance_step(&it, bytes, ({
3051 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3052 			       bv.bv_len))
3053 			return false;
3054 	}));
3055 	return true;
3056 }
3057 
3058 #define MODS_ONLY	U32_MAX
3059 
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3060 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3061 				      u32 bytes)
3062 {
3063 	struct ceph_osd_request *osd_req;
3064 	int ret;
3065 
3066 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3067 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3068 
3069 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3070 	if (IS_ERR(osd_req))
3071 		return PTR_ERR(osd_req);
3072 
3073 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3074 	if (ret)
3075 		return ret;
3076 
3077 	rbd_osd_format_write(osd_req);
3078 
3079 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3080 	if (ret)
3081 		return ret;
3082 
3083 	rbd_osd_submit(osd_req);
3084 	return 0;
3085 }
3086 
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3087 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3088 					u32 bytes)
3089 {
3090 	struct ceph_osd_request *osd_req;
3091 	int num_ops = count_write_ops(obj_req);
3092 	int which = 0;
3093 	int ret;
3094 
3095 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3096 
3097 	if (bytes != MODS_ONLY)
3098 		num_ops++; /* copyup */
3099 
3100 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3101 	if (IS_ERR(osd_req))
3102 		return PTR_ERR(osd_req);
3103 
3104 	if (bytes != MODS_ONLY) {
3105 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3106 		if (ret)
3107 			return ret;
3108 	}
3109 
3110 	rbd_osd_setup_write_ops(osd_req, which);
3111 	rbd_osd_format_write(osd_req);
3112 
3113 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3114 	if (ret)
3115 		return ret;
3116 
3117 	rbd_osd_submit(osd_req);
3118 	return 0;
3119 }
3120 
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3121 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3122 {
3123 	u32 i;
3124 
3125 	rbd_assert(!obj_req->copyup_bvecs);
3126 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3127 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3128 					sizeof(*obj_req->copyup_bvecs),
3129 					GFP_NOIO);
3130 	if (!obj_req->copyup_bvecs)
3131 		return -ENOMEM;
3132 
3133 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3134 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3135 
3136 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3137 		if (!obj_req->copyup_bvecs[i].bv_page)
3138 			return -ENOMEM;
3139 
3140 		obj_req->copyup_bvecs[i].bv_offset = 0;
3141 		obj_req->copyup_bvecs[i].bv_len = len;
3142 		obj_overlap -= len;
3143 	}
3144 
3145 	rbd_assert(!obj_overlap);
3146 	return 0;
3147 }
3148 
3149 /*
3150  * The target object doesn't exist.  Read the data for the entire
3151  * target object up to the overlap point (if any) from the parent,
3152  * so we can use it for a copyup.
3153  */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3154 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3155 {
3156 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3157 	int ret;
3158 
3159 	rbd_assert(obj_req->num_img_extents);
3160 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3161 		      rbd_dev->parent_overlap);
3162 	if (!obj_req->num_img_extents) {
3163 		/*
3164 		 * The overlap has become 0 (most likely because the
3165 		 * image has been flattened).  Re-submit the original write
3166 		 * request -- pass MODS_ONLY since the copyup isn't needed
3167 		 * anymore.
3168 		 */
3169 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3170 	}
3171 
3172 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3173 	if (ret)
3174 		return ret;
3175 
3176 	return rbd_obj_read_from_parent(obj_req);
3177 }
3178 
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3179 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3180 {
3181 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3182 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3183 	u8 new_state;
3184 	u32 i;
3185 	int ret;
3186 
3187 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188 
3189 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3190 		return;
3191 
3192 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3193 		return;
3194 
3195 	for (i = 0; i < snapc->num_snaps; i++) {
3196 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3197 		    i + 1 < snapc->num_snaps)
3198 			new_state = OBJECT_EXISTS_CLEAN;
3199 		else
3200 			new_state = OBJECT_EXISTS;
3201 
3202 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3203 					    new_state, NULL);
3204 		if (ret < 0) {
3205 			obj_req->pending.result = ret;
3206 			return;
3207 		}
3208 
3209 		rbd_assert(!ret);
3210 		obj_req->pending.num_pending++;
3211 	}
3212 }
3213 
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3214 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3215 {
3216 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3217 	int ret;
3218 
3219 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3220 
3221 	/*
3222 	 * Only send non-zero copyup data to save some I/O and network
3223 	 * bandwidth -- zero copyup data is equivalent to the object not
3224 	 * existing.
3225 	 */
3226 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3227 		bytes = 0;
3228 
3229 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3230 		/*
3231 		 * Send a copyup request with an empty snapshot context to
3232 		 * deep-copyup the object through all existing snapshots.
3233 		 * A second request with the current snapshot context will be
3234 		 * sent for the actual modification.
3235 		 */
3236 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3237 		if (ret) {
3238 			obj_req->pending.result = ret;
3239 			return;
3240 		}
3241 
3242 		obj_req->pending.num_pending++;
3243 		bytes = MODS_ONLY;
3244 	}
3245 
3246 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3247 	if (ret) {
3248 		obj_req->pending.result = ret;
3249 		return;
3250 	}
3251 
3252 	obj_req->pending.num_pending++;
3253 }
3254 
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3255 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3256 {
3257 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3258 	int ret;
3259 
3260 again:
3261 	switch (obj_req->copyup_state) {
3262 	case RBD_OBJ_COPYUP_START:
3263 		rbd_assert(!*result);
3264 
3265 		ret = rbd_obj_copyup_read_parent(obj_req);
3266 		if (ret) {
3267 			*result = ret;
3268 			return true;
3269 		}
3270 		if (obj_req->num_img_extents)
3271 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3272 		else
3273 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3274 		return false;
3275 	case RBD_OBJ_COPYUP_READ_PARENT:
3276 		if (*result)
3277 			return true;
3278 
3279 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3280 				  rbd_obj_img_extents_bytes(obj_req))) {
3281 			dout("%s %p detected zeros\n", __func__, obj_req);
3282 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3283 		}
3284 
3285 		rbd_obj_copyup_object_maps(obj_req);
3286 		if (!obj_req->pending.num_pending) {
3287 			*result = obj_req->pending.result;
3288 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3289 			goto again;
3290 		}
3291 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3292 		return false;
3293 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3294 		if (!pending_result_dec(&obj_req->pending, result))
3295 			return false;
3296 		fallthrough;
3297 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3298 		if (*result) {
3299 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3300 				 *result);
3301 			return true;
3302 		}
3303 
3304 		rbd_obj_copyup_write_object(obj_req);
3305 		if (!obj_req->pending.num_pending) {
3306 			*result = obj_req->pending.result;
3307 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3308 			goto again;
3309 		}
3310 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3311 		return false;
3312 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3313 		if (!pending_result_dec(&obj_req->pending, result))
3314 			return false;
3315 		fallthrough;
3316 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3317 		return true;
3318 	default:
3319 		BUG();
3320 	}
3321 }
3322 
3323 /*
3324  * Return:
3325  *   0 - object map update sent
3326  *   1 - object map update isn't needed
3327  *  <0 - error
3328  */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3329 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3330 {
3331 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3332 	u8 current_state = OBJECT_PENDING;
3333 
3334 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3335 		return 1;
3336 
3337 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3338 		return 1;
3339 
3340 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3341 				     &current_state);
3342 }
3343 
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3344 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3345 {
3346 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3347 	int ret;
3348 
3349 again:
3350 	switch (obj_req->write_state) {
3351 	case RBD_OBJ_WRITE_START:
3352 		rbd_assert(!*result);
3353 
3354 		if (rbd_obj_write_is_noop(obj_req))
3355 			return true;
3356 
3357 		ret = rbd_obj_write_pre_object_map(obj_req);
3358 		if (ret < 0) {
3359 			*result = ret;
3360 			return true;
3361 		}
3362 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3363 		if (ret > 0)
3364 			goto again;
3365 		return false;
3366 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3367 		if (*result) {
3368 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3369 				 *result);
3370 			return true;
3371 		}
3372 		ret = rbd_obj_write_object(obj_req);
3373 		if (ret) {
3374 			*result = ret;
3375 			return true;
3376 		}
3377 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3378 		return false;
3379 	case RBD_OBJ_WRITE_OBJECT:
3380 		if (*result == -ENOENT) {
3381 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3382 				*result = 0;
3383 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3384 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3385 				goto again;
3386 			}
3387 			/*
3388 			 * On a non-existent object:
3389 			 *   delete - -ENOENT, truncate/zero - 0
3390 			 */
3391 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3392 				*result = 0;
3393 		}
3394 		if (*result)
3395 			return true;
3396 
3397 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3398 		goto again;
3399 	case __RBD_OBJ_WRITE_COPYUP:
3400 		if (!rbd_obj_advance_copyup(obj_req, result))
3401 			return false;
3402 		fallthrough;
3403 	case RBD_OBJ_WRITE_COPYUP:
3404 		if (*result) {
3405 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3406 			return true;
3407 		}
3408 		ret = rbd_obj_write_post_object_map(obj_req);
3409 		if (ret < 0) {
3410 			*result = ret;
3411 			return true;
3412 		}
3413 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3414 		if (ret > 0)
3415 			goto again;
3416 		return false;
3417 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3418 		if (*result)
3419 			rbd_warn(rbd_dev, "post object map update failed: %d",
3420 				 *result);
3421 		return true;
3422 	default:
3423 		BUG();
3424 	}
3425 }
3426 
3427 /*
3428  * Return true if @obj_req is completed.
3429  */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3430 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3431 				     int *result)
3432 {
3433 	struct rbd_img_request *img_req = obj_req->img_request;
3434 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 	bool done;
3436 
3437 	mutex_lock(&obj_req->state_mutex);
3438 	if (!rbd_img_is_write(img_req))
3439 		done = rbd_obj_advance_read(obj_req, result);
3440 	else
3441 		done = rbd_obj_advance_write(obj_req, result);
3442 	mutex_unlock(&obj_req->state_mutex);
3443 
3444 	if (done && *result) {
3445 		rbd_assert(*result < 0);
3446 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3447 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3448 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3449 	}
3450 	return done;
3451 }
3452 
3453 /*
3454  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3455  * recursion.
3456  */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3457 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3458 {
3459 	if (__rbd_obj_handle_request(obj_req, &result))
3460 		rbd_img_handle_request(obj_req->img_request, result);
3461 }
3462 
need_exclusive_lock(struct rbd_img_request * img_req)3463 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3466 
3467 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3468 		return false;
3469 
3470 	if (rbd_is_ro(rbd_dev))
3471 		return false;
3472 
3473 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3474 	if (rbd_dev->opts->lock_on_read ||
3475 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3476 		return true;
3477 
3478 	return rbd_img_is_write(img_req);
3479 }
3480 
rbd_lock_add_request(struct rbd_img_request * img_req)3481 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3482 {
3483 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3484 	bool locked;
3485 
3486 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3487 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3488 	spin_lock(&rbd_dev->lock_lists_lock);
3489 	rbd_assert(list_empty(&img_req->lock_item));
3490 	if (!locked)
3491 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3492 	else
3493 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3494 	spin_unlock(&rbd_dev->lock_lists_lock);
3495 	return locked;
3496 }
3497 
rbd_lock_del_request(struct rbd_img_request * img_req)3498 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3499 {
3500 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3501 	bool need_wakeup;
3502 
3503 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3504 	spin_lock(&rbd_dev->lock_lists_lock);
3505 	rbd_assert(!list_empty(&img_req->lock_item));
3506 	list_del_init(&img_req->lock_item);
3507 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3508 		       list_empty(&rbd_dev->running_list));
3509 	spin_unlock(&rbd_dev->lock_lists_lock);
3510 	if (need_wakeup)
3511 		complete(&rbd_dev->releasing_wait);
3512 }
3513 
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3514 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3515 {
3516 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3517 
3518 	if (!need_exclusive_lock(img_req))
3519 		return 1;
3520 
3521 	if (rbd_lock_add_request(img_req))
3522 		return 1;
3523 
3524 	if (rbd_dev->opts->exclusive) {
3525 		WARN_ON(1); /* lock got released? */
3526 		return -EROFS;
3527 	}
3528 
3529 	/*
3530 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3531 	 * and cancel_delayed_work() in wake_lock_waiters().
3532 	 */
3533 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3534 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3535 	return 0;
3536 }
3537 
rbd_img_object_requests(struct rbd_img_request * img_req)3538 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3539 {
3540 	struct rbd_obj_request *obj_req;
3541 
3542 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3543 
3544 	for_each_obj_request(img_req, obj_req) {
3545 		int result = 0;
3546 
3547 		if (__rbd_obj_handle_request(obj_req, &result)) {
3548 			if (result) {
3549 				img_req->pending.result = result;
3550 				return;
3551 			}
3552 		} else {
3553 			img_req->pending.num_pending++;
3554 		}
3555 	}
3556 }
3557 
rbd_img_advance(struct rbd_img_request * img_req,int * result)3558 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3559 {
3560 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3561 	int ret;
3562 
3563 again:
3564 	switch (img_req->state) {
3565 	case RBD_IMG_START:
3566 		rbd_assert(!*result);
3567 
3568 		ret = rbd_img_exclusive_lock(img_req);
3569 		if (ret < 0) {
3570 			*result = ret;
3571 			return true;
3572 		}
3573 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3574 		if (ret > 0)
3575 			goto again;
3576 		return false;
3577 	case RBD_IMG_EXCLUSIVE_LOCK:
3578 		if (*result)
3579 			return true;
3580 
3581 		rbd_assert(!need_exclusive_lock(img_req) ||
3582 			   __rbd_is_lock_owner(rbd_dev));
3583 
3584 		rbd_img_object_requests(img_req);
3585 		if (!img_req->pending.num_pending) {
3586 			*result = img_req->pending.result;
3587 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3588 			goto again;
3589 		}
3590 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3591 		return false;
3592 	case __RBD_IMG_OBJECT_REQUESTS:
3593 		if (!pending_result_dec(&img_req->pending, result))
3594 			return false;
3595 		fallthrough;
3596 	case RBD_IMG_OBJECT_REQUESTS:
3597 		return true;
3598 	default:
3599 		BUG();
3600 	}
3601 }
3602 
3603 /*
3604  * Return true if @img_req is completed.
