1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
53
54 /*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71 }
72
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME "-"
101
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
109
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137 /*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141 #define DEV_NAME_LEN 32
142
143 /*
144 * block device image metadata (in-memory version)
145 */
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160 };
161
162 /*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187 struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199 };
200
201 /*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204 struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208 };
209
210 struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316 };
317
318 enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 struct rbd_obj_request *obj_request; /* obj req initiator */
341
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
344
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
348 int work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 u64 gid;
371 u64 handle;
372 };
373
374 struct rbd_mapping {
375 u64 size;
376 };
377
378 /*
379 * a single device
380 */
381 struct rbd_device {
382 int dev_id; /* blkdev unique id */
383
384 int major; /* blkdev assigned major */
385 int minor;
386 struct gendisk *disk; /* blkdev's gendisk and rq */
387
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
390
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393 spinlock_t lock; /* queue, flags, open_count */
394
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
400
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
403
404 struct ceph_file_layout layout; /* used for all rbd requests */
405
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
409 u64 watch_cookie;
410 struct delayed_work watch_dwork;
411
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
424 int acquire_err;
425 struct completion releasing_wait;
426
427 spinlock_t object_map_lock;
428 u8 *object_map;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
431
432 struct workqueue_struct *task_wq;
433
434 struct rbd_spec *parent_spec;
435 u64 parent_overlap;
436 atomic_t parent_ref;
437 struct rbd_device *parent;
438
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
441
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
444
445 struct rbd_mapping mapping;
446
447 struct list_head node;
448
449 /* sysfs related */
450 struct device dev;
451 unsigned long open_count; /* protected by lock */
452 };
453
454 /*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 * by rbd_dev->lock
458 */
459 enum rbd_dev_flags {
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 bool is_lock_owner;
534
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
539 }
540
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553 &bus_attr_add.attr,
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
558 NULL,
559 };
560
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
563 {
564 if (!single_major &&
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
567 return 0;
568
569 return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579 .name = "rbd",
580 .bus_groups = rbd_bus_groups,
581 };
582
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588 .init_name = "rbd",
589 .release = rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601
602 if (!rbd_dev)
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 else /* punt */
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
616 va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
623 "at line %d:\n\n" \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
626 BUG(); \
627 }
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648 * Return true if nothing else is pending.
649 */
pending_result_dec(struct pending_result * pending,int * result)650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 rbd_assert(pending->num_pending > 0);
653
654 if (*result && !pending->result)
655 pending->result = *result;
656 if (--pending->num_pending)
657 return false;
658
659 *result = pending->result;
660 return true;
661 }
662
rbd_open(struct block_device * bdev,fmode_t mode)663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 bool removing = false;
667
668 spin_lock_irq(&rbd_dev->lock);
669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 removing = true;
671 else
672 rbd_dev->open_count++;
673 spin_unlock_irq(&rbd_dev->lock);
674 if (removing)
675 return -ENOENT;
676
677 (void) get_device(&rbd_dev->dev);
678
679 return 0;
680 }
681
rbd_release(struct gendisk * disk,fmode_t mode)682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 struct rbd_device *rbd_dev = disk->private_data;
685 unsigned long open_count_before;
686
687 spin_lock_irq(&rbd_dev->lock);
688 open_count_before = rbd_dev->open_count--;
689 spin_unlock_irq(&rbd_dev->lock);
690 rbd_assert(open_count_before > 0);
691
692 put_device(&rbd_dev->dev);
693 }
694
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
696 {
697 int ro;
698
699 if (get_user(ro, (int __user *)arg))
700 return -EFAULT;
701
702 /*
703 * Both images mapped read-only and snapshots can't be marked
704 * read-write.
705 */
706 if (!ro) {
707 if (rbd_is_ro(rbd_dev))
708 return -EROFS;
709
710 rbd_assert(!rbd_is_snap(rbd_dev));
711 }
712
713 /* Let blkdev_roset() handle it */
714 return -ENOTTY;
715 }
716
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 unsigned int cmd, unsigned long arg)
719 {
720 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
721 int ret;
722
723 switch (cmd) {
724 case BLKROSET:
725 ret = rbd_ioctl_set_ro(rbd_dev, arg);
726 break;
727 default:
728 ret = -ENOTTY;
729 }
730
731 return ret;
732 }
733
734 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 unsigned int cmd, unsigned long arg)
737 {
738 return rbd_ioctl(bdev, mode, cmd, arg);
739 }
740 #endif /* CONFIG_COMPAT */
741
742 static const struct block_device_operations rbd_bd_ops = {
743 .owner = THIS_MODULE,
744 .open = rbd_open,
745 .release = rbd_release,
746 .ioctl = rbd_ioctl,
747 #ifdef CONFIG_COMPAT
748 .compat_ioctl = rbd_compat_ioctl,
749 #endif
750 };
751
752 /*
753 * Initialize an rbd client instance. Success or not, this function
754 * consumes ceph_opts. Caller holds client_mutex.
755 */
rbd_client_create(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
757 {
758 struct rbd_client *rbdc;
759 int ret = -ENOMEM;
760
761 dout("%s:\n", __func__);
762 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
763 if (!rbdc)
764 goto out_opt;
765
766 kref_init(&rbdc->kref);
767 INIT_LIST_HEAD(&rbdc->node);
768
769 rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 if (IS_ERR(rbdc->client))
771 goto out_rbdc;
772 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
773
774 ret = ceph_open_session(rbdc->client);
775 if (ret < 0)
776 goto out_client;
777
778 spin_lock(&rbd_client_list_lock);
779 list_add_tail(&rbdc->node, &rbd_client_list);
780 spin_unlock(&rbd_client_list_lock);
781
782 dout("%s: rbdc %p\n", __func__, rbdc);
783
784 return rbdc;
785 out_client:
786 ceph_destroy_client(rbdc->client);
787 out_rbdc:
788 kfree(rbdc);
789 out_opt:
790 if (ceph_opts)
791 ceph_destroy_options(ceph_opts);
792 dout("%s: error %d\n", __func__, ret);
793
794 return ERR_PTR(ret);
795 }
796
__rbd_get_client(struct rbd_client * rbdc)797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
798 {
799 kref_get(&rbdc->kref);
800
801 return rbdc;
802 }
803
804 /*
805 * Find a ceph client with specific addr and configuration. If
806 * found, bump its reference count.
807 */
rbd_client_find(struct ceph_options * ceph_opts)808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
809 {
810 struct rbd_client *client_node;
811 bool found = false;
812
813 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
814 return NULL;
815
816 spin_lock(&rbd_client_list_lock);
817 list_for_each_entry(client_node, &rbd_client_list, node) {
818 if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 __rbd_get_client(client_node);
820
821 found = true;
822 break;
823 }
824 }
825 spin_unlock(&rbd_client_list_lock);
826
827 return found ? client_node : NULL;
828 }
829
830 /*
831 * (Per device) rbd map options
832 */
833 enum {
834 Opt_queue_depth,
835 Opt_alloc_size,
836 Opt_lock_timeout,
837 /* int args above */
838 Opt_pool_ns,
839 Opt_compression_hint,
840 /* string args above */
841 Opt_read_only,
842 Opt_read_write,
843 Opt_lock_on_read,
844 Opt_exclusive,
845 Opt_notrim,
846 };
847
848 enum {
849 Opt_compression_hint_none,
850 Opt_compression_hint_compressible,
851 Opt_compression_hint_incompressible,
852 };
853
854 static const struct constant_table rbd_param_compression_hint[] = {
855 {"none", Opt_compression_hint_none},
856 {"compressible", Opt_compression_hint_compressible},
857 {"incompressible", Opt_compression_hint_incompressible},
858 {}
859 };
860
861 static const struct fs_parameter_spec rbd_parameters[] = {
862 fsparam_u32 ("alloc_size", Opt_alloc_size),
863 fsparam_enum ("compression_hint", Opt_compression_hint,
864 rbd_param_compression_hint),
865 fsparam_flag ("exclusive", Opt_exclusive),
866 fsparam_flag ("lock_on_read", Opt_lock_on_read),
867 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
868 fsparam_flag ("notrim", Opt_notrim),
869 fsparam_string ("_pool_ns", Opt_pool_ns),
870 fsparam_u32 ("queue_depth", Opt_queue_depth),
871 fsparam_flag ("read_only", Opt_read_only),
872 fsparam_flag ("read_write", Opt_read_write),
873 fsparam_flag ("ro", Opt_read_only),
874 fsparam_flag ("rw", Opt_read_write),
875 {}
876 };
877
878 struct rbd_options {
879 int queue_depth;
880 int alloc_size;
881 unsigned long lock_timeout;
882 bool read_only;
883 bool lock_on_read;
884 bool exclusive;
885 bool trim;
886
887 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
888 };
889
890 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT false
896 #define RBD_TRIM_DEFAULT true
897
898 struct rbd_parse_opts_ctx {
899 struct rbd_spec *spec;
900 struct ceph_options *copts;
901 struct rbd_options *opts;
902 };
903
obj_op_name(enum obj_operation_type op_type)904 static char* obj_op_name(enum obj_operation_type op_type)
905 {
906 switch (op_type) {
907 case OBJ_OP_READ:
908 return "read";
909 case OBJ_OP_WRITE:
910 return "write";
911 case OBJ_OP_DISCARD:
912 return "discard";
913 case OBJ_OP_ZEROOUT:
914 return "zeroout";
915 default:
916 return "???";
917 }
918 }
919
920 /*
921 * Destroy ceph client
922 *
923 * Caller must hold rbd_client_list_lock.
924 */
rbd_client_release(struct kref * kref)925 static void rbd_client_release(struct kref *kref)
926 {
927 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
928
929 dout("%s: rbdc %p\n", __func__, rbdc);
930 spin_lock(&rbd_client_list_lock);
931 list_del(&rbdc->node);
932 spin_unlock(&rbd_client_list_lock);
933
934 ceph_destroy_client(rbdc->client);
935 kfree(rbdc);
936 }
937
938 /*
939 * Drop reference to ceph client node. If it's not referenced anymore, release
940 * it.
941 */
rbd_put_client(struct rbd_client * rbdc)942 static void rbd_put_client(struct rbd_client *rbdc)
943 {
944 if (rbdc)
945 kref_put(&rbdc->kref, rbd_client_release);
946 }
947
948 /*
949 * Get a ceph client with specific addr and configuration, if one does
950 * not exist create it. Either way, ceph_opts is consumed by this
951 * function.
952 */
rbd_get_client(struct ceph_options * ceph_opts)953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
954 {
955 struct rbd_client *rbdc;
956 int ret;
957
958 mutex_lock(&client_mutex);
959 rbdc = rbd_client_find(ceph_opts);
960 if (rbdc) {
961 ceph_destroy_options(ceph_opts);
962
963 /*
964 * Using an existing client. Make sure ->pg_pools is up to
965 * date before we look up the pool id in do_rbd_add().
966 */
967 ret = ceph_wait_for_latest_osdmap(rbdc->client,
968 rbdc->client->options->mount_timeout);
969 if (ret) {
970 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971 rbd_put_client(rbdc);
972 rbdc = ERR_PTR(ret);
973 }
974 } else {
975 rbdc = rbd_client_create(ceph_opts);
976 }
977 mutex_unlock(&client_mutex);
978
979 return rbdc;
980 }
981
rbd_image_format_valid(u32 image_format)982 static bool rbd_image_format_valid(u32 image_format)
983 {
984 return image_format == 1 || image_format == 2;
985 }
986
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
988 {
989 size_t size;
990 u32 snap_count;
991
992 /* The header has to start with the magic rbd header text */
993 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
994 return false;
995
996 /* The bio layer requires at least sector-sized I/O */
997
998 if (ondisk->options.order < SECTOR_SHIFT)
999 return false;
1000
1001 /* If we use u64 in a few spots we may be able to loosen this */
1002
1003 if (ondisk->options.order > 8 * sizeof (int) - 1)
1004 return false;
1005
1006 /*
1007 * The size of a snapshot header has to fit in a size_t, and
1008 * that limits the number of snapshots.
1009 */
1010 snap_count = le32_to_cpu(ondisk->snap_count);
1011 size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012 if (snap_count > size / sizeof (__le64))
1013 return false;
1014
1015 /*
1016 * Not only that, but the size of the entire the snapshot
1017 * header must also be representable in a size_t.
1018 */
1019 size -= snap_count * sizeof (__le64);
1020 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1021 return false;
1022
1023 return true;
1024 }
1025
1026 /*
1027 * returns the size of an object in the image
1028 */
rbd_obj_bytes(struct rbd_image_header * header)1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1030 {
1031 return 1U << header->obj_order;
1032 }
1033
rbd_init_layout(struct rbd_device * rbd_dev)1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1035 {
1036 if (rbd_dev->header.stripe_unit == 0 ||
1037 rbd_dev->header.stripe_count == 0) {
1038 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039 rbd_dev->header.stripe_count = 1;
1040 }
1041
1042 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1048 }
1049
1050 /*
1051 * Fill an rbd image header with information from the given format 1
1052 * on-disk header.
1053 */
rbd_header_from_disk(struct rbd_device * rbd_dev,struct rbd_image_header_ondisk * ondisk)1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055 struct rbd_image_header_ondisk *ondisk)
1056 {
1057 struct rbd_image_header *header = &rbd_dev->header;
1058 bool first_time = header->object_prefix == NULL;
1059 struct ceph_snap_context *snapc;
1060 char *object_prefix = NULL;
1061 char *snap_names = NULL;
1062 u64 *snap_sizes = NULL;
1063 u32 snap_count;
1064 int ret = -ENOMEM;
1065 u32 i;
1066
1067 /* Allocate this now to avoid having to handle failure below */
1068
1069 if (first_time) {
1070 object_prefix = kstrndup(ondisk->object_prefix,
1071 sizeof(ondisk->object_prefix),
1072 GFP_KERNEL);
1073 if (!object_prefix)
1074 return -ENOMEM;
1075 }
1076
1077 /* Allocate the snapshot context and fill it in */
1078
1079 snap_count = le32_to_cpu(ondisk->snap_count);
1080 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1081 if (!snapc)
1082 goto out_err;
1083 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1084 if (snap_count) {
1085 struct rbd_image_snap_ondisk *snaps;
1086 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1087
1088 /* We'll keep a copy of the snapshot names... */
1089
1090 if (snap_names_len > (u64)SIZE_MAX)
1091 goto out_2big;
1092 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1093 if (!snap_names)
1094 goto out_err;
1095
1096 /* ...as well as the array of their sizes. */
1097 snap_sizes = kmalloc_array(snap_count,
1098 sizeof(*header->snap_sizes),
1099 GFP_KERNEL);
1100 if (!snap_sizes)
1101 goto out_err;
1102
1103 /*
1104 * Copy the names, and fill in each snapshot's id
1105 * and size.
1106 *
1107 * Note that rbd_dev_v1_header_info() guarantees the
1108 * ondisk buffer we're working with has
1109 * snap_names_len bytes beyond the end of the
1110 * snapshot id array, this memcpy() is safe.
1111 */
1112 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113 snaps = ondisk->snaps;
1114 for (i = 0; i < snap_count; i++) {
1115 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1117 }
1118 }
1119
1120 /* We won't fail any more, fill in the header */
1121
1122 if (first_time) {
1123 header->object_prefix = object_prefix;
1124 header->obj_order = ondisk->options.order;
1125 rbd_init_layout(rbd_dev);
1126 } else {
1127 ceph_put_snap_context(header->snapc);
1128 kfree(header->snap_names);
1129 kfree(header->snap_sizes);
1130 }
1131
1132 /* The remaining fields always get updated (when we refresh) */
1133
1134 header->image_size = le64_to_cpu(ondisk->image_size);
1135 header->snapc = snapc;
1136 header->snap_names = snap_names;
1137 header->snap_sizes = snap_sizes;
1138
1139 return 0;
1140 out_2big:
1141 ret = -EIO;
1142 out_err:
1143 kfree(snap_sizes);
1144 kfree(snap_names);
1145 ceph_put_snap_context(snapc);
1146 kfree(object_prefix);
1147
1148 return ret;
1149 }
1150
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1152 {
1153 const char *snap_name;
1154
1155 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1156
1157 /* Skip over names until we find the one we are looking for */
1158
1159 snap_name = rbd_dev->header.snap_names;
1160 while (which--)
1161 snap_name += strlen(snap_name) + 1;
1162
1163 return kstrdup(snap_name, GFP_KERNEL);
1164 }
1165
1166 /*
1167 * Snapshot id comparison function for use with qsort()/bsearch().
1168 * Note that result is for snapshots in *descending* order.
1169 */
snapid_compare_reverse(const void * s1,const void * s2)1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1171 {
1172 u64 snap_id1 = *(u64 *)s1;
1173 u64 snap_id2 = *(u64 *)s2;
1174
1175 if (snap_id1 < snap_id2)
1176 return 1;
1177 return snap_id1 == snap_id2 ? 0 : -1;
1178 }
1179
1180 /*
1181 * Search a snapshot context to see if the given snapshot id is
1182 * present.
1183 *
1184 * Returns the position of the snapshot id in the array if it's found,
1185 * or BAD_SNAP_INDEX otherwise.
1186 *
1187 * Note: The snapshot array is in kept sorted (by the osd) in
1188 * reverse order, highest snapshot id first.
1189 */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1191 {
1192 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1193 u64 *found;
1194
1195 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196 sizeof (snap_id), snapid_compare_reverse);
1197
1198 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1199 }
1200
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1202 u64 snap_id)
1203 {
1204 u32 which;
1205 const char *snap_name;
1206
1207 which = rbd_dev_snap_index(rbd_dev, snap_id);
1208 if (which == BAD_SNAP_INDEX)
1209 return ERR_PTR(-ENOENT);
1210
1211 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1213 }
1214
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1216 {
1217 if (snap_id == CEPH_NOSNAP)
1218 return RBD_SNAP_HEAD_NAME;
1219
1220 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221 if (rbd_dev->image_format == 1)
1222 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1223
1224 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1225 }
1226
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1228 u64 *snap_size)
1229 {
1230 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231 if (snap_id == CEPH_NOSNAP) {
1232 *snap_size = rbd_dev->header.image_size;
1233 } else if (rbd_dev->image_format == 1) {
1234 u32 which;
1235
1236 which = rbd_dev_snap_index(rbd_dev, snap_id);
1237 if (which == BAD_SNAP_INDEX)
1238 return -ENOENT;
1239
1240 *snap_size = rbd_dev->header.snap_sizes[which];
1241 } else {
1242 u64 size = 0;
1243 int ret;
1244
1245 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1246 if (ret)
1247 return ret;
1248
1249 *snap_size = size;
1250 }
1251 return 0;
1252 }
1253
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256 u64 snap_id = rbd_dev->spec->snap_id;
1257 u64 size = 0;
1258 int ret;
1259
1260 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1261 if (ret)
1262 return ret;
1263
1264 rbd_dev->mapping.size = size;
1265 return 0;
1266 }
1267
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1269 {
1270 rbd_dev->mapping.size = 0;
1271 }
1272
zero_bvec(struct bio_vec * bv)1273 static void zero_bvec(struct bio_vec *bv)
1274 {
1275 void *buf;
1276 unsigned long flags;
1277
1278 buf = bvec_kmap_irq(bv, &flags);
1279 memset(buf, 0, bv->bv_len);
1280 flush_dcache_page(bv->bv_page);
1281 bvec_kunmap_irq(buf, &flags);
1282 }
1283
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1285 {
1286 struct ceph_bio_iter it = *bio_pos;
1287
1288 ceph_bio_iter_advance(&it, off);
1289 ceph_bio_iter_advance_step(&it, bytes, ({
1290 zero_bvec(&bv);
1291 }));
1292 }
1293
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1295 {
1296 struct ceph_bvec_iter it = *bvec_pos;
1297
1298 ceph_bvec_iter_advance(&it, off);
1299 ceph_bvec_iter_advance_step(&it, bytes, ({
1300 zero_bvec(&bv);
1301 }));
1302 }
1303
1304 /*
1305 * Zero a range in @obj_req data buffer defined by a bio (list) or
1306 * (private) bio_vec array.
1307 *
1308 * @off is relative to the start of the data buffer.
1309 */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1311 u32 bytes)
1312 {
1313 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1314
1315 switch (obj_req->img_request->data_type) {
1316 case OBJ_REQUEST_BIO:
1317 zero_bios(&obj_req->bio_pos, off, bytes);
1318 break;
1319 case OBJ_REQUEST_BVECS:
1320 case OBJ_REQUEST_OWN_BVECS:
1321 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1322 break;
1323 default:
1324 BUG();
1325 }
1326 }
1327
1328 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1330 {
1331 rbd_assert(obj_request != NULL);
1332 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333 kref_read(&obj_request->kref));
1334 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1335 }
1336
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338 struct rbd_obj_request *obj_request)
1339 {
1340 rbd_assert(obj_request->img_request == NULL);
1341
1342 /* Image request now owns object's original reference */
1343 obj_request->img_request = img_request;
1344 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1345 }
1346
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348 struct rbd_obj_request *obj_request)
1349 {
1350 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 list_del(&obj_request->ex.oe_item);
1352 rbd_assert(obj_request->img_request == img_request);
1353 rbd_obj_request_put(obj_request);
1354 }
1355
rbd_osd_submit(struct ceph_osd_request * osd_req)1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1357 {
1358 struct rbd_obj_request *obj_req = osd_req->r_priv;
1359
1360 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362 obj_req->ex.oe_off, obj_req->ex.oe_len);
1363 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1364 }
1365
1366 /*
1367 * The default/initial value for all image request flags is 0. Each
1368 * is conditionally set to 1 at image request initialization time
1369 * and currently never change thereafter.
1370 */
img_request_layered_set(struct rbd_img_request * img_request)1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1372 {
1373 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1374 }
1375
img_request_layered_test(struct rbd_img_request * img_request)1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1377 {
1378 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1379 }
1380
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1382 {
1383 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1384
1385 return !obj_req->ex.oe_off &&
1386 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1387 }
1388
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1390 {
1391 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1392
1393 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394 rbd_dev->layout.object_size;
1395 }
1396
1397 /*
1398 * Must be called after rbd_obj_calc_img_extents().
1399 */
rbd_obj_copyup_enabled(struct rbd_obj_request * obj_req)1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1401 {
1402 if (!obj_req->num_img_extents ||
1403 (rbd_obj_is_entire(obj_req) &&
1404 !obj_req->img_request->snapc->num_snaps))
1405 return false;
1406
1407 return true;
1408 }
1409
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1411 {
1412 return ceph_file_extents_bytes(obj_req->img_extents,
1413 obj_req->num_img_extents);
1414 }
1415
rbd_img_is_write(struct rbd_img_request * img_req)1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1417 {
1418 switch (img_req->op_type) {
1419 case OBJ_OP_READ:
1420 return false;
1421 case OBJ_OP_WRITE:
1422 case OBJ_OP_DISCARD:
1423 case OBJ_OP_ZEROOUT:
1424 return true;
1425 default:
1426 BUG();
1427 }
1428 }
1429
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1431 {
1432 struct rbd_obj_request *obj_req = osd_req->r_priv;
1433 int result;
1434
1435 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436 osd_req->r_result, obj_req);
1437
1438 /*
1439 * Writes aren't allowed to return a data payload. In some
1440 * guarded write cases (e.g. stat + zero on an empty object)
1441 * a stat response makes it through, but we don't care.