3605  */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3606 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3607 				     int *result)
3608 {
3609 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3610 	bool done;
3611 
3612 	if (need_exclusive_lock(img_req)) {
3613 		down_read(&rbd_dev->lock_rwsem);
3614 		mutex_lock(&img_req->state_mutex);
3615 		done = rbd_img_advance(img_req, result);
3616 		if (done)
3617 			rbd_lock_del_request(img_req);
3618 		mutex_unlock(&img_req->state_mutex);
3619 		up_read(&rbd_dev->lock_rwsem);
3620 	} else {
3621 		mutex_lock(&img_req->state_mutex);
3622 		done = rbd_img_advance(img_req, result);
3623 		mutex_unlock(&img_req->state_mutex);
3624 	}
3625 
3626 	if (done && *result) {
3627 		rbd_assert(*result < 0);
3628 		rbd_warn(rbd_dev, "%s%s result %d",
3629 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3630 		      obj_op_name(img_req->op_type), *result);
3631 	}
3632 	return done;
3633 }
3634 
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3635 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3636 {
3637 again:
3638 	if (!__rbd_img_handle_request(img_req, &result))
3639 		return;
3640 
3641 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3642 		struct rbd_obj_request *obj_req = img_req->obj_request;
3643 
3644 		rbd_img_request_destroy(img_req);
3645 		if (__rbd_obj_handle_request(obj_req, &result)) {
3646 			img_req = obj_req->img_request;
3647 			goto again;
3648 		}
3649 	} else {
3650 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3651 
3652 		rbd_img_request_destroy(img_req);
3653 		blk_mq_end_request(rq, errno_to_blk_status(result));
3654 	}
3655 }
3656 
3657 static const struct rbd_client_id rbd_empty_cid;
3658 
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3659 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3660 			  const struct rbd_client_id *rhs)
3661 {
3662 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3663 }
3664 
rbd_get_cid(struct rbd_device * rbd_dev)3665 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3666 {
3667 	struct rbd_client_id cid;
3668 
3669 	mutex_lock(&rbd_dev->watch_mutex);
3670 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3671 	cid.handle = rbd_dev->watch_cookie;
3672 	mutex_unlock(&rbd_dev->watch_mutex);
3673 	return cid;
3674 }
3675 
3676 /*
3677  * lock_rwsem must be held for write
3678  */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3679 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3680 			      const struct rbd_client_id *cid)
3681 {
3682 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3683 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3684 	     cid->gid, cid->handle);
3685 	rbd_dev->owner_cid = *cid; /* struct */
3686 }
3687 
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3688 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3689 {
3690 	mutex_lock(&rbd_dev->watch_mutex);
3691 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3692 	mutex_unlock(&rbd_dev->watch_mutex);
3693 }
3694 
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3695 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3696 {
3697 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3698 
3699 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3700 	strcpy(rbd_dev->lock_cookie, cookie);
3701 	rbd_set_owner_cid(rbd_dev, &cid);
3702 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3703 }
3704 
3705 /*
3706  * lock_rwsem must be held for write
3707  */
rbd_lock(struct rbd_device * rbd_dev)3708 static int rbd_lock(struct rbd_device *rbd_dev)
3709 {
3710 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3711 	char cookie[32];
3712 	int ret;
3713 
3714 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3715 		rbd_dev->lock_cookie[0] != '\0');
3716 
3717 	format_lock_cookie(rbd_dev, cookie);
3718 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3720 			    RBD_LOCK_TAG, "", 0);
3721 	if (ret)
3722 		return ret;
3723 
3724 	__rbd_lock(rbd_dev, cookie);
3725 	return 0;
3726 }
3727 
3728 /*
3729  * lock_rwsem must be held for write
3730  */
rbd_unlock(struct rbd_device * rbd_dev)3731 static void rbd_unlock(struct rbd_device *rbd_dev)
3732 {
3733 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3734 	int ret;
3735 
3736 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3737 		rbd_dev->lock_cookie[0] == '\0');
3738 
3739 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3740 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3741 	if (ret && ret != -ENOENT)
3742 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3743 
3744 	/* treat errors as the image is unlocked */
3745 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3746 	rbd_dev->lock_cookie[0] = '\0';
3747 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3748 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3749 }
3750 
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3751 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3752 				enum rbd_notify_op notify_op,
3753 				struct page ***preply_pages,
3754 				size_t *preply_len)
3755 {
3756 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3757 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3758 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3759 	int buf_size = sizeof(buf);
3760 	void *p = buf;
3761 
3762 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3763 
3764 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3765 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3766 	ceph_encode_32(&p, notify_op);
3767 	ceph_encode_64(&p, cid.gid);
3768 	ceph_encode_64(&p, cid.handle);
3769 
3770 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3771 				&rbd_dev->header_oloc, buf, buf_size,
3772 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3773 }
3774 
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3775 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3776 			       enum rbd_notify_op notify_op)
3777 {
3778 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3779 }
3780 
rbd_notify_acquired_lock(struct work_struct * work)3781 static void rbd_notify_acquired_lock(struct work_struct *work)
3782 {
3783 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3784 						  acquired_lock_work);
3785 
3786 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3787 }
3788 
rbd_notify_released_lock(struct work_struct * work)3789 static void rbd_notify_released_lock(struct work_struct *work)
3790 {
3791 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3792 						  released_lock_work);
3793 
3794 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3795 }
3796 
rbd_request_lock(struct rbd_device * rbd_dev)3797 static int rbd_request_lock(struct rbd_device *rbd_dev)
3798 {
3799 	struct page **reply_pages;
3800 	size_t reply_len;
3801 	bool lock_owner_responded = false;
3802 	int ret;
3803 
3804 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3805 
3806 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3807 				   &reply_pages, &reply_len);
3808 	if (ret && ret != -ETIMEDOUT) {
3809 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3810 		goto out;
3811 	}
3812 
3813 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3814 		void *p = page_address(reply_pages[0]);
3815 		void *const end = p + reply_len;
3816 		u32 n;
3817 
3818 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3819 		while (n--) {
3820 			u8 struct_v;
3821 			u32 len;
3822 
3823 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3824 			p += 8 + 8; /* skip gid and cookie */
3825 
3826 			ceph_decode_32_safe(&p, end, len, e_inval);
3827 			if (!len)
3828 				continue;
3829 
3830 			if (lock_owner_responded) {
3831 				rbd_warn(rbd_dev,
3832 					 "duplicate lock owners detected");
3833 				ret = -EIO;
3834 				goto out;
3835 			}
3836 
3837 			lock_owner_responded = true;
3838 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3839 						  &struct_v, &len);
3840 			if (ret) {
3841 				rbd_warn(rbd_dev,
3842 					 "failed to decode ResponseMessage: %d",
3843 					 ret);
3844 				goto e_inval;
3845 			}
3846 
3847 			ret = ceph_decode_32(&p);
3848 		}
3849 	}
3850 
3851 	if (!lock_owner_responded) {
3852 		rbd_warn(rbd_dev, "no lock owners detected");
3853 		ret = -ETIMEDOUT;
3854 	}
3855 
3856 out:
3857 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3858 	return ret;
3859 
3860 e_inval:
3861 	ret = -EINVAL;
3862 	goto out;
3863 }
3864 
3865 /*
3866  * Either image request state machine(s) or rbd_add_acquire_lock()
3867  * (i.e. "rbd map").
3868  */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3869 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3870 {
3871 	struct rbd_img_request *img_req;
3872 
3873 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3874 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3875 
3876 	cancel_delayed_work(&rbd_dev->lock_dwork);
3877 	if (!completion_done(&rbd_dev->acquire_wait)) {
3878 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3879 			   list_empty(&rbd_dev->running_list));
3880 		rbd_dev->acquire_err = result;
3881 		complete_all(&rbd_dev->acquire_wait);
3882 		return;
3883 	}
3884 
3885 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3886 		mutex_lock(&img_req->state_mutex);
3887 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3888 		rbd_img_schedule(img_req, result);
3889 		mutex_unlock(&img_req->state_mutex);
3890 	}
3891 
3892 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3893 }
3894 
get_lock_owner_info(struct rbd_device * rbd_dev,struct ceph_locker ** lockers,u32 * num_lockers)3895 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3896 			       struct ceph_locker **lockers, u32 *num_lockers)
3897 {
3898 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3899 	u8 lock_type;
3900 	char *lock_tag;
3901 	int ret;
3902 
3903 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3904 
3905 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3906 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3907 				 &lock_type, &lock_tag, lockers, num_lockers);
3908 	if (ret)
3909 		return ret;
3910 
3911 	if (*num_lockers == 0) {
3912 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3913 		goto out;
3914 	}
3915 
3916 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3917 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3918 			 lock_tag);
3919 		ret = -EBUSY;
3920 		goto out;
3921 	}
3922 
3923 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3924 		rbd_warn(rbd_dev, "shared lock type detected");
3925 		ret = -EBUSY;
3926 		goto out;
3927 	}
3928 
3929 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3930 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3931 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3932 			 (*lockers)[0].id.cookie);
3933 		ret = -EBUSY;
3934 		goto out;
3935 	}
3936 
3937 out:
3938 	kfree(lock_tag);
3939 	return ret;
3940 }
3941 
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3942 static int find_watcher(struct rbd_device *rbd_dev,
3943 			const struct ceph_locker *locker)
3944 {
3945 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3946 	struct ceph_watch_item *watchers;
3947 	u32 num_watchers;
3948 	u64 cookie;
3949 	int i;
3950 	int ret;
3951 
3952 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3953 				      &rbd_dev->header_oloc, &watchers,
3954 				      &num_watchers);
3955 	if (ret)
3956 		return ret;
3957 
3958 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3959 	for (i = 0; i < num_watchers; i++) {
3960 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3961 			    sizeof(locker->info.addr)) &&
3962 		    watchers[i].cookie == cookie) {
3963 			struct rbd_client_id cid = {
3964 				.gid = le64_to_cpu(watchers[i].name.num),
3965 				.handle = cookie,
3966 			};
3967 
3968 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3969 			     rbd_dev, cid.gid, cid.handle);
3970 			rbd_set_owner_cid(rbd_dev, &cid);
3971 			ret = 1;
3972 			goto out;
3973 		}
3974 	}
3975 
3976 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3977 	ret = 0;
3978 out:
3979 	kfree(watchers);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * lock_rwsem must be held for write
3985  */
rbd_try_lock(struct rbd_device * rbd_dev)3986 static int rbd_try_lock(struct rbd_device *rbd_dev)
3987 {
3988 	struct ceph_client *client = rbd_dev->rbd_client->client;
3989 	struct ceph_locker *lockers;
3990 	u32 num_lockers;
3991 	int ret;
3992 
3993 	for (;;) {
3994 		ret = rbd_lock(rbd_dev);
3995 		if (ret != -EBUSY)
3996 			return ret;
3997 
3998 		/* determine if the current lock holder is still alive */
3999 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4000 		if (ret)
4001 			return ret;
4002 
4003 		if (num_lockers == 0)
4004 			goto again;
4005 
4006 		ret = find_watcher(rbd_dev, lockers);
4007 		if (ret)
4008 			goto out; /* request lock or error */
4009 
4010 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4011 			 ENTITY_NAME(lockers[0].id.name));
4012 
4013 		ret = ceph_monc_blocklist_add(&client->monc,
4014 					      &lockers[0].info.addr);
4015 		if (ret) {
4016 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
4017 				 ENTITY_NAME(lockers[0].id.name), ret);
4018 			goto out;
4019 		}
4020 
4021 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4022 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4023 					  lockers[0].id.cookie,
4024 					  &lockers[0].id.name);
4025 		if (ret && ret != -ENOENT)
4026 			goto out;
4027 
4028 again:
4029 		ceph_free_lockers(lockers, num_lockers);
4030 	}
4031 
4032 out:
4033 	ceph_free_lockers(lockers, num_lockers);
4034 	return ret;
4035 }
4036 
rbd_post_acquire_action(struct rbd_device * rbd_dev)4037 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4038 {
4039 	int ret;
4040 
4041 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4042 		ret = rbd_object_map_open(rbd_dev);
4043 		if (ret)
4044 			return ret;
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 /*
4051  * Return:
4052  *   0 - lock acquired
4053  *   1 - caller should call rbd_request_lock()
4054  *  <0 - error
4055  */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4056 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4057 {
4058 	int ret;
4059 
4060 	down_read(&rbd_dev->lock_rwsem);
4061 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4062 	     rbd_dev->lock_state);
4063 	if (__rbd_is_lock_owner(rbd_dev)) {
4064 		up_read(&rbd_dev->lock_rwsem);
4065 		return 0;
4066 	}
4067 
4068 	up_read(&rbd_dev->lock_rwsem);
4069 	down_write(&rbd_dev->lock_rwsem);
4070 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4071 	     rbd_dev->lock_state);
4072 	if (__rbd_is_lock_owner(rbd_dev)) {
4073 		up_write(&rbd_dev->lock_rwsem);
4074 		return 0;
4075 	}
4076 
4077 	ret = rbd_try_lock(rbd_dev);
4078 	if (ret < 0) {
4079 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4080 		if (ret == -EBLOCKLISTED)
4081 			goto out;
4082 
4083 		ret = 1; /* request lock anyway */
4084 	}
4085 	if (ret > 0) {
4086 		up_write(&rbd_dev->lock_rwsem);
4087 		return ret;
4088 	}
4089 
4090 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4091 	rbd_assert(list_empty(&rbd_dev->running_list));
4092 
4093 	ret = rbd_post_acquire_action(rbd_dev);
4094 	if (ret) {
4095 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4096 		/*
4097 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4098 		 * rbd_lock_add_request() would let the request through,
4099 		 * assuming that e.g. object map is locked and loaded.
4100 		 */
4101 		rbd_unlock(rbd_dev);
4102 	}
4103 
4104 out:
4105 	wake_lock_waiters(rbd_dev, ret);
4106 	up_write(&rbd_dev->lock_rwsem);
4107 	return ret;
4108 }
4109 
rbd_acquire_lock(struct work_struct * work)4110 static void rbd_acquire_lock(struct work_struct *work)
4111 {
4112 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4113 					    struct rbd_device, lock_dwork);
4114 	int ret;
4115 
4116 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4117 again:
4118 	ret = rbd_try_acquire_lock(rbd_dev);
4119 	if (ret <= 0) {
4120 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4121 		return;
4122 	}
4123 
4124 	ret = rbd_request_lock(rbd_dev);
4125 	if (ret == -ETIMEDOUT) {
4126 		goto again; /* treat this as a dead client */
4127 	} else if (ret == -EROFS) {
4128 		rbd_warn(rbd_dev, "peer will not release lock");
4129 		down_write(&rbd_dev->lock_rwsem);
4130 		wake_lock_waiters(rbd_dev, ret);
4131 		up_write(&rbd_dev->lock_rwsem);
4132 	} else if (ret < 0) {
4133 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4134 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4135 				 RBD_RETRY_DELAY);
4136 	} else {
4137 		/*
4138 		 * lock owner acked, but resend if we don't see them
4139 		 * release the lock
4140 		 */
4141 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4142 		     rbd_dev);
4143 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4144 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4145 	}
4146 }
4147 
rbd_quiesce_lock(struct rbd_device * rbd_dev)4148 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4149 {
4150 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4151 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4152 
4153 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4154 		return false;
4155 
4156 	/*
4157 	 * Ensure that all in-flight IO is flushed.
4158 	 */
4159 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4160 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4161 	if (list_empty(&rbd_dev->running_list))
4162 		return true;
4163 
4164 	up_write(&rbd_dev->lock_rwsem);
4165 	wait_for_completion(&rbd_dev->releasing_wait);
4166 
4167 	down_write(&rbd_dev->lock_rwsem);
4168 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4169 		return false;
4170 
4171 	rbd_assert(list_empty(&rbd_dev->running_list));
4172 	return true;
4173 }
4174 
rbd_pre_release_action(struct rbd_device * rbd_dev)4175 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4176 {
4177 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4178 		rbd_object_map_close(rbd_dev);
4179 }
4180 
__rbd_release_lock(struct rbd_device * rbd_dev)4181 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4182 {
4183 	rbd_assert(list_empty(&rbd_dev->running_list));
4184 
4185 	rbd_pre_release_action(rbd_dev);
4186 	rbd_unlock(rbd_dev);
4187 }
4188 
4189 /*
4190  * lock_rwsem must be held for write
4191  */
rbd_release_lock(struct rbd_device * rbd_dev)4192 static void rbd_release_lock(struct rbd_device *rbd_dev)
4193 {
4194 	if (!rbd_quiesce_lock(rbd_dev))
4195 		return;
4196 
4197 	__rbd_release_lock(rbd_dev);
4198 
4199 	/*
4200 	 * Give others a chance to grab the lock - we would re-acquire
4201 	 * almost immediately if we got new IO while draining the running
4202 	 * list otherwise.  We need to ack our own notifications, so this
4203 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4204 	 * way of maybe_kick_acquire().