1442 */
1443 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1444 result = 0;
1445 else
1446 result = osd_req->r_result;
1447
1448 rbd_obj_handle_request(obj_req, result);
1449 }
1450
rbd_osd_format_read(struct ceph_osd_request * osd_req)1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1452 {
1453 struct rbd_obj_request *obj_request = osd_req->r_priv;
1454 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1455 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1456
1457 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1458 osd_req->r_snapid = obj_request->img_request->snap_id;
1459 }
1460
rbd_osd_format_write(struct ceph_osd_request * osd_req)1461 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1462 {
1463 struct rbd_obj_request *obj_request = osd_req->r_priv;
1464
1465 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1466 ktime_get_real_ts64(&osd_req->r_mtime);
1467 osd_req->r_data_offset = obj_request->ex.oe_off;
1468 }
1469
1470 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1471 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1472 struct ceph_snap_context *snapc, int num_ops)
1473 {
1474 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1475 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1476 struct ceph_osd_request *req;
1477 const char *name_format = rbd_dev->image_format == 1 ?
1478 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1479 int ret;
1480
1481 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1482 if (!req)
1483 return ERR_PTR(-ENOMEM);
1484
1485 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1486 req->r_callback = rbd_osd_req_callback;
1487 req->r_priv = obj_req;
1488
1489 /*
1490 * Data objects may be stored in a separate pool, but always in
1491 * the same namespace in that pool as the header in its pool.
1492 */
1493 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1494 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1495
1496 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1497 rbd_dev->header.object_prefix,
1498 obj_req->ex.oe_objno);
1499 if (ret)
1500 return ERR_PTR(ret);
1501
1502 return req;
1503 }
1504
1505 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1506 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1507 {
1508 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1509 num_ops);
1510 }
1511
rbd_obj_request_create(void)1512 static struct rbd_obj_request *rbd_obj_request_create(void)
1513 {
1514 struct rbd_obj_request *obj_request;
1515
1516 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1517 if (!obj_request)
1518 return NULL;
1519
1520 ceph_object_extent_init(&obj_request->ex);
1521 INIT_LIST_HEAD(&obj_request->osd_reqs);
1522 mutex_init(&obj_request->state_mutex);
1523 kref_init(&obj_request->kref);
1524
1525 dout("%s %p\n", __func__, obj_request);
1526 return obj_request;
1527 }
1528
rbd_obj_request_destroy(struct kref * kref)1529 static void rbd_obj_request_destroy(struct kref *kref)
1530 {
1531 struct rbd_obj_request *obj_request;
1532 struct ceph_osd_request *osd_req;
1533 u32 i;
1534
1535 obj_request = container_of(kref, struct rbd_obj_request, kref);
1536
1537 dout("%s: obj %p\n", __func__, obj_request);
1538
1539 while (!list_empty(&obj_request->osd_reqs)) {
1540 osd_req = list_first_entry(&obj_request->osd_reqs,
1541 struct ceph_osd_request, r_private_item);
1542 list_del_init(&osd_req->r_private_item);
1543 ceph_osdc_put_request(osd_req);
1544 }
1545
1546 switch (obj_request->img_request->data_type) {
1547 case OBJ_REQUEST_NODATA:
1548 case OBJ_REQUEST_BIO:
1549 case OBJ_REQUEST_BVECS:
1550 break; /* Nothing to do */
1551 case OBJ_REQUEST_OWN_BVECS:
1552 kfree(obj_request->bvec_pos.bvecs);
1553 break;
1554 default:
1555 BUG();
1556 }
1557
1558 kfree(obj_request->img_extents);
1559 if (obj_request->copyup_bvecs) {
1560 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1561 if (obj_request->copyup_bvecs[i].bv_page)
1562 __free_page(obj_request->copyup_bvecs[i].bv_page);
1563 }
1564 kfree(obj_request->copyup_bvecs);
1565 }
1566
1567 kmem_cache_free(rbd_obj_request_cache, obj_request);
1568 }
1569
1570 /* It's OK to call this for a device with no parent */
1571
1572 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1573 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1574 {
1575 rbd_dev_remove_parent(rbd_dev);
1576 rbd_spec_put(rbd_dev->parent_spec);
1577 rbd_dev->parent_spec = NULL;
1578 rbd_dev->parent_overlap = 0;
1579 }
1580
1581 /*
1582 * Parent image reference counting is used to determine when an
1583 * image's parent fields can be safely torn down--after there are no
1584 * more in-flight requests to the parent image. When the last
1585 * reference is dropped, cleaning them up is safe.
1586 */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1587 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1588 {
1589 int counter;
1590
1591 if (!rbd_dev->parent_spec)
1592 return;
1593
1594 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1595 if (counter > 0)
1596 return;
1597
1598 /* Last reference; clean up parent data structures */
1599
1600 if (!counter)
1601 rbd_dev_unparent(rbd_dev);
1602 else
1603 rbd_warn(rbd_dev, "parent reference underflow");
1604 }
1605
1606 /*
1607 * If an image has a non-zero parent overlap, get a reference to its
1608 * parent.
1609 *
1610 * Returns true if the rbd device has a parent with a non-zero
1611 * overlap and a reference for it was successfully taken, or
1612 * false otherwise.
1613 */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1614 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1615 {
1616 int counter = 0;
1617
1618 if (!rbd_dev->parent_spec)
1619 return false;
1620
1621 if (rbd_dev->parent_overlap)
1622 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623
1624 if (counter < 0)
1625 rbd_warn(rbd_dev, "parent reference overflow");
1626
1627 return counter > 0;
1628 }
1629
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1630 static void rbd_img_request_init(struct rbd_img_request *img_request,
1631 struct rbd_device *rbd_dev,
1632 enum obj_operation_type op_type)
1633 {
1634 memset(img_request, 0, sizeof(*img_request));
1635
1636 img_request->rbd_dev = rbd_dev;
1637 img_request->op_type = op_type;
1638
1639 INIT_LIST_HEAD(&img_request->lock_item);
1640 INIT_LIST_HEAD(&img_request->object_extents);
1641 mutex_init(&img_request->state_mutex);
1642 }
1643
rbd_img_capture_header(struct rbd_img_request * img_req)1644 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1645 {
1646 struct rbd_device *rbd_dev = img_req->rbd_dev;
1647
1648 lockdep_assert_held(&rbd_dev->header_rwsem);
1649
1650 if (rbd_img_is_write(img_req))
1651 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1652 else
1653 img_req->snap_id = rbd_dev->spec->snap_id;
1654
1655 if (rbd_dev_parent_get(rbd_dev))
1656 img_request_layered_set(img_req);
1657 }
1658
rbd_img_request_destroy(struct rbd_img_request * img_request)1659 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1660 {
1661 struct rbd_obj_request *obj_request;
1662 struct rbd_obj_request *next_obj_request;
1663
1664 dout("%s: img %p\n", __func__, img_request);
1665
1666 WARN_ON(!list_empty(&img_request->lock_item));
1667 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1668 rbd_img_obj_request_del(img_request, obj_request);
1669
1670 if (img_request_layered_test(img_request))
1671 rbd_dev_parent_put(img_request->rbd_dev);
1672
1673 if (rbd_img_is_write(img_request))
1674 ceph_put_snap_context(img_request->snapc);
1675
1676 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1677 kmem_cache_free(rbd_img_request_cache, img_request);
1678 }
1679
1680 #define BITS_PER_OBJ 2
1681 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1682 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1683
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1684 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1685 u64 *index, u8 *shift)
1686 {
1687 u32 off;
1688
1689 rbd_assert(objno < rbd_dev->object_map_size);
1690 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1691 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1692 }
1693
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1694 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696 u64 index;
1697 u8 shift;
1698
1699 lockdep_assert_held(&rbd_dev->object_map_lock);
1700 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1701 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1702 }
1703
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1704 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1705 {
1706 u64 index;
1707 u8 shift;
1708 u8 *p;
1709
1710 lockdep_assert_held(&rbd_dev->object_map_lock);
1711 rbd_assert(!(val & ~OBJ_MASK));
1712
1713 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1714 p = &rbd_dev->object_map[index];
1715 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1716 }
1717
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1718 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1719 {
1720 u8 state;
1721
1722 spin_lock(&rbd_dev->object_map_lock);
1723 state = __rbd_object_map_get(rbd_dev, objno);
1724 spin_unlock(&rbd_dev->object_map_lock);
1725 return state;
1726 }
1727
use_object_map(struct rbd_device * rbd_dev)1728 static bool use_object_map(struct rbd_device *rbd_dev)
1729 {
1730 /*
1731 * An image mapped read-only can't use the object map -- it isn't
1732 * loaded because the header lock isn't acquired. Someone else can
1733 * write to the image and update the object map behind our back.
1734 *
1735 * A snapshot can't be written to, so using the object map is always
1736 * safe.
1737 */
1738 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1739 return false;
1740
1741 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1742 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1743 }
1744
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1745 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1746 {
1747 u8 state;
1748
1749 /* fall back to default logic if object map is disabled or invalid */
1750 if (!use_object_map(rbd_dev))
1751 return true;
1752
1753 state = rbd_object_map_get(rbd_dev, objno);
1754 return state != OBJECT_NONEXISTENT;
1755 }
1756
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1757 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1758 struct ceph_object_id *oid)
1759 {
1760 if (snap_id == CEPH_NOSNAP)
1761 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1762 rbd_dev->spec->image_id);
1763 else
1764 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1765 rbd_dev->spec->image_id, snap_id);
1766 }
1767
rbd_object_map_lock(struct rbd_device * rbd_dev)1768 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1769 {
1770 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1771 CEPH_DEFINE_OID_ONSTACK(oid);
1772 u8 lock_type;
1773 char *lock_tag;
1774 struct ceph_locker *lockers;
1775 u32 num_lockers;
1776 bool broke_lock = false;
1777 int ret;
1778
1779 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1780
1781 again:
1782 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1783 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1784 if (ret != -EBUSY || broke_lock) {
1785 if (ret == -EEXIST)
1786 ret = 0; /* already locked by myself */
1787 if (ret)
1788 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1789 return ret;
1790 }
1791
1792 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1793 RBD_LOCK_NAME, &lock_type, &lock_tag,
1794 &lockers, &num_lockers);
1795 if (ret) {
1796 if (ret == -ENOENT)
1797 goto again;
1798
1799 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1800 return ret;
1801 }
1802
1803 kfree(lock_tag);
1804 if (num_lockers == 0)
1805 goto again;
1806
1807 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1808 ENTITY_NAME(lockers[0].id.name));
1809
1810 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1811 RBD_LOCK_NAME, lockers[0].id.cookie,
1812 &lockers[0].id.name);
1813 ceph_free_lockers(lockers, num_lockers);
1814 if (ret) {
1815 if (ret == -ENOENT)
1816 goto again;
1817
1818 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1819 return ret;
1820 }
1821
1822 broke_lock = true;
1823 goto again;
1824 }
1825
rbd_object_map_unlock(struct rbd_device * rbd_dev)1826 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1827 {
1828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 CEPH_DEFINE_OID_ONSTACK(oid);
1830 int ret;
1831
1832 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1833
1834 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1835 "");
1836 if (ret && ret != -ENOENT)
1837 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1838 }
1839
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1840 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1841 {
1842 u8 struct_v;
1843 u32 struct_len;
1844 u32 header_len;
1845 void *header_end;
1846 int ret;
1847
1848 ceph_decode_32_safe(p, end, header_len, e_inval);
1849 header_end = *p + header_len;
1850
1851 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1852 &struct_len);
1853 if (ret)
1854 return ret;
1855
1856 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1857
1858 *p = header_end;
1859 return 0;
1860
1861 e_inval:
1862 return -EINVAL;
1863 }
1864
__rbd_object_map_load(struct rbd_device * rbd_dev)1865 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1866 {
1867 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1868 CEPH_DEFINE_OID_ONSTACK(oid);
1869 struct page **pages;
1870 void *p, *end;
1871 size_t reply_len;
1872 u64 num_objects;
1873 u64 object_map_bytes;
1874 u64 object_map_size;
1875 int num_pages;
1876 int ret;
1877
1878 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1879
1880 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1881 rbd_dev->mapping.size);
1882 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1883 BITS_PER_BYTE);
1884 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1885 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1886 if (IS_ERR(pages))
1887 return PTR_ERR(pages);
1888
1889 reply_len = num_pages * PAGE_SIZE;
1890 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1891 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1892 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1893 NULL, 0, pages, &reply_len);
1894 if (ret)
1895 goto out;
1896
1897 p = page_address(pages[0]);
1898 end = p + min(reply_len, (size_t)PAGE_SIZE);
1899 ret = decode_object_map_header(&p, end, &object_map_size);
1900 if (ret)
1901 goto out;
1902
1903 if (object_map_size != num_objects) {
1904 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1905 object_map_size, num_objects);
1906 ret = -EINVAL;
1907 goto out;
1908 }
1909
1910 if (offset_in_page(p) + object_map_bytes > reply_len) {
1911 ret = -EINVAL;
1912 goto out;
1913 }
1914
1915 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1916 if (!rbd_dev->object_map) {
1917 ret = -ENOMEM;
1918 goto out;
1919 }
1920
1921 rbd_dev->object_map_size = object_map_size;
1922 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1923 offset_in_page(p), object_map_bytes);
1924
1925 out:
1926 ceph_release_page_vector(pages, num_pages);
1927 return ret;
1928 }
1929
rbd_object_map_free(struct rbd_device * rbd_dev)1930 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1931 {
1932 kvfree(rbd_dev->object_map);
1933 rbd_dev->object_map = NULL;
1934 rbd_dev->object_map_size = 0;
1935 }
1936
rbd_object_map_load(struct rbd_device * rbd_dev)1937 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1938 {
1939 int ret;
1940
1941 ret = __rbd_object_map_load(rbd_dev);
1942 if (ret)
1943 return ret;
1944
1945 ret = rbd_dev_v2_get_flags(rbd_dev);
1946 if (ret) {
1947 rbd_object_map_free(rbd_dev);
1948 return ret;
1949 }
1950
1951 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1952 rbd_warn(rbd_dev, "object map is invalid");
1953
1954 return 0;
1955 }
1956
rbd_object_map_open(struct rbd_device * rbd_dev)1957 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1958 {
1959 int ret;
1960
1961 ret = rbd_object_map_lock(rbd_dev);
1962 if (ret)
1963 return ret;
1964
1965 ret = rbd_object_map_load(rbd_dev);
1966 if (ret) {
1967 rbd_object_map_unlock(rbd_dev);
1968 return ret;
1969 }
1970
1971 return 0;
1972 }
1973
rbd_object_map_close(struct rbd_device * rbd_dev)1974 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1975 {
1976 rbd_object_map_free(rbd_dev);
1977 rbd_object_map_unlock(rbd_dev);
1978 }
1979
1980 /*
1981 * This function needs snap_id (or more precisely just something to
1982 * distinguish between HEAD and snapshot object maps), new_state and
1983 * current_state that were passed to rbd_object_map_update().
1984 *
1985 * To avoid allocating and stashing a context we piggyback on the OSD
1986 * request. A HEAD update has two ops (assert_locked). For new_state
1987 * and current_state we decode our own object_map_update op, encoded in
1988 * rbd_cls_object_map_update().
1989 */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1990 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1991 struct ceph_osd_request *osd_req)
1992 {
1993 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1994 struct ceph_osd_data *osd_data;
1995 u64 objno;
1996 u8 state, new_state, current_state;
1997 bool has_current_state;
1998 void *p;
1999
2000 if (osd_req->r_result)
2001 return osd_req->r_result;
2002
2003 /*
2004 * Nothing to do for a snapshot object map.
2005 */
2006 if (osd_req->r_num_ops == 1)
2007 return 0;
2008
2009 /*
2010 * Update in-memory HEAD object map.
2011 */
2012 rbd_assert(osd_req->r_num_ops == 2);
2013 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2014 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2015
2016 p = page_address(osd_data->pages[0]);
2017 objno = ceph_decode_64(&p);
2018 rbd_assert(objno == obj_req->ex.oe_objno);
2019 rbd_assert(ceph_decode_64(&p) == objno + 1);
2020 new_state = ceph_decode_8(&p);
2021 has_current_state = ceph_decode_8(&p);
2022 if (has_current_state)
2023 current_state = ceph_decode_8(&p);
2024
2025 spin_lock(&rbd_dev->object_map_lock);
2026 state = __rbd_object_map_get(rbd_dev, objno);
2027 if (!has_current_state || current_state == state ||
2028 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2029 __rbd_object_map_set(rbd_dev, objno, new_state);
2030 spin_unlock(&rbd_dev->object_map_lock);
2031
2032 return 0;
2033 }
2034
rbd_object_map_callback(struct ceph_osd_request * osd_req)2035 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2036 {
2037 struct rbd_obj_request *obj_req = osd_req->r_priv;
2038 int result;
2039
2040 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2041 osd_req->r_result, obj_req);
2042
2043 result = rbd_object_map_update_finish(obj_req, osd_req);
2044 rbd_obj_handle_request(obj_req, result);
2045 }
2046
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2047 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2048 {
2049 u8 state = rbd_object_map_get(rbd_dev, objno);
2050
2051 if (state == new_state ||
2052 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2053 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2054 return false;
2055
2056 return true;
2057 }
2058
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2059 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2060 int which, u64 objno, u8 new_state,
2061 const u8 *current_state)
2062 {
2063 struct page **pages;
2064 void *p, *start;
2065 int ret;
2066
2067 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2068 if (ret)
2069 return ret;
2070
2071 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2072 if (IS_ERR(pages))
2073 return PTR_ERR(pages);
2074
2075 p = start = page_address(pages[0]);
2076 ceph_encode_64(&p, objno);
2077 ceph_encode_64(&p, objno + 1);
2078 ceph_encode_8(&p, new_state);
2079 if (current_state) {
2080 ceph_encode_8(&p, 1);
2081 ceph_encode_8(&p, *current_state);
2082 } else {
2083 ceph_encode_8(&p, 0);
2084 }
2085
2086 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2087 false, true);
2088 return 0;
2089 }
2090
2091 /*
2092 * Return:
2093 * 0 - object map update sent
2094 * 1 - object map update isn't needed
2095 * <0 - error
2096 */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2097 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2098 u8 new_state, const u8 *current_state)
2099 {
2100 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2101 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2102 struct ceph_osd_request *req;
2103 int num_ops = 1;
2104 int which = 0;
2105 int ret;
2106
2107 if (snap_id == CEPH_NOSNAP) {
2108 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2109 return 1;
2110
2111 num_ops++; /* assert_locked */
2112 }
2113
2114 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2115 if (!req)
2116 return -ENOMEM;
2117
2118 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2119 req->r_callback = rbd_object_map_callback;
2120 req->r_priv = obj_req;
2121
2122 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2123 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2124 req->r_flags = CEPH_OSD_FLAG_WRITE;
2125 ktime_get_real_ts64(&req->r_mtime);
2126
2127 if (snap_id == CEPH_NOSNAP) {
2128 /*
2129 * Protect against possible race conditions during lock
2130 * ownership transitions.
2131 */
2132 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2133 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2134 if (ret)
2135 return ret;
2136 }
2137
2138 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2139 new_state, current_state);
2140 if (ret)
2141 return ret;
2142
2143 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2144 if (ret)
2145 return ret;
2146
2147 ceph_osdc_start_request(osdc, req, false);
2148 return 0;
2149 }
2150
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2151 static void prune_extents(struct ceph_file_extent *img_extents,
2152 u32 *num_img_extents, u64 overlap)
2153 {
2154 u32 cnt = *num_img_extents;
2155
2156 /* drop extents completely beyond the overlap */
2157 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2158 cnt--;
2159
2160 if (cnt) {
2161 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2162
2163 /* trim final overlapping extent */
2164 if (ex->fe_off + ex->fe_len > overlap)
2165 ex->fe_len = overlap - ex->fe_off;
2166 }
2167
2168 *num_img_extents = cnt;
2169 }
2170
2171 /*
2172 * Determine the byte range(s) covered by either just the object extent
2173 * or the entire object in the parent image.
2174 */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2175 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2176 bool entire)
2177 {
2178 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2179 int ret;
2180
2181 if (!rbd_dev->parent_overlap)
2182 return 0;
2183
2184 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2185 entire ? 0 : obj_req->ex.oe_off,
2186 entire ? rbd_dev->layout.object_size :
2187 obj_req->ex.oe_len,
2188 &obj_req->img_extents,
2189 &obj_req->num_img_extents);
2190 if (ret)
2191 return ret;
2192
2193 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2194 rbd_dev->parent_overlap);
2195 return 0;
2196 }
2197
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2198 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2199 {
2200 struct rbd_obj_request *obj_req = osd_req->r_priv;
2201
2202 switch (obj_req->img_request->data_type) {
2203 case OBJ_REQUEST_BIO:
2204 osd_req_op_extent_osd_data_bio(osd_req, which,
2205 &obj_req->bio_pos,
2206 obj_req->ex.oe_len);
2207 break;
2208 case OBJ_REQUEST_BVECS:
2209 case OBJ_REQUEST_OWN_BVECS:
2210 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2211 obj_req->ex.oe_len);
2212 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2213 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2214 &obj_req->bvec_pos);
2215 break;
2216 default:
2217 BUG();
2218 }
2219 }
2220
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2221 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2222 {
2223 struct page **pages;
2224
2225 /*
2226 * The response data for a STAT call consists of:
2227 * le64 length;
2228 * struct {
2229 * le32 tv_sec;
2230 * le32 tv_nsec;
2231 * } mtime;
2232 */
2233 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2234 if (IS_ERR(pages))
2235 return PTR_ERR(pages);
2236
2237 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2238 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2239 8 + sizeof(struct ceph_timespec),
2240 0, false, true);
2241 return 0;
2242 }
2243
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2244 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2245 u32 bytes)
2246 {
2247 struct rbd_obj_request *obj_req = osd_req->r_priv;
2248 int ret;
2249
2250 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2251 if (ret)
2252 return ret;
2253
2254 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2255 obj_req->copyup_bvec_count, bytes);
2256 return 0;
2257 }
2258
rbd_obj_init_read(struct rbd_obj_request * obj_req)2259 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2260 {
2261 obj_req->read_state = RBD_OBJ_READ_START;
2262 return 0;
2263 }
2264
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2265 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2266 int which)
2267 {
2268 struct rbd_obj_request *obj_req = osd_req->r_priv;
2269 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2270 u16 opcode;
2271
2272 if (!use_object_map(rbd_dev) ||
2273 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2274 osd_req_op_alloc_hint_init(osd_req, which++,
2275 rbd_dev->layout.object_size,
2276 rbd_dev->layout.object_size,
2277 rbd_dev->opts->alloc_hint_flags);
2278 }
2279
2280 if (rbd_obj_is_entire(obj_req))
2281 opcode = CEPH_OSD_OP_WRITEFULL;
2282 else
2283 opcode = CEPH_OSD_OP_WRITE;
2284
2285 osd_req_op_extent_init(osd_req, which, opcode,
2286 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2287 rbd_osd_setup_data(osd_req, which);
2288 }
2289
rbd_obj_init_write(struct rbd_obj_request * obj_req)2290 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2291 {
2292 int ret;
2293
2294 /* reverse map the entire object onto the parent */
2295 ret = rbd_obj_calc_img_extents(obj_req, true);
2296 if (ret)
2297 return ret;
2298
2299 if (rbd_obj_copyup_enabled(obj_req))
2300 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2301
2302 obj_req->write_state = RBD_OBJ_WRITE_START;
2303 return 0;
2304 }
2305
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2306 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2307 {
2308 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2309 CEPH_OSD_OP_ZERO;
2310 }
2311
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2312 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2313 int which)
2314 {
2315 struct rbd_obj_request *obj_req = osd_req->r_priv;
2316
2317 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2318 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2319 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2320 } else {
2321 osd_req_op_extent_init(osd_req, which,
2322 truncate_or_zero_opcode(obj_req),
2323 obj_req->ex.oe_off, obj_req->ex.oe_len,
2324 0, 0);
2325 }
2326 }
2327
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2328 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2329 {
2330 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2331 u64 off, next_off;
2332 int ret;
2333
2334 /*
2335 * Align the range to alloc_size boundary and punt on discards
2336 * that are too small to free up any space.
2337 *
2338 * alloc_size == object_size && is_tail() is a special case for
2339 * filestore with filestore_punch_hole = false, needed to allow
2340 * truncate (in addition to delete).
2341 */
2342 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2343 !rbd_obj_is_tail(obj_req)) {
2344 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2345 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2346 rbd_dev->opts->alloc_size);
2347 if (off >= next_off)
2348 return 1;
2349
2350 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2351 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 off, next_off - off);
2353 obj_req->ex.oe_off = off;
2354 obj_req->ex.oe_len = next_off - off;
2355 }
2356
2357 /* reverse map the entire object onto the parent */
2358 ret = rbd_obj_calc_img_extents(obj_req, true);
2359 if (ret)
2360 return ret;
2361
2362 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2364 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2365
2366 obj_req->write_state = RBD_OBJ_WRITE_START;
2367 return 0;
2368 }
2369
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2370 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2371 int which)
2372 {
2373 struct rbd_obj_request *obj_req = osd_req->r_priv;
2374 u16 opcode;
2375
2376 if (rbd_obj_is_entire(obj_req)) {
2377 if (obj_req->num_img_extents) {
2378 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2379 osd_req_op_init(osd_req, which++,
2380 CEPH_OSD_OP_CREATE, 0);
2381 opcode = CEPH_OSD_OP_TRUNCATE;
2382 } else {
2383 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2384 osd_req_op_init(osd_req, which++,
2385 CEPH_OSD_OP_DELETE, 0);
2386 opcode = 0;
2387 }
2388 } else {
2389 opcode = truncate_or_zero_opcode(obj_req);
2390 }
2391
2392 if (opcode)
2393 osd_req_op_extent_init(osd_req, which, opcode,
2394 obj_req->ex.oe_off, obj_req->ex.oe_len,
2395 0, 0);
2396 }
2397
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2398 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2399 {
2400 int ret;
2401
2402 /* reverse map the entire object onto the parent */
2403 ret = rbd_obj_calc_img_extents(obj_req, true);
2404 if (ret)
2405 return ret;
2406
2407 if (rbd_obj_copyup_enabled(obj_req))
2408 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2409 if (!obj_req->num_img_extents) {
2410 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2411 if (rbd_obj_is_entire(obj_req))
2412 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2413 }
2414
2415 obj_req->write_state = RBD_OBJ_WRITE_START;
2416 return 0;
2417 }
2418
count_write_ops(struct rbd_obj_request * obj_req)2419 static int count_write_ops(struct rbd_obj_request *obj_req)
2420 {
2421 struct rbd_img_request *img_req = obj_req->img_request;
2422
2423 switch (img_req->op_type) {
2424 case OBJ_OP_WRITE:
2425 if (!use_object_map(img_req->rbd_dev) ||
2426 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2427 return 2; /* setallochint + write/writefull */
2428
2429 return 1; /* write/writefull */
2430 case OBJ_OP_DISCARD:
2431 return 1; /* delete/truncate/zero */
2432 case OBJ_OP_ZEROOUT:
2433 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2434 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2435 return 2; /* create + truncate */
2436
2437 return 1; /* delete/truncate/zero */
2438 default:
2439 BUG();
2440 }
2441 }
2442
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2443 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2444 int which)
2445 {
2446 struct rbd_obj_request *obj_req = osd_req->r_priv;
2447
2448 switch (obj_req->img_request->op_type) {
2449 case OBJ_OP_WRITE:
2450 __rbd_osd_setup_write_ops(osd_req, which);
2451 break;
2452 case OBJ_OP_DISCARD:
2453 __rbd_osd_setup_discard_ops(osd_req, which);
2454 break;
2455 case OBJ_OP_ZEROOUT:
2456 __rbd_osd_setup_zeroout_ops(osd_req, which);
2457 break;
2458 default:
2459 BUG();
2460 }
2461 }
2462
2463 /*
2464 * Prune the list of object requests (adjust offset and/or length, drop
2465 * redundant requests). Prepare object request state machines and image
2466 * request state machine for execution.
2467 */
__rbd_img_fill_request(struct rbd_img_request * img_req)2468 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2469 {
2470 struct rbd_obj_request *obj_req, *next_obj_req;
2471 int ret;
2472
2473 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2474 switch (img_req->op_type) {
2475 case OBJ_OP_READ:
2476 ret = rbd_obj_init_read(obj_req);
2477 break;
2478 case OBJ_OP_WRITE:
2479 ret = rbd_obj_init_write(obj_req);
2480 break;
2481 case OBJ_OP_DISCARD:
2482 ret = rbd_obj_init_discard(obj_req);
2483 break;
2484 case OBJ_OP_ZEROOUT:
2485 ret = rbd_obj_init_zeroout(obj_req);
2486 break;
2487 default:
2488 BUG();
2489 }
2490 if (ret < 0)
2491 return ret;
2492 if (ret > 0) {
2493 rbd_img_obj_request_del(img_req, obj_req);
2494 continue;
2495 }
2496 }
2497
2498 img_req->state = RBD_IMG_START;
2499 return 0;
2500 }
2501
2502 union rbd_img_fill_iter {
2503 struct ceph_bio_iter bio_iter;
2504 struct ceph_bvec_iter bvec_iter;
2505 };
2506
2507 struct rbd_img_fill_ctx {
2508 enum obj_request_type pos_type;
2509 union rbd_img_fill_iter *pos;
2510 union rbd_img_fill_iter iter;
2511 ceph_object_extent_fn_t set_pos_fn;
2512 ceph_object_extent_fn_t count_fn;
2513 ceph_object_extent_fn_t copy_fn;
2514 };
2515
alloc_object_extent(void * arg)2516 static struct ceph_object_extent *alloc_object_extent(void *arg)
2517 {
2518 struct rbd_img_request *img_req = arg;
2519 struct rbd_obj_request *obj_req;
2520
2521 obj_req = rbd_obj_request_create();
2522 if (!obj_req)
2523 return NULL;
2524
2525 rbd_img_obj_request_add(img_req, obj_req);
2526 return &obj_req->ex;
2527 }
2528
2529 /*
2530 * While su != os && sc == 1 is technically not fancy (it's the same
2531 * layout as su == os && sc == 1), we can't use the nocopy path for it
2532 * because ->set_pos_fn() should be called only once per object.
2533 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2534 * treat su != os && sc == 1 as fancy.
2535 */
rbd_layout_is_fancy(struct ceph_file_layout * l)2536 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2537 {
2538 return l->stripe_unit != l->object_size;
2539 }
2540
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2541 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2542 struct ceph_file_extent *img_extents,
2543 u32 num_img_extents,
2544 struct rbd_img_fill_ctx *fctx)
2545 {
2546 u32 i;
2547 int ret;
2548
2549 img_req->data_type = fctx->pos_type;
2550
2551 /*
2552 * Create object requests and set each object request's starting
2553 * position in the provided bio (list) or bio_vec array.
2554 */
2555 fctx->iter = *fctx->pos;
2556 for (i = 0; i < num_img_extents; i++) {
2557 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2558 img_extents[i].fe_off,
2559 img_extents[i].fe_len,
2560 &img_req->object_extents,
2561 alloc_object_extent, img_req,
2562 fctx->set_pos_fn, &fctx->iter);
2563 if (ret)
2564 return ret;
2565 }
2566
2567 return __rbd_img_fill_request(img_req);
2568 }
2569
2570 /*
2571 * Map a list of image extents to a list of object extents, create the
2572 * corresponding object requests (normally each to a different object,
2573 * but not always) and add them to @img_req. For each object request,
2574 * set up its data descriptor to point to the corresponding chunk(s) of
2575 * @fctx->pos data buffer.
2576 *
2577 * Because ceph_file_to_extents() will merge adjacent object extents
2578 * together, each object request's data descriptor may point to multiple
2579 * different chunks of @fctx->pos data buffer.
2580 *
2581 * @fctx->pos data buffer is assumed to be large enough.
2582 */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2583 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2584 struct ceph_file_extent *img_extents,
2585 u32 num_img_extents,
2586 struct rbd_img_fill_ctx *fctx)
2587 {
2588 struct rbd_device *rbd_dev = img_req->rbd_dev;
2589 struct rbd_obj_request *obj_req;
2590 u32 i;
2591 int ret;
2592
2593 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2594 !rbd_layout_is_fancy(&rbd_dev->layout))
2595 return rbd_img_fill_request_nocopy(img_req, img_extents,
2596 num_img_extents, fctx);
2597
2598 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2599
2600 /*
2601 * Create object requests and determine ->bvec_count for each object
2602 * request. Note that ->bvec_count sum over all object requests may
2603 * be greater than the number of bio_vecs in the provided bio (list)
2604 * or bio_vec array because when mapped, those bio_vecs can straddle
2605 * stripe unit boundaries.
2606 */
2607 fctx->iter = *fctx->pos;
2608 for (i = 0; i < num_img_extents; i++) {
2609 ret = ceph_file_to_extents(&rbd_dev->layout,
2610 img_extents[i].fe_off,
2611 img_extents[i].fe_len,
2612 &img_req->object_extents,
2613 alloc_object_extent, img_req,
2614 fctx->count_fn, &fctx->iter);
2615 if (ret)
2616 return ret;
2617 }
2618
2619 for_each_obj_request(img_req, obj_req) {
2620 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2621 sizeof(*obj_req->bvec_pos.bvecs),
2622 GFP_NOIO);
2623 if (!obj_req->bvec_pos.bvecs)
2624 return -ENOMEM;
2625 }
2626
2627 /*
2628 * Fill in each object request's private bio_vec array, splitting and
2629 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2630 */
2631 fctx->iter = *fctx->pos;
2632 for (i = 0; i < num_img_extents; i++) {
2633 ret = ceph_iterate_extents(&rbd_dev->layout,
2634 img_extents[i].fe_off,
2635 img_extents[i].fe_len,
2636 &img_req->object_extents,
2637 fctx->copy_fn, &fctx->iter);
2638 if (ret)
2639 return ret;
2640 }
2641
2642 return __rbd_img_fill_request(img_req);
2643 }
2644
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2645 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2646 u64 off, u64 len)
2647 {
2648 struct ceph_file_extent ex = { off, len };
2649 union rbd_img_fill_iter dummy = {};
2650 struct rbd_img_fill_ctx fctx = {
2651 .pos_type = OBJ_REQUEST_NODATA,
2652 .pos = &dummy,
2653 };
2654
2655 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2656 }
2657
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2658 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660 struct rbd_obj_request *obj_req =
2661 container_of(ex, struct rbd_obj_request, ex);
2662 struct ceph_bio_iter *it = arg;
2663
2664 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2665 obj_req->bio_pos = *it;
2666 ceph_bio_iter_advance(it, bytes);
2667 }
2668
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2669 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671 struct rbd_obj_request *obj_req =
2672 container_of(ex, struct rbd_obj_request, ex);
2673 struct ceph_bio_iter *it = arg;
2674
2675 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2676 ceph_bio_iter_advance_step(it, bytes, ({
2677 obj_req->bvec_count++;
2678 }));
2679
2680 }
2681
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2682 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 {
2684 struct rbd_obj_request *obj_req =
2685 container_of(ex, struct rbd_obj_request, ex);
2686 struct ceph_bio_iter *it = arg;
2687
2688 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2689 ceph_bio_iter_advance_step(it, bytes, ({
2690 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2691 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2692 }));
2693 }
2694
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2695 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2696 struct ceph_file_extent *img_extents,
2697 u32 num_img_extents,
2698 struct ceph_bio_iter *bio_pos)
2699 {
2700 struct rbd_img_fill_ctx fctx = {
2701 .pos_type = OBJ_REQUEST_BIO,
2702 .pos = (union rbd_img_fill_iter *)bio_pos,
2703 .set_pos_fn = set_bio_pos,
2704 .count_fn = count_bio_bvecs,
2705 .copy_fn = copy_bio_bvecs,
2706 };
2707
2708 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2709 &fctx);
2710 }
2711
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2712 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2713 u64 off, u64 len, struct bio *bio)
2714 {
2715 struct ceph_file_extent ex = { off, len };
2716 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2717
2718 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2719 }
2720
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2721 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2722 {
2723 struct rbd_obj_request *obj_req =
2724 container_of(ex, struct rbd_obj_request, ex);
2725 struct ceph_bvec_iter *it = arg;
2726
2727 obj_req->bvec_pos = *it;
2728 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2729 ceph_bvec_iter_advance(it, bytes);
2730 }
2731
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2732 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2733 {
2734 struct rbd_obj_request *obj_req =
2735 container_of(ex, struct rbd_obj_request, ex);
2736 struct ceph_bvec_iter *it = arg;
2737
2738 ceph_bvec_iter_advance_step(it, bytes, ({
2739 obj_req->bvec_count++;
2740 }));
2741 }
2742
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2743 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2744 {
2745 struct rbd_obj_request *obj_req =
2746 container_of(ex, struct rbd_obj_request, ex);
2747 struct ceph_bvec_iter *it = arg;
2748
2749 ceph_bvec_iter_advance_step(it, bytes, ({
2750 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2751 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2752 }));
2753 }
2754
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2755 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2756 struct ceph_file_extent *img_extents,
2757 u32 num_img_extents,
2758 struct ceph_bvec_iter *bvec_pos)
2759 {
2760 struct rbd_img_fill_ctx fctx = {
2761 .pos_type = OBJ_REQUEST_BVECS,
2762 .pos = (union rbd_img_fill_iter *)bvec_pos,
2763 .set_pos_fn = set_bvec_pos,
2764 .count_fn = count_bvecs,
2765 .copy_fn = copy_bvecs,
2766 };
2767
2768 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2769 &fctx);
2770 }
2771
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2772 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2773 struct ceph_file_extent *img_extents,
2774 u32 num_img_extents,
2775 struct bio_vec *bvecs)
2776 {
2777 struct ceph_bvec_iter it = {
2778 .bvecs = bvecs,
2779 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2780 num_img_extents) },
2781 };
2782
2783 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2784 &it);
2785 }
2786
rbd_img_handle_request_work(struct work_struct * work)2787 static void rbd_img_handle_request_work(struct work_struct *work)
2788 {
2789 struct rbd_img_request *img_req =
2790 container_of(work, struct rbd_img_request, work);
2791
2792 rbd_img_handle_request(img_req, img_req->work_result);
2793 }
2794
rbd_img_schedule(struct rbd_img_request * img_req,int result)2795 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2796 {
2797 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2798 img_req->work_result = result;
2799 queue_work(rbd_wq, &img_req->work);
2800 }
2801
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2802 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2803 {
2804 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2805
2806 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2807 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2808 return true;
2809 }
2810
2811 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2812 obj_req->ex.oe_objno);
2813 return false;
2814 }
2815
rbd_obj_read_object(struct rbd_obj_request * obj_req)2816 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2817 {
2818 struct ceph_osd_request *osd_req;
2819 int ret;
2820
2821 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2822 if (IS_ERR(osd_req))
2823 return PTR_ERR(osd_req);
2824
2825 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2826 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2827 rbd_osd_setup_data(osd_req, 0);
2828 rbd_osd_format_read(osd_req);
2829
2830 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2831 if (ret)
2832 return ret;
2833
2834 rbd_osd_submit(osd_req);
2835 return 0;
2836 }
2837
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2838 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2839 {
2840 struct rbd_img_request *img_req = obj_req->img_request;
2841 struct rbd_device *parent = img_req->rbd_dev->parent;
2842 struct rbd_img_request *child_img_req;
2843 int ret;
2844
2845 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2846 if (!child_img_req)
2847 return -ENOMEM;
2848
2849 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2850 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2851 child_img_req->obj_request = obj_req;
2852
2853 down_read(&parent->header_rwsem);
2854 rbd_img_capture_header(child_img_req);
2855 up_read(&parent->header_rwsem);
2856
2857 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2858 obj_req);
2859
2860 if (!rbd_img_is_write(img_req)) {
2861 switch (img_req->data_type) {
2862 case OBJ_REQUEST_BIO:
2863 ret = __rbd_img_fill_from_bio(child_img_req,
2864 obj_req->img_extents,
2865 obj_req->num_img_extents,
2866 &obj_req->bio_pos);
2867 break;
2868 case OBJ_REQUEST_BVECS:
2869 case OBJ_REQUEST_OWN_BVECS:
2870 ret = __rbd_img_fill_from_bvecs(child_img_req,
2871 obj_req->img_extents,
2872 obj_req->num_img_extents,
2873 &obj_req->bvec_pos);
2874 break;
2875 default:
2876 BUG();
2877 }
2878 } else {
2879 ret = rbd_img_fill_from_bvecs(child_img_req,
2880 obj_req->img_extents,
2881 obj_req->num_img_extents,
2882 obj_req->copyup_bvecs);
2883 }
2884 if (ret) {
2885 rbd_img_request_destroy(child_img_req);
2886 return ret;
2887 }
2888
2889 /* avoid parent chain recursion */
2890 rbd_img_schedule(child_img_req, 0);
2891 return 0;
2892 }
2893
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2894 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2895 {
2896 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2897 int ret;
2898
2899 again:
2900 switch (obj_req->read_state) {
2901 case RBD_OBJ_READ_START:
2902 rbd_assert(!*result);
2903
2904 if (!rbd_obj_may_exist(obj_req)) {
2905 *result = -ENOENT;
2906 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2907 goto again;
2908 }
2909
2910 ret = rbd_obj_read_object(obj_req);
2911 if (ret) {
2912 *result = ret;
2913 return true;
2914 }
2915 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2916 return false;
2917 case RBD_OBJ_READ_OBJECT:
2918 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2919 /* reverse map this object extent onto the parent */
2920 ret = rbd_obj_calc_img_extents(obj_req, false);
2921 if (ret) {
2922 *result = ret;
2923 return true;
2924 }
2925 if (obj_req->num_img_extents) {
2926 ret = rbd_obj_read_from_parent(obj_req);
2927 if (ret) {
2928 *result = ret;
2929 return true;
2930 }
2931 obj_req->read_state = RBD_OBJ_READ_PARENT;
2932 return false;
2933 }
2934 }
2935
2936 /*
2937 * -ENOENT means a hole in the image -- zero-fill the entire
2938 * length of the request. A short read also implies zero-fill
2939 * to the end of the request.
2940 */
2941 if (*result == -ENOENT) {
2942 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2943 *result = 0;
2944 } else if (*result >= 0) {
2945 if (*result < obj_req->ex.oe_len)
2946 rbd_obj_zero_range(obj_req, *result,
2947 obj_req->ex.oe_len - *result);
2948 else
2949 rbd_assert(*result == obj_req->ex.oe_len);
2950 *result = 0;
2951 }
2952 return true;
2953 case RBD_OBJ_READ_PARENT:
2954 /*
2955 * The parent image is read only up to the overlap -- zero-fill
2956 * from the overlap to the end of the request.
2957 */
2958 if (!*result) {
2959 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2960
2961 if (obj_overlap < obj_req->ex.oe_len)
2962 rbd_obj_zero_range(obj_req, obj_overlap,
2963 obj_req->ex.oe_len - obj_overlap);
2964 }
2965 return true;
2966 default:
2967 BUG();
2968 }
2969 }
2970
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2971 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2972 {
2973 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2974
2975 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2976 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2977
2978 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2979 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2980 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2981 return true;
2982 }
2983
2984 return false;
2985 }
2986
2987 /*
2988 * Return:
2989 * 0 - object map update sent
2990 * 1 - object map update isn't needed
2991 * <0 - error
2992 */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2993 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2994 {
2995 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2996 u8 new_state;
2997
2998 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2999 return 1;
3000
3001 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3002 new_state = OBJECT_PENDING;
3003 else
3004 new_state = OBJECT_EXISTS;
3005
3006 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3007 }
3008
rbd_obj_write_object(struct rbd_obj_request * obj_req)3009 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3010 {
3011 struct ceph_osd_request *osd_req;
3012 int num_ops = count_write_ops(obj_req);
3013 int which = 0;
3014 int ret;
3015
3016 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3017 num_ops++; /* stat */
3018
3019 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3020 if (IS_ERR(osd_req))
3021 return PTR_ERR(osd_req);
3022
3023 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3024 ret = rbd_osd_setup_stat(osd_req, which++);
3025 if (ret)
3026 return ret;
3027 }
3028
3029 rbd_osd_setup_write_ops(osd_req, which);
3030 rbd_osd_format_write(osd_req);
3031
3032 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3033 if (ret)
3034 return ret;
3035
3036 rbd_osd_submit(osd_req);
3037 return 0;
3038 }
3039
3040 /*
3041 * copyup_bvecs pages are never highmem pages
3042 */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)3043 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3044 {
3045 struct ceph_bvec_iter it = {
3046 .bvecs = bvecs,
3047 .iter = { .bi_size = bytes },
3048 };
3049
3050 ceph_bvec_iter_advance_step(&it, bytes, ({
3051 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3052 bv.bv_len))
3053 return false;
3054 }));
3055 return true;
3056 }
3057
3058 #define MODS_ONLY U32_MAX
3059
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3060 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3061 u32 bytes)
3062 {
3063 struct ceph_osd_request *osd_req;
3064 int ret;
3065
3066 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3067 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3068
3069 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3070 if (IS_ERR(osd_req))
3071 return PTR_ERR(osd_req);
3072
3073 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3074 if (ret)
3075 return ret;
3076
3077 rbd_osd_format_write(osd_req);
3078
3079 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3080 if (ret)
3081 return ret;
3082
3083 rbd_osd_submit(osd_req);
3084 return 0;
3085 }
3086
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3087 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3088 u32 bytes)
3089 {
3090 struct ceph_osd_request *osd_req;
3091 int num_ops = count_write_ops(obj_req);
3092 int which = 0;
3093 int ret;
3094
3095 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3096
3097 if (bytes != MODS_ONLY)
3098 num_ops++; /* copyup */
3099
3100 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3101 if (IS_ERR(osd_req))
3102 return PTR_ERR(osd_req);
3103
3104 if (bytes != MODS_ONLY) {
3105 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 rbd_osd_setup_write_ops(osd_req, which);
3111 rbd_osd_format_write(osd_req);
3112
3113 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3114 if (ret)
3115 return ret;
3116
3117 rbd_osd_submit(osd_req);
3118 return 0;
3119 }
3120
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3121 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3122 {
3123 u32 i;
3124
3125 rbd_assert(!obj_req->copyup_bvecs);
3126 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3127 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3128 sizeof(*obj_req->copyup_bvecs),
3129 GFP_NOIO);
3130 if (!obj_req->copyup_bvecs)
3131 return -ENOMEM;
3132
3133 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3134 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3135
3136 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3137 if (!obj_req->copyup_bvecs[i].bv_page)
3138 return -ENOMEM;
3139
3140 obj_req->copyup_bvecs[i].bv_offset = 0;
3141 obj_req->copyup_bvecs[i].bv_len = len;
3142 obj_overlap -= len;
3143 }
3144
3145 rbd_assert(!obj_overlap);
3146 return 0;
3147 }
3148
3149 /*
3150 * The target object doesn't exist. Read the data for the entire
3151 * target object up to the overlap point (if any) from the parent,
3152 * so we can use it for a copyup.
3153 */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3154 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3155 {
3156 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3157 int ret;
3158
3159 rbd_assert(obj_req->num_img_extents);
3160 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3161 rbd_dev->parent_overlap);
3162 if (!obj_req->num_img_extents) {
3163 /*
3164 * The overlap has become 0 (most likely because the
3165 * image has been flattened). Re-submit the original write
3166 * request -- pass MODS_ONLY since the copyup isn't needed
3167 * anymore.