4205 	 */
4206 	cancel_delayed_work(&rbd_dev->lock_dwork);
4207 }
4208 
rbd_release_lock_work(struct work_struct * work)4209 static void rbd_release_lock_work(struct work_struct *work)
4210 {
4211 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4212 						  unlock_work);
4213 
4214 	down_write(&rbd_dev->lock_rwsem);
4215 	rbd_release_lock(rbd_dev);
4216 	up_write(&rbd_dev->lock_rwsem);
4217 }
4218 
maybe_kick_acquire(struct rbd_device * rbd_dev)4219 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4220 {
4221 	bool have_requests;
4222 
4223 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4224 	if (__rbd_is_lock_owner(rbd_dev))
4225 		return;
4226 
4227 	spin_lock(&rbd_dev->lock_lists_lock);
4228 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4229 	spin_unlock(&rbd_dev->lock_lists_lock);
4230 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4231 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4232 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4233 	}
4234 }
4235 
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4236 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4237 				     void **p)
4238 {
4239 	struct rbd_client_id cid = { 0 };
4240 
4241 	if (struct_v >= 2) {
4242 		cid.gid = ceph_decode_64(p);
4243 		cid.handle = ceph_decode_64(p);
4244 	}
4245 
4246 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4247 	     cid.handle);
4248 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4249 		down_write(&rbd_dev->lock_rwsem);
4250 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4251 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4252 			     __func__, rbd_dev, cid.gid, cid.handle);
4253 		} else {
4254 			rbd_set_owner_cid(rbd_dev, &cid);
4255 		}
4256 		downgrade_write(&rbd_dev->lock_rwsem);
4257 	} else {
4258 		down_read(&rbd_dev->lock_rwsem);
4259 	}
4260 
4261 	maybe_kick_acquire(rbd_dev);
4262 	up_read(&rbd_dev->lock_rwsem);
4263 }
4264 
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4265 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4266 				     void **p)
4267 {
4268 	struct rbd_client_id cid = { 0 };
4269 
4270 	if (struct_v >= 2) {
4271 		cid.gid = ceph_decode_64(p);
4272 		cid.handle = ceph_decode_64(p);
4273 	}
4274 
4275 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4276 	     cid.handle);
4277 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4278 		down_write(&rbd_dev->lock_rwsem);
4279 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4280 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4281 			     __func__, rbd_dev, cid.gid, cid.handle,
4282 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4283 		} else {
4284 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4285 		}
4286 		downgrade_write(&rbd_dev->lock_rwsem);
4287 	} else {
4288 		down_read(&rbd_dev->lock_rwsem);
4289 	}
4290 
4291 	maybe_kick_acquire(rbd_dev);
4292 	up_read(&rbd_dev->lock_rwsem);
4293 }
4294 
4295 /*
4296  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4297  * ResponseMessage is needed.
4298  */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4299 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4300 				   void **p)
4301 {
4302 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4303 	struct rbd_client_id cid = { 0 };
4304 	int result = 1;
4305 
4306 	if (struct_v >= 2) {
4307 		cid.gid = ceph_decode_64(p);
4308 		cid.handle = ceph_decode_64(p);
4309 	}
4310 
4311 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4312 	     cid.handle);
4313 	if (rbd_cid_equal(&cid, &my_cid))
4314 		return result;
4315 
4316 	down_read(&rbd_dev->lock_rwsem);
4317 	if (__rbd_is_lock_owner(rbd_dev)) {
4318 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4319 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4320 			goto out_unlock;
4321 
4322 		/*
4323 		 * encode ResponseMessage(0) so the peer can detect
4324 		 * a missing owner
4325 		 */
4326 		result = 0;
4327 
4328 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4329 			if (!rbd_dev->opts->exclusive) {
4330 				dout("%s rbd_dev %p queueing unlock_work\n",
4331 				     __func__, rbd_dev);
4332 				queue_work(rbd_dev->task_wq,
4333 					   &rbd_dev->unlock_work);
4334 			} else {
4335 				/* refuse to release the lock */
4336 				result = -EROFS;
4337 			}
4338 		}
4339 	}
4340 
4341 out_unlock:
4342 	up_read(&rbd_dev->lock_rwsem);
4343 	return result;
4344 }
4345 
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4346 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4347 				     u64 notify_id, u64 cookie, s32 *result)
4348 {
4349 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4350 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4351 	int buf_size = sizeof(buf);
4352 	int ret;
4353 
4354 	if (result) {
4355 		void *p = buf;
4356 
4357 		/* encode ResponseMessage */
4358 		ceph_start_encoding(&p, 1, 1,
4359 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4360 		ceph_encode_32(&p, *result);
4361 	} else {
4362 		buf_size = 0;
4363 	}
4364 
4365 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4366 				   &rbd_dev->header_oloc, notify_id, cookie,
4367 				   buf, buf_size);
4368 	if (ret)
4369 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4370 }
4371 
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4372 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4373 				   u64 cookie)
4374 {
4375 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4376 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4377 }
4378 
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4379 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4380 					  u64 notify_id, u64 cookie, s32 result)
4381 {
4382 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4383 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4384 }
4385 
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4386 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4387 			 u64 notifier_id, void *data, size_t data_len)
4388 {
4389 	struct rbd_device *rbd_dev = arg;
4390 	void *p = data;
4391 	void *const end = p + data_len;
4392 	u8 struct_v = 0;
4393 	u32 len;
4394 	u32 notify_op;
4395 	int ret;
4396 
4397 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4398 	     __func__, rbd_dev, cookie, notify_id, data_len);
4399 	if (data_len) {
4400 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4401 					  &struct_v, &len);
4402 		if (ret) {
4403 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4404 				 ret);
4405 			return;
4406 		}
4407 
4408 		notify_op = ceph_decode_32(&p);
4409 	} else {
4410 		/* legacy notification for header updates */
4411 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4412 		len = 0;
4413 	}
4414 
4415 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4416 	switch (notify_op) {
4417 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4418 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4419 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4420 		break;
4421 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4422 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4423 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4424 		break;
4425 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4426 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4427 		if (ret <= 0)
4428 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4429 						      cookie, ret);
4430 		else
4431 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4432 		break;
4433 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4434 		ret = rbd_dev_refresh(rbd_dev);
4435 		if (ret)
4436 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4437 
4438 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4439 		break;
4440 	default:
4441 		if (rbd_is_lock_owner(rbd_dev))
4442 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4443 						      cookie, -EOPNOTSUPP);
4444 		else
4445 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4446 		break;
4447 	}
4448 }
4449 
4450 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4451 
rbd_watch_errcb(void * arg,u64 cookie,int err)4452 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4453 {
4454 	struct rbd_device *rbd_dev = arg;
4455 
4456 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4457 
4458 	down_write(&rbd_dev->lock_rwsem);
4459 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4460 	up_write(&rbd_dev->lock_rwsem);
4461 
4462 	mutex_lock(&rbd_dev->watch_mutex);
4463 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4464 		__rbd_unregister_watch(rbd_dev);
4465 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4466 
4467 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4468 	}
4469 	mutex_unlock(&rbd_dev->watch_mutex);
4470 }
4471 
4472 /*
4473  * watch_mutex must be locked
4474  */
__rbd_register_watch(struct rbd_device * rbd_dev)4475 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4476 {
4477 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4478 	struct ceph_osd_linger_request *handle;
4479 
4480 	rbd_assert(!rbd_dev->watch_handle);
4481 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4482 
4483 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4484 				 &rbd_dev->header_oloc, rbd_watch_cb,
4485 				 rbd_watch_errcb, rbd_dev);
4486 	if (IS_ERR(handle))
4487 		return PTR_ERR(handle);
4488 
4489 	rbd_dev->watch_handle = handle;
4490 	return 0;
4491 }
4492 
4493 /*
4494  * watch_mutex must be locked
4495  */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4496 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4497 {
4498 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4499 	int ret;
4500 
4501 	rbd_assert(rbd_dev->watch_handle);
4502 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4503 
4504 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4505 	if (ret)
4506 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4507 
4508 	rbd_dev->watch_handle = NULL;
4509 }
4510 
rbd_register_watch(struct rbd_device * rbd_dev)4511 static int rbd_register_watch(struct rbd_device *rbd_dev)
4512 {
4513 	int ret;
4514 
4515 	mutex_lock(&rbd_dev->watch_mutex);
4516 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4517 	ret = __rbd_register_watch(rbd_dev);
4518 	if (ret)
4519 		goto out;
4520 
4521 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4522 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4523 
4524 out:
4525 	mutex_unlock(&rbd_dev->watch_mutex);
4526 	return ret;
4527 }
4528 
cancel_tasks_sync(struct rbd_device * rbd_dev)4529 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4530 {
4531 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4532 
4533 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4534 	cancel_work_sync(&rbd_dev->released_lock_work);
4535 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4536 	cancel_work_sync(&rbd_dev->unlock_work);
4537 }
4538 
4539 /*
4540  * header_rwsem must not be held to avoid a deadlock with
4541  * rbd_dev_refresh() when flushing notifies.
4542  */
rbd_unregister_watch(struct rbd_device * rbd_dev)4543 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4544 {
4545 	cancel_tasks_sync(rbd_dev);
4546 
4547 	mutex_lock(&rbd_dev->watch_mutex);
4548 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4549 		__rbd_unregister_watch(rbd_dev);
4550 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4551 	mutex_unlock(&rbd_dev->watch_mutex);
4552 
4553 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4554 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4555 }
4556 
4557 /*
4558  * lock_rwsem must be held for write
4559  */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4560 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4561 {
4562 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4563 	char cookie[32];
4564 	int ret;
4565 
4566 	if (!rbd_quiesce_lock(rbd_dev))
4567 		return;
4568 
4569 	format_lock_cookie(rbd_dev, cookie);
4570 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4571 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4572 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4573 				  RBD_LOCK_TAG, cookie);
4574 	if (ret) {
4575 		if (ret != -EOPNOTSUPP)
4576 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4577 				 ret);
4578 
4579 		/*
4580 		 * Lock cookie cannot be updated on older OSDs, so do
4581 		 * a manual release and queue an acquire.
4582 		 */
4583 		__rbd_release_lock(rbd_dev);
4584 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4585 	} else {
4586 		__rbd_lock(rbd_dev, cookie);
4587 		wake_lock_waiters(rbd_dev, 0);
4588 	}
4589 }
4590 
rbd_reregister_watch(struct work_struct * work)4591 static void rbd_reregister_watch(struct work_struct *work)
4592 {
4593 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4594 					    struct rbd_device, watch_dwork);
4595 	int ret;
4596 
4597 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4598 
4599 	mutex_lock(&rbd_dev->watch_mutex);
4600 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4601 		mutex_unlock(&rbd_dev->watch_mutex);
4602 		return;
4603 	}
4604 
4605 	ret = __rbd_register_watch(rbd_dev);
4606 	if (ret) {
4607 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4608 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4609 			queue_delayed_work(rbd_dev->task_wq,
4610 					   &rbd_dev->watch_dwork,
4611 					   RBD_RETRY_DELAY);
4612 			mutex_unlock(&rbd_dev->watch_mutex);
4613 			return;
4614 		}
4615 
4616 		mutex_unlock(&rbd_dev->watch_mutex);
4617 		down_write(&rbd_dev->lock_rwsem);
4618 		wake_lock_waiters(rbd_dev, ret);
4619 		up_write(&rbd_dev->lock_rwsem);
4620 		return;
4621 	}
4622 
4623 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4624 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4625 	mutex_unlock(&rbd_dev->watch_mutex);
4626 
4627 	down_write(&rbd_dev->lock_rwsem);
4628 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4629 		rbd_reacquire_lock(rbd_dev);
4630 	up_write(&rbd_dev->lock_rwsem);
4631 
4632 	ret = rbd_dev_refresh(rbd_dev);
4633 	if (ret)
4634 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4635 }
4636 
4637 /*
4638  * Synchronous osd object method call.  Returns the number of bytes
4639  * returned in the outbound buffer, or a negative error code.
4640  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4641 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4642 			     struct ceph_object_id *oid,
4643 			     struct ceph_object_locator *oloc,
4644 			     const char *method_name,
4645 			     const void *outbound,
4646 			     size_t outbound_size,
4647 			     void *inbound,
4648 			     size_t inbound_size)
4649 {
4650 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4651 	struct page *req_page = NULL;
4652 	struct page *reply_page;
4653 	int ret;
4654 
4655 	/*
4656 	 * Method calls are ultimately read operations.  The result
4657 	 * should placed into the inbound buffer provided.  They
4658 	 * also supply outbound data--parameters for the object
4659 	 * method.  Currently if this is present it will be a
4660 	 * snapshot id.
4661 	 */
4662 	if (outbound) {
4663 		if (outbound_size > PAGE_SIZE)
4664 			return -E2BIG;
4665 
4666 		req_page = alloc_page(GFP_KERNEL);
4667 		if (!req_page)
4668 			return -ENOMEM;
4669 
4670 		memcpy(page_address(req_page), outbound, outbound_size);
4671 	}
4672 
4673 	reply_page = alloc_page(GFP_KERNEL);
4674 	if (!reply_page) {
4675 		if (req_page)
4676 			__free_page(req_page);
4677 		return -ENOMEM;
4678 	}
4679 
4680 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4681 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4682 			     &reply_page, &inbound_size);
4683 	if (!ret) {
4684 		memcpy(inbound, page_address(reply_page), inbound_size);
4685 		ret = inbound_size;
4686 	}
4687 
4688 	if (req_page)
4689 		__free_page(req_page);
4690 	__free_page(reply_page);
4691 	return ret;
4692 }
4693 
rbd_queue_workfn(struct work_struct * work)4694 static void rbd_queue_workfn(struct work_struct *work)
4695 {
4696 	struct rbd_img_request *img_request =
4697 	    container_of(work, struct rbd_img_request, work);
4698 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4699 	enum obj_operation_type op_type = img_request->op_type;
4700 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4701 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4702 	u64 length = blk_rq_bytes(rq);
4703 	u64 mapping_size;
4704 	int result;
4705 
4706 	/* Ignore/skip any zero-length requests */
4707 	if (!length) {
4708 		dout("%s: zero-length request\n", __func__);
4709 		result = 0;
4710 		goto err_img_request;
4711 	}
4712 
4713 	blk_mq_start_request(rq);
4714 
4715 	down_read(&rbd_dev->header_rwsem);
4716 	mapping_size = rbd_dev->mapping.size;
4717 	rbd_img_capture_header(img_request);
4718 	up_read(&rbd_dev->header_rwsem);
4719 
4720 	if (offset + length > mapping_size) {
4721 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4722 			 length, mapping_size);
4723 		result = -EIO;
4724 		goto err_img_request;
4725 	}
4726 
4727 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4728 	     img_request, obj_op_name(op_type), offset, length);
4729 
4730 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4731 		result = rbd_img_fill_nodata(img_request, offset, length);
4732 	else
4733 		result = rbd_img_fill_from_bio(img_request, offset, length,
4734 					       rq->bio);
4735 	if (result)
4736 		goto err_img_request;
4737 
4738 	rbd_img_handle_request(img_request, 0);
4739 	return;
4740 
4741 err_img_request:
4742 	rbd_img_request_destroy(img_request);
4743 	if (result)
4744 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4745 			 obj_op_name(op_type), length, offset, result);
4746 	blk_mq_end_request(rq, errno_to_blk_status(result));
4747 }
4748 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4749 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4750 		const struct blk_mq_queue_data *bd)
4751 {
4752 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4753 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4754 	enum obj_operation_type op_type;
4755 
4756 	switch (req_op(bd->rq)) {
4757 	case REQ_OP_DISCARD:
4758 		op_type = OBJ_OP_DISCARD;
4759 		break;
4760 	case REQ_OP_WRITE_ZEROES:
4761 		op_type = OBJ_OP_ZEROOUT;
4762 		break;
4763 	case REQ_OP_WRITE:
4764 		op_type = OBJ_OP_WRITE;
4765 		break;
4766 	case REQ_OP_READ:
4767 		op_type = OBJ_OP_READ;
4768 		break;
4769 	default:
4770 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4771 		return BLK_STS_IOERR;
4772 	}
4773 
4774 	rbd_img_request_init(img_req, rbd_dev, op_type);
4775 
4776 	if (rbd_img_is_write(img_req)) {
4777 		if (rbd_is_ro(rbd_dev)) {
4778 			rbd_warn(rbd_dev, "%s on read-only mapping",
4779 				 obj_op_name(img_req->op_type));
4780 			return BLK_STS_IOERR;
4781 		}
4782 		rbd_assert(!rbd_is_snap(rbd_dev));
4783 	}
4784 
4785 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4786 	queue_work(rbd_wq, &img_req->work);
4787 	return BLK_STS_OK;
4788 }
4789 
rbd_free_disk(struct rbd_device * rbd_dev)4790 static void rbd_free_disk(struct rbd_device *rbd_dev)
4791 {
4792 	blk_cleanup_queue(rbd_dev->disk->queue);
4793 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4794 	put_disk(rbd_dev->disk);
4795 	rbd_dev->disk = NULL;
4796 }
4797 
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4798 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4799 			     struct ceph_object_id *oid,
4800 			     struct ceph_object_locator *oloc,
4801 			     void *buf, int buf_len)
4802 
4803 {
4804 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4805 	struct ceph_osd_request *req;
4806 	struct page **pages;
4807 	int num_pages = calc_pages_for(0, buf_len);
4808 	int ret;
4809 
4810 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4811 	if (!req)
4812 		return -ENOMEM;
4813 
4814 	ceph_oid_copy(&req->r_base_oid, oid);
4815 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4816 	req->r_flags = CEPH_OSD_FLAG_READ;
4817 
4818 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4819 	if (IS_ERR(pages)) {
4820 		ret = PTR_ERR(pages);
4821 		goto out_req;
4822 	}
4823 
4824 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4825 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4826 					 true);
4827 
4828 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4829 	if (ret)
4830 		goto out_req;
4831 
4832 	ceph_osdc_start_request(osdc, req, false);
4833 	ret = ceph_osdc_wait_request(osdc, req);
4834 	if (ret >= 0)
4835 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4836 
4837 out_req:
4838 	ceph_osdc_put_request(req);
4839 	return ret;
4840 }
4841 
4842 /*
4843  * Read the complete header for the given rbd device.  On successful
4844  * return, the rbd_dev->header field will contain up-to-date
4845  * information about the image.
4846  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev)4847 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4848 {
4849 	struct rbd_image_header_ondisk *ondisk = NULL;
4850 	u32 snap_count = 0;
4851 	u64 names_size = 0;
4852 	u32 want_count;
4853 	int ret;
4854 
4855 	/*
4856 	 * The complete header will include an array of its 64-bit
4857 	 * snapshot ids, followed by the names of those snapshots as
4858 	 * a contiguous block of NUL-terminated strings.  Note that
4859 	 * the number of snapshots could change by the time we read
4860 	 * it in, in which case we re-read it.
4861 	 */
4862 	do {
4863 		size_t size;
4864 
4865 		kfree(ondisk);
4866 
4867 		size = sizeof (*ondisk);
4868 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4869 		size += names_size;
4870 		ondisk = kmalloc(size, GFP_KERNEL);
4871 		if (!ondisk)
4872 			return -ENOMEM;
4873 
4874 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4875 					&rbd_dev->header_oloc, ondisk, size);
4876 		if (ret < 0)
4877 			goto out;
4878 		if ((size_t)ret < size) {
4879 			ret = -ENXIO;
4880 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4881 				size, ret);
4882 			goto out;
4883 		}
4884 		if (!rbd_dev_ondisk_valid(ondisk)) {
4885 			ret = -ENXIO;
4886 			rbd_warn(rbd_dev, "invalid header");
4887 			goto out;
4888 		}
4889 
4890 		names_size = le64_to_cpu(ondisk->snap_names_len);
4891 		want_count = snap_count;
4892 		snap_count = le32_to_cpu(ondisk->snap_count);
4893 	} while (snap_count != want_count);
4894 
4895 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4896 out:
4897 	kfree(ondisk);
4898 
4899 	return ret;
4900 }
4901 
rbd_dev_update_size(struct rbd_device * rbd_dev)4902 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4903 {
4904 	sector_t size;
4905 
4906 	/*
4907 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4908 	 * try to update its size.  If REMOVING is set, updating size
4909 	 * is just useless work since the device can't be opened.
4910 	 */
4911 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4912 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4913 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4914 		dout("setting size to %llu sectors", (unsigned long long)size);
4915 		set_capacity(rbd_dev->disk, size);
4916 		revalidate_disk_size(rbd_dev->disk, true);
4917 	}
4918 }
4919 
rbd_dev_refresh(struct rbd_device * rbd_dev)4920 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4921 {
4922 	u64 mapping_size;
4923 	int ret;
4924 
4925 	down_write(&rbd_dev->header_rwsem);
4926 	mapping_size = rbd_dev->mapping.size;
4927 
4928 	ret = rbd_dev_header_info(rbd_dev);
4929 	if (ret)
4930 		goto out;
4931 
4932 	/*
4933 	 * If there is a parent, see if it has disappeared due to the
4934 	 * mapped image getting flattened.
4935 	 */
4936 	if (rbd_dev->parent) {
4937 		ret = rbd_dev_v2_parent_info(rbd_dev);
4938 		if (ret)
4939 			goto out;
4940 	}
4941 
4942 	rbd_assert(!rbd_is_snap(rbd_dev));
4943 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4944 
4945 out:
4946 	up_write(&rbd_dev->header_rwsem);
4947 	if (!ret && mapping_size != rbd_dev->mapping.size)
4948 		rbd_dev_update_size(rbd_dev);
4949 
4950 	return ret;
4951 }
4952 
4953 static const struct blk_mq_ops rbd_mq_ops = {
4954 	.queue_rq	= rbd_queue_rq,
4955 };
4956 
rbd_init_disk(struct rbd_device * rbd_dev)4957 static int rbd_init_disk(struct rbd_device *rbd_dev)
4958 {
4959 	struct gendisk *disk;
4960 	struct request_queue *q;
4961 	unsigned int objset_bytes =
4962 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4963 	int err;
4964 
4965 	/* create gendisk info */
4966 	disk = alloc_disk(single_major ?
4967 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4968 			  RBD_MINORS_PER_MAJOR);
4969 	if (!disk)
4970 		return -ENOMEM;
4971 
4972 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4973 		 rbd_dev->dev_id);
4974 	disk->major = rbd_dev->major;
4975 	disk->first_minor = rbd_dev->minor;
4976 	if (single_major)
4977 		disk->flags |= GENHD_FL_EXT_DEVT;
4978 	disk->fops = &rbd_bd_ops;
4979 	disk->private_data = rbd_dev;
4980 
4981 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4982 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4983 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4984 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4985 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4986 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4987 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4988 
4989 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4990 	if (err)
4991 		goto out_disk;
4992 
4993 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4994 	if (IS_ERR(q)) {
4995 		err = PTR_ERR(q);
4996 		goto out_tag_set;
4997 	}
4998 
4999 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5000 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5001 
5002 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5003 	q->limits.max_sectors = queue_max_hw_sectors(q);
5004 	blk_queue_max_segments(q, USHRT_MAX);
5005 	blk_queue_max_segment_size(q, UINT_MAX);
5006 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5007 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5008 
5009 	if (rbd_dev->opts->trim) {
5010 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5011 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5012 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5013 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5014 	}
5015 
5016 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5017 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5018 
5019 	/*
5020 	 * disk_release() expects a queue ref from add_disk() and will
5021 	 * put it.  Hold an extra ref until add_disk() is called.
5022 	 */
5023 	WARN_ON(!blk_get_queue(q));
5024 	disk->queue = q;
5025 	q->queuedata = rbd_dev;
5026 
5027 	rbd_dev->disk = disk;
5028 
5029 	return 0;
5030 out_tag_set:
5031 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5032 out_disk:
5033 	put_disk(disk);
5034 	return err;
5035 }
5036 
5037 /*
5038   sysfs
5039 */
5040 
dev_to_rbd_dev(struct device * dev)5041 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5042 {
5043 	return container_of(dev, struct rbd_device, dev);
5044 }
5045 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5046 static ssize_t rbd_size_show(struct device *dev,
5047 			     struct device_attribute *attr, char *buf)
5048 {
5049 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5050 
5051 	return sprintf(buf, "%llu\n",
5052 		(unsigned long long)rbd_dev->mapping.size);
5053 }
5054 
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5055 static ssize_t rbd_features_show(struct device *dev,
5056 			     struct device_attribute *attr, char *buf)
5057 {
5058 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5059 
5060 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5061 }
5062 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5063 static ssize_t rbd_major_show(struct device *dev,
5064 			      struct device_attribute *attr, char *buf)
5065 {
5066 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067 
5068 	if (rbd_dev->major)
5069 		return sprintf(buf, "%d\n", rbd_dev->major);
5070 
5071 	return sprintf(buf, "(none)\n");
5072 }
5073 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5074 static ssize_t rbd_minor_show(struct device *dev,
5075 			      struct device_attribute *attr, char *buf)
5076 {
5077 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078 
5079 	return sprintf(buf, "%d\n", rbd_dev->minor);
5080 }
5081 
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5082 static ssize_t rbd_client_addr_show(struct device *dev,
5083 				    struct device_attribute *attr, char *buf)
5084 {
5085 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5086 	struct ceph_entity_addr *client_addr =
5087 	    ceph_client_addr(rbd_dev->rbd_client->client);
5088 
5089 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5090 		       le32_to_cpu(client_addr->nonce));
5091 }
5092 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5093 static ssize_t rbd_client_id_show(struct device *dev,
5094 				  struct device_attribute *attr, char *buf)
5095 {
5096 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5097 
5098 	return sprintf(buf, "client%lld\n",
5099 		       ceph_client_gid(rbd_dev->rbd_client->client));
5100 }
5101 
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5102 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5103 				     struct device_attribute *attr, char *buf)
5104 {
5105 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106 
5107 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5108 }
5109 
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5110 static ssize_t rbd_config_info_show(struct device *dev,
5111 				    struct device_attribute *attr, char *buf)
5112 {
5113 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114 
5115 	if (!capable(CAP_SYS_ADMIN))
5116 		return -EPERM;
5117 
5118 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5119 }
5120 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5121 static ssize_t rbd_pool_show(struct device *dev,
5122 			     struct device_attribute *attr, char *buf)
5123 {
5124 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5125 
5126 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5127 }
5128 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5129 static ssize_t rbd_pool_id_show(struct device *dev,
5130 			     struct device_attribute *attr, char *buf)
5131 {
5132 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5133 
5134 	return sprintf(buf, "%llu\n",
5135 			(unsigned long long) rbd_dev->spec->pool_id);
5136 }
5137 
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5138 static ssize_t rbd_pool_ns_show(struct device *dev,
5139 				struct device_attribute *attr, char *buf)
5140 {
5141 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5142 
5143 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5144 }
5145 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5146 static ssize_t rbd_name_show(struct device *dev,
5147 			     struct device_attribute *attr, char *buf)
5148 {
5149 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5150 
5151 	if (rbd_dev->spec->image_name)
5152 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5153 
5154 	return sprintf(buf, "(unknown)\n");
5155 }
5156 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5157 static ssize_t rbd_image_id_show(struct device *dev,
5158 			     struct device_attribute *attr, char *buf)
5159 {
5160 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161 
5162 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5163 }
5164 
5165 /*
5166  * Shows the name of the currently-mapped snapshot (or
5167  * RBD_SNAP_HEAD_NAME for the base image).
5168  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5169 static ssize_t rbd_snap_show(struct device *dev,
5170 			     struct device_attribute *attr,
5171 			     char *buf)
5172 {
5173 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5174 
5175 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5176 }
5177 
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5178 static ssize_t rbd_snap_id_show(struct device *dev,
5179 				struct device_attribute *attr, char *buf)
5180 {
5181 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5182 
5183 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5184 }
5185 
5186 /*
5187  * For a v2 image, shows the chain of parent images, separated by empty
5188  * lines.  For v1 images or if there is no parent, shows "(no parent
5189  * image)".
5190  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5191 static ssize_t rbd_parent_show(struct device *dev,
5192 			       struct device_attribute *attr,
5193 			       char *buf)
5194 {
5195 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5196 	ssize_t count = 0;
5197 
5198 	if (!rbd_dev->parent)
5199 		return sprintf(buf, "(no parent image)\n");
5200 
5201 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5202 		struct rbd_spec *spec = rbd_dev->parent_spec;
5203 
5204 		count += sprintf(&buf[count], "%s"
5205 			    "pool_id %llu\npool_name %s\n"
5206 			    "pool_ns %s\n"
5207 			    "image_id %s\nimage_name %s\n"
5208 			    "snap_id %llu\nsnap_name %s\n"
5209 			    "overlap %llu\n",
5210 			    !count ? "" : "\n", /* first? */
5211 			    spec->pool_id, spec->pool_name,
5212 			    spec->pool_ns ?: "",
5213 			    spec->image_id, spec->image_name ?: "(unknown)",
5214 			    spec->snap_id, spec->snap_name,
5215 			    rbd_dev->parent_overlap);
5216 	}
5217 
5218 	return count;
5219 }
5220 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5221 static ssize_t rbd_image_refresh(struct device *dev,
5222 				 struct device_attribute *attr,
5223 				 const char *buf,
5224 				 size_t size)
5225 {
5226 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5227 	int ret;
5228 
5229 	if (!capable(CAP_SYS_ADMIN))
5230 		return -EPERM;
5231 
5232 	ret = rbd_dev_refresh(rbd_dev);
5233 	if (ret)
5234 		return ret;
5235 
5236 	return size;
5237 }
5238 
5239 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5240 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5241 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5242 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5243 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5244 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5245 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5246 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5247 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5248 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5249 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5250 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5251 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5252 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5253 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5254 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5255 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5256 
5257 static struct attribute *rbd_attrs[] = {
5258 	&dev_attr_size.attr,
5259 	&dev_attr_features.attr,
5260 	&dev_attr_major.attr,
5261 	&dev_attr_minor.attr,
5262 	&dev_attr_client_addr.attr,
5263 	&dev_attr_client_id.attr,
5264 	&dev_attr_cluster_fsid.attr,
5265 	&dev_attr_config_info.attr,
5266 	&dev_attr_pool.attr,
5267 	&dev_attr_pool_id.attr,
5268 	&dev_attr_pool_ns.attr,
5269 	&dev_attr_name.attr,
5270 	&dev_attr_image_id.attr,
5271 	&dev_attr_current_snap.attr,
5272 	&dev_attr_snap_id.attr,
5273 	&dev_attr_parent.attr,
5274 	&dev_attr_refresh.attr,
5275 	NULL
5276 };
5277 
5278 static struct attribute_group rbd_attr_group = {
5279 	.attrs = rbd_attrs,
5280 };
5281 
5282 static const struct attribute_group *rbd_attr_groups[] = {
5283 	&rbd_attr_group,
5284 	NULL
5285 };
5286 
5287 static void rbd_dev_release(struct device *dev);
5288 
5289 static const struct device_type rbd_device_type = {
5290 	.name		= "rbd",
5291 	.groups		= rbd_attr_groups,
5292 	.release	= rbd_dev_release,
5293 };
5294 
rbd_spec_get(struct rbd_spec * spec)5295 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5296 {
5297 	kref_get(&spec->kref);
5298 
5299 	return spec;
5300 }
5301 
5302 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5303 static void rbd_spec_put(struct rbd_spec *spec)
5304 {
5305 	if (spec)
5306 		kref_put(&spec->kref, rbd_spec_free);
5307 }
5308 
rbd_spec_alloc(void)5309 static struct rbd_spec *rbd_spec_alloc(void)
5310 {
5311 	struct rbd_spec *spec;
5312 
5313 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5314 	if (!spec)
5315 		return NULL;
5316 
5317 	spec->pool_id = CEPH_NOPOOL;
5318 	spec->snap_id = CEPH_NOSNAP;
5319 	kref_init(&spec->kref);
5320 
5321 	return spec;
5322 }
5323 
rbd_spec_free(struct kref * kref)5324 static void rbd_spec_free(struct kref *kref)
5325 {
5326 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5327 
5328 	kfree(spec->pool_name);
5329 	kfree(spec->pool_ns);
5330 	kfree(spec->image_id);
5331 	kfree(spec->image_name);
5332 	kfree(spec->snap_name);
5333 	kfree(spec);
5334 }
5335 
rbd_dev_free(struct rbd_device * rbd_dev)5336 static void rbd_dev_free(struct rbd_device *rbd_dev)
5337 {
5338 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5339 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5340 
5341 	ceph_oid_destroy(&rbd_dev->header_oid);
5342 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5343 	kfree(rbd_dev->config_info);
5344 
5345 	rbd_put_client(rbd_dev->rbd_client);
5346 	rbd_spec_put(rbd_dev->spec);
5347 	kfree(rbd_dev->opts);
5348 	kfree(rbd_dev);
5349 }
5350 
rbd_dev_release(struct device * dev)5351 static void rbd_dev_release(struct device *dev)
5352 {
5353 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5354 	bool need_put = !!rbd_dev->opts;
5355 
5356 	if (need_put) {
5357 		destroy_workqueue(rbd_dev->task_wq);
5358 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5359 	}
5360 
5361 	rbd_dev_free(rbd_dev);
5362 
5363 	/*
5364 	 * This is racy, but way better than putting module outside of
5365 	 * the release callback.  The race window is pretty small, so
5366 	 * doing something similar to dm (dm-builtin.c) is overkill.