3168 */
3169 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3170 }
3171
3172 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3173 if (ret)
3174 return ret;
3175
3176 return rbd_obj_read_from_parent(obj_req);
3177 }
3178
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3179 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3180 {
3181 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3182 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3183 u8 new_state;
3184 u32 i;
3185 int ret;
3186
3187 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3188
3189 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3190 return;
3191
3192 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3193 return;
3194
3195 for (i = 0; i < snapc->num_snaps; i++) {
3196 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3197 i + 1 < snapc->num_snaps)
3198 new_state = OBJECT_EXISTS_CLEAN;
3199 else
3200 new_state = OBJECT_EXISTS;
3201
3202 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3203 new_state, NULL);
3204 if (ret < 0) {
3205 obj_req->pending.result = ret;
3206 return;
3207 }
3208
3209 rbd_assert(!ret);
3210 obj_req->pending.num_pending++;
3211 }
3212 }
3213
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3214 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3215 {
3216 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3217 int ret;
3218
3219 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3220
3221 /*
3222 * Only send non-zero copyup data to save some I/O and network
3223 * bandwidth -- zero copyup data is equivalent to the object not
3224 * existing.
3225 */
3226 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3227 bytes = 0;
3228
3229 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3230 /*
3231 * Send a copyup request with an empty snapshot context to
3232 * deep-copyup the object through all existing snapshots.
3233 * A second request with the current snapshot context will be
3234 * sent for the actual modification.
3235 */
3236 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3237 if (ret) {
3238 obj_req->pending.result = ret;
3239 return;
3240 }
3241
3242 obj_req->pending.num_pending++;
3243 bytes = MODS_ONLY;
3244 }
3245
3246 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3247 if (ret) {
3248 obj_req->pending.result = ret;
3249 return;
3250 }
3251
3252 obj_req->pending.num_pending++;
3253 }
3254
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3255 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3256 {
3257 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3258 int ret;
3259
3260 again:
3261 switch (obj_req->copyup_state) {
3262 case RBD_OBJ_COPYUP_START:
3263 rbd_assert(!*result);
3264
3265 ret = rbd_obj_copyup_read_parent(obj_req);
3266 if (ret) {
3267 *result = ret;
3268 return true;
3269 }
3270 if (obj_req->num_img_extents)
3271 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3272 else
3273 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3274 return false;
3275 case RBD_OBJ_COPYUP_READ_PARENT:
3276 if (*result)
3277 return true;
3278
3279 if (is_zero_bvecs(obj_req->copyup_bvecs,
3280 rbd_obj_img_extents_bytes(obj_req))) {
3281 dout("%s %p detected zeros\n", __func__, obj_req);
3282 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3283 }
3284
3285 rbd_obj_copyup_object_maps(obj_req);
3286 if (!obj_req->pending.num_pending) {
3287 *result = obj_req->pending.result;
3288 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3289 goto again;
3290 }
3291 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3292 return false;
3293 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3294 if (!pending_result_dec(&obj_req->pending, result))
3295 return false;
3296 fallthrough;
3297 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3298 if (*result) {
3299 rbd_warn(rbd_dev, "snap object map update failed: %d",
3300 *result);
3301 return true;
3302 }
3303
3304 rbd_obj_copyup_write_object(obj_req);
3305 if (!obj_req->pending.num_pending) {
3306 *result = obj_req->pending.result;
3307 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3308 goto again;
3309 }
3310 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3311 return false;
3312 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3313 if (!pending_result_dec(&obj_req->pending, result))
3314 return false;
3315 fallthrough;
3316 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3317 return true;
3318 default:
3319 BUG();
3320 }
3321 }
3322
3323 /*
3324 * Return:
3325 * 0 - object map update sent
3326 * 1 - object map update isn't needed
3327 * <0 - error
3328 */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3329 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3330 {
3331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3332 u8 current_state = OBJECT_PENDING;
3333
3334 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3335 return 1;
3336
3337 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3338 return 1;
3339
3340 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3341 ¤t_state);
3342 }
3343
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3344 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3345 {
3346 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3347 int ret;
3348
3349 again:
3350 switch (obj_req->write_state) {
3351 case RBD_OBJ_WRITE_START:
3352 rbd_assert(!*result);
3353
3354 if (rbd_obj_write_is_noop(obj_req))
3355 return true;
3356
3357 ret = rbd_obj_write_pre_object_map(obj_req);
3358 if (ret < 0) {
3359 *result = ret;
3360 return true;
3361 }
3362 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3363 if (ret > 0)
3364 goto again;
3365 return false;
3366 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3367 if (*result) {
3368 rbd_warn(rbd_dev, "pre object map update failed: %d",
3369 *result);
3370 return true;
3371 }
3372 ret = rbd_obj_write_object(obj_req);
3373 if (ret) {
3374 *result = ret;
3375 return true;
3376 }
3377 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3378 return false;
3379 case RBD_OBJ_WRITE_OBJECT:
3380 if (*result == -ENOENT) {
3381 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3382 *result = 0;
3383 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3384 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3385 goto again;
3386 }
3387 /*
3388 * On a non-existent object:
3389 * delete - -ENOENT, truncate/zero - 0
3390 */
3391 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3392 *result = 0;
3393 }
3394 if (*result)
3395 return true;
3396
3397 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3398 goto again;
3399 case __RBD_OBJ_WRITE_COPYUP:
3400 if (!rbd_obj_advance_copyup(obj_req, result))
3401 return false;
3402 fallthrough;
3403 case RBD_OBJ_WRITE_COPYUP:
3404 if (*result) {
3405 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3406 return true;
3407 }
3408 ret = rbd_obj_write_post_object_map(obj_req);
3409 if (ret < 0) {
3410 *result = ret;
3411 return true;
3412 }
3413 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3414 if (ret > 0)
3415 goto again;
3416 return false;
3417 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3418 if (*result)
3419 rbd_warn(rbd_dev, "post object map update failed: %d",
3420 *result);
3421 return true;
3422 default:
3423 BUG();
3424 }
3425 }
3426
3427 /*
3428 * Return true if @obj_req is completed.
3429 */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3430 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3431 int *result)
3432 {
3433 struct rbd_img_request *img_req = obj_req->img_request;
3434 struct rbd_device *rbd_dev = img_req->rbd_dev;
3435 bool done;
3436
3437 mutex_lock(&obj_req->state_mutex);
3438 if (!rbd_img_is_write(img_req))
3439 done = rbd_obj_advance_read(obj_req, result);
3440 else
3441 done = rbd_obj_advance_write(obj_req, result);
3442 mutex_unlock(&obj_req->state_mutex);
3443
3444 if (done && *result) {
3445 rbd_assert(*result < 0);
3446 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3447 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3448 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3449 }
3450 return done;
3451 }
3452
3453 /*
3454 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3455 * recursion.
3456 */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3457 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3458 {
3459 if (__rbd_obj_handle_request(obj_req, &result))
3460 rbd_img_handle_request(obj_req->img_request, result);
3461 }
3462
need_exclusive_lock(struct rbd_img_request * img_req)3463 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465 struct rbd_device *rbd_dev = img_req->rbd_dev;
3466
3467 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3468 return false;
3469
3470 if (rbd_is_ro(rbd_dev))
3471 return false;
3472
3473 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3474 if (rbd_dev->opts->lock_on_read ||
3475 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3476 return true;
3477
3478 return rbd_img_is_write(img_req);
3479 }
3480
rbd_lock_add_request(struct rbd_img_request * img_req)3481 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3482 {
3483 struct rbd_device *rbd_dev = img_req->rbd_dev;
3484 bool locked;
3485
3486 lockdep_assert_held(&rbd_dev->lock_rwsem);
3487 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3488 spin_lock(&rbd_dev->lock_lists_lock);
3489 rbd_assert(list_empty(&img_req->lock_item));
3490 if (!locked)
3491 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3492 else
3493 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3494 spin_unlock(&rbd_dev->lock_lists_lock);
3495 return locked;
3496 }
3497
rbd_lock_del_request(struct rbd_img_request * img_req)3498 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3499 {
3500 struct rbd_device *rbd_dev = img_req->rbd_dev;
3501 bool need_wakeup;
3502
3503 lockdep_assert_held(&rbd_dev->lock_rwsem);
3504 spin_lock(&rbd_dev->lock_lists_lock);
3505 rbd_assert(!list_empty(&img_req->lock_item));
3506 list_del_init(&img_req->lock_item);
3507 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3508 list_empty(&rbd_dev->running_list));
3509 spin_unlock(&rbd_dev->lock_lists_lock);
3510 if (need_wakeup)
3511 complete(&rbd_dev->releasing_wait);
3512 }
3513
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3514 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3515 {
3516 struct rbd_device *rbd_dev = img_req->rbd_dev;
3517
3518 if (!need_exclusive_lock(img_req))
3519 return 1;
3520
3521 if (rbd_lock_add_request(img_req))
3522 return 1;
3523
3524 if (rbd_dev->opts->exclusive) {
3525 WARN_ON(1); /* lock got released? */
3526 return -EROFS;
3527 }
3528
3529 /*
3530 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3531 * and cancel_delayed_work() in wake_lock_waiters().
3532 */
3533 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3534 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3535 return 0;
3536 }
3537
rbd_img_object_requests(struct rbd_img_request * img_req)3538 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3539 {
3540 struct rbd_obj_request *obj_req;
3541
3542 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3543
3544 for_each_obj_request(img_req, obj_req) {
3545 int result = 0;
3546
3547 if (__rbd_obj_handle_request(obj_req, &result)) {
3548 if (result) {
3549 img_req->pending.result = result;
3550 return;
3551 }
3552 } else {
3553 img_req->pending.num_pending++;
3554 }
3555 }
3556 }
3557
rbd_img_advance(struct rbd_img_request * img_req,int * result)3558 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3559 {
3560 struct rbd_device *rbd_dev = img_req->rbd_dev;
3561 int ret;
3562
3563 again:
3564 switch (img_req->state) {
3565 case RBD_IMG_START:
3566 rbd_assert(!*result);
3567
3568 ret = rbd_img_exclusive_lock(img_req);
3569 if (ret < 0) {
3570 *result = ret;
3571 return true;
3572 }
3573 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3574 if (ret > 0)
3575 goto again;
3576 return false;
3577 case RBD_IMG_EXCLUSIVE_LOCK:
3578 if (*result)
3579 return true;
3580
3581 rbd_assert(!need_exclusive_lock(img_req) ||
3582 __rbd_is_lock_owner(rbd_dev));
3583
3584 rbd_img_object_requests(img_req);
3585 if (!img_req->pending.num_pending) {
3586 *result = img_req->pending.result;
3587 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3588 goto again;
3589 }
3590 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3591 return false;
3592 case __RBD_IMG_OBJECT_REQUESTS:
3593 if (!pending_result_dec(&img_req->pending, result))
3594 return false;
3595 fallthrough;
3596 case RBD_IMG_OBJECT_REQUESTS:
3597 return true;
3598 default:
3599 BUG();
3600 }
3601 }
3602
3603 /*
3604 * Return true if @img_req is completed.
3605 */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3606 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3607 int *result)
3608 {
3609 struct rbd_device *rbd_dev = img_req->rbd_dev;
3610 bool done;
3611
3612 if (need_exclusive_lock(img_req)) {
3613 down_read(&rbd_dev->lock_rwsem);
3614 mutex_lock(&img_req->state_mutex);
3615 done = rbd_img_advance(img_req, result);
3616 if (done)
3617 rbd_lock_del_request(img_req);
3618 mutex_unlock(&img_req->state_mutex);
3619 up_read(&rbd_dev->lock_rwsem);
3620 } else {
3621 mutex_lock(&img_req->state_mutex);
3622 done = rbd_img_advance(img_req, result);
3623 mutex_unlock(&img_req->state_mutex);
3624 }
3625
3626 if (done && *result) {
3627 rbd_assert(*result < 0);
3628 rbd_warn(rbd_dev, "%s%s result %d",
3629 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3630 obj_op_name(img_req->op_type), *result);
3631 }
3632 return done;
3633 }
3634
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3635 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3636 {
3637 again:
3638 if (!__rbd_img_handle_request(img_req, &result))
3639 return;
3640
3641 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3642 struct rbd_obj_request *obj_req = img_req->obj_request;
3643
3644 rbd_img_request_destroy(img_req);
3645 if (__rbd_obj_handle_request(obj_req, &result)) {
3646 img_req = obj_req->img_request;
3647 goto again;
3648 }
3649 } else {
3650 struct request *rq = blk_mq_rq_from_pdu(img_req);
3651
3652 rbd_img_request_destroy(img_req);
3653 blk_mq_end_request(rq, errno_to_blk_status(result));
3654 }
3655 }
3656
3657 static const struct rbd_client_id rbd_empty_cid;
3658
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3659 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3660 const struct rbd_client_id *rhs)
3661 {
3662 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3663 }
3664
rbd_get_cid(struct rbd_device * rbd_dev)3665 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3666 {
3667 struct rbd_client_id cid;
3668
3669 mutex_lock(&rbd_dev->watch_mutex);
3670 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3671 cid.handle = rbd_dev->watch_cookie;
3672 mutex_unlock(&rbd_dev->watch_mutex);
3673 return cid;
3674 }
3675
3676 /*
3677 * lock_rwsem must be held for write
3678 */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3679 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3680 const struct rbd_client_id *cid)
3681 {
3682 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3683 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3684 cid->gid, cid->handle);
3685 rbd_dev->owner_cid = *cid; /* struct */
3686 }
3687
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3688 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3689 {
3690 mutex_lock(&rbd_dev->watch_mutex);
3691 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3692 mutex_unlock(&rbd_dev->watch_mutex);
3693 }
3694
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3695 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3696 {
3697 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3698
3699 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3700 strcpy(rbd_dev->lock_cookie, cookie);
3701 rbd_set_owner_cid(rbd_dev, &cid);
3702 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3703 }
3704
3705 /*
3706 * lock_rwsem must be held for write
3707 */
rbd_lock(struct rbd_device * rbd_dev)3708 static int rbd_lock(struct rbd_device *rbd_dev)
3709 {
3710 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3711 char cookie[32];
3712 int ret;
3713
3714 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3715 rbd_dev->lock_cookie[0] != '\0');
3716
3717 format_lock_cookie(rbd_dev, cookie);
3718 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3720 RBD_LOCK_TAG, "", 0);
3721 if (ret)
3722 return ret;
3723
3724 __rbd_lock(rbd_dev, cookie);
3725 return 0;
3726 }
3727
3728 /*
3729 * lock_rwsem must be held for write
3730 */
rbd_unlock(struct rbd_device * rbd_dev)3731 static void rbd_unlock(struct rbd_device *rbd_dev)
3732 {
3733 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3734 int ret;
3735
3736 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3737 rbd_dev->lock_cookie[0] == '\0');
3738
3739 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3740 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3741 if (ret && ret != -ENOENT)
3742 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3743
3744 /* treat errors as the image is unlocked */
3745 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3746 rbd_dev->lock_cookie[0] = '\0';
3747 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3748 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3749 }
3750
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3751 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3752 enum rbd_notify_op notify_op,
3753 struct page ***preply_pages,
3754 size_t *preply_len)
3755 {
3756 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3757 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3758 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3759 int buf_size = sizeof(buf);
3760 void *p = buf;
3761
3762 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3763
3764 /* encode *LockPayload NotifyMessage (op + ClientId) */
3765 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3766 ceph_encode_32(&p, notify_op);
3767 ceph_encode_64(&p, cid.gid);
3768 ceph_encode_64(&p, cid.handle);
3769
3770 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3771 &rbd_dev->header_oloc, buf, buf_size,
3772 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3773 }
3774
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3775 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3776 enum rbd_notify_op notify_op)
3777 {
3778 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3779 }
3780
rbd_notify_acquired_lock(struct work_struct * work)3781 static void rbd_notify_acquired_lock(struct work_struct *work)
3782 {
3783 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3784 acquired_lock_work);
3785
3786 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3787 }
3788
rbd_notify_released_lock(struct work_struct * work)3789 static void rbd_notify_released_lock(struct work_struct *work)
3790 {
3791 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3792 released_lock_work);
3793
3794 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3795 }
3796
rbd_request_lock(struct rbd_device * rbd_dev)3797 static int rbd_request_lock(struct rbd_device *rbd_dev)
3798 {
3799 struct page **reply_pages;
3800 size_t reply_len;
3801 bool lock_owner_responded = false;
3802 int ret;
3803
3804 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3805
3806 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3807 &reply_pages, &reply_len);
3808 if (ret && ret != -ETIMEDOUT) {
3809 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3810 goto out;
3811 }
3812
3813 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3814 void *p = page_address(reply_pages[0]);
3815 void *const end = p + reply_len;
3816 u32 n;
3817
3818 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3819 while (n--) {
3820 u8 struct_v;
3821 u32 len;
3822
3823 ceph_decode_need(&p, end, 8 + 8, e_inval);
3824 p += 8 + 8; /* skip gid and cookie */
3825
3826 ceph_decode_32_safe(&p, end, len, e_inval);
3827 if (!len)
3828 continue;
3829
3830 if (lock_owner_responded) {
3831 rbd_warn(rbd_dev,
3832 "duplicate lock owners detected");
3833 ret = -EIO;
3834 goto out;
3835 }
3836
3837 lock_owner_responded = true;
3838 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3839 &struct_v, &len);
3840 if (ret) {
3841 rbd_warn(rbd_dev,
3842 "failed to decode ResponseMessage: %d",
3843 ret);
3844 goto e_inval;
3845 }
3846
3847 ret = ceph_decode_32(&p);
3848 }
3849 }
3850
3851 if (!lock_owner_responded) {
3852 rbd_warn(rbd_dev, "no lock owners detected");
3853 ret = -ETIMEDOUT;
3854 }
3855
3856 out:
3857 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3858 return ret;
3859
3860 e_inval:
3861 ret = -EINVAL;
3862 goto out;
3863 }
3864
3865 /*
3866 * Either image request state machine(s) or rbd_add_acquire_lock()
3867 * (i.e. "rbd map").
3868 */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3869 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3870 {
3871 struct rbd_img_request *img_req;
3872
3873 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3874 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3875
3876 cancel_delayed_work(&rbd_dev->lock_dwork);
3877 if (!completion_done(&rbd_dev->acquire_wait)) {
3878 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3879 list_empty(&rbd_dev->running_list));
3880 rbd_dev->acquire_err = result;
3881 complete_all(&rbd_dev->acquire_wait);
3882 return;
3883 }
3884
3885 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3886 mutex_lock(&img_req->state_mutex);
3887 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3888 rbd_img_schedule(img_req, result);
3889 mutex_unlock(&img_req->state_mutex);
3890 }
3891
3892 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3893 }
3894
get_lock_owner_info(struct rbd_device * rbd_dev,struct ceph_locker ** lockers,u32 * num_lockers)3895 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3896 struct ceph_locker **lockers, u32 *num_lockers)
3897 {
3898 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3899 u8 lock_type;
3900 char *lock_tag;
3901 int ret;
3902
3903 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3904
3905 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3906 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3907 &lock_type, &lock_tag, lockers, num_lockers);
3908 if (ret)
3909 return ret;
3910
3911 if (*num_lockers == 0) {
3912 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3913 goto out;
3914 }
3915
3916 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3917 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3918 lock_tag);
3919 ret = -EBUSY;
3920 goto out;
3921 }
3922
3923 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3924 rbd_warn(rbd_dev, "shared lock type detected");
3925 ret = -EBUSY;
3926 goto out;
3927 }
3928
3929 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3930 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3931 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3932 (*lockers)[0].id.cookie);
3933 ret = -EBUSY;
3934 goto out;
3935 }
3936
3937 out:
3938 kfree(lock_tag);
3939 return ret;
3940 }
3941
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3942 static int find_watcher(struct rbd_device *rbd_dev,
3943 const struct ceph_locker *locker)
3944 {
3945 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3946 struct ceph_watch_item *watchers;
3947 u32 num_watchers;
3948 u64 cookie;
3949 int i;
3950 int ret;
3951
3952 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3953 &rbd_dev->header_oloc, &watchers,
3954 &num_watchers);
3955 if (ret)
3956 return ret;
3957
3958 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3959 for (i = 0; i < num_watchers; i++) {
3960 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3961 sizeof(locker->info.addr)) &&
3962 watchers[i].cookie == cookie) {
3963 struct rbd_client_id cid = {
3964 .gid = le64_to_cpu(watchers[i].name.num),
3965 .handle = cookie,
3966 };
3967
3968 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3969 rbd_dev, cid.gid, cid.handle);
3970 rbd_set_owner_cid(rbd_dev, &cid);
3971 ret = 1;
3972 goto out;
3973 }
3974 }
3975
3976 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3977 ret = 0;
3978 out:
3979 kfree(watchers);
3980 return ret;
3981 }
3982
3983 /*
3984 * lock_rwsem must be held for write
3985 */
rbd_try_lock(struct rbd_device * rbd_dev)3986 static int rbd_try_lock(struct rbd_device *rbd_dev)
3987 {
3988 struct ceph_client *client = rbd_dev->rbd_client->client;
3989 struct ceph_locker *lockers;
3990 u32 num_lockers;
3991 int ret;
3992
3993 for (;;) {
3994 ret = rbd_lock(rbd_dev);
3995 if (ret != -EBUSY)
3996 return ret;
3997
3998 /* determine if the current lock holder is still alive */
3999 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4000 if (ret)
4001 return ret;
4002
4003 if (num_lockers == 0)
4004 goto again;
4005
4006 ret = find_watcher(rbd_dev, lockers);
4007 if (ret)
4008 goto out; /* request lock or error */
4009
4010 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4011 ENTITY_NAME(lockers[0].id.name));
4012
4013 ret = ceph_monc_blocklist_add(&client->monc,
4014 &lockers[0].info.addr);
4015 if (ret) {
4016 rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
4017 ENTITY_NAME(lockers[0].id.name), ret);
4018 goto out;
4019 }
4020
4021 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4022 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4023 lockers[0].id.cookie,
4024 &lockers[0].id.name);
4025 if (ret && ret != -ENOENT)
4026 goto out;
4027
4028 again:
4029 ceph_free_lockers(lockers, num_lockers);
4030 }
4031
4032 out:
4033 ceph_free_lockers(lockers, num_lockers);
4034 return ret;
4035 }
4036
rbd_post_acquire_action(struct rbd_device * rbd_dev)4037 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4038 {
4039 int ret;
4040
4041 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4042 ret = rbd_object_map_open(rbd_dev);
4043 if (ret)
4044 return ret;
4045 }
4046
4047 return 0;
4048 }
4049
4050 /*
4051 * Return:
4052 * 0 - lock acquired
4053 * 1 - caller should call rbd_request_lock()
4054 * <0 - error
4055 */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4056 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4057 {
4058 int ret;
4059
4060 down_read(&rbd_dev->lock_rwsem);
4061 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4062 rbd_dev->lock_state);
4063 if (__rbd_is_lock_owner(rbd_dev)) {
4064 up_read(&rbd_dev->lock_rwsem);
4065 return 0;
4066 }
4067
4068 up_read(&rbd_dev->lock_rwsem);
4069 down_write(&rbd_dev->lock_rwsem);
4070 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4071 rbd_dev->lock_state);
4072 if (__rbd_is_lock_owner(rbd_dev)) {
4073 up_write(&rbd_dev->lock_rwsem);
4074 return 0;
4075 }
4076
4077 ret = rbd_try_lock(rbd_dev);
4078 if (ret < 0) {
4079 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4080 if (ret == -EBLOCKLISTED)
4081 goto out;
4082
4083 ret = 1; /* request lock anyway */
4084 }
4085 if (ret > 0) {
4086 up_write(&rbd_dev->lock_rwsem);
4087 return ret;
4088 }
4089
4090 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4091 rbd_assert(list_empty(&rbd_dev->running_list));
4092
4093 ret = rbd_post_acquire_action(rbd_dev);
4094 if (ret) {
4095 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4096 /*
4097 * Can't stay in RBD_LOCK_STATE_LOCKED because
4098 * rbd_lock_add_request() would let the request through,
4099 * assuming that e.g. object map is locked and loaded.
4100 */
4101 rbd_unlock(rbd_dev);
4102 }
4103
4104 out:
4105 wake_lock_waiters(rbd_dev, ret);
4106 up_write(&rbd_dev->lock_rwsem);
4107 return ret;
4108 }
4109
rbd_acquire_lock(struct work_struct * work)4110 static void rbd_acquire_lock(struct work_struct *work)
4111 {
4112 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4113 struct rbd_device, lock_dwork);
4114 int ret;
4115
4116 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4117 again:
4118 ret = rbd_try_acquire_lock(rbd_dev);
4119 if (ret <= 0) {
4120 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4121 return;
4122 }
4123
4124 ret = rbd_request_lock(rbd_dev);
4125 if (ret == -ETIMEDOUT) {
4126 goto again; /* treat this as a dead client */
4127 } else if (ret == -EROFS) {
4128 rbd_warn(rbd_dev, "peer will not release lock");
4129 down_write(&rbd_dev->lock_rwsem);
4130 wake_lock_waiters(rbd_dev, ret);
4131 up_write(&rbd_dev->lock_rwsem);
4132 } else if (ret < 0) {
4133 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4134 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4135 RBD_RETRY_DELAY);
4136 } else {
4137 /*
4138 * lock owner acked, but resend if we don't see them
4139 * release the lock
4140 */
4141 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4142 rbd_dev);
4143 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4144 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4145 }
4146 }
4147
rbd_quiesce_lock(struct rbd_device * rbd_dev)4148 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4149 {
4150 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4151 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4152
4153 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4154 return false;
4155
4156 /*
4157 * Ensure that all in-flight IO is flushed.
4158 */
4159 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4160 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4161 if (list_empty(&rbd_dev->running_list))
4162 return true;
4163
4164 up_write(&rbd_dev->lock_rwsem);
4165 wait_for_completion(&rbd_dev->releasing_wait);
4166
4167 down_write(&rbd_dev->lock_rwsem);
4168 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4169 return false;
4170
4171 rbd_assert(list_empty(&rbd_dev->running_list));
4172 return true;
4173 }
4174
rbd_pre_release_action(struct rbd_device * rbd_dev)4175 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4176 {
4177 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4178 rbd_object_map_close(rbd_dev);
4179 }
4180
__rbd_release_lock(struct rbd_device * rbd_dev)4181 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4182 {
4183 rbd_assert(list_empty(&rbd_dev->running_list));
4184
4185 rbd_pre_release_action(rbd_dev);
4186 rbd_unlock(rbd_dev);
4187 }
4188
4189 /*
4190 * lock_rwsem must be held for write
4191 */
rbd_release_lock(struct rbd_device * rbd_dev)4192 static void rbd_release_lock(struct rbd_device *rbd_dev)
4193 {
4194 if (!rbd_quiesce_lock(rbd_dev))
4195 return;
4196
4197 __rbd_release_lock(rbd_dev);
4198
4199 /*
4200 * Give others a chance to grab the lock - we would re-acquire
4201 * almost immediately if we got new IO while draining the running
4202 * list otherwise. We need to ack our own notifications, so this
4203 * lock_dwork will be requeued from rbd_handle_released_lock() by
4204 * way of maybe_kick_acquire().
4205 */
4206 cancel_delayed_work(&rbd_dev->lock_dwork);
4207 }
4208
rbd_release_lock_work(struct work_struct * work)4209 static void rbd_release_lock_work(struct work_struct *work)
4210 {
4211 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4212 unlock_work);
4213
4214 down_write(&rbd_dev->lock_rwsem);
4215 rbd_release_lock(rbd_dev);
4216 up_write(&rbd_dev->lock_rwsem);
4217 }
4218
maybe_kick_acquire(struct rbd_device * rbd_dev)4219 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4220 {
4221 bool have_requests;
4222
4223 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4224 if (__rbd_is_lock_owner(rbd_dev))
4225 return;
4226
4227 spin_lock(&rbd_dev->lock_lists_lock);
4228 have_requests = !list_empty(&rbd_dev->acquiring_list);
4229 spin_unlock(&rbd_dev->lock_lists_lock);
4230 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4231 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4232 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4233 }
4234 }
4235
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4236 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4237 void **p)
4238 {
4239 struct rbd_client_id cid = { 0 };
4240
4241 if (struct_v >= 2) {
4242 cid.gid = ceph_decode_64(p);
4243 cid.handle = ceph_decode_64(p);
4244 }
4245
4246 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4247 cid.handle);
4248 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4249 down_write(&rbd_dev->lock_rwsem);
4250 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4251 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4252 __func__, rbd_dev, cid.gid, cid.handle);
4253 } else {
4254 rbd_set_owner_cid(rbd_dev, &cid);
4255 }
4256 downgrade_write(&rbd_dev->lock_rwsem);
4257 } else {
4258 down_read(&rbd_dev->lock_rwsem);
4259 }
4260
4261 maybe_kick_acquire(rbd_dev);
4262 up_read(&rbd_dev->lock_rwsem);
4263 }
4264
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4265 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4266 void **p)
4267 {
4268 struct rbd_client_id cid = { 0 };
4269
4270 if (struct_v >= 2) {
4271 cid.gid = ceph_decode_64(p);
4272 cid.handle = ceph_decode_64(p);
4273 }
4274
4275 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4276 cid.handle);
4277 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4278 down_write(&rbd_dev->lock_rwsem);
4279 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4280 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4281 __func__, rbd_dev, cid.gid, cid.handle,
4282 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4283 } else {
4284 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4285 }
4286 downgrade_write(&rbd_dev->lock_rwsem);
4287 } else {
4288 down_read(&rbd_dev->lock_rwsem);
4289 }
4290
4291 maybe_kick_acquire(rbd_dev);
4292 up_read(&rbd_dev->lock_rwsem);
4293 }
4294
4295 /*
4296 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4297 * ResponseMessage is needed.
4298 */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4299 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4300 void **p)
4301 {
4302 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4303 struct rbd_client_id cid = { 0 };
4304 int result = 1;
4305
4306 if (struct_v >= 2) {
4307 cid.gid = ceph_decode_64(p);
4308 cid.handle = ceph_decode_64(p);
4309 }
4310
4311 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4312 cid.handle);
4313 if (rbd_cid_equal(&cid, &my_cid))
4314 return result;
4315
4316 down_read(&rbd_dev->lock_rwsem);
4317 if (__rbd_is_lock_owner(rbd_dev)) {
4318 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4319 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4320 goto out_unlock;
4321
4322 /*
4323 * encode ResponseMessage(0) so the peer can detect
4324 * a missing owner
4325 */
4326 result = 0;
4327
4328 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4329 if (!rbd_dev->opts->exclusive) {
4330 dout("%s rbd_dev %p queueing unlock_work\n",
4331 __func__, rbd_dev);
4332 queue_work(rbd_dev->task_wq,
4333 &rbd_dev->unlock_work);
4334 } else {
4335 /* refuse to release the lock */
4336 result = -EROFS;
4337 }
4338 }
4339 }
4340
4341 out_unlock:
4342 up_read(&rbd_dev->lock_rwsem);
4343 return result;
4344 }
4345
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4346 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4347 u64 notify_id, u64 cookie, s32 *result)
4348 {
4349 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4350 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4351 int buf_size = sizeof(buf);
4352 int ret;
4353
4354 if (result) {
4355 void *p = buf;
4356
4357 /* encode ResponseMessage */
4358 ceph_start_encoding(&p, 1, 1,
4359 buf_size - CEPH_ENCODING_START_BLK_LEN);
4360 ceph_encode_32(&p, *result);
4361 } else {
4362 buf_size = 0;
4363 }
4364
4365 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4366 &rbd_dev->header_oloc, notify_id, cookie,
4367 buf, buf_size);
4368 if (ret)
4369 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4370 }
4371
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4372 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4373 u64 cookie)
4374 {
4375 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4376 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4377 }
4378
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4379 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4380 u64 notify_id, u64 cookie, s32 result)
4381 {
4382 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4383 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4384 }
4385
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4386 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4387 u64 notifier_id, void *data, size_t data_len)
4388 {
4389 struct rbd_device *rbd_dev = arg;
4390 void *p = data;
4391 void *const end = p + data_len;
4392 u8 struct_v = 0;
4393 u32 len;
4394 u32 notify_op;
4395 int ret;
4396
4397 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4398 __func__, rbd_dev, cookie, notify_id, data_len);
4399 if (data_len) {
4400 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4401 &struct_v, &len);
4402 if (ret) {
4403 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4404 ret);
4405 return;
4406 }
4407
4408 notify_op = ceph_decode_32(&p);
4409 } else {
4410 /* legacy notification for header updates */
4411 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4412 len = 0;
4413 }
4414
4415 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4416 switch (notify_op) {
4417 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4418 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4419 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4420 break;
4421 case RBD_NOTIFY_OP_RELEASED_LOCK:
4422 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4423 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4424 break;
4425 case RBD_NOTIFY_OP_REQUEST_LOCK:
4426 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4427 if (ret <= 0)
4428 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4429 cookie, ret);
4430 else
4431 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4432 break;
4433 case RBD_NOTIFY_OP_HEADER_UPDATE:
4434 ret = rbd_dev_refresh(rbd_dev);
4435 if (ret)
4436 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4437
4438 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4439 break;
4440 default:
4441 if (rbd_is_lock_owner(rbd_dev))
4442 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4443 cookie, -EOPNOTSUPP);
4444 else
4445 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4446 break;
4447 }
4448 }
4449
4450 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4451
rbd_watch_errcb(void * arg,u64 cookie,int err)4452 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4453 {
4454 struct rbd_device *rbd_dev = arg;
4455
4456 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4457
4458 down_write(&rbd_dev->lock_rwsem);
4459 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4460 up_write(&rbd_dev->lock_rwsem);
4461
4462 mutex_lock(&rbd_dev->watch_mutex);
4463 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4464 __rbd_unregister_watch(rbd_dev);
4465 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4466
4467 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4468 }
4469 mutex_unlock(&rbd_dev->watch_mutex);
4470 }
4471
4472 /*
4473 * watch_mutex must be locked
4474 */
__rbd_register_watch(struct rbd_device * rbd_dev)4475 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4476 {
4477 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4478 struct ceph_osd_linger_request *handle;
4479
4480 rbd_assert(!rbd_dev->watch_handle);
4481 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4482
4483 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4484 &rbd_dev->header_oloc, rbd_watch_cb,
4485 rbd_watch_errcb, rbd_dev);
4486 if (IS_ERR(handle))
4487 return PTR_ERR(handle);
4488
4489 rbd_dev->watch_handle = handle;
4490 return 0;
4491 }
4492
4493 /*
4494 * watch_mutex must be locked
4495 */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4496 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4497 {
4498 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4499 int ret;
4500
4501 rbd_assert(rbd_dev->watch_handle);
4502 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4503
4504 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4505 if (ret)
4506 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4507
4508 rbd_dev->watch_handle = NULL;
4509 }
4510
rbd_register_watch(struct rbd_device * rbd_dev)4511 static int rbd_register_watch(struct rbd_device *rbd_dev)
4512 {
4513 int ret;
4514
4515 mutex_lock(&rbd_dev->watch_mutex);
4516 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4517 ret = __rbd_register_watch(rbd_dev);
4518 if (ret)
4519 goto out;
4520
4521 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4522 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4523
4524 out:
4525 mutex_unlock(&rbd_dev->watch_mutex);
4526 return ret;
4527 }
4528
cancel_tasks_sync(struct rbd_device * rbd_dev)4529 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4530 {
4531 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4532
4533 cancel_work_sync(&rbd_dev->acquired_lock_work);
4534 cancel_work_sync(&rbd_dev->released_lock_work);
4535 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4536 cancel_work_sync(&rbd_dev->unlock_work);
4537 }
4538
4539 /*
4540 * header_rwsem must not be held to avoid a deadlock with
4541 * rbd_dev_refresh() when flushing notifies.
4542 */
rbd_unregister_watch(struct rbd_device * rbd_dev)4543 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4544 {
4545 cancel_tasks_sync(rbd_dev);
4546
4547 mutex_lock(&rbd_dev->watch_mutex);
4548 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4549 __rbd_unregister_watch(rbd_dev);
4550 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4551 mutex_unlock(&rbd_dev->watch_mutex);
4552
4553 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4554 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4555 }
4556
4557 /*
4558 * lock_rwsem must be held for write
4559 */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4560 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4561 {
4562 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4563 char cookie[32];
4564 int ret;
4565
4566 if (!rbd_quiesce_lock(rbd_dev))
4567 return;
4568
4569 format_lock_cookie(rbd_dev, cookie);
4570 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4571 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4572 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4573 RBD_LOCK_TAG, cookie);
4574 if (ret) {
4575 if (ret != -EOPNOTSUPP)
4576 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4577 ret);
4578
4579 /*
4580 * Lock cookie cannot be updated on older OSDs, so do
4581 * a manual release and queue an acquire.
4582 */
4583 __rbd_release_lock(rbd_dev);
4584 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4585 } else {
4586 __rbd_lock(rbd_dev, cookie);
4587 wake_lock_waiters(rbd_dev, 0);
4588 }
4589 }
4590
rbd_reregister_watch(struct work_struct * work)4591 static void rbd_reregister_watch(struct work_struct *work)
4592 {
4593 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4594 struct rbd_device, watch_dwork);
4595 int ret;
4596
4597 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4598
4599 mutex_lock(&rbd_dev->watch_mutex);
4600 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4601 mutex_unlock(&rbd_dev->watch_mutex);
4602 return;
4603 }
4604
4605 ret = __rbd_register_watch(rbd_dev);
4606 if (ret) {
4607 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4608 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4609 queue_delayed_work(rbd_dev->task_wq,
4610 &rbd_dev->watch_dwork,
4611 RBD_RETRY_DELAY);
4612 mutex_unlock(&rbd_dev->watch_mutex);
4613 return;
4614 }
4615
4616 mutex_unlock(&rbd_dev->watch_mutex);
4617 down_write(&rbd_dev->lock_rwsem);
4618 wake_lock_waiters(rbd_dev, ret);
4619 up_write(&rbd_dev->lock_rwsem);
4620 return;
4621 }
4622
4623 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4624 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4625 mutex_unlock(&rbd_dev->watch_mutex);
4626
4627 down_write(&rbd_dev->lock_rwsem);
4628 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4629 rbd_reacquire_lock(rbd_dev);
4630 up_write(&rbd_dev->lock_rwsem);
4631
4632 ret = rbd_dev_refresh(rbd_dev);
4633 if (ret)
4634 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4635 }
4636
4637 /*
4638 * Synchronous osd object method call. Returns the number of bytes
4639 * returned in the outbound buffer, or a negative error code.
4640 */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4641 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4642 struct ceph_object_id *oid,
4643 struct ceph_object_locator *oloc,
4644 const char *method_name,
4645 const void *outbound,
4646 size_t outbound_size,
4647 void *inbound,
4648 size_t inbound_size)
4649 {
4650 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4651 struct page *req_page = NULL;
4652 struct page *reply_page;
4653 int ret;
4654
4655 /*
4656 * Method calls are ultimately read operations. The result
4657 * should placed into the inbound buffer provided. They
4658 * also supply outbound data--parameters for the object
4659 * method. Currently if this is present it will be a
4660 * snapshot id.
4661 */
4662 if (outbound) {
4663 if (outbound_size > PAGE_SIZE)
4664 return -E2BIG;
4665
4666 req_page = alloc_page(GFP_KERNEL);
4667 if (!req_page)
4668 return -ENOMEM;
4669
4670 memcpy(page_address(req_page), outbound, outbound_size);
4671 }
4672
4673 reply_page = alloc_page(GFP_KERNEL);
4674 if (!reply_page) {
4675 if (req_page)
4676 __free_page(req_page);
4677 return -ENOMEM;
4678 }
4679
4680 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4681 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4682 &reply_page, &inbound_size);
4683 if (!ret) {
4684 memcpy(inbound, page_address(reply_page), inbound_size);
4685 ret = inbound_size;
4686 }
4687
4688 if (req_page)
4689 __free_page(req_page);
4690 __free_page(reply_page);
4691 return ret;
4692 }
4693
rbd_queue_workfn(struct work_struct * work)4694 static void rbd_queue_workfn(struct work_struct *work)
4695 {
4696 struct rbd_img_request *img_request =
4697 container_of(work, struct rbd_img_request, work);
4698 struct rbd_device *rbd_dev = img_request->rbd_dev;
4699 enum obj_operation_type op_type = img_request->op_type;
4700 struct request *rq = blk_mq_rq_from_pdu(img_request);
4701 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4702 u64 length = blk_rq_bytes(rq);
4703 u64 mapping_size;
4704 int result;
4705
4706 /* Ignore/skip any zero-length requests */
4707 if (!length) {
4708 dout("%s: zero-length request\n", __func__);
4709 result = 0;
4710 goto err_img_request;
4711 }
4712
4713 blk_mq_start_request(rq);
4714
4715 down_read(&rbd_dev->header_rwsem);
4716 mapping_size = rbd_dev->mapping.size;
4717 rbd_img_capture_header(img_request);
4718 up_read(&rbd_dev->header_rwsem);
4719
4720 if (offset + length > mapping_size) {
4721 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4722 length, mapping_size);
4723 result = -EIO;
4724 goto err_img_request;
4725 }
4726
4727 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4728 img_request, obj_op_name(op_type), offset, length);
4729
4730 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4731 result = rbd_img_fill_nodata(img_request, offset, length);
4732 else
4733 result = rbd_img_fill_from_bio(img_request, offset, length,
4734 rq->bio);
4735 if (result)
4736 goto err_img_request;
4737
4738 rbd_img_handle_request(img_request, 0);
4739 return;
4740
4741 err_img_request:
4742 rbd_img_request_destroy(img_request);
4743 if (result)
4744 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4745 obj_op_name(op_type), length, offset, result);
4746 blk_mq_end_request(rq, errno_to_blk_status(result));
4747 }
4748
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4749 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4750 const struct blk_mq_queue_data *bd)
4751 {
4752 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4753 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4754 enum obj_operation_type op_type;
4755
4756 switch (req_op(bd->rq)) {
4757 case REQ_OP_DISCARD:
4758 op_type = OBJ_OP_DISCARD;
4759 break;
4760 case REQ_OP_WRITE_ZEROES:
4761 op_type = OBJ_OP_ZEROOUT;
4762 break;
4763 case REQ_OP_WRITE:
4764 op_type = OBJ_OP_WRITE;
4765 break;
4766 case REQ_OP_READ:
4767 op_type = OBJ_OP_READ;
4768 break;
4769 default:
4770 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4771 return BLK_STS_IOERR;
4772 }
4773
4774 rbd_img_request_init(img_req, rbd_dev, op_type);
4775
4776 if (rbd_img_is_write(img_req)) {
4777 if (rbd_is_ro(rbd_dev)) {
4778 rbd_warn(rbd_dev, "%s on read-only mapping",
4779 obj_op_name(img_req->op_type));
4780 return BLK_STS_IOERR;
4781 }
4782 rbd_assert(!rbd_is_snap(rbd_dev));
4783 }
4784
4785 INIT_WORK(&img_req->work, rbd_queue_workfn);
4786 queue_work(rbd_wq, &img_req->work);
4787 return BLK_STS_OK;
4788 }
4789
rbd_free_disk(struct rbd_device * rbd_dev)4790 static void rbd_free_disk(struct rbd_device *rbd_dev)
4791 {
4792 blk_cleanup_queue(rbd_dev->disk->queue);
4793 blk_mq_free_tag_set(&rbd_dev->tag_set);
4794 put_disk(rbd_dev->disk);
4795 rbd_dev->disk = NULL;
4796 }
4797
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4798 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4799 struct ceph_object_id *oid,
4800 struct ceph_object_locator *oloc,
4801 void *buf, int buf_len)
4802
4803 {
4804 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4805 struct ceph_osd_request *req;
4806 struct page **pages;
4807 int num_pages = calc_pages_for(0, buf_len);
4808 int ret;
4809
4810 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4811 if (!req)
4812 return -ENOMEM;
4813
4814 ceph_oid_copy(&req->r_base_oid, oid);
4815 ceph_oloc_copy(&req->r_base_oloc, oloc);
4816 req->r_flags = CEPH_OSD_FLAG_READ;
4817
4818 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4819 if (IS_ERR(pages)) {
4820 ret = PTR_ERR(pages);
4821 goto out_req;
4822 }
4823
4824 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4825 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4826 true);
4827
4828 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4829 if (ret)
4830 goto out_req;
4831
4832 ceph_osdc_start_request(osdc, req, false);
4833 ret = ceph_osdc_wait_request(osdc, req);
4834 if (ret >= 0)
4835 ceph_copy_from_page_vector(pages, buf, 0, ret);
4836
4837 out_req:
4838 ceph_osdc_put_request(req);
4839 return ret;
4840 }
4841
4842 /*
4843 * Read the complete header for the given rbd device. On successful
4844 * return, the rbd_dev->header field will contain up-to-date
4845 * information about the image.
4846 */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev)4847 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4848 {
4849 struct rbd_image_header_ondisk *ondisk = NULL;
4850 u32 snap_count = 0;
4851 u64 names_size = 0;
4852 u32 want_count;
4853 int ret;
4854
4855 /*
4856 * The complete header will include an array of its 64-bit
4857 * snapshot ids, followed by the names of those snapshots as
4858 * a contiguous block of NUL-terminated strings. Note that
4859 * the number of snapshots could change by the time we read
4860 * it in, in which case we re-read it.
4861 */
4862 do {
4863 size_t size;
4864
4865 kfree(ondisk);
4866
4867 size = sizeof (*ondisk);
4868 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4869 size += names_size;
4870 ondisk = kmalloc(size, GFP_KERNEL);
4871 if (!ondisk)
4872 return -ENOMEM;
4873
4874 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4875 &rbd_dev->header_oloc, ondisk, size);
4876 if (ret < 0)
4877 goto out;
4878 if ((size_t)ret < size) {
4879 ret = -ENXIO;
4880 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4881 size, ret);
4882 goto out;
4883 }
4884 if (!rbd_dev_ondisk_valid(ondisk)) {
4885 ret = -ENXIO;
4886 rbd_warn(rbd_dev, "invalid header");
4887 goto out;
4888 }
4889
4890 names_size = le64_to_cpu(ondisk->snap_names_len);
4891 want_count = snap_count;
4892 snap_count = le32_to_cpu(ondisk->snap_count);
4893 } while (snap_count != want_count);
4894
4895 ret = rbd_header_from_disk(rbd_dev, ondisk);
4896 out:
4897 kfree(ondisk);
4898
4899 return ret;
4900 }
4901
rbd_dev_update_size(struct rbd_device * rbd_dev)4902 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4903 {
4904 sector_t size;
4905
4906 /*
4907 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4908 * try to update its size. If REMOVING is set, updating size
4909 * is just useless work since the device can't be opened.
4910 */
4911 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4912 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4913 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4914 dout("setting size to %llu sectors", (unsigned long long)size);
4915 set_capacity(rbd_dev->disk, size);
4916 revalidate_disk_size(rbd_dev->disk, true);
4917 }
4918 }
4919
rbd_dev_refresh(struct rbd_device * rbd_dev)4920 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4921 {
4922 u64 mapping_size;
4923 int ret;
4924
4925 down_write(&rbd_dev->header_rwsem);
4926 mapping_size = rbd_dev->mapping.size;
4927
4928 ret = rbd_dev_header_info(rbd_dev);
4929 if (ret)
4930 goto out;
4931
4932 /*
4933 * If there is a parent, see if it has disappeared due to the
4934 * mapped image getting flattened.