5367 	 */
5368 	if (need_put)
5369 		module_put(THIS_MODULE);
5370 }
5371 
__rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec)5372 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5373 					   struct rbd_spec *spec)
5374 {
5375 	struct rbd_device *rbd_dev;
5376 
5377 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5378 	if (!rbd_dev)
5379 		return NULL;
5380 
5381 	spin_lock_init(&rbd_dev->lock);
5382 	INIT_LIST_HEAD(&rbd_dev->node);
5383 	init_rwsem(&rbd_dev->header_rwsem);
5384 
5385 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5386 	ceph_oid_init(&rbd_dev->header_oid);
5387 	rbd_dev->header_oloc.pool = spec->pool_id;
5388 	if (spec->pool_ns) {
5389 		WARN_ON(!*spec->pool_ns);
5390 		rbd_dev->header_oloc.pool_ns =
5391 		    ceph_find_or_create_string(spec->pool_ns,
5392 					       strlen(spec->pool_ns));
5393 	}
5394 
5395 	mutex_init(&rbd_dev->watch_mutex);
5396 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5397 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5398 
5399 	init_rwsem(&rbd_dev->lock_rwsem);
5400 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5401 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5402 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5403 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5404 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5405 	spin_lock_init(&rbd_dev->lock_lists_lock);
5406 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5407 	INIT_LIST_HEAD(&rbd_dev->running_list);
5408 	init_completion(&rbd_dev->acquire_wait);
5409 	init_completion(&rbd_dev->releasing_wait);
5410 
5411 	spin_lock_init(&rbd_dev->object_map_lock);
5412 
5413 	rbd_dev->dev.bus = &rbd_bus_type;
5414 	rbd_dev->dev.type = &rbd_device_type;
5415 	rbd_dev->dev.parent = &rbd_root_dev;
5416 	device_initialize(&rbd_dev->dev);
5417 
5418 	rbd_dev->rbd_client = rbdc;
5419 	rbd_dev->spec = spec;
5420 
5421 	return rbd_dev;
5422 }
5423 
5424 /*
5425  * Create a mapping rbd_dev.
5426  */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5427 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5428 					 struct rbd_spec *spec,
5429 					 struct rbd_options *opts)
5430 {
5431 	struct rbd_device *rbd_dev;
5432 
5433 	rbd_dev = __rbd_dev_create(rbdc, spec);
5434 	if (!rbd_dev)
5435 		return NULL;
5436 
5437 	rbd_dev->opts = opts;
5438 
5439 	/* get an id and fill in device name */
5440 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5441 					 minor_to_rbd_dev_id(1 << MINORBITS),
5442 					 GFP_KERNEL);
5443 	if (rbd_dev->dev_id < 0)
5444 		goto fail_rbd_dev;
5445 
5446 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5447 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5448 						   rbd_dev->name);
5449 	if (!rbd_dev->task_wq)
5450 		goto fail_dev_id;
5451 
5452 	/* we have a ref from do_rbd_add() */
5453 	__module_get(THIS_MODULE);
5454 
5455 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5456 	return rbd_dev;
5457 
5458 fail_dev_id:
5459 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5460 fail_rbd_dev:
5461 	rbd_dev_free(rbd_dev);
5462 	return NULL;
5463 }
5464 
rbd_dev_destroy(struct rbd_device * rbd_dev)5465 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5466 {
5467 	if (rbd_dev)
5468 		put_device(&rbd_dev->dev);
5469 }
5470 
5471 /*
5472  * Get the size and object order for an image snapshot, or if
5473  * snap_id is CEPH_NOSNAP, gets this information for the base
5474  * image.
5475  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5476 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5477 				u8 *order, u64 *snap_size)
5478 {
5479 	__le64 snapid = cpu_to_le64(snap_id);
5480 	int ret;
5481 	struct {
5482 		u8 order;
5483 		__le64 size;
5484 	} __attribute__ ((packed)) size_buf = { 0 };
5485 
5486 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5487 				  &rbd_dev->header_oloc, "get_size",
5488 				  &snapid, sizeof(snapid),
5489 				  &size_buf, sizeof(size_buf));
5490 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5491 	if (ret < 0)
5492 		return ret;
5493 	if (ret < sizeof (size_buf))
5494 		return -ERANGE;
5495 
5496 	if (order) {
5497 		*order = size_buf.order;
5498 		dout("  order %u", (unsigned int)*order);
5499 	}
5500 	*snap_size = le64_to_cpu(size_buf.size);
5501 
5502 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5503 		(unsigned long long)snap_id,
5504 		(unsigned long long)*snap_size);
5505 
5506 	return 0;
5507 }
5508 
rbd_dev_v2_image_size(struct rbd_device * rbd_dev)5509 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5510 {
5511 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5512 					&rbd_dev->header.obj_order,
5513 					&rbd_dev->header.image_size);
5514 }
5515 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev)5516 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5517 {
5518 	size_t size;
5519 	void *reply_buf;
5520 	int ret;
5521 	void *p;
5522 
5523 	/* Response will be an encoded string, which includes a length */
5524 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5525 	reply_buf = kzalloc(size, GFP_KERNEL);
5526 	if (!reply_buf)
5527 		return -ENOMEM;
5528 
5529 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5530 				  &rbd_dev->header_oloc, "get_object_prefix",
5531 				  NULL, 0, reply_buf, size);
5532 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5533 	if (ret < 0)
5534 		goto out;
5535 
5536 	p = reply_buf;
5537 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5538 						p + ret, NULL, GFP_NOIO);
5539 	ret = 0;
5540 
5541 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5542 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5543 		rbd_dev->header.object_prefix = NULL;
5544 	} else {
5545 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5546 	}
5547 out:
5548 	kfree(reply_buf);
5549 
5550 	return ret;
5551 }
5552 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5553 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5554 				     bool read_only, u64 *snap_features)
5555 {
5556 	struct {
5557 		__le64 snap_id;
5558 		u8 read_only;
5559 	} features_in;
5560 	struct {
5561 		__le64 features;
5562 		__le64 incompat;
5563 	} __attribute__ ((packed)) features_buf = { 0 };
5564 	u64 unsup;
5565 	int ret;
5566 
5567 	features_in.snap_id = cpu_to_le64(snap_id);
5568 	features_in.read_only = read_only;
5569 
5570 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5571 				  &rbd_dev->header_oloc, "get_features",
5572 				  &features_in, sizeof(features_in),
5573 				  &features_buf, sizeof(features_buf));
5574 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5575 	if (ret < 0)
5576 		return ret;
5577 	if (ret < sizeof (features_buf))
5578 		return -ERANGE;
5579 
5580 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5581 	if (unsup) {
5582 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5583 			 unsup);
5584 		return -ENXIO;
5585 	}
5586 
5587 	*snap_features = le64_to_cpu(features_buf.features);
5588 
5589 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5590 		(unsigned long long)snap_id,
5591 		(unsigned long long)*snap_features,
5592 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5593 
5594 	return 0;
5595 }
5596 
rbd_dev_v2_features(struct rbd_device * rbd_dev)5597 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5598 {
5599 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5600 					 rbd_is_ro(rbd_dev),
5601 					 &rbd_dev->header.features);
5602 }
5603 
5604 /*
5605  * These are generic image flags, but since they are used only for
5606  * object map, store them in rbd_dev->object_map_flags.
5607  *
5608  * For the same reason, this function is called only on object map
5609  * (re)load and not on header refresh.
5610  */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5611 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5612 {
5613 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5614 	__le64 flags;
5615 	int ret;
5616 
5617 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5618 				  &rbd_dev->header_oloc, "get_flags",
5619 				  &snapid, sizeof(snapid),
5620 				  &flags, sizeof(flags));
5621 	if (ret < 0)
5622 		return ret;
5623 	if (ret < sizeof(flags))
5624 		return -EBADMSG;
5625 
5626 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5627 	return 0;
5628 }
5629 
5630 struct parent_image_info {
5631 	u64		pool_id;
5632 	const char	*pool_ns;
5633 	const char	*image_id;
5634 	u64		snap_id;
5635 
5636 	bool		has_overlap;
5637 	u64		overlap;
5638 };
5639 
5640 /*
5641  * The caller is responsible for @pii.
5642  */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5643 static int decode_parent_image_spec(void **p, void *end,
5644 				    struct parent_image_info *pii)
5645 {
5646 	u8 struct_v;
5647 	u32 struct_len;
5648 	int ret;
5649 
5650 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5651 				  &struct_v, &struct_len);
5652 	if (ret)
5653 		return ret;
5654 
5655 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5656 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5657 	if (IS_ERR(pii->pool_ns)) {
5658 		ret = PTR_ERR(pii->pool_ns);
5659 		pii->pool_ns = NULL;
5660 		return ret;
5661 	}
5662 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5663 	if (IS_ERR(pii->image_id)) {
5664 		ret = PTR_ERR(pii->image_id);
5665 		pii->image_id = NULL;
5666 		return ret;
5667 	}
5668 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5669 	return 0;
5670 
5671 e_inval:
5672 	return -EINVAL;
5673 }
5674 
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5675 static int __get_parent_info(struct rbd_device *rbd_dev,
5676 			     struct page *req_page,
5677 			     struct page *reply_page,
5678 			     struct parent_image_info *pii)
5679 {
5680 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5681 	size_t reply_len = PAGE_SIZE;
5682 	void *p, *end;
5683 	int ret;
5684 
5685 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5686 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5687 			     req_page, sizeof(u64), &reply_page, &reply_len);
5688 	if (ret)
5689 		return ret == -EOPNOTSUPP ? 1 : ret;
5690 
5691 	p = page_address(reply_page);
5692 	end = p + reply_len;
5693 	ret = decode_parent_image_spec(&p, end, pii);
5694 	if (ret)
5695 		return ret;
5696 
5697 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5698 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5699 			     req_page, sizeof(u64), &reply_page, &reply_len);
5700 	if (ret)
5701 		return ret;
5702 
5703 	p = page_address(reply_page);
5704 	end = p + reply_len;
5705 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5706 	if (pii->has_overlap)
5707 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5708 
5709 	return 0;
5710 
5711 e_inval:
5712 	return -EINVAL;
5713 }
5714 
5715 /*
5716  * The caller is responsible for @pii.
5717  */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5718 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5719 				    struct page *req_page,
5720 				    struct page *reply_page,
5721 				    struct parent_image_info *pii)
5722 {
5723 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5724 	size_t reply_len = PAGE_SIZE;
5725 	void *p, *end;
5726 	int ret;
5727 
5728 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5729 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5730 			     req_page, sizeof(u64), &reply_page, &reply_len);
5731 	if (ret)
5732 		return ret;
5733 
5734 	p = page_address(reply_page);
5735 	end = p + reply_len;
5736 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5737 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5738 	if (IS_ERR(pii->image_id)) {
5739 		ret = PTR_ERR(pii->image_id);
5740 		pii->image_id = NULL;
5741 		return ret;
5742 	}
5743 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5744 	pii->has_overlap = true;
5745 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5746 
5747 	return 0;
5748 
5749 e_inval:
5750 	return -EINVAL;
5751 }
5752 
get_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5753 static int get_parent_info(struct rbd_device *rbd_dev,
5754 			   struct parent_image_info *pii)
5755 {
5756 	struct page *req_page, *reply_page;
5757 	void *p;
5758 	int ret;
5759 
5760 	req_page = alloc_page(GFP_KERNEL);
5761 	if (!req_page)
5762 		return -ENOMEM;
5763 
5764 	reply_page = alloc_page(GFP_KERNEL);
5765 	if (!reply_page) {
5766 		__free_page(req_page);
5767 		return -ENOMEM;
5768 	}
5769 
5770 	p = page_address(req_page);
5771 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5772 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5773 	if (ret > 0)
5774 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5775 					       pii);
5776 
5777 	__free_page(req_page);
5778 	__free_page(reply_page);
5779 	return ret;
5780 }
5781 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev)5782 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5783 {
5784 	struct rbd_spec *parent_spec;
5785 	struct parent_image_info pii = { 0 };
5786 	int ret;
5787 
5788 	parent_spec = rbd_spec_alloc();
5789 	if (!parent_spec)
5790 		return -ENOMEM;
5791 
5792 	ret = get_parent_info(rbd_dev, &pii);
5793 	if (ret)
5794 		goto out_err;
5795 
5796 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5797 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5798 	     pii.has_overlap, pii.overlap);
5799 
5800 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5801 		/*
5802 		 * Either the parent never existed, or we have
5803 		 * record of it but the image got flattened so it no
5804 		 * longer has a parent.  When the parent of a
5805 		 * layered image disappears we immediately set the
5806 		 * overlap to 0.  The effect of this is that all new
5807 		 * requests will be treated as if the image had no
5808 		 * parent.
5809 		 *
5810 		 * If !pii.has_overlap, the parent image spec is not
5811 		 * applicable.  It's there to avoid duplication in each
5812 		 * snapshot record.
5813 		 */
5814 		if (rbd_dev->parent_overlap) {
5815 			rbd_dev->parent_overlap = 0;
5816 			rbd_dev_parent_put(rbd_dev);
5817 			pr_info("%s: clone image has been flattened\n",
5818 				rbd_dev->disk->disk_name);
5819 		}
5820 
5821 		goto out;	/* No parent?  No problem. */
5822 	}
5823 
5824 	/* The ceph file layout needs to fit pool id in 32 bits */
5825 
5826 	ret = -EIO;
5827 	if (pii.pool_id > (u64)U32_MAX) {
5828 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5829 			(unsigned long long)pii.pool_id, U32_MAX);
5830 		goto out_err;
5831 	}
5832 
5833 	/*
5834 	 * The parent won't change (except when the clone is
5835 	 * flattened, already handled that).  So we only need to
5836 	 * record the parent spec we have not already done so.
5837 	 */
5838 	if (!rbd_dev->parent_spec) {
5839 		parent_spec->pool_id = pii.pool_id;
5840 		if (pii.pool_ns && *pii.pool_ns) {
5841 			parent_spec->pool_ns = pii.pool_ns;
5842 			pii.pool_ns = NULL;
5843 		}
5844 		parent_spec->image_id = pii.image_id;
5845 		pii.image_id = NULL;
5846 		parent_spec->snap_id = pii.snap_id;
5847 
5848 		rbd_dev->parent_spec = parent_spec;
5849 		parent_spec = NULL;	/* rbd_dev now owns this */
5850 	}
5851 
5852 	/*
5853 	 * We always update the parent overlap.  If it's zero we issue
5854 	 * a warning, as we will proceed as if there was no parent.