4935 */
4936 if (rbd_dev->parent) {
4937 ret = rbd_dev_v2_parent_info(rbd_dev);
4938 if (ret)
4939 goto out;
4940 }
4941
4942 rbd_assert(!rbd_is_snap(rbd_dev));
4943 rbd_dev->mapping.size = rbd_dev->header.image_size;
4944
4945 out:
4946 up_write(&rbd_dev->header_rwsem);
4947 if (!ret && mapping_size != rbd_dev->mapping.size)
4948 rbd_dev_update_size(rbd_dev);
4949
4950 return ret;
4951 }
4952
4953 static const struct blk_mq_ops rbd_mq_ops = {
4954 .queue_rq = rbd_queue_rq,
4955 };
4956
rbd_init_disk(struct rbd_device * rbd_dev)4957 static int rbd_init_disk(struct rbd_device *rbd_dev)
4958 {
4959 struct gendisk *disk;
4960 struct request_queue *q;
4961 unsigned int objset_bytes =
4962 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4963 int err;
4964
4965 /* create gendisk info */
4966 disk = alloc_disk(single_major ?
4967 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4968 RBD_MINORS_PER_MAJOR);
4969 if (!disk)
4970 return -ENOMEM;
4971
4972 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4973 rbd_dev->dev_id);
4974 disk->major = rbd_dev->major;
4975 disk->first_minor = rbd_dev->minor;
4976 if (single_major)
4977 disk->flags |= GENHD_FL_EXT_DEVT;
4978 disk->fops = &rbd_bd_ops;
4979 disk->private_data = rbd_dev;
4980
4981 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4982 rbd_dev->tag_set.ops = &rbd_mq_ops;
4983 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4984 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4985 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4986 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4987 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4988
4989 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4990 if (err)
4991 goto out_disk;
4992
4993 q = blk_mq_init_queue(&rbd_dev->tag_set);
4994 if (IS_ERR(q)) {
4995 err = PTR_ERR(q);
4996 goto out_tag_set;
4997 }
4998
4999 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5000 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5001
5002 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5003 q->limits.max_sectors = queue_max_hw_sectors(q);
5004 blk_queue_max_segments(q, USHRT_MAX);
5005 blk_queue_max_segment_size(q, UINT_MAX);
5006 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5007 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5008
5009 if (rbd_dev->opts->trim) {
5010 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5011 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5012 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5013 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5014 }
5015
5016 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5017 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5018
5019 /*
5020 * disk_release() expects a queue ref from add_disk() and will
5021 * put it. Hold an extra ref until add_disk() is called.
5022 */
5023 WARN_ON(!blk_get_queue(q));
5024 disk->queue = q;
5025 q->queuedata = rbd_dev;
5026
5027 rbd_dev->disk = disk;
5028
5029 return 0;
5030 out_tag_set:
5031 blk_mq_free_tag_set(&rbd_dev->tag_set);
5032 out_disk:
5033 put_disk(disk);
5034 return err;
5035 }
5036
5037 /*
5038 sysfs
5039 */
5040
dev_to_rbd_dev(struct device * dev)5041 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5042 {
5043 return container_of(dev, struct rbd_device, dev);
5044 }
5045
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5046 static ssize_t rbd_size_show(struct device *dev,
5047 struct device_attribute *attr, char *buf)
5048 {
5049 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5050
5051 return sprintf(buf, "%llu\n",
5052 (unsigned long long)rbd_dev->mapping.size);
5053 }
5054
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5055 static ssize_t rbd_features_show(struct device *dev,
5056 struct device_attribute *attr, char *buf)
5057 {
5058 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5059
5060 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5061 }
5062
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5063 static ssize_t rbd_major_show(struct device *dev,
5064 struct device_attribute *attr, char *buf)
5065 {
5066 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067
5068 if (rbd_dev->major)
5069 return sprintf(buf, "%d\n", rbd_dev->major);
5070
5071 return sprintf(buf, "(none)\n");
5072 }
5073
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5074 static ssize_t rbd_minor_show(struct device *dev,
5075 struct device_attribute *attr, char *buf)
5076 {
5077 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078
5079 return sprintf(buf, "%d\n", rbd_dev->minor);
5080 }
5081
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5082 static ssize_t rbd_client_addr_show(struct device *dev,
5083 struct device_attribute *attr, char *buf)
5084 {
5085 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5086 struct ceph_entity_addr *client_addr =
5087 ceph_client_addr(rbd_dev->rbd_client->client);
5088
5089 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5090 le32_to_cpu(client_addr->nonce));
5091 }
5092
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5093 static ssize_t rbd_client_id_show(struct device *dev,
5094 struct device_attribute *attr, char *buf)
5095 {
5096 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5097
5098 return sprintf(buf, "client%lld\n",
5099 ceph_client_gid(rbd_dev->rbd_client->client));
5100 }
5101
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5102 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5103 struct device_attribute *attr, char *buf)
5104 {
5105 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106
5107 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5108 }
5109
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5110 static ssize_t rbd_config_info_show(struct device *dev,
5111 struct device_attribute *attr, char *buf)
5112 {
5113 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114
5115 if (!capable(CAP_SYS_ADMIN))
5116 return -EPERM;
5117
5118 return sprintf(buf, "%s\n", rbd_dev->config_info);
5119 }
5120
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5121 static ssize_t rbd_pool_show(struct device *dev,
5122 struct device_attribute *attr, char *buf)
5123 {
5124 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5125
5126 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5127 }
5128
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5129 static ssize_t rbd_pool_id_show(struct device *dev,
5130 struct device_attribute *attr, char *buf)
5131 {
5132 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5133
5134 return sprintf(buf, "%llu\n",
5135 (unsigned long long) rbd_dev->spec->pool_id);
5136 }
5137
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5138 static ssize_t rbd_pool_ns_show(struct device *dev,
5139 struct device_attribute *attr, char *buf)
5140 {
5141 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5142
5143 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5144 }
5145
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5146 static ssize_t rbd_name_show(struct device *dev,
5147 struct device_attribute *attr, char *buf)
5148 {
5149 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5150
5151 if (rbd_dev->spec->image_name)
5152 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5153
5154 return sprintf(buf, "(unknown)\n");
5155 }
5156
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5157 static ssize_t rbd_image_id_show(struct device *dev,
5158 struct device_attribute *attr, char *buf)
5159 {
5160 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5161
5162 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5163 }
5164
5165 /*
5166 * Shows the name of the currently-mapped snapshot (or
5167 * RBD_SNAP_HEAD_NAME for the base image).
5168 */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5169 static ssize_t rbd_snap_show(struct device *dev,
5170 struct device_attribute *attr,
5171 char *buf)
5172 {
5173 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5174
5175 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5176 }
5177
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5178 static ssize_t rbd_snap_id_show(struct device *dev,
5179 struct device_attribute *attr, char *buf)
5180 {
5181 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5182
5183 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5184 }
5185
5186 /*
5187 * For a v2 image, shows the chain of parent images, separated by empty
5188 * lines. For v1 images or if there is no parent, shows "(no parent
5189 * image)".
5190 */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5191 static ssize_t rbd_parent_show(struct device *dev,
5192 struct device_attribute *attr,
5193 char *buf)
5194 {
5195 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5196 ssize_t count = 0;
5197
5198 if (!rbd_dev->parent)
5199 return sprintf(buf, "(no parent image)\n");
5200
5201 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5202 struct rbd_spec *spec = rbd_dev->parent_spec;
5203
5204 count += sprintf(&buf[count], "%s"
5205 "pool_id %llu\npool_name %s\n"
5206 "pool_ns %s\n"
5207 "image_id %s\nimage_name %s\n"
5208 "snap_id %llu\nsnap_name %s\n"
5209 "overlap %llu\n",
5210 !count ? "" : "\n", /* first? */
5211 spec->pool_id, spec->pool_name,
5212 spec->pool_ns ?: "",
5213 spec->image_id, spec->image_name ?: "(unknown)",
5214 spec->snap_id, spec->snap_name,
5215 rbd_dev->parent_overlap);
5216 }
5217
5218 return count;
5219 }
5220
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5221 static ssize_t rbd_image_refresh(struct device *dev,
5222 struct device_attribute *attr,
5223 const char *buf,
5224 size_t size)
5225 {
5226 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5227 int ret;
5228
5229 if (!capable(CAP_SYS_ADMIN))
5230 return -EPERM;
5231
5232 ret = rbd_dev_refresh(rbd_dev);
5233 if (ret)
5234 return ret;
5235
5236 return size;
5237 }
5238
5239 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5240 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5241 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5242 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5243 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5244 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5245 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5246 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5247 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5248 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5249 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5250 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5251 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5252 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5253 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5254 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5255 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5256
5257 static struct attribute *rbd_attrs[] = {
5258 &dev_attr_size.attr,
5259 &dev_attr_features.attr,
5260 &dev_attr_major.attr,
5261 &dev_attr_minor.attr,
5262 &dev_attr_client_addr.attr,
5263 &dev_attr_client_id.attr,
5264 &dev_attr_cluster_fsid.attr,
5265 &dev_attr_config_info.attr,
5266 &dev_attr_pool.attr,
5267 &dev_attr_pool_id.attr,
5268 &dev_attr_pool_ns.attr,
5269 &dev_attr_name.attr,
5270 &dev_attr_image_id.attr,
5271 &dev_attr_current_snap.attr,
5272 &dev_attr_snap_id.attr,
5273 &dev_attr_parent.attr,
5274 &dev_attr_refresh.attr,
5275 NULL
5276 };
5277
5278 static struct attribute_group rbd_attr_group = {
5279 .attrs = rbd_attrs,
5280 };
5281
5282 static const struct attribute_group *rbd_attr_groups[] = {
5283 &rbd_attr_group,
5284 NULL
5285 };
5286
5287 static void rbd_dev_release(struct device *dev);
5288
5289 static const struct device_type rbd_device_type = {
5290 .name = "rbd",
5291 .groups = rbd_attr_groups,
5292 .release = rbd_dev_release,
5293 };
5294
rbd_spec_get(struct rbd_spec * spec)5295 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5296 {
5297 kref_get(&spec->kref);
5298
5299 return spec;
5300 }
5301
5302 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5303 static void rbd_spec_put(struct rbd_spec *spec)
5304 {
5305 if (spec)
5306 kref_put(&spec->kref, rbd_spec_free);
5307 }
5308
rbd_spec_alloc(void)5309 static struct rbd_spec *rbd_spec_alloc(void)
5310 {
5311 struct rbd_spec *spec;
5312
5313 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5314 if (!spec)
5315 return NULL;
5316
5317 spec->pool_id = CEPH_NOPOOL;
5318 spec->snap_id = CEPH_NOSNAP;
5319 kref_init(&spec->kref);
5320
5321 return spec;
5322 }
5323
rbd_spec_free(struct kref * kref)5324 static void rbd_spec_free(struct kref *kref)
5325 {
5326 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5327
5328 kfree(spec->pool_name);
5329 kfree(spec->pool_ns);
5330 kfree(spec->image_id);
5331 kfree(spec->image_name);
5332 kfree(spec->snap_name);
5333 kfree(spec);
5334 }
5335
rbd_dev_free(struct rbd_device * rbd_dev)5336 static void rbd_dev_free(struct rbd_device *rbd_dev)
5337 {
5338 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5339 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5340
5341 ceph_oid_destroy(&rbd_dev->header_oid);
5342 ceph_oloc_destroy(&rbd_dev->header_oloc);
5343 kfree(rbd_dev->config_info);
5344
5345 rbd_put_client(rbd_dev->rbd_client);
5346 rbd_spec_put(rbd_dev->spec);
5347 kfree(rbd_dev->opts);
5348 kfree(rbd_dev);
5349 }
5350
rbd_dev_release(struct device * dev)5351 static void rbd_dev_release(struct device *dev)
5352 {
5353 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5354 bool need_put = !!rbd_dev->opts;
5355
5356 if (need_put) {
5357 destroy_workqueue(rbd_dev->task_wq);
5358 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5359 }
5360
5361 rbd_dev_free(rbd_dev);
5362
5363 /*
5364 * This is racy, but way better than putting module outside of
5365 * the release callback. The race window is pretty small, so
5366 * doing something similar to dm (dm-builtin.c) is overkill.
5367 */
5368 if (need_put)
5369 module_put(THIS_MODULE);
5370 }
5371
__rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec)5372 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5373 struct rbd_spec *spec)
5374 {
5375 struct rbd_device *rbd_dev;
5376
5377 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5378 if (!rbd_dev)
5379 return NULL;
5380
5381 spin_lock_init(&rbd_dev->lock);
5382 INIT_LIST_HEAD(&rbd_dev->node);
5383 init_rwsem(&rbd_dev->header_rwsem);
5384
5385 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5386 ceph_oid_init(&rbd_dev->header_oid);
5387 rbd_dev->header_oloc.pool = spec->pool_id;
5388 if (spec->pool_ns) {
5389 WARN_ON(!*spec->pool_ns);
5390 rbd_dev->header_oloc.pool_ns =
5391 ceph_find_or_create_string(spec->pool_ns,
5392 strlen(spec->pool_ns));
5393 }
5394
5395 mutex_init(&rbd_dev->watch_mutex);
5396 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5397 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5398
5399 init_rwsem(&rbd_dev->lock_rwsem);
5400 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5401 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5402 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5403 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5404 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5405 spin_lock_init(&rbd_dev->lock_lists_lock);
5406 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5407 INIT_LIST_HEAD(&rbd_dev->running_list);
5408 init_completion(&rbd_dev->acquire_wait);
5409 init_completion(&rbd_dev->releasing_wait);
5410
5411 spin_lock_init(&rbd_dev->object_map_lock);
5412
5413 rbd_dev->dev.bus = &rbd_bus_type;
5414 rbd_dev->dev.type = &rbd_device_type;
5415 rbd_dev->dev.parent = &rbd_root_dev;
5416 device_initialize(&rbd_dev->dev);
5417
5418 rbd_dev->rbd_client = rbdc;
5419 rbd_dev->spec = spec;
5420
5421 return rbd_dev;
5422 }
5423
5424 /*
5425 * Create a mapping rbd_dev.
5426 */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5427 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5428 struct rbd_spec *spec,
5429 struct rbd_options *opts)
5430 {
5431 struct rbd_device *rbd_dev;
5432
5433 rbd_dev = __rbd_dev_create(rbdc, spec);
5434 if (!rbd_dev)
5435 return NULL;
5436
5437 rbd_dev->opts = opts;
5438
5439 /* get an id and fill in device name */
5440 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5441 minor_to_rbd_dev_id(1 << MINORBITS),
5442 GFP_KERNEL);
5443 if (rbd_dev->dev_id < 0)
5444 goto fail_rbd_dev;
5445
5446 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5447 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5448 rbd_dev->name);
5449 if (!rbd_dev->task_wq)
5450 goto fail_dev_id;
5451
5452 /* we have a ref from do_rbd_add() */
5453 __module_get(THIS_MODULE);
5454
5455 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5456 return rbd_dev;
5457
5458 fail_dev_id:
5459 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5460 fail_rbd_dev:
5461 rbd_dev_free(rbd_dev);
5462 return NULL;
5463 }
5464
rbd_dev_destroy(struct rbd_device * rbd_dev)5465 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5466 {
5467 if (rbd_dev)
5468 put_device(&rbd_dev->dev);
5469 }
5470
5471 /*
5472 * Get the size and object order for an image snapshot, or if
5473 * snap_id is CEPH_NOSNAP, gets this information for the base
5474 * image.
5475 */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5476 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5477 u8 *order, u64 *snap_size)
5478 {
5479 __le64 snapid = cpu_to_le64(snap_id);
5480 int ret;
5481 struct {
5482 u8 order;
5483 __le64 size;
5484 } __attribute__ ((packed)) size_buf = { 0 };
5485
5486 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5487 &rbd_dev->header_oloc, "get_size",
5488 &snapid, sizeof(snapid),
5489 &size_buf, sizeof(size_buf));
5490 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5491 if (ret < 0)
5492 return ret;
5493 if (ret < sizeof (size_buf))
5494 return -ERANGE;
5495
5496 if (order) {
5497 *order = size_buf.order;
5498 dout(" order %u", (unsigned int)*order);
5499 }
5500 *snap_size = le64_to_cpu(size_buf.size);
5501
5502 dout(" snap_id 0x%016llx snap_size = %llu\n",
5503 (unsigned long long)snap_id,
5504 (unsigned long long)*snap_size);
5505
5506 return 0;
5507 }
5508
rbd_dev_v2_image_size(struct rbd_device * rbd_dev)5509 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5510 {
5511 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5512 &rbd_dev->header.obj_order,
5513 &rbd_dev->header.image_size);
5514 }
5515
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev)5516 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5517 {
5518 size_t size;
5519 void *reply_buf;
5520 int ret;
5521 void *p;
5522
5523 /* Response will be an encoded string, which includes a length */
5524 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5525 reply_buf = kzalloc(size, GFP_KERNEL);
5526 if (!reply_buf)
5527 return -ENOMEM;
5528
5529 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5530 &rbd_dev->header_oloc, "get_object_prefix",
5531 NULL, 0, reply_buf, size);
5532 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5533 if (ret < 0)
5534 goto out;
5535
5536 p = reply_buf;
5537 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5538 p + ret, NULL, GFP_NOIO);
5539 ret = 0;
5540
5541 if (IS_ERR(rbd_dev->header.object_prefix)) {
5542 ret = PTR_ERR(rbd_dev->header.object_prefix);
5543 rbd_dev->header.object_prefix = NULL;
5544 } else {
5545 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5546 }
5547 out:
5548 kfree(reply_buf);
5549
5550 return ret;
5551 }
5552
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5553 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5554 bool read_only, u64 *snap_features)
5555 {
5556 struct {
5557 __le64 snap_id;
5558 u8 read_only;
5559 } features_in;
5560 struct {
5561 __le64 features;
5562 __le64 incompat;
5563 } __attribute__ ((packed)) features_buf = { 0 };
5564 u64 unsup;
5565 int ret;
5566
5567 features_in.snap_id = cpu_to_le64(snap_id);
5568 features_in.read_only = read_only;
5569
5570 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5571 &rbd_dev->header_oloc, "get_features",
5572 &features_in, sizeof(features_in),
5573 &features_buf, sizeof(features_buf));
5574 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5575 if (ret < 0)
5576 return ret;
5577 if (ret < sizeof (features_buf))
5578 return -ERANGE;
5579
5580 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5581 if (unsup) {
5582 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5583 unsup);
5584 return -ENXIO;
5585 }
5586
5587 *snap_features = le64_to_cpu(features_buf.features);
5588
5589 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5590 (unsigned long long)snap_id,
5591 (unsigned long long)*snap_features,
5592 (unsigned long long)le64_to_cpu(features_buf.incompat));
5593
5594 return 0;
5595 }
5596
rbd_dev_v2_features(struct rbd_device * rbd_dev)5597 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5598 {
5599 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5600 rbd_is_ro(rbd_dev),
5601 &rbd_dev->header.features);
5602 }
5603
5604 /*
5605 * These are generic image flags, but since they are used only for
5606 * object map, store them in rbd_dev->object_map_flags.
5607 *
5608 * For the same reason, this function is called only on object map
5609 * (re)load and not on header refresh.
5610 */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5611 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5612 {
5613 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5614 __le64 flags;
5615 int ret;
5616
5617 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5618 &rbd_dev->header_oloc, "get_flags",
5619 &snapid, sizeof(snapid),
5620 &flags, sizeof(flags));
5621 if (ret < 0)
5622 return ret;
5623 if (ret < sizeof(flags))
5624 return -EBADMSG;
5625
5626 rbd_dev->object_map_flags = le64_to_cpu(flags);
5627 return 0;
5628 }
5629
5630 struct parent_image_info {
5631 u64 pool_id;
5632 const char *pool_ns;
5633 const char *image_id;
5634 u64 snap_id;
5635
5636 bool has_overlap;
5637 u64 overlap;
5638 };
5639
5640 /*
5641 * The caller is responsible for @pii.
5642 */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5643 static int decode_parent_image_spec(void **p, void *end,
5644 struct parent_image_info *pii)
5645 {
5646 u8 struct_v;
5647 u32 struct_len;
5648 int ret;
5649
5650 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5651 &struct_v, &struct_len);
5652 if (ret)
5653 return ret;
5654
5655 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5656 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5657 if (IS_ERR(pii->pool_ns)) {
5658 ret = PTR_ERR(pii->pool_ns);
5659 pii->pool_ns = NULL;
5660 return ret;
5661 }
5662 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5663 if (IS_ERR(pii->image_id)) {
5664 ret = PTR_ERR(pii->image_id);
5665 pii->image_id = NULL;
5666 return ret;
5667 }
5668 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5669 return 0;
5670
5671 e_inval:
5672 return -EINVAL;
5673 }
5674
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5675 static int __get_parent_info(struct rbd_device *rbd_dev,
5676 struct page *req_page,
5677 struct page *reply_page,
5678 struct parent_image_info *pii)
5679 {
5680 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5681 size_t reply_len = PAGE_SIZE;
5682 void *p, *end;
5683 int ret;
5684
5685 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5686 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5687 req_page, sizeof(u64), &reply_page, &reply_len);
5688 if (ret)
5689 return ret == -EOPNOTSUPP ? 1 : ret;
5690
5691 p = page_address(reply_page);
5692 end = p + reply_len;
5693 ret = decode_parent_image_spec(&p, end, pii);
5694 if (ret)
5695 return ret;
5696
5697 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5698 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5699 req_page, sizeof(u64), &reply_page, &reply_len);
5700 if (ret)
5701 return ret;
5702
5703 p = page_address(reply_page);
5704 end = p + reply_len;
5705 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5706 if (pii->has_overlap)
5707 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5708
5709 return 0;
5710
5711 e_inval:
5712 return -EINVAL;
5713 }
5714
5715 /*
5716 * The caller is responsible for @pii.
5717 */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5718 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5719 struct page *req_page,
5720 struct page *reply_page,
5721 struct parent_image_info *pii)
5722 {
5723 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5724 size_t reply_len = PAGE_SIZE;
5725 void *p, *end;
5726 int ret;
5727
5728 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5729 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5730 req_page, sizeof(u64), &reply_page, &reply_len);
5731 if (ret)
5732 return ret;
5733
5734 p = page_address(reply_page);
5735 end = p + reply_len;
5736 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5737 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5738 if (IS_ERR(pii->image_id)) {
5739 ret = PTR_ERR(pii->image_id);
5740 pii->image_id = NULL;
5741 return ret;
5742 }
5743 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5744 pii->has_overlap = true;
5745 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5746
5747 return 0;
5748
5749 e_inval:
5750 return -EINVAL;
5751 }
5752
get_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5753 static int get_parent_info(struct rbd_device *rbd_dev,
5754 struct parent_image_info *pii)
5755 {
5756 struct page *req_page, *reply_page;
5757 void *p;
5758 int ret;
5759
5760 req_page = alloc_page(GFP_KERNEL);
5761 if (!req_page)
5762 return -ENOMEM;
5763
5764 reply_page = alloc_page(GFP_KERNEL);
5765 if (!reply_page) {
5766 __free_page(req_page);
5767 return -ENOMEM;
5768 }
5769
5770 p = page_address(req_page);
5771 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5772 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5773 if (ret > 0)
5774 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5775 pii);
5776
5777 __free_page(req_page);
5778 __free_page(reply_page);
5779 return ret;
5780 }
5781
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev)5782 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5783 {
5784 struct rbd_spec *parent_spec;
5785 struct parent_image_info pii = { 0 };
5786 int ret;
5787
5788 parent_spec = rbd_spec_alloc();
5789 if (!parent_spec)
5790 return -ENOMEM;
5791
5792 ret = get_parent_info(rbd_dev, &pii);
5793 if (ret)
5794 goto out_err;
5795
5796 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5797 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5798 pii.has_overlap, pii.overlap);
5799
5800 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5801 /*
5802 * Either the parent never existed, or we have
5803 * record of it but the image got flattened so it no
5804 * longer has a parent. When the parent of a
5805 * layered image disappears we immediately set the
5806 * overlap to 0. The effect of this is that all new
5807 * requests will be treated as if the image had no
5808 * parent.
5809 *
5810 * If !pii.has_overlap, the parent image spec is not
5811 * applicable. It's there to avoid duplication in each
5812 * snapshot record.
5813 */
5814 if (rbd_dev->parent_overlap) {
5815 rbd_dev->parent_overlap = 0;
5816 rbd_dev_parent_put(rbd_dev);
5817 pr_info("%s: clone image has been flattened\n",
5818 rbd_dev->disk->disk_name);
5819 }
5820
5821 goto out; /* No parent? No problem. */
5822 }
5823
5824 /* The ceph file layout needs to fit pool id in 32 bits */
5825
5826 ret = -EIO;
5827 if (pii.pool_id > (u64)U32_MAX) {
5828 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5829 (unsigned long long)pii.pool_id, U32_MAX);
5830 goto out_err;
5831 }
5832
5833 /*
5834 * The parent won't change (except when the clone is
5835 * flattened, already handled that). So we only need to
5836 * record the parent spec we have not already done so.
5837 */
5838 if (!rbd_dev->parent_spec) {
5839 parent_spec->pool_id = pii.pool_id;
5840 if (pii.pool_ns && *pii.pool_ns) {
5841 parent_spec->pool_ns = pii.pool_ns;
5842 pii.pool_ns = NULL;
5843 }
5844 parent_spec->image_id = pii.image_id;
5845 pii.image_id = NULL;
5846 parent_spec->snap_id = pii.snap_id;
5847
5848 rbd_dev->parent_spec = parent_spec;
5849 parent_spec = NULL; /* rbd_dev now owns this */
5850 }
5851
5852 /*
5853 * We always update the parent overlap. If it's zero we issue
5854 * a warning, as we will proceed as if there was no parent.
5855 */
5856 if (!pii.overlap) {
5857 if (parent_spec) {
5858 /* refresh, careful to warn just once */
5859 if (rbd_dev->parent_overlap)
5860 rbd_warn(rbd_dev,
5861 "clone now standalone (overlap became 0)");
5862 } else {
5863 /* initial probe */
5864 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5865 }
5866 }
5867 rbd_dev->parent_overlap = pii.overlap;
5868
5869 out:
5870 ret = 0;
5871 out_err:
5872 kfree(pii.pool_ns);
5873 kfree(pii.image_id);
5874 rbd_spec_put(parent_spec);
5875 return ret;
5876 }
5877
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev)5878 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5879 {
5880 struct {
5881 __le64 stripe_unit;
5882 __le64 stripe_count;
5883 } __attribute__ ((packed)) striping_info_buf = { 0 };
5884 size_t size = sizeof (striping_info_buf);
5885 void *p;
5886 int ret;
5887
5888 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5889 &rbd_dev->header_oloc, "get_stripe_unit_count",
5890 NULL, 0, &striping_info_buf, size);
5891 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5892 if (ret < 0)
5893 return ret;
5894 if (ret < size)
5895 return -ERANGE;
5896
5897 p = &striping_info_buf;
5898 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5899 rbd_dev->header.stripe_count = ceph_decode_64(&p);
5900 return 0;
5901 }
5902
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev)5903 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5904 {
5905 __le64 data_pool_id;
5906 int ret;
5907
5908 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5909 &rbd_dev->header_oloc, "get_data_pool",
5910 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5911 if (ret < 0)
5912 return ret;
5913 if (ret < sizeof(data_pool_id))
5914 return -EBADMSG;
5915
5916 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5917 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5918 return 0;
5919 }
5920
rbd_dev_image_name(struct rbd_device * rbd_dev)5921 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5922 {
5923 CEPH_DEFINE_OID_ONSTACK(oid);
5924 size_t image_id_size;
5925 char *image_id;
5926 void *p;
5927 void *end;
5928 size_t size;
5929 void *reply_buf = NULL;
5930 size_t len = 0;
5931 char *image_name = NULL;
5932 int ret;
5933
5934 rbd_assert(!rbd_dev->spec->image_name);
5935
5936 len = strlen(rbd_dev->spec->image_id);
5937 image_id_size = sizeof (__le32) + len;
5938 image_id = kmalloc(image_id_size, GFP_KERNEL);
5939 if (!image_id)
5940 return NULL;
5941
5942 p = image_id;
5943 end = image_id + image_id_size;
5944 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5945
5946 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5947 reply_buf = kmalloc(size, GFP_KERNEL);
5948 if (!reply_buf)
5949 goto out;
5950
5951 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5952 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5953 "dir_get_name", image_id, image_id_size,
5954 reply_buf, size);
5955 if (ret < 0)
5956 goto out;
5957 p = reply_buf;
5958 end = reply_buf + ret;
5959
5960 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5961 if (IS_ERR(image_name))
5962 image_name = NULL;
5963 else
5964 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5965 out:
5966 kfree(reply_buf);
5967 kfree(image_id);
5968
5969 return image_name;
5970 }
5971
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5972 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5973 {
5974 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5975 const char *snap_name;
5976 u32 which = 0;
5977
5978 /* Skip over names until we find the one we are looking for */
5979
5980 snap_name = rbd_dev->header.snap_names;
5981 while (which < snapc->num_snaps) {
5982 if (!strcmp(name, snap_name))
5983 return snapc->snaps[which];
5984 snap_name += strlen(snap_name) + 1;
5985 which++;
5986 }
5987 return CEPH_NOSNAP;
5988 }
5989
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5990 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5991 {
5992 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5993 u32 which;
5994 bool found = false;
5995 u64 snap_id;
5996
5997 for (which = 0; !found && which < snapc->num_snaps; which++) {
5998 const char *snap_name;
5999
6000 snap_id = snapc->snaps[which];
6001 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6002 if (IS_ERR(snap_name)) {
6003 /* ignore no-longer existing snapshots */
6004 if (PTR_ERR(snap_name) == -ENOENT)
6005 continue;
6006 else
6007 break;
6008 }
6009 found = !strcmp(name, snap_name);
6010 kfree(snap_name);
6011 }
6012 return found ? snap_id : CEPH_NOSNAP;
6013 }
6014
6015 /*
6016 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6017 * no snapshot by that name is found, or if an error occurs.
6018 */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6019 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6020 {
6021 if (rbd_dev->image_format == 1)
6022 return rbd_v1_snap_id_by_name(rbd_dev, name);
6023
6024 return rbd_v2_snap_id_by_name(rbd_dev, name);
6025 }
6026
6027 /*
6028 * An image being mapped will have everything but the snap id.
6029 */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)6030 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6031 {
6032 struct rbd_spec *spec = rbd_dev->spec;
6033
6034 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6035 rbd_assert(spec->image_id && spec->image_name);
6036 rbd_assert(spec->snap_name);
6037
6038 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6039 u64 snap_id;
6040
6041 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6042 if (snap_id == CEPH_NOSNAP)
6043 return -ENOENT;
6044
6045 spec->snap_id = snap_id;
6046 } else {
6047 spec->snap_id = CEPH_NOSNAP;
6048 }
6049
6050 return 0;
6051 }
6052
6053 /*
6054 * A parent image will have all ids but none of the names.
6055 *
6056 * All names in an rbd spec are dynamically allocated. It's OK if we
6057 * can't figure out the name for an image id.
6058 */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6059 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6060 {
6061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6062 struct rbd_spec *spec = rbd_dev->spec;
6063 const char *pool_name;
6064 const char *image_name;
6065 const char *snap_name;
6066 int ret;
6067
6068 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6069 rbd_assert(spec->image_id);
6070 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6071
6072 /* Get the pool name; we have to make our own copy of this */
6073
6074 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6075 if (!pool_name) {
6076 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6077 return -EIO;
6078 }
6079 pool_name = kstrdup(pool_name, GFP_KERNEL);
6080 if (!pool_name)
6081 return -ENOMEM;
6082
6083 /* Fetch the image name; tolerate failure here */
6084
6085 image_name = rbd_dev_image_name(rbd_dev);
6086 if (!image_name)
6087 rbd_warn(rbd_dev, "unable to get image name");
6088
6089 /* Fetch the snapshot name */
6090
6091 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6092 if (IS_ERR(snap_name)) {
6093 ret = PTR_ERR(snap_name);
6094 goto out_err;
6095 }
6096
6097 spec->pool_name = pool_name;
6098 spec->image_name = image_name;
6099 spec->snap_name = snap_name;
6100
6101 return 0;
6102
6103 out_err:
6104 kfree(image_name);
6105 kfree(pool_name);
6106 return ret;
6107 }
6108
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev)6109 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6110 {
6111 size_t size;
6112 int ret;
6113 void *reply_buf;
6114 void *p;
6115 void *end;
6116 u64 seq;
6117 u32 snap_count;
6118 struct ceph_snap_context *snapc;
6119 u32 i;
6120
6121 /*
6122 * We'll need room for the seq value (maximum snapshot id),
6123 * snapshot count, and array of that many snapshot ids.
6124 * For now we have a fixed upper limit on the number we're
6125 * prepared to receive.
6126 */
6127 size = sizeof (__le64) + sizeof (__le32) +
6128 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6129 reply_buf = kzalloc(size, GFP_KERNEL);
6130 if (!reply_buf)
6131 return -ENOMEM;
6132
6133 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6134 &rbd_dev->header_oloc, "get_snapcontext",
6135 NULL, 0, reply_buf, size);
6136 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6137 if (ret < 0)
6138 goto out;
6139
6140 p = reply_buf;
6141 end = reply_buf + ret;
6142 ret = -ERANGE;
6143 ceph_decode_64_safe(&p, end, seq, out);
6144 ceph_decode_32_safe(&p, end, snap_count, out);
6145
6146 /*
6147 * Make sure the reported number of snapshot ids wouldn't go
6148 * beyond the end of our buffer. But before checking that,
6149 * make sure the computed size of the snapshot context we
6150 * allocate is representable in a size_t.
6151 */
6152 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6153 / sizeof (u64)) {
6154 ret = -EINVAL;
6155 goto out;
6156 }
6157 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6158 goto out;
6159 ret = 0;
6160
6161 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6162 if (!snapc) {
6163 ret = -ENOMEM;
6164 goto out;
6165 }
6166 snapc->seq = seq;
6167 for (i = 0; i < snap_count; i++)
6168 snapc->snaps[i] = ceph_decode_64(&p);
6169
6170 ceph_put_snap_context(rbd_dev->header.snapc);
6171 rbd_dev->header.snapc = snapc;
6172
6173 dout(" snap context seq = %llu, snap_count = %u\n",
6174 (unsigned long long)seq, (unsigned int)snap_count);
6175 out:
6176 kfree(reply_buf);
6177
6178 return ret;
6179 }
6180
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6181 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6182 u64 snap_id)
6183 {
6184 size_t size;
6185 void *reply_buf;
6186 __le64 snapid;
6187 int ret;
6188 void *p;
6189 void *end;
6190 char *snap_name;
6191
6192 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6193 reply_buf = kmalloc(size, GFP_KERNEL);
6194 if (!reply_buf)
6195 return ERR_PTR(-ENOMEM);
6196
6197 snapid = cpu_to_le64(snap_id);
6198 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6199 &rbd_dev->header_oloc, "get_snapshot_name",
6200 &snapid, sizeof(snapid), reply_buf, size);
6201 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6202 if (ret < 0) {
6203 snap_name = ERR_PTR(ret);
6204 goto out;
6205 }
6206
6207 p = reply_buf;
6208 end = reply_buf + ret;
6209 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6210 if (IS_ERR(snap_name))
6211 goto out;
6212
6213 dout(" snap_id 0x%016llx snap_name = %s\n",
6214 (unsigned long long)snap_id, snap_name);
6215 out:
6216 kfree(reply_buf);
6217
6218 return snap_name;
6219 }
6220
rbd_dev_v2_header_info(struct rbd_device * rbd_dev)6221 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6222 {
6223 bool first_time = rbd_dev->header.object_prefix == NULL;
6224 int ret;
6225
6226 ret = rbd_dev_v2_image_size(rbd_dev);
6227 if (ret)
6228 return ret;
6229
6230 if (first_time) {
6231 ret = rbd_dev_v2_header_onetime(rbd_dev);
6232 if (ret)
6233 return ret;
6234 }
6235
6236 ret = rbd_dev_v2_snap_context(rbd_dev);
6237 if (ret && first_time) {
6238 kfree(rbd_dev->header.object_prefix);
6239 rbd_dev->header.object_prefix = NULL;
6240 }
6241
6242 return ret;
6243 }
6244
rbd_dev_header_info(struct rbd_device * rbd_dev)6245 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6246 {
6247 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6248
6249 if (rbd_dev->image_format == 1)
6250 return rbd_dev_v1_header_info(rbd_dev);
6251
6252 return rbd_dev_v2_header_info(rbd_dev);
6253 }
6254
6255 /*
6256 * Skips over white space at *buf, and updates *buf to point to the
6257 * first found non-space character (if any). Returns the length of
6258 * the token (string of non-white space characters) found. Note
6259 * that *buf must be terminated with '\0'.
6260 */
next_token(const char ** buf)6261 static inline size_t next_token(const char **buf)
6262 {
6263 /*
6264 * These are the characters that produce nonzero for
6265 * isspace() in the "C" and "POSIX" locales.
6266 */
6267 const char *spaces = " \f\n\r\t\v";
6268
6269 *buf += strspn(*buf, spaces); /* Find start of token */
6270
6271 return strcspn(*buf, spaces); /* Return token length */
6272 }
6273
6274 /*
6275 * Finds the next token in *buf, dynamically allocates a buffer big
6276 * enough to hold a copy of it, and copies the token into the new
6277 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6278 * that a duplicate buffer is created even for a zero-length token.
6279 *
6280 * Returns a pointer to the newly-allocated duplicate, or a null
6281 * pointer if memory for the duplicate was not available. If
6282 * the lenp argument is a non-null pointer, the length of the token
6283 * (not including the '\0') is returned in *lenp.
6284 *
6285 * If successful, the *buf pointer will be updated to point beyond
6286 * the end of the found token.
6287 *
6288 * Note: uses GFP_KERNEL for allocation.
6289 */
dup_token(const char ** buf,size_t * lenp)6290 static inline char *dup_token(const char **buf, size_t *lenp)
6291 {
6292 char *dup;
6293 size_t len;
6294
6295 len = next_token(buf);
6296 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6297 if (!dup)
6298 return NULL;
6299 *(dup + len) = '\0';
6300 *buf += len;
6301
6302 if (lenp)
6303 *lenp = len;
6304
6305 return dup;
6306 }
6307
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6308 static int rbd_parse_param(struct fs_parameter *param,
6309 struct rbd_parse_opts_ctx *pctx)
6310 {
6311 struct rbd_options *opt = pctx->opts;
6312 struct fs_parse_result result;
6313 struct p_log log = {.prefix = "rbd"};
6314 int token, ret;
6315
6316 ret = ceph_parse_param(param, pctx->copts, NULL);
6317 if (ret != -ENOPARAM)
6318 return ret;
6319
6320 token = __fs_parse(&log, rbd_parameters, param, &result);
6321 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6322 if (token < 0) {
6323 if (token == -ENOPARAM)
6324 return inval_plog(&log, "Unknown parameter '%s'",
6325 param->key);
6326 return token;
6327 }
6328
6329 switch (token) {
6330 case Opt_queue_depth:
6331 if (result.uint_32 < 1)
6332 goto out_of_range;
6333 opt->queue_depth = result.uint_32;
6334 break;
6335 case Opt_alloc_size:
6336 if (result.uint_32 < SECTOR_SIZE)
6337 goto out_of_range;
6338 if (!is_power_of_2(result.uint_32))
6339 return inval_plog(&log, "alloc_size must be a power of 2");
6340 opt->alloc_size = result.uint_32;
6341 break;
6342 case Opt_lock_timeout:
6343 /* 0 is "wait forever" (i.e. infinite timeout) */
6344 if (result.uint_32 > INT_MAX / 1000)
6345 goto out_of_range;
6346 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6347 break;
6348 case Opt_pool_ns:
6349 kfree(pctx->spec->pool_ns);
6350 pctx->spec->pool_ns = param->string;
6351 param->string = NULL;
6352 break;
6353 case Opt_compression_hint:
6354 switch (result.uint_32) {
6355 case Opt_compression_hint_none:
6356 opt->alloc_hint_flags &=
6357 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6358 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6359 break;
6360 case Opt_compression_hint_compressible:
6361 opt->alloc_hint_flags |=
6362 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6363 opt->alloc_hint_flags &=
6364 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6365 break;
6366 case Opt_compression_hint_incompressible:
6367 opt->alloc_hint_flags |=
6368 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6369 opt->alloc_hint_flags &=
6370 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6371 break;
6372 default:
6373 BUG();
6374 }
6375 break;
6376 case Opt_read_only:
6377 opt->read_only = true;
6378 break;
6379 case Opt_read_write:
6380 opt->read_only = false;
6381 break;
6382 case Opt_lock_on_read:
6383 opt->lock_on_read = true;
6384 break;
6385 case Opt_exclusive:
6386 opt->exclusive = true;
6387 break;
6388 case Opt_notrim:
6389 opt->trim = false;
6390 break;
6391 default:
6392 BUG();
6393 }
6394
6395 return 0;
6396
6397 out_of_range:
6398 return inval_plog(&log, "%s out of range", param->key);
6399 }
6400
6401 /*
6402 * This duplicates most of generic_parse_monolithic(), untying it from
6403 * fs_context and skipping standard superblock and security options.
6404 */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6405 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6406 {
6407 char *key;
6408 int ret = 0;
6409
6410 dout("%s '%s'\n", __func__, options);
6411 while ((key = strsep(&options, ",")) != NULL) {
6412 if (*key) {
6413 struct fs_parameter param = {
6414 .key = key,
6415 .type = fs_value_is_flag,
6416 };
6417 char *value = strchr(key, '=');
6418 size_t v_len = 0;
6419
6420 if (value) {
6421 if (value == key)
6422 continue;
6423 *value++ = 0;
6424 v_len = strlen(value);
6425 param.string = kmemdup_nul(value, v_len,
6426 GFP_KERNEL);
6427 if (!param.string)
6428 return -ENOMEM;
6429 param.type = fs_value_is_string;
6430 }
6431 param.size = v_len;
6432
6433 ret = rbd_parse_param(¶m, pctx);
6434 kfree(param.string);
6435 if (ret)
6436 break;
6437 }
6438 }
6439
6440 return ret;
6441 }
6442
6443 /*
6444 * Parse the options provided for an "rbd add" (i.e., rbd image
6445 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6446 * and the data written is passed here via a NUL-terminated buffer.
6447 * Returns 0 if successful or an error code otherwise.
6448 *
6449 * The information extracted from these options is recorded in
6450 * the other parameters which return dynamically-allocated
6451 * structures:
6452 * ceph_opts
6453 * The address of a pointer that will refer to a ceph options
6454 * structure. Caller must release the returned pointer using
6455 * ceph_destroy_options() when it is no longer needed.
6456 * rbd_opts
6457 * Address of an rbd options pointer. Fully initialized by
6458 * this function; caller must release with kfree().
6459 * spec
6460 * Address of an rbd image specification pointer. Fully
6461 * initialized by this function based on parsed options.
6462 * Caller must release with rbd_spec_put().
6463 *
6464 * The options passed take this form:
6465 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6466 * where:
6467 * <mon_addrs>
6468 * A comma-separated list of one or more monitor addresses.
6469 * A monitor address is an ip address, optionally followed
6470 * by a port number (separated by a colon).
6471 * I.e.: ip1[:port1][,ip2[:port2]...]
6472 * <options>
6473 * A comma-separated list of ceph and/or rbd options.
6474 * <pool_name>
6475 * The name of the rados pool containing the rbd image.
6476 * <image_name>
6477 * The name of the image in that pool to map.
6478 * <snap_id>
6479 * An optional snapshot id. If provided, the mapping will
6480 * present data from the image at the time that snapshot was
6481 * created. The image head is used if no snapshot id is
6482 * provided. Snapshot mappings are always read-only.
6483 */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6484 static int rbd_add_parse_args(const char *buf,
6485 struct ceph_options **ceph_opts,
6486 struct rbd_options **opts,
6487 struct rbd_spec **rbd_spec)
6488 {
6489 size_t len;
6490 char *options;
6491 const char *mon_addrs;
6492 char *snap_name;
6493 size_t mon_addrs_size;
6494 struct rbd_parse_opts_ctx pctx = { 0 };
6495 int ret;
6496
6497 /* The first four tokens are required */
6498
6499 len = next_token(&buf);
6500 if (!len) {
6501 rbd_warn(NULL, "no monitor address(es) provided");
6502 return -EINVAL;
6503 }
6504 mon_addrs = buf;
6505 mon_addrs_size = len;
6506 buf += len;
6507
6508 ret = -EINVAL;
6509 options = dup_token(&buf, NULL);
6510 if (!options)
6511 return -ENOMEM;
6512 if (!*options) {
6513 rbd_warn(NULL, "no options provided");
6514 goto out_err;
6515 }
6516
6517 pctx.spec = rbd_spec_alloc();
6518 if (!pctx.spec)
6519 goto out_mem;
6520
6521 pctx.spec->pool_name = dup_token(&buf, NULL);
6522 if (!pctx.spec->pool_name)
6523 goto out_mem;
6524 if (!*pctx.spec->pool_name) {
6525 rbd_warn(NULL, "no pool name provided");
6526 goto out_err;
6527 }
6528
6529 pctx.spec->image_name = dup_token(&buf, NULL);
6530 if (!pctx.spec->image_name)
6531 goto out_mem;
6532 if (!*pctx.spec->image_name) {
6533 rbd_warn(NULL, "no image name provided");
6534 goto out_err;
6535 }
6536
6537 /*
6538 * Snapshot name is optional; default is to use "-"
6539 * (indicating the head/no snapshot).
6540 */
6541 len = next_token(&buf);
6542 if (!len) {
6543 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6544 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6545 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6546 ret = -ENAMETOOLONG;
6547 goto out_err;
6548 }
6549 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6550 if (!snap_name)
6551 goto out_mem;
6552 *(snap_name + len) = '\0';
6553 pctx.spec->snap_name = snap_name;
6554
6555 pctx.copts = ceph_alloc_options();
6556 if (!pctx.copts)
6557 goto out_mem;
6558
6559 /* Initialize all rbd options to the defaults */
6560
6561 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6562 if (!pctx.opts)
6563 goto out_mem;
6564
6565 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6566 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6567 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6568 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6569 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6570 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6571 pctx.opts->trim = RBD_TRIM_DEFAULT;
6572
6573 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6574 if (ret)
6575 goto out_err;
6576
6577 ret = rbd_parse_options(options, &pctx);
6578 if (ret)
6579 goto out_err;
6580
6581 *ceph_opts = pctx.copts;
6582 *opts = pctx.opts;
6583 *rbd_spec = pctx.spec;
6584 kfree(options);
6585 return 0;
6586
6587 out_mem:
6588 ret = -ENOMEM;
6589 out_err:
6590 kfree(pctx.opts);
6591 ceph_destroy_options(pctx.copts);
6592 rbd_spec_put(pctx.spec);
6593 kfree(options);
6594 return ret;
6595 }
6596
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6597 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6598 {
6599 down_write(&rbd_dev->lock_rwsem);
6600 if (__rbd_is_lock_owner(rbd_dev))
6601 __rbd_release_lock(rbd_dev);
6602 up_write(&rbd_dev->lock_rwsem);
6603 }
6604
6605 /*
6606 * If the wait is interrupted, an error is returned even if the lock
6607 * was successfully acquired. rbd_dev_image_unlock() will release it
6608 * if needed.