5855 	 */
5856 	if (!pii.overlap) {
5857 		if (parent_spec) {
5858 			/* refresh, careful to warn just once */
5859 			if (rbd_dev->parent_overlap)
5860 				rbd_warn(rbd_dev,
5861 				    "clone now standalone (overlap became 0)");
5862 		} else {
5863 			/* initial probe */
5864 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5865 		}
5866 	}
5867 	rbd_dev->parent_overlap = pii.overlap;
5868 
5869 out:
5870 	ret = 0;
5871 out_err:
5872 	kfree(pii.pool_ns);
5873 	kfree(pii.image_id);
5874 	rbd_spec_put(parent_spec);
5875 	return ret;
5876 }
5877 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev)5878 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5879 {
5880 	struct {
5881 		__le64 stripe_unit;
5882 		__le64 stripe_count;
5883 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5884 	size_t size = sizeof (striping_info_buf);
5885 	void *p;
5886 	int ret;
5887 
5888 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5889 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5890 				NULL, 0, &striping_info_buf, size);
5891 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5892 	if (ret < 0)
5893 		return ret;
5894 	if (ret < size)
5895 		return -ERANGE;
5896 
5897 	p = &striping_info_buf;
5898 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5899 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5900 	return 0;
5901 }
5902 
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev)5903 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5904 {
5905 	__le64 data_pool_id;
5906 	int ret;
5907 
5908 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5909 				  &rbd_dev->header_oloc, "get_data_pool",
5910 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5911 	if (ret < 0)
5912 		return ret;
5913 	if (ret < sizeof(data_pool_id))
5914 		return -EBADMSG;
5915 
5916 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5917 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5918 	return 0;
5919 }
5920 
rbd_dev_image_name(struct rbd_device * rbd_dev)5921 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5922 {
5923 	CEPH_DEFINE_OID_ONSTACK(oid);
5924 	size_t image_id_size;
5925 	char *image_id;
5926 	void *p;
5927 	void *end;
5928 	size_t size;
5929 	void *reply_buf = NULL;
5930 	size_t len = 0;
5931 	char *image_name = NULL;
5932 	int ret;
5933 
5934 	rbd_assert(!rbd_dev->spec->image_name);
5935 
5936 	len = strlen(rbd_dev->spec->image_id);
5937 	image_id_size = sizeof (__le32) + len;
5938 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5939 	if (!image_id)
5940 		return NULL;
5941 
5942 	p = image_id;
5943 	end = image_id + image_id_size;
5944 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5945 
5946 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5947 	reply_buf = kmalloc(size, GFP_KERNEL);
5948 	if (!reply_buf)
5949 		goto out;
5950 
5951 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5952 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5953 				  "dir_get_name", image_id, image_id_size,
5954 				  reply_buf, size);
5955 	if (ret < 0)
5956 		goto out;
5957 	p = reply_buf;
5958 	end = reply_buf + ret;
5959 
5960 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5961 	if (IS_ERR(image_name))
5962 		image_name = NULL;
5963 	else
5964 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5965 out:
5966 	kfree(reply_buf);
5967 	kfree(image_id);
5968 
5969 	return image_name;
5970 }
5971 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5972 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5973 {
5974 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5975 	const char *snap_name;
5976 	u32 which = 0;
5977 
5978 	/* Skip over names until we find the one we are looking for */
5979 
5980 	snap_name = rbd_dev->header.snap_names;
5981 	while (which < snapc->num_snaps) {
5982 		if (!strcmp(name, snap_name))
5983 			return snapc->snaps[which];
5984 		snap_name += strlen(snap_name) + 1;
5985 		which++;
5986 	}
5987 	return CEPH_NOSNAP;
5988 }
5989 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5990 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5991 {
5992 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5993 	u32 which;
5994 	bool found = false;
5995 	u64 snap_id;
5996 
5997 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5998 		const char *snap_name;
5999 
6000 		snap_id = snapc->snaps[which];
6001 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6002 		if (IS_ERR(snap_name)) {
6003 			/* ignore no-longer existing snapshots */
6004 			if (PTR_ERR(snap_name) == -ENOENT)
6005 				continue;
6006 			else
6007 				break;
6008 		}
6009 		found = !strcmp(name, snap_name);
6010 		kfree(snap_name);
6011 	}
6012 	return found ? snap_id : CEPH_NOSNAP;
6013 }
6014 
6015 /*
6016  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6017  * no snapshot by that name is found, or if an error occurs.
6018  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6019 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6020 {
6021 	if (rbd_dev->image_format == 1)
6022 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6023 
6024 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6025 }
6026 
6027 /*
6028  * An image being mapped will have everything but the snap id.
6029  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)6030 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6031 {
6032 	struct rbd_spec *spec = rbd_dev->spec;
6033 
6034 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6035 	rbd_assert(spec->image_id && spec->image_name);
6036 	rbd_assert(spec->snap_name);
6037 
6038 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6039 		u64 snap_id;
6040 
6041 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6042 		if (snap_id == CEPH_NOSNAP)
6043 			return -ENOENT;
6044 
6045 		spec->snap_id = snap_id;
6046 	} else {
6047 		spec->snap_id = CEPH_NOSNAP;
6048 	}
6049 
6050 	return 0;
6051 }
6052 
6053 /*
6054  * A parent image will have all ids but none of the names.
6055  *
6056  * All names in an rbd spec are dynamically allocated.  It's OK if we
6057  * can't figure out the name for an image id.
6058  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6059 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6060 {
6061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6062 	struct rbd_spec *spec = rbd_dev->spec;
6063 	const char *pool_name;
6064 	const char *image_name;
6065 	const char *snap_name;
6066 	int ret;
6067 
6068 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6069 	rbd_assert(spec->image_id);
6070 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6071 
6072 	/* Get the pool name; we have to make our own copy of this */
6073 
6074 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6075 	if (!pool_name) {
6076 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6077 		return -EIO;
6078 	}
6079 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6080 	if (!pool_name)
6081 		return -ENOMEM;
6082 
6083 	/* Fetch the image name; tolerate failure here */
6084 
6085 	image_name = rbd_dev_image_name(rbd_dev);
6086 	if (!image_name)
6087 		rbd_warn(rbd_dev, "unable to get image name");
6088 
6089 	/* Fetch the snapshot name */
6090 
6091 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6092 	if (IS_ERR(snap_name)) {
6093 		ret = PTR_ERR(snap_name);
6094 		goto out_err;
6095 	}
6096 
6097 	spec->pool_name = pool_name;
6098 	spec->image_name = image_name;
6099 	spec->snap_name = snap_name;
6100 
6101 	return 0;
6102 
6103 out_err:
6104 	kfree(image_name);
6105 	kfree(pool_name);
6106 	return ret;
6107 }
6108 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev)6109 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6110 {
6111 	size_t size;
6112 	int ret;
6113 	void *reply_buf;
6114 	void *p;
6115 	void *end;
6116 	u64 seq;
6117 	u32 snap_count;
6118 	struct ceph_snap_context *snapc;
6119 	u32 i;
6120 
6121 	/*
6122 	 * We'll need room for the seq value (maximum snapshot id),
6123 	 * snapshot count, and array of that many snapshot ids.
6124 	 * For now we have a fixed upper limit on the number we're
6125 	 * prepared to receive.
6126 	 */
6127 	size = sizeof (__le64) + sizeof (__le32) +
6128 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6129 	reply_buf = kzalloc(size, GFP_KERNEL);
6130 	if (!reply_buf)
6131 		return -ENOMEM;
6132 
6133 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6134 				  &rbd_dev->header_oloc, "get_snapcontext",
6135 				  NULL, 0, reply_buf, size);
6136 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6137 	if (ret < 0)
6138 		goto out;
6139 
6140 	p = reply_buf;
6141 	end = reply_buf + ret;
6142 	ret = -ERANGE;
6143 	ceph_decode_64_safe(&p, end, seq, out);
6144 	ceph_decode_32_safe(&p, end, snap_count, out);
6145 
6146 	/*
6147 	 * Make sure the reported number of snapshot ids wouldn't go
6148 	 * beyond the end of our buffer.  But before checking that,
6149 	 * make sure the computed size of the snapshot context we
6150 	 * allocate is representable in a size_t.
6151 	 */
6152 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6153 				 / sizeof (u64)) {
6154 		ret = -EINVAL;
6155 		goto out;
6156 	}
6157 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6158 		goto out;
6159 	ret = 0;
6160 
6161 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6162 	if (!snapc) {
6163 		ret = -ENOMEM;
6164 		goto out;
6165 	}
6166 	snapc->seq = seq;
6167 	for (i = 0; i < snap_count; i++)
6168 		snapc->snaps[i] = ceph_decode_64(&p);
6169 
6170 	ceph_put_snap_context(rbd_dev->header.snapc);
6171 	rbd_dev->header.snapc = snapc;
6172 
6173 	dout("  snap context seq = %llu, snap_count = %u\n",
6174 		(unsigned long long)seq, (unsigned int)snap_count);
6175 out:
6176 	kfree(reply_buf);
6177 
6178 	return ret;
6179 }
6180 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6181 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6182 					u64 snap_id)
6183 {
6184 	size_t size;
6185 	void *reply_buf;
6186 	__le64 snapid;
6187 	int ret;
6188 	void *p;
6189 	void *end;
6190 	char *snap_name;
6191 
6192 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6193 	reply_buf = kmalloc(size, GFP_KERNEL);
6194 	if (!reply_buf)
6195 		return ERR_PTR(-ENOMEM);
6196 
6197 	snapid = cpu_to_le64(snap_id);
6198 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6199 				  &rbd_dev->header_oloc, "get_snapshot_name",
6200 				  &snapid, sizeof(snapid), reply_buf, size);
6201 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6202 	if (ret < 0) {
6203 		snap_name = ERR_PTR(ret);
6204 		goto out;
6205 	}
6206 
6207 	p = reply_buf;
6208 	end = reply_buf + ret;
6209 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6210 	if (IS_ERR(snap_name))
6211 		goto out;
6212 
6213 	dout("  snap_id 0x%016llx snap_name = %s\n",
6214 		(unsigned long long)snap_id, snap_name);
6215 out:
6216 	kfree(reply_buf);
6217 
6218 	return snap_name;
6219 }
6220 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev)6221 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6222 {
6223 	bool first_time = rbd_dev->header.object_prefix == NULL;
6224 	int ret;
6225 
6226 	ret = rbd_dev_v2_image_size(rbd_dev);
6227 	if (ret)
6228 		return ret;
6229 
6230 	if (first_time) {
6231 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6232 		if (ret)
6233 			return ret;
6234 	}
6235 
6236 	ret = rbd_dev_v2_snap_context(rbd_dev);
6237 	if (ret && first_time) {
6238 		kfree(rbd_dev->header.object_prefix);
6239 		rbd_dev->header.object_prefix = NULL;
6240 	}
6241 
6242 	return ret;
6243 }
6244 
rbd_dev_header_info(struct rbd_device * rbd_dev)6245 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6246 {
6247 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6248 
6249 	if (rbd_dev->image_format == 1)
6250 		return rbd_dev_v1_header_info(rbd_dev);
6251 
6252 	return rbd_dev_v2_header_info(rbd_dev);
6253 }
6254 
6255 /*
6256  * Skips over white space at *buf, and updates *buf to point to the
6257  * first found non-space character (if any). Returns the length of
6258  * the token (string of non-white space characters) found.  Note
6259  * that *buf must be terminated with '\0'.
6260  */
next_token(const char ** buf)6261 static inline size_t next_token(const char **buf)
6262 {
6263         /*
6264         * These are the characters that produce nonzero for
6265         * isspace() in the "C" and "POSIX" locales.
6266         */
6267         const char *spaces = " \f\n\r\t\v";
6268 
6269         *buf += strspn(*buf, spaces);	/* Find start of token */
6270 
6271 	return strcspn(*buf, spaces);   /* Return token length */
6272 }
6273 
6274 /*
6275  * Finds the next token in *buf, dynamically allocates a buffer big
6276  * enough to hold a copy of it, and copies the token into the new
6277  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6278  * that a duplicate buffer is created even for a zero-length token.
6279  *
6280  * Returns a pointer to the newly-allocated duplicate, or a null
6281  * pointer if memory for the duplicate was not available.  If
6282  * the lenp argument is a non-null pointer, the length of the token
6283  * (not including the '\0') is returned in *lenp.
6284  *
6285  * If successful, the *buf pointer will be updated to point beyond
6286  * the end of the found token.
6287  *
6288  * Note: uses GFP_KERNEL for allocation.
6289  */
dup_token(const char ** buf,size_t * lenp)6290 static inline char *dup_token(const char **buf, size_t *lenp)
6291 {
6292 	char *dup;
6293 	size_t len;
6294 
6295 	len = next_token(buf);
6296 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6297 	if (!dup)
6298 		return NULL;
6299 	*(dup + len) = '\0';
6300 	*buf += len;
6301 
6302 	if (lenp)
6303 		*lenp = len;
6304 
6305 	return dup;
6306 }
6307 
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6308 static int rbd_parse_param(struct fs_parameter *param,
6309 			    struct rbd_parse_opts_ctx *pctx)
6310 {
6311 	struct rbd_options *opt = pctx->opts;
6312 	struct fs_parse_result result;
6313 	struct p_log log = {.prefix = "rbd"};
6314 	int token, ret;
6315 
6316 	ret = ceph_parse_param(param, pctx->copts, NULL);
6317 	if (ret != -ENOPARAM)
6318 		return ret;
6319 
6320 	token = __fs_parse(&log, rbd_parameters, param, &result);
6321 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6322 	if (token < 0) {
6323 		if (token == -ENOPARAM)
6324 			return inval_plog(&log, "Unknown parameter '%s'",
6325 					  param->key);
6326 		return token;
6327 	}
6328 
6329 	switch (token) {
6330 	case Opt_queue_depth:
6331 		if (result.uint_32 < 1)
6332 			goto out_of_range;
6333 		opt->queue_depth = result.uint_32;
6334 		break;
6335 	case Opt_alloc_size:
6336 		if (result.uint_32 < SECTOR_SIZE)
6337 			goto out_of_range;
6338 		if (!is_power_of_2(result.uint_32))
6339 			return inval_plog(&log, "alloc_size must be a power of 2");
6340 		opt->alloc_size = result.uint_32;
6341 		break;
6342 	case Opt_lock_timeout:
6343 		/* 0 is "wait forever" (i.e. infinite timeout) */
6344 		if (result.uint_32 > INT_MAX / 1000)
6345 			goto out_of_range;
6346 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6347 		break;
6348 	case Opt_pool_ns:
6349 		kfree(pctx->spec->pool_ns);
6350 		pctx->spec->pool_ns = param->string;
6351 		param->string = NULL;
6352 		break;
6353 	case Opt_compression_hint:
6354 		switch (result.uint_32) {
6355 		case Opt_compression_hint_none:
6356 			opt->alloc_hint_flags &=
6357 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6358 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6359 			break;
6360 		case Opt_compression_hint_compressible:
6361 			opt->alloc_hint_flags |=
6362 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6363 			opt->alloc_hint_flags &=
6364 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6365 			break;
6366 		case Opt_compression_hint_incompressible:
6367 			opt->alloc_hint_flags |=
6368 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6369 			opt->alloc_hint_flags &=
6370 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371 			break;
6372 		default:
6373 			BUG();
6374 		}
6375 		break;
6376 	case Opt_read_only:
6377 		opt->read_only = true;
6378 		break;
6379 	case Opt_read_write:
6380 		opt->read_only = false;
6381 		break;
6382 	case Opt_lock_on_read:
6383 		opt->lock_on_read = true;
6384 		break;
6385 	case Opt_exclusive:
6386 		opt->exclusive = true;
6387 		break;
6388 	case Opt_notrim:
6389 		opt->trim = false;
6390 		break;
6391 	default:
6392 		BUG();
6393 	}
6394 
6395 	return 0;
6396 
6397 out_of_range:
6398 	return inval_plog(&log, "%s out of range", param->key);
6399 }
6400 
6401 /*
6402  * This duplicates most of generic_parse_monolithic(), untying it from
6403  * fs_context and skipping standard superblock and security options.
6404  */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6405 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6406 {
6407 	char *key;
6408 	int ret = 0;
6409 
6410 	dout("%s '%s'\n", __func__, options);
6411 	while ((key = strsep(&options, ",")) != NULL) {
6412 		if (*key) {
6413 			struct fs_parameter param = {
6414 				.key	= key,
6415 				.type	= fs_value_is_flag,
6416 			};
6417 			char *value = strchr(key, '=');
6418 			size_t v_len = 0;
6419 
6420 			if (value) {
6421 				if (value == key)
6422 					continue;
6423 				*value++ = 0;
6424 				v_len = strlen(value);
6425 				param.string = kmemdup_nul(value, v_len,
6426 							   GFP_KERNEL);
6427 				if (!param.string)
6428 					return -ENOMEM;
6429 				param.type = fs_value_is_string;
6430 			}
6431 			param.size = v_len;
6432 
6433 			ret = rbd_parse_param(&param, pctx);
6434 			kfree(param.string);
6435 			if (ret)
6436 				break;
6437 		}
6438 	}
6439 
6440 	return ret;
6441 }
6442 
6443 /*
6444  * Parse the options provided for an "rbd add" (i.e., rbd image
6445  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6446  * and the data written is passed here via a NUL-terminated buffer.
6447  * Returns 0 if successful or an error code otherwise.
6448  *
6449  * The information extracted from these options is recorded in
6450  * the other parameters which return dynamically-allocated
6451  * structures:
6452  *  ceph_opts
6453  *      The address of a pointer that will refer to a ceph options
6454  *      structure.  Caller must release the returned pointer using
6455  *      ceph_destroy_options() when it is no longer needed.
6456  *  rbd_opts
6457  *	Address of an rbd options pointer.  Fully initialized by
6458  *	this function; caller must release with kfree().
6459  *  spec
6460  *	Address of an rbd image specification pointer.  Fully
6461  *	initialized by this function based on parsed options.
6462  *	Caller must release with rbd_spec_put().
6463  *
6464  * The options passed take this form:
6465  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6466  * where:
6467  *  <mon_addrs>
6468  *      A comma-separated list of one or more monitor addresses.
6469  *      A monitor address is an ip address, optionally followed
6470  *      by a port number (separated by a colon).
6471  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6472  *  <options>
6473  *      A comma-separated list of ceph and/or rbd options.
6474  *  <pool_name>
6475  *      The name of the rados pool containing the rbd image.
6476  *  <image_name>
6477  *      The name of the image in that pool to map.
6478  *  <snap_id>
6479  *      An optional snapshot id.  If provided, the mapping will
6480  *      present data from the image at the time that snapshot was
6481  *      created.  The image head is used if no snapshot id is
6482  *      provided.  Snapshot mappings are always read-only.
6483  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6484 static int rbd_add_parse_args(const char *buf,
6485 				struct ceph_options **ceph_opts,
6486 				struct rbd_options **opts,
6487 				struct rbd_spec **rbd_spec)
6488 {
6489 	size_t len;
6490 	char *options;
6491 	const char *mon_addrs;
6492 	char *snap_name;
6493 	size_t mon_addrs_size;
6494 	struct rbd_parse_opts_ctx pctx = { 0 };
6495 	int ret;
6496 
6497 	/* The first four tokens are required */
6498 
6499 	len = next_token(&buf);
6500 	if (!len) {
6501 		rbd_warn(NULL, "no monitor address(es) provided");
6502 		return -EINVAL;
6503 	}
6504 	mon_addrs = buf;
6505 	mon_addrs_size = len;
6506 	buf += len;
6507 
6508 	ret = -EINVAL;
6509 	options = dup_token(&buf, NULL);
6510 	if (!options)
6511 		return -ENOMEM;
6512 	if (!*options) {
6513 		rbd_warn(NULL, "no options provided");
6514 		goto out_err;
6515 	}
6516 
6517 	pctx.spec = rbd_spec_alloc();
6518 	if (!pctx.spec)
6519 		goto out_mem;
6520 
6521 	pctx.spec->pool_name = dup_token(&buf, NULL);
6522 	if (!pctx.spec->pool_name)
6523 		goto out_mem;
6524 	if (!*pctx.spec->pool_name) {
6525 		rbd_warn(NULL, "no pool name provided");
6526 		goto out_err;
6527 	}
6528 
6529 	pctx.spec->image_name = dup_token(&buf, NULL);
6530 	if (!pctx.spec->image_name)
6531 		goto out_mem;
6532 	if (!*pctx.spec->image_name) {
6533 		rbd_warn(NULL, "no image name provided");
6534 		goto out_err;
6535 	}
6536 
6537 	/*
6538 	 * Snapshot name is optional; default is to use "-"
6539 	 * (indicating the head/no snapshot).
6540 	 */
6541 	len = next_token(&buf);
6542 	if (!len) {
6543 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6544 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6545 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6546 		ret = -ENAMETOOLONG;
6547 		goto out_err;
6548 	}
6549 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6550 	if (!snap_name)
6551 		goto out_mem;
6552 	*(snap_name + len) = '\0';
6553 	pctx.spec->snap_name = snap_name;
6554 
6555 	pctx.copts = ceph_alloc_options();
6556 	if (!pctx.copts)
6557 		goto out_mem;
6558 
6559 	/* Initialize all rbd options to the defaults */
6560 
6561 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6562 	if (!pctx.opts)
6563 		goto out_mem;
6564 
6565 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6566 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6567 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6568 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6569 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6570 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6571 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6572 
6573 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6574 	if (ret)
6575 		goto out_err;
6576 
6577 	ret = rbd_parse_options(options, &pctx);
6578 	if (ret)
6579 		goto out_err;
6580 
6581 	*ceph_opts = pctx.copts;
6582 	*opts = pctx.opts;
6583 	*rbd_spec = pctx.spec;
6584 	kfree(options);
6585 	return 0;
6586 
6587 out_mem:
6588 	ret = -ENOMEM;
6589 out_err:
6590 	kfree(pctx.opts);
6591 	ceph_destroy_options(pctx.copts);
6592 	rbd_spec_put(pctx.spec);
6593 	kfree(options);
6594 	return ret;
6595 }
6596 
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6597 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6598 {
6599 	down_write(&rbd_dev->lock_rwsem);
6600 	if (__rbd_is_lock_owner(rbd_dev))
6601 		__rbd_release_lock(rbd_dev);
6602 	up_write(&rbd_dev->lock_rwsem);
6603 }
6604 
6605 /*
6606  * If the wait is interrupted, an error is returned even if the lock
6607  * was successfully acquired.  rbd_dev_image_unlock() will release it
6608  * if needed.
6609  */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6610 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6611 {
6612 	long ret;
6613 
6614 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6615 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6616 			return 0;
6617 
6618 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6619 		return -EINVAL;
6620 	}
6621 
6622 	if (rbd_is_ro(rbd_dev))
6623 		return 0;
6624 
6625 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6626 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6627 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6628 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6629 	if (ret > 0) {
6630 		ret = rbd_dev->acquire_err;
6631 	} else {
6632 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6633 		if (!ret)
6634 			ret = -ETIMEDOUT;
6635 	}
6636 
6637 	if (ret) {
6638 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6639 		return ret;
6640 	}
6641 
6642 	/*
6643 	 * The lock may have been released by now, unless automatic lock
6644 	 * transitions are disabled.
6645 	 */
6646 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6647 	return 0;
6648 }
6649 
6650 /*
6651  * An rbd format 2 image has a unique identifier, distinct from the
6652  * name given to it by the user.  Internally, that identifier is
6653  * what's used to specify the names of objects related to the image.
6654  *
6655  * A special "rbd id" object is used to map an rbd image name to its
6656  * id.  If that object doesn't exist, then there is no v2 rbd image
6657  * with the supplied name.
6658  *
6659  * This function will record the given rbd_dev's image_id field if
6660  * it can be determined, and in that case will return 0.  If any
6661  * errors occur a negative errno will be returned and the rbd_dev's
6662  * image_id field will be unchanged (and should be NULL).
6663  */
rbd_dev_image_id(struct rbd_device * rbd_dev)6664 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6665 {
6666 	int ret;
6667 	size_t size;
6668 	CEPH_DEFINE_OID_ONSTACK(oid);
6669 	void *response;
6670 	char *image_id;
6671 
6672 	/*
6673 	 * When probing a parent image, the image id is already
6674 	 * known (and the image name likely is not).  There's no
6675 	 * need to fetch the image id again in this case.  We
6676 	 * do still need to set the image format though.
6677 	 */
6678 	if (rbd_dev->spec->image_id) {
6679 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6680 
6681 		return 0;
6682 	}
6683 
6684 	/*
6685 	 * First, see if the format 2 image id file exists, and if
6686 	 * so, get the image's persistent id from it.
6687 	 */
6688 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6689 			       rbd_dev->spec->image_name);
6690 	if (ret)
6691 		return ret;
6692 
6693 	dout("rbd id object name is %s\n", oid.name);
6694 
6695 	/* Response will be an encoded string, which includes a length */
6696 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6697 	response = kzalloc(size, GFP_NOIO);
6698 	if (!response) {
6699 		ret = -ENOMEM;
6700 		goto out;
6701 	}
6702 
6703 	/* If it doesn't exist we'll assume it's a format 1 image */
6704 
6705 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6706 				  "get_id", NULL, 0,
6707 				  response, size);
6708 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6709 	if (ret == -ENOENT) {
6710 		image_id = kstrdup("", GFP_KERNEL);
6711 		ret = image_id ? 0 : -ENOMEM;
6712 		if (!ret)
6713 			rbd_dev->image_format = 1;
6714 	} else if (ret >= 0) {
6715 		void *p = response;
6716 
6717 		image_id = ceph_extract_encoded_string(&p, p + ret,
6718 						NULL, GFP_NOIO);
6719 		ret = PTR_ERR_OR_ZERO(image_id);
6720 		if (!ret)
6721 			rbd_dev->image_format = 2;
6722 	}
6723 
6724 	if (!ret) {
6725 		rbd_dev->spec->image_id = image_id;
6726 		dout("image_id is %s\n", image_id);
6727 	}
6728 out:
6729 	kfree(response);
6730 	ceph_oid_destroy(&oid);
6731 	return ret;
6732 }
6733 
6734 /*
6735  * Undo whatever state changes are made by v1 or v2 header info
6736  * call.
6737  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6738 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6739 {
6740 	struct rbd_image_header	*header;
6741 
6742 	rbd_dev_parent_put(rbd_dev);
6743 	rbd_object_map_free(rbd_dev);
6744 	rbd_dev_mapping_clear(rbd_dev);
6745 
6746 	/* Free dynamic fields from the header, then zero it out */
6747 
6748 	header = &rbd_dev->header;
6749 	ceph_put_snap_context(header->snapc);
6750 	kfree(header->snap_sizes);
6751 	kfree(header->snap_names);
6752 	kfree(header->object_prefix);
6753 	memset(header, 0, sizeof (*header));
6754 }
6755 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev)6756 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6757 {
6758 	int ret;
6759 
6760 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6761 	if (ret)
6762 		goto out_err;
6763 
6764 	/*
6765 	 * Get the and check features for the image.  Currently the
6766 	 * features are assumed to never change.
6767 	 */
6768 	ret = rbd_dev_v2_features(rbd_dev);
6769 	if (ret)
6770 		goto out_err;
6771 
6772 	/* If the image supports fancy striping, get its parameters */
6773 
6774 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6775 		ret = rbd_dev_v2_striping_info(rbd_dev);
6776 		if (ret < 0)
6777 			goto out_err;
6778 	}
6779 
6780 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6781 		ret = rbd_dev_v2_data_pool(rbd_dev);
6782 		if (ret)
6783 			goto out_err;
6784 	}
6785 
6786 	rbd_init_layout(rbd_dev);
6787 	return 0;
6788 
6789 out_err:
6790 	rbd_dev->header.features = 0;
6791 	kfree(rbd_dev->header.object_prefix);
6792 	rbd_dev->header.object_prefix = NULL;
6793 	return ret;
6794 }
6795 
6796 /*
6797  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6798  * rbd_dev_image_probe() recursion depth, which means it's also the
6799  * length of the already discovered part of the parent chain.
6800  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6801 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6802 {
6803 	struct rbd_device *parent = NULL;
6804 	int ret;
6805 
6806 	if (!rbd_dev->parent_spec)
6807 		return 0;
6808 
6809 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6810 		pr_info("parent chain is too long (%d)\n", depth);
6811 		ret = -EINVAL;
6812 		goto out_err;
6813 	}
6814 
6815 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6816 	if (!parent) {
6817 		ret = -ENOMEM;
6818 		goto out_err;
6819 	}
6820 
6821 	/*
6822 	 * Images related by parent/child relationships always share
6823 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6824 	 */
6825 	__rbd_get_client(rbd_dev->rbd_client);
6826 	rbd_spec_get(rbd_dev->parent_spec);
6827 
6828 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6829 
6830 	ret = rbd_dev_image_probe(parent, depth);
6831 	if (ret < 0)
6832 		goto out_err;
6833 
6834 	rbd_dev->parent = parent;
6835 	atomic_set(&rbd_dev->parent_ref, 1);
6836 	return 0;
6837 
6838 out_err:
6839 	rbd_dev_unparent(rbd_dev);
6840 	rbd_dev_destroy(parent);
6841 	return ret;
6842 }
6843 
rbd_dev_device_release(struct rbd_device * rbd_dev)6844 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6845 {
6846 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6847 	rbd_free_disk(rbd_dev);
6848 	if (!single_major)
6849 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6850 }
6851 
6852 /*
6853  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6854  * upon return.
6855  */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6857 {
6858 	int ret;
6859 
6860 	/* Record our major and minor device numbers. */
6861 
6862 	if (!single_major) {
6863 		ret = register_blkdev(0, rbd_dev->name);
6864 		if (ret < 0)
6865 			goto err_out_unlock;
6866 
6867 		rbd_dev->major = ret;
6868 		rbd_dev->minor = 0;
6869 	} else {
6870 		rbd_dev->major = rbd_major;
6871 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6872 	}
6873 
6874 	/* Set up the blkdev mapping. */
6875 
6876 	ret = rbd_init_disk(rbd_dev);
6877 	if (ret)
6878 		goto err_out_blkdev;
6879 
6880 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6881 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6882 
6883 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6884 	if (ret)
6885 		goto err_out_disk;
6886 
6887 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6888 	up_write(&rbd_dev->header_rwsem);
6889 	return 0;
6890 
6891 err_out_disk:
6892 	rbd_free_disk(rbd_dev);
6893 err_out_blkdev:
6894 	if (!single_major)
6895 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6896 err_out_unlock:
6897 	up_write(&rbd_dev->header_rwsem);
6898 	return ret;
6899 }
6900 
rbd_dev_header_name(struct rbd_device * rbd_dev)6901 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6902 {
6903 	struct rbd_spec *spec = rbd_dev->spec;
6904 	int ret;
6905 
6906 	/* Record the header object name for this rbd image. */
6907 
6908 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6909 	if (rbd_dev->image_format == 1)
6910 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6911 				       spec->image_name, RBD_SUFFIX);
6912 	else
6913 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6914 				       RBD_HEADER_PREFIX, spec->image_id);
6915 
6916 	return ret;
6917 }
6918 
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6919 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6920 {
6921 	if (!is_snap) {
6922 		pr_info("image %s/%s%s%s does not exist\n",
6923 			rbd_dev->spec->pool_name,
6924 			rbd_dev->spec->pool_ns ?: "",
6925 			rbd_dev->spec->pool_ns ? "/" : "",
6926 			rbd_dev->spec->image_name);
6927 	} else {
6928 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6929 			rbd_dev->spec->pool_name,
6930 			rbd_dev->spec->pool_ns ?: "",
6931 			rbd_dev->spec->pool_ns ? "/" : "",
6932 			rbd_dev->spec->image_name,
6933 			rbd_dev->spec->snap_name);
6934 	}
6935 }
6936 
rbd_dev_image_release(struct rbd_device * rbd_dev)6937 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6938 {
6939 	if (!rbd_is_ro(rbd_dev))
6940 		rbd_unregister_watch(rbd_dev);
6941 
6942 	rbd_dev_unprobe(rbd_dev);
6943 	rbd_dev->image_format = 0;
6944 	kfree(rbd_dev->spec->image_id);
6945 	rbd_dev->spec->image_id = NULL;
6946 }
6947 
6948 /*
6949  * Probe for the existence of the header object for the given rbd
6950  * device.  If this image is the one being mapped (i.e., not a
6951  * parent), initiate a watch on its header object before using that
6952  * object to get detailed information about the rbd image.