6609 */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6610 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6611 {
6612 long ret;
6613
6614 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6615 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6616 return 0;
6617
6618 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6619 return -EINVAL;
6620 }
6621
6622 if (rbd_is_ro(rbd_dev))
6623 return 0;
6624
6625 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6626 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6627 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6628 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6629 if (ret > 0) {
6630 ret = rbd_dev->acquire_err;
6631 } else {
6632 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6633 if (!ret)
6634 ret = -ETIMEDOUT;
6635 }
6636
6637 if (ret) {
6638 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6639 return ret;
6640 }
6641
6642 /*
6643 * The lock may have been released by now, unless automatic lock
6644 * transitions are disabled.
6645 */
6646 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6647 return 0;
6648 }
6649
6650 /*
6651 * An rbd format 2 image has a unique identifier, distinct from the
6652 * name given to it by the user. Internally, that identifier is
6653 * what's used to specify the names of objects related to the image.
6654 *
6655 * A special "rbd id" object is used to map an rbd image name to its
6656 * id. If that object doesn't exist, then there is no v2 rbd image
6657 * with the supplied name.
6658 *
6659 * This function will record the given rbd_dev's image_id field if
6660 * it can be determined, and in that case will return 0. If any
6661 * errors occur a negative errno will be returned and the rbd_dev's
6662 * image_id field will be unchanged (and should be NULL).
6663 */
rbd_dev_image_id(struct rbd_device * rbd_dev)6664 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6665 {
6666 int ret;
6667 size_t size;
6668 CEPH_DEFINE_OID_ONSTACK(oid);
6669 void *response;
6670 char *image_id;
6671
6672 /*
6673 * When probing a parent image, the image id is already
6674 * known (and the image name likely is not). There's no
6675 * need to fetch the image id again in this case. We
6676 * do still need to set the image format though.
6677 */
6678 if (rbd_dev->spec->image_id) {
6679 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6680
6681 return 0;
6682 }
6683
6684 /*
6685 * First, see if the format 2 image id file exists, and if
6686 * so, get the image's persistent id from it.
6687 */
6688 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6689 rbd_dev->spec->image_name);
6690 if (ret)
6691 return ret;
6692
6693 dout("rbd id object name is %s\n", oid.name);
6694
6695 /* Response will be an encoded string, which includes a length */
6696 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6697 response = kzalloc(size, GFP_NOIO);
6698 if (!response) {
6699 ret = -ENOMEM;
6700 goto out;
6701 }
6702
6703 /* If it doesn't exist we'll assume it's a format 1 image */
6704
6705 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6706 "get_id", NULL, 0,
6707 response, size);
6708 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6709 if (ret == -ENOENT) {
6710 image_id = kstrdup("", GFP_KERNEL);
6711 ret = image_id ? 0 : -ENOMEM;
6712 if (!ret)
6713 rbd_dev->image_format = 1;
6714 } else if (ret >= 0) {
6715 void *p = response;
6716
6717 image_id = ceph_extract_encoded_string(&p, p + ret,
6718 NULL, GFP_NOIO);
6719 ret = PTR_ERR_OR_ZERO(image_id);
6720 if (!ret)
6721 rbd_dev->image_format = 2;
6722 }
6723
6724 if (!ret) {
6725 rbd_dev->spec->image_id = image_id;
6726 dout("image_id is %s\n", image_id);
6727 }
6728 out:
6729 kfree(response);
6730 ceph_oid_destroy(&oid);
6731 return ret;
6732 }
6733
6734 /*
6735 * Undo whatever state changes are made by v1 or v2 header info
6736 * call.
6737 */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6738 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6739 {
6740 struct rbd_image_header *header;
6741
6742 rbd_dev_parent_put(rbd_dev);
6743 rbd_object_map_free(rbd_dev);
6744 rbd_dev_mapping_clear(rbd_dev);
6745
6746 /* Free dynamic fields from the header, then zero it out */
6747
6748 header = &rbd_dev->header;
6749 ceph_put_snap_context(header->snapc);
6750 kfree(header->snap_sizes);
6751 kfree(header->snap_names);
6752 kfree(header->object_prefix);
6753 memset(header, 0, sizeof (*header));
6754 }
6755
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev)6756 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6757 {
6758 int ret;
6759
6760 ret = rbd_dev_v2_object_prefix(rbd_dev);
6761 if (ret)
6762 goto out_err;
6763
6764 /*
6765 * Get the and check features for the image. Currently the
6766 * features are assumed to never change.
6767 */
6768 ret = rbd_dev_v2_features(rbd_dev);
6769 if (ret)
6770 goto out_err;
6771
6772 /* If the image supports fancy striping, get its parameters */
6773
6774 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6775 ret = rbd_dev_v2_striping_info(rbd_dev);
6776 if (ret < 0)
6777 goto out_err;
6778 }
6779
6780 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6781 ret = rbd_dev_v2_data_pool(rbd_dev);
6782 if (ret)
6783 goto out_err;
6784 }
6785
6786 rbd_init_layout(rbd_dev);
6787 return 0;
6788
6789 out_err:
6790 rbd_dev->header.features = 0;
6791 kfree(rbd_dev->header.object_prefix);
6792 rbd_dev->header.object_prefix = NULL;
6793 return ret;
6794 }
6795
6796 /*
6797 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6798 * rbd_dev_image_probe() recursion depth, which means it's also the
6799 * length of the already discovered part of the parent chain.
6800 */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6801 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6802 {
6803 struct rbd_device *parent = NULL;
6804 int ret;
6805
6806 if (!rbd_dev->parent_spec)
6807 return 0;
6808
6809 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6810 pr_info("parent chain is too long (%d)\n", depth);
6811 ret = -EINVAL;
6812 goto out_err;
6813 }
6814
6815 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6816 if (!parent) {
6817 ret = -ENOMEM;
6818 goto out_err;
6819 }
6820
6821 /*
6822 * Images related by parent/child relationships always share
6823 * rbd_client and spec/parent_spec, so bump their refcounts.
6824 */
6825 __rbd_get_client(rbd_dev->rbd_client);
6826 rbd_spec_get(rbd_dev->parent_spec);
6827
6828 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6829
6830 ret = rbd_dev_image_probe(parent, depth);
6831 if (ret < 0)
6832 goto out_err;
6833
6834 rbd_dev->parent = parent;
6835 atomic_set(&rbd_dev->parent_ref, 1);
6836 return 0;
6837
6838 out_err:
6839 rbd_dev_unparent(rbd_dev);
6840 rbd_dev_destroy(parent);
6841 return ret;
6842 }
6843
rbd_dev_device_release(struct rbd_device * rbd_dev)6844 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6845 {
6846 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6847 rbd_free_disk(rbd_dev);
6848 if (!single_major)
6849 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6850 }
6851
6852 /*
6853 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6854 * upon return.
6855 */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6856 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6857 {
6858 int ret;
6859
6860 /* Record our major and minor device numbers. */
6861
6862 if (!single_major) {
6863 ret = register_blkdev(0, rbd_dev->name);
6864 if (ret < 0)
6865 goto err_out_unlock;
6866
6867 rbd_dev->major = ret;
6868 rbd_dev->minor = 0;
6869 } else {
6870 rbd_dev->major = rbd_major;
6871 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6872 }
6873
6874 /* Set up the blkdev mapping. */
6875
6876 ret = rbd_init_disk(rbd_dev);
6877 if (ret)
6878 goto err_out_blkdev;
6879
6880 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6881 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6882
6883 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6884 if (ret)
6885 goto err_out_disk;
6886
6887 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6888 up_write(&rbd_dev->header_rwsem);
6889 return 0;
6890
6891 err_out_disk:
6892 rbd_free_disk(rbd_dev);
6893 err_out_blkdev:
6894 if (!single_major)
6895 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6896 err_out_unlock:
6897 up_write(&rbd_dev->header_rwsem);
6898 return ret;
6899 }
6900
rbd_dev_header_name(struct rbd_device * rbd_dev)6901 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6902 {
6903 struct rbd_spec *spec = rbd_dev->spec;
6904 int ret;
6905
6906 /* Record the header object name for this rbd image. */
6907
6908 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6909 if (rbd_dev->image_format == 1)
6910 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6911 spec->image_name, RBD_SUFFIX);
6912 else
6913 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6914 RBD_HEADER_PREFIX, spec->image_id);
6915
6916 return ret;
6917 }
6918
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6919 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6920 {
6921 if (!is_snap) {
6922 pr_info("image %s/%s%s%s does not exist\n",
6923 rbd_dev->spec->pool_name,
6924 rbd_dev->spec->pool_ns ?: "",
6925 rbd_dev->spec->pool_ns ? "/" : "",
6926 rbd_dev->spec->image_name);
6927 } else {
6928 pr_info("snap %s/%s%s%s@%s does not exist\n",
6929 rbd_dev->spec->pool_name,
6930 rbd_dev->spec->pool_ns ?: "",
6931 rbd_dev->spec->pool_ns ? "/" : "",
6932 rbd_dev->spec->image_name,
6933 rbd_dev->spec->snap_name);
6934 }
6935 }
6936
rbd_dev_image_release(struct rbd_device * rbd_dev)6937 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6938 {
6939 if (!rbd_is_ro(rbd_dev))
6940 rbd_unregister_watch(rbd_dev);
6941
6942 rbd_dev_unprobe(rbd_dev);
6943 rbd_dev->image_format = 0;
6944 kfree(rbd_dev->spec->image_id);
6945 rbd_dev->spec->image_id = NULL;
6946 }
6947
6948 /*
6949 * Probe for the existence of the header object for the given rbd
6950 * device. If this image is the one being mapped (i.e., not a
6951 * parent), initiate a watch on its header object before using that
6952 * object to get detailed information about the rbd image.
6953 *
6954 * On success, returns with header_rwsem held for write if called
6955 * with @depth == 0.
6956 */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6957 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6958 {
6959 bool need_watch = !rbd_is_ro(rbd_dev);
6960 int ret;
6961
6962 /*
6963 * Get the id from the image id object. Unless there's an
6964 * error, rbd_dev->spec->image_id will be filled in with
6965 * a dynamically-allocated string, and rbd_dev->image_format
6966 * will be set to either 1 or 2.
6967 */
6968 ret = rbd_dev_image_id(rbd_dev);
6969 if (ret)
6970 return ret;
6971
6972 ret = rbd_dev_header_name(rbd_dev);
6973 if (ret)
6974 goto err_out_format;
6975
6976 if (need_watch) {
6977 ret = rbd_register_watch(rbd_dev);
6978 if (ret) {
6979 if (ret == -ENOENT)
6980 rbd_print_dne(rbd_dev, false);
6981 goto err_out_format;
6982 }
6983 }
6984
6985 if (!depth)
6986 down_write(&rbd_dev->header_rwsem);
6987
6988 ret = rbd_dev_header_info(rbd_dev);
6989 if (ret) {
6990 if (ret == -ENOENT && !need_watch)
6991 rbd_print_dne(rbd_dev, false);
6992 goto err_out_probe;
6993 }
6994
6995 /*
6996 * If this image is the one being mapped, we have pool name and
6997 * id, image name and id, and snap name - need to fill snap id.
6998 * Otherwise this is a parent image, identified by pool, image
6999 * and snap ids - need to fill in names for those ids.
7000 */
7001 if (!depth)
7002 ret = rbd_spec_fill_snap_id(rbd_dev);
7003 else
7004 ret = rbd_spec_fill_names(rbd_dev);
7005 if (ret) {
7006 if (ret == -ENOENT)
7007 rbd_print_dne(rbd_dev, true);
7008 goto err_out_probe;
7009 }
7010
7011 ret = rbd_dev_mapping_set(rbd_dev);
7012 if (ret)
7013 goto err_out_probe;
7014
7015 if (rbd_is_snap(rbd_dev) &&
7016 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7017 ret = rbd_object_map_load(rbd_dev);
7018 if (ret)
7019 goto err_out_probe;
7020 }
7021
7022 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7023 ret = rbd_dev_v2_parent_info(rbd_dev);
7024 if (ret)
7025 goto err_out_probe;
7026 }
7027
7028 ret = rbd_dev_probe_parent(rbd_dev, depth);
7029 if (ret)
7030 goto err_out_probe;
7031
7032 dout("discovered format %u image, header name is %s\n",
7033 rbd_dev->image_format, rbd_dev->header_oid.name);
7034 return 0;
7035
7036 err_out_probe:
7037 if (!depth)
7038 up_write(&rbd_dev->header_rwsem);
7039 if (need_watch)
7040 rbd_unregister_watch(rbd_dev);
7041 rbd_dev_unprobe(rbd_dev);
7042 err_out_format:
7043 rbd_dev->image_format = 0;
7044 kfree(rbd_dev->spec->image_id);
7045 rbd_dev->spec->image_id = NULL;
7046 return ret;
7047 }
7048
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7049 static ssize_t do_rbd_add(struct bus_type *bus,
7050 const char *buf,
7051 size_t count)
7052 {
7053 struct rbd_device *rbd_dev = NULL;
7054 struct ceph_options *ceph_opts = NULL;
7055 struct rbd_options *rbd_opts = NULL;
7056 struct rbd_spec *spec = NULL;
7057 struct rbd_client *rbdc;
7058 int rc;
7059
7060 if (!capable(CAP_SYS_ADMIN))
7061 return -EPERM;
7062
7063 if (!try_module_get(THIS_MODULE))
7064 return -ENODEV;
7065
7066 /* parse add command */
7067 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7068 if (rc < 0)
7069 goto out;
7070
7071 rbdc = rbd_get_client(ceph_opts);
7072 if (IS_ERR(rbdc)) {
7073 rc = PTR_ERR(rbdc);
7074 goto err_out_args;
7075 }
7076
7077 /* pick the pool */
7078 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7079 if (rc < 0) {
7080 if (rc == -ENOENT)
7081 pr_info("pool %s does not exist\n", spec->pool_name);
7082 goto err_out_client;
7083 }
7084 spec->pool_id = (u64)rc;
7085
7086 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7087 if (!rbd_dev) {
7088 rc = -ENOMEM;
7089 goto err_out_client;
7090 }
7091 rbdc = NULL; /* rbd_dev now owns this */
7092 spec = NULL; /* rbd_dev now owns this */
7093 rbd_opts = NULL; /* rbd_dev now owns this */
7094
7095 /* if we are mapping a snapshot it will be a read-only mapping */
7096 if (rbd_dev->opts->read_only ||
7097 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7098 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7099
7100 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7101 if (!rbd_dev->config_info) {
7102 rc = -ENOMEM;
7103 goto err_out_rbd_dev;
7104 }
7105
7106 rc = rbd_dev_image_probe(rbd_dev, 0);
7107 if (rc < 0)
7108 goto err_out_rbd_dev;
7109
7110 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7111 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7112 rbd_dev->layout.object_size);
7113 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7114 }
7115
7116 rc = rbd_dev_device_setup(rbd_dev);
7117 if (rc)
7118 goto err_out_image_probe;
7119
7120 rc = rbd_add_acquire_lock(rbd_dev);
7121 if (rc)
7122 goto err_out_image_lock;
7123
7124 /* Everything's ready. Announce the disk to the world. */
7125
7126 rc = device_add(&rbd_dev->dev);
7127 if (rc)
7128 goto err_out_image_lock;
7129
7130 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7131 /* see rbd_init_disk() */
7132 blk_put_queue(rbd_dev->disk->queue);
7133
7134 spin_lock(&rbd_dev_list_lock);
7135 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7136 spin_unlock(&rbd_dev_list_lock);
7137
7138 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7139 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7140 rbd_dev->header.features);
7141 rc = count;
7142 out:
7143 module_put(THIS_MODULE);
7144 return rc;
7145
7146 err_out_image_lock:
7147 rbd_dev_image_unlock(rbd_dev);
7148 rbd_dev_device_release(rbd_dev);
7149 err_out_image_probe:
7150 rbd_dev_image_release(rbd_dev);
7151 err_out_rbd_dev:
7152 rbd_dev_destroy(rbd_dev);
7153 err_out_client:
7154 rbd_put_client(rbdc);
7155 err_out_args:
7156 rbd_spec_put(spec);
7157 kfree(rbd_opts);
7158 goto out;
7159 }
7160
add_store(struct bus_type * bus,const char * buf,size_t count)7161 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7162 {
7163 if (single_major)
7164 return -EINVAL;
7165
7166 return do_rbd_add(bus, buf, count);
7167 }
7168
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7169 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7170 size_t count)
7171 {
7172 return do_rbd_add(bus, buf, count);
7173 }
7174
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7175 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7176 {
7177 while (rbd_dev->parent) {
7178 struct rbd_device *first = rbd_dev;
7179 struct rbd_device *second = first->parent;
7180 struct rbd_device *third;
7181
7182 /*
7183 * Follow to the parent with no grandparent and
7184 * remove it.
7185 */
7186 while (second && (third = second->parent)) {
7187 first = second;
7188 second = third;
7189 }
7190 rbd_assert(second);
7191 rbd_dev_image_release(second);
7192 rbd_dev_destroy(second);
7193 first->parent = NULL;
7194 first->parent_overlap = 0;
7195
7196 rbd_assert(first->parent_spec);
7197 rbd_spec_put(first->parent_spec);
7198 first->parent_spec = NULL;
7199 }
7200 }
7201
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7202 static ssize_t do_rbd_remove(struct bus_type *bus,
7203 const char *buf,
7204 size_t count)
7205 {
7206 struct rbd_device *rbd_dev = NULL;
7207 struct list_head *tmp;
7208 int dev_id;
7209 char opt_buf[6];
7210 bool force = false;
7211 int ret;
7212
7213 if (!capable(CAP_SYS_ADMIN))
7214 return -EPERM;
7215
7216 dev_id = -1;
7217 opt_buf[0] = '\0';
7218 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7219 if (dev_id < 0) {
7220 pr_err("dev_id out of range\n");
7221 return -EINVAL;
7222 }
7223 if (opt_buf[0] != '\0') {
7224 if (!strcmp(opt_buf, "force")) {
7225 force = true;
7226 } else {
7227 pr_err("bad remove option at '%s'\n", opt_buf);
7228 return -EINVAL;
7229 }
7230 }
7231
7232 ret = -ENOENT;
7233 spin_lock(&rbd_dev_list_lock);
7234 list_for_each(tmp, &rbd_dev_list) {
7235 rbd_dev = list_entry(tmp, struct rbd_device, node);
7236 if (rbd_dev->dev_id == dev_id) {
7237 ret = 0;
7238 break;
7239 }
7240 }
7241 if (!ret) {
7242 spin_lock_irq(&rbd_dev->lock);
7243 if (rbd_dev->open_count && !force)
7244 ret = -EBUSY;
7245 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7246 &rbd_dev->flags))
7247 ret = -EINPROGRESS;
7248 spin_unlock_irq(&rbd_dev->lock);
7249 }
7250 spin_unlock(&rbd_dev_list_lock);
7251 if (ret)
7252 return ret;
7253
7254 if (force) {
7255 /*
7256 * Prevent new IO from being queued and wait for existing
7257 * IO to complete/fail.
7258 */
7259 blk_mq_freeze_queue(rbd_dev->disk->queue);
7260 blk_set_queue_dying(rbd_dev->disk->queue);
7261 }
7262
7263 del_gendisk(rbd_dev->disk);
7264 spin_lock(&rbd_dev_list_lock);
7265 list_del_init(&rbd_dev->node);
7266 spin_unlock(&rbd_dev_list_lock);
7267 device_del(&rbd_dev->dev);
7268
7269 rbd_dev_image_unlock(rbd_dev);
7270 rbd_dev_device_release(rbd_dev);
7271 rbd_dev_image_release(rbd_dev);
7272 rbd_dev_destroy(rbd_dev);
7273 return count;
7274 }
7275
remove_store(struct bus_type * bus,const char * buf,size_t count)7276 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7277 {
7278 if (single_major)
7279 return -EINVAL;
7280
7281 return do_rbd_remove(bus, buf, count);
7282 }
7283
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7284 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7285 size_t count)
7286 {
7287 return do_rbd_remove(bus, buf, count);
7288 }
7289
7290 /*
7291 * create control files in sysfs
7292 * /sys/bus/rbd/...
7293 */
rbd_sysfs_init(void)7294 static int __init rbd_sysfs_init(void)
7295 {
7296 int ret;
7297
7298 ret = device_register(&rbd_root_dev);
7299 if (ret < 0)
7300 return ret;
7301
7302 ret = bus_register(&rbd_bus_type);
7303 if (ret < 0)
7304 device_unregister(&rbd_root_dev);
7305
7306 return ret;
7307 }
7308
rbd_sysfs_cleanup(void)7309 static void __exit rbd_sysfs_cleanup(void)
7310 {
7311 bus_unregister(&rbd_bus_type);
7312 device_unregister(&rbd_root_dev);
7313 }
7314
rbd_slab_init(void)7315 static int __init rbd_slab_init(void)
7316 {
7317 rbd_assert(!rbd_img_request_cache);
7318 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7319 if (!rbd_img_request_cache)
7320 return -ENOMEM;
7321
7322 rbd_assert(!rbd_obj_request_cache);
7323 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7324 if (!rbd_obj_request_cache)
7325 goto out_err;
7326
7327 return 0;
7328
7329 out_err:
7330 kmem_cache_destroy(rbd_img_request_cache);
7331 rbd_img_request_cache = NULL;
7332 return -ENOMEM;
7333 }
7334
rbd_slab_exit(void)7335 static void rbd_slab_exit(void)
7336 {
7337 rbd_assert(rbd_obj_request_cache);
7338 kmem_cache_destroy(rbd_obj_request_cache);
7339 rbd_obj_request_cache = NULL;
7340
7341 rbd_assert(rbd_img_request_cache);
7342 kmem_cache_destroy(rbd_img_request_cache);
7343 rbd_img_request_cache = NULL;
7344 }
7345
rbd_init(void)7346 static int __init rbd_init(void)
7347 {
7348 int rc;
7349
7350 if (!libceph_compatible(NULL)) {
7351 rbd_warn(NULL, "libceph incompatibility (quitting)");
7352 return -EINVAL;
7353 }
7354
7355 rc = rbd_slab_init();
7356 if (rc)
7357 return rc;
7358
7359 /*
7360 * The number of active work items is limited by the number of
7361 * rbd devices * queue depth, so leave @max_active at default.
7362 */
7363 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7364 if (!rbd_wq) {
7365 rc = -ENOMEM;
7366 goto err_out_slab;
7367 }
7368
7369 if (single_major) {
7370 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7371 if (rbd_major < 0) {
7372 rc = rbd_major;
7373 goto err_out_wq;
7374 }
7375 }
7376
7377 rc = rbd_sysfs_init();
7378 if (rc)
7379 goto err_out_blkdev;
7380
7381 if (single_major)
7382 pr_info("loaded (major %d)\n", rbd_major);
7383 else
7384 pr_info("loaded\n");
7385
7386 return 0;
7387
7388 err_out_blkdev:
7389 if (single_major)
7390 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7391 err_out_wq:
7392 destroy_workqueue(rbd_wq);
7393 err_out_slab:
7394 rbd_slab_exit();
7395 return rc;
7396 }
7397
rbd_exit(void)7398 static void __exit rbd_exit(void)
7399 {
7400 ida_destroy(&rbd_dev_id_ida);
7401 rbd_sysfs_cleanup();
7402 if (single_major)
7403 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7404 destroy_workqueue(rbd_wq);
7405 rbd_slab_exit();
7406 }
7407
7408 module_init(rbd_init);
7409 module_exit(rbd_exit);
7410
7411 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7412 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7413 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7414 /* following authorship retained from original osdblk.c */
7415 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7416
7417 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7418 MODULE_LICENSE("GPL");
7419