6953  *
6954  * On success, returns with header_rwsem held for write if called
6955  * with @depth == 0.
6956  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6957 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6958 {
6959 	bool need_watch = !rbd_is_ro(rbd_dev);
6960 	int ret;
6961 
6962 	/*
6963 	 * Get the id from the image id object.  Unless there's an
6964 	 * error, rbd_dev->spec->image_id will be filled in with
6965 	 * a dynamically-allocated string, and rbd_dev->image_format
6966 	 * will be set to either 1 or 2.
6967 	 */
6968 	ret = rbd_dev_image_id(rbd_dev);
6969 	if (ret)
6970 		return ret;
6971 
6972 	ret = rbd_dev_header_name(rbd_dev);
6973 	if (ret)
6974 		goto err_out_format;
6975 
6976 	if (need_watch) {
6977 		ret = rbd_register_watch(rbd_dev);
6978 		if (ret) {
6979 			if (ret == -ENOENT)
6980 				rbd_print_dne(rbd_dev, false);
6981 			goto err_out_format;
6982 		}
6983 	}
6984 
6985 	if (!depth)
6986 		down_write(&rbd_dev->header_rwsem);
6987 
6988 	ret = rbd_dev_header_info(rbd_dev);
6989 	if (ret) {
6990 		if (ret == -ENOENT && !need_watch)
6991 			rbd_print_dne(rbd_dev, false);
6992 		goto err_out_probe;
6993 	}
6994 
6995 	/*
6996 	 * If this image is the one being mapped, we have pool name and
6997 	 * id, image name and id, and snap name - need to fill snap id.
6998 	 * Otherwise this is a parent image, identified by pool, image
6999 	 * and snap ids - need to fill in names for those ids.
7000 	 */
7001 	if (!depth)
7002 		ret = rbd_spec_fill_snap_id(rbd_dev);
7003 	else
7004 		ret = rbd_spec_fill_names(rbd_dev);
7005 	if (ret) {
7006 		if (ret == -ENOENT)
7007 			rbd_print_dne(rbd_dev, true);
7008 		goto err_out_probe;
7009 	}
7010 
7011 	ret = rbd_dev_mapping_set(rbd_dev);
7012 	if (ret)
7013 		goto err_out_probe;
7014 
7015 	if (rbd_is_snap(rbd_dev) &&
7016 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7017 		ret = rbd_object_map_load(rbd_dev);
7018 		if (ret)
7019 			goto err_out_probe;
7020 	}
7021 
7022 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7023 		ret = rbd_dev_v2_parent_info(rbd_dev);
7024 		if (ret)
7025 			goto err_out_probe;
7026 	}
7027 
7028 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7029 	if (ret)
7030 		goto err_out_probe;
7031 
7032 	dout("discovered format %u image, header name is %s\n",
7033 		rbd_dev->image_format, rbd_dev->header_oid.name);
7034 	return 0;
7035 
7036 err_out_probe:
7037 	if (!depth)
7038 		up_write(&rbd_dev->header_rwsem);
7039 	if (need_watch)
7040 		rbd_unregister_watch(rbd_dev);
7041 	rbd_dev_unprobe(rbd_dev);
7042 err_out_format:
7043 	rbd_dev->image_format = 0;
7044 	kfree(rbd_dev->spec->image_id);
7045 	rbd_dev->spec->image_id = NULL;
7046 	return ret;
7047 }
7048 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7049 static ssize_t do_rbd_add(struct bus_type *bus,
7050 			  const char *buf,
7051 			  size_t count)
7052 {
7053 	struct rbd_device *rbd_dev = NULL;
7054 	struct ceph_options *ceph_opts = NULL;
7055 	struct rbd_options *rbd_opts = NULL;
7056 	struct rbd_spec *spec = NULL;
7057 	struct rbd_client *rbdc;
7058 	int rc;
7059 
7060 	if (!capable(CAP_SYS_ADMIN))
7061 		return -EPERM;
7062 
7063 	if (!try_module_get(THIS_MODULE))
7064 		return -ENODEV;
7065 
7066 	/* parse add command */
7067 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7068 	if (rc < 0)
7069 		goto out;
7070 
7071 	rbdc = rbd_get_client(ceph_opts);
7072 	if (IS_ERR(rbdc)) {
7073 		rc = PTR_ERR(rbdc);
7074 		goto err_out_args;
7075 	}
7076 
7077 	/* pick the pool */
7078 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7079 	if (rc < 0) {
7080 		if (rc == -ENOENT)
7081 			pr_info("pool %s does not exist\n", spec->pool_name);
7082 		goto err_out_client;
7083 	}
7084 	spec->pool_id = (u64)rc;
7085 
7086 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7087 	if (!rbd_dev) {
7088 		rc = -ENOMEM;
7089 		goto err_out_client;
7090 	}
7091 	rbdc = NULL;		/* rbd_dev now owns this */
7092 	spec = NULL;		/* rbd_dev now owns this */
7093 	rbd_opts = NULL;	/* rbd_dev now owns this */
7094 
7095 	/* if we are mapping a snapshot it will be a read-only mapping */
7096 	if (rbd_dev->opts->read_only ||
7097 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7098 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7099 
7100 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7101 	if (!rbd_dev->config_info) {
7102 		rc = -ENOMEM;
7103 		goto err_out_rbd_dev;
7104 	}
7105 
7106 	rc = rbd_dev_image_probe(rbd_dev, 0);
7107 	if (rc < 0)
7108 		goto err_out_rbd_dev;
7109 
7110 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7111 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7112 			 rbd_dev->layout.object_size);
7113 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7114 	}
7115 
7116 	rc = rbd_dev_device_setup(rbd_dev);
7117 	if (rc)
7118 		goto err_out_image_probe;
7119 
7120 	rc = rbd_add_acquire_lock(rbd_dev);
7121 	if (rc)
7122 		goto err_out_image_lock;
7123 
7124 	/* Everything's ready.  Announce the disk to the world. */
7125 
7126 	rc = device_add(&rbd_dev->dev);
7127 	if (rc)
7128 		goto err_out_image_lock;
7129 
7130 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7131 	/* see rbd_init_disk() */
7132 	blk_put_queue(rbd_dev->disk->queue);
7133 
7134 	spin_lock(&rbd_dev_list_lock);
7135 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7136 	spin_unlock(&rbd_dev_list_lock);
7137 
7138 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7139 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7140 		rbd_dev->header.features);
7141 	rc = count;
7142 out:
7143 	module_put(THIS_MODULE);
7144 	return rc;
7145 
7146 err_out_image_lock:
7147 	rbd_dev_image_unlock(rbd_dev);
7148 	rbd_dev_device_release(rbd_dev);
7149 err_out_image_probe:
7150 	rbd_dev_image_release(rbd_dev);
7151 err_out_rbd_dev:
7152 	rbd_dev_destroy(rbd_dev);
7153 err_out_client:
7154 	rbd_put_client(rbdc);
7155 err_out_args:
7156 	rbd_spec_put(spec);
7157 	kfree(rbd_opts);
7158 	goto out;
7159 }
7160 
add_store(struct bus_type * bus,const char * buf,size_t count)7161 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7162 {
7163 	if (single_major)
7164 		return -EINVAL;
7165 
7166 	return do_rbd_add(bus, buf, count);
7167 }
7168 
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7169 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7170 				      size_t count)
7171 {
7172 	return do_rbd_add(bus, buf, count);
7173 }
7174 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7175 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7176 {
7177 	while (rbd_dev->parent) {
7178 		struct rbd_device *first = rbd_dev;
7179 		struct rbd_device *second = first->parent;
7180 		struct rbd_device *third;
7181 
7182 		/*
7183 		 * Follow to the parent with no grandparent and
7184 		 * remove it.
7185 		 */
7186 		while (second && (third = second->parent)) {
7187 			first = second;
7188 			second = third;
7189 		}
7190 		rbd_assert(second);
7191 		rbd_dev_image_release(second);
7192 		rbd_dev_destroy(second);
7193 		first->parent = NULL;
7194 		first->parent_overlap = 0;
7195 
7196 		rbd_assert(first->parent_spec);
7197 		rbd_spec_put(first->parent_spec);
7198 		first->parent_spec = NULL;
7199 	}
7200 }
7201 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7202 static ssize_t do_rbd_remove(struct bus_type *bus,
7203 			     const char *buf,
7204 			     size_t count)
7205 {
7206 	struct rbd_device *rbd_dev = NULL;
7207 	struct list_head *tmp;
7208 	int dev_id;
7209 	char opt_buf[6];
7210 	bool force = false;
7211 	int ret;
7212 
7213 	if (!capable(CAP_SYS_ADMIN))
7214 		return -EPERM;
7215 
7216 	dev_id = -1;
7217 	opt_buf[0] = '\0';
7218 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7219 	if (dev_id < 0) {
7220 		pr_err("dev_id out of range\n");
7221 		return -EINVAL;
7222 	}
7223 	if (opt_buf[0] != '\0') {
7224 		if (!strcmp(opt_buf, "force")) {
7225 			force = true;
7226 		} else {
7227 			pr_err("bad remove option at '%s'\n", opt_buf);
7228 			return -EINVAL;
7229 		}
7230 	}
7231 
7232 	ret = -ENOENT;
7233 	spin_lock(&rbd_dev_list_lock);
7234 	list_for_each(tmp, &rbd_dev_list) {
7235 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7236 		if (rbd_dev->dev_id == dev_id) {
7237 			ret = 0;
7238 			break;
7239 		}
7240 	}
7241 	if (!ret) {
7242 		spin_lock_irq(&rbd_dev->lock);
7243 		if (rbd_dev->open_count && !force)
7244 			ret = -EBUSY;
7245 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7246 					  &rbd_dev->flags))
7247 			ret = -EINPROGRESS;
7248 		spin_unlock_irq(&rbd_dev->lock);
7249 	}
7250 	spin_unlock(&rbd_dev_list_lock);
7251 	if (ret)
7252 		return ret;
7253 
7254 	if (force) {
7255 		/*
7256 		 * Prevent new IO from being queued and wait for existing
7257 		 * IO to complete/fail.
7258 		 */
7259 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7260 		blk_set_queue_dying(rbd_dev->disk->queue);
7261 	}
7262 
7263 	del_gendisk(rbd_dev->disk);
7264 	spin_lock(&rbd_dev_list_lock);
7265 	list_del_init(&rbd_dev->node);
7266 	spin_unlock(&rbd_dev_list_lock);
7267 	device_del(&rbd_dev->dev);
7268 
7269 	rbd_dev_image_unlock(rbd_dev);
7270 	rbd_dev_device_release(rbd_dev);
7271 	rbd_dev_image_release(rbd_dev);
7272 	rbd_dev_destroy(rbd_dev);
7273 	return count;
7274 }
7275 
remove_store(struct bus_type * bus,const char * buf,size_t count)7276 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7277 {
7278 	if (single_major)
7279 		return -EINVAL;
7280 
7281 	return do_rbd_remove(bus, buf, count);
7282 }
7283 
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7284 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7285 					 size_t count)
7286 {
7287 	return do_rbd_remove(bus, buf, count);
7288 }
7289 
7290 /*
7291  * create control files in sysfs
7292  * /sys/bus/rbd/...
7293  */
rbd_sysfs_init(void)7294 static int __init rbd_sysfs_init(void)
7295 {
7296 	int ret;
7297 
7298 	ret = device_register(&rbd_root_dev);
7299 	if (ret < 0)
7300 		return ret;
7301 
7302 	ret = bus_register(&rbd_bus_type);
7303 	if (ret < 0)
7304 		device_unregister(&rbd_root_dev);
7305 
7306 	return ret;
7307 }
7308 
rbd_sysfs_cleanup(void)7309 static void __exit rbd_sysfs_cleanup(void)
7310 {
7311 	bus_unregister(&rbd_bus_type);
7312 	device_unregister(&rbd_root_dev);
7313 }
7314 
rbd_slab_init(void)7315 static int __init rbd_slab_init(void)
7316 {
7317 	rbd_assert(!rbd_img_request_cache);
7318 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7319 	if (!rbd_img_request_cache)
7320 		return -ENOMEM;
7321 
7322 	rbd_assert(!rbd_obj_request_cache);
7323 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7324 	if (!rbd_obj_request_cache)
7325 		goto out_err;
7326 
7327 	return 0;
7328 
7329 out_err:
7330 	kmem_cache_destroy(rbd_img_request_cache);
7331 	rbd_img_request_cache = NULL;
7332 	return -ENOMEM;
7333 }
7334 
rbd_slab_exit(void)7335 static void rbd_slab_exit(void)
7336 {
7337 	rbd_assert(rbd_obj_request_cache);
7338 	kmem_cache_destroy(rbd_obj_request_cache);
7339 	rbd_obj_request_cache = NULL;
7340 
7341 	rbd_assert(rbd_img_request_cache);
7342 	kmem_cache_destroy(rbd_img_request_cache);
7343 	rbd_img_request_cache = NULL;
7344 }
7345 
rbd_init(void)7346 static int __init rbd_init(void)
7347 {
7348 	int rc;
7349 
7350 	if (!libceph_compatible(NULL)) {
7351 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7352 		return -EINVAL;
7353 	}
7354 
7355 	rc = rbd_slab_init();
7356 	if (rc)
7357 		return rc;
7358 
7359 	/*
7360 	 * The number of active work items is limited by the number of
7361 	 * rbd devices * queue depth, so leave @max_active at default.
7362 	 */
7363 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7364 	if (!rbd_wq) {
7365 		rc = -ENOMEM;
7366 		goto err_out_slab;
7367 	}
7368 
7369 	if (single_major) {
7370 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7371 		if (rbd_major < 0) {
7372 			rc = rbd_major;
7373 			goto err_out_wq;
7374 		}
7375 	}
7376 
7377 	rc = rbd_sysfs_init();
7378 	if (rc)
7379 		goto err_out_blkdev;
7380 
7381 	if (single_major)
7382 		pr_info("loaded (major %d)\n", rbd_major);
7383 	else
7384 		pr_info("loaded\n");
7385 
7386 	return 0;
7387 
7388 err_out_blkdev:
7389 	if (single_major)
7390 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7391 err_out_wq:
7392 	destroy_workqueue(rbd_wq);
7393 err_out_slab:
7394 	rbd_slab_exit();
7395 	return rc;
7396 }
7397 
rbd_exit(void)7398 static void __exit rbd_exit(void)
7399 {
7400 	ida_destroy(&rbd_dev_id_ida);
7401 	rbd_sysfs_cleanup();
7402 	if (single_major)
7403 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7404 	destroy_workqueue(rbd_wq);
7405 	rbd_slab_exit();
7406 }
7407 
7408 module_init(rbd_init);
7409 module_exit(rbd_exit);
7410 
7411 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7412 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7413 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7414 /* following authorship retained from original osdblk.c */
7415 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7416 
7417 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7418 MODULE_LICENSE("GPL");
7419