1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for STMicroelectronics STM32 I2C controller
4 *
5 * This I2C controller is described in the STM32F429/439 Soc reference manual.
6 * Please see below a link to the documentation:
7 * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
8 *
9 * Copyright (C) M'boumba Cedric Madianga 2016
10 * Copyright (C) STMicroelectronics 2017
11 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
12 *
13 * This driver is based on i2c-st.c
14 *
15 */
16
17 #include <linux/clk.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/i2c.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/iopoll.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset.h>
30
31 #include "i2c-stm32.h"
32
33 /* STM32F4 I2C offset registers */
34 #define STM32F4_I2C_CR1 0x00
35 #define STM32F4_I2C_CR2 0x04
36 #define STM32F4_I2C_DR 0x10
37 #define STM32F4_I2C_SR1 0x14
38 #define STM32F4_I2C_SR2 0x18
39 #define STM32F4_I2C_CCR 0x1C
40 #define STM32F4_I2C_TRISE 0x20
41 #define STM32F4_I2C_FLTR 0x24
42
43 /* STM32F4 I2C control 1*/
44 #define STM32F4_I2C_CR1_POS BIT(11)
45 #define STM32F4_I2C_CR1_ACK BIT(10)
46 #define STM32F4_I2C_CR1_STOP BIT(9)
47 #define STM32F4_I2C_CR1_START BIT(8)
48 #define STM32F4_I2C_CR1_PE BIT(0)
49
50 /* STM32F4 I2C control 2 */
51 #define STM32F4_I2C_CR2_FREQ_MASK GENMASK(5, 0)
52 #define STM32F4_I2C_CR2_FREQ(n) ((n) & STM32F4_I2C_CR2_FREQ_MASK)
53 #define STM32F4_I2C_CR2_ITBUFEN BIT(10)
54 #define STM32F4_I2C_CR2_ITEVTEN BIT(9)
55 #define STM32F4_I2C_CR2_ITERREN BIT(8)
56 #define STM32F4_I2C_CR2_IRQ_MASK (STM32F4_I2C_CR2_ITBUFEN | \
57 STM32F4_I2C_CR2_ITEVTEN | \
58 STM32F4_I2C_CR2_ITERREN)
59
60 /* STM32F4 I2C Status 1 */
61 #define STM32F4_I2C_SR1_AF BIT(10)
62 #define STM32F4_I2C_SR1_ARLO BIT(9)
63 #define STM32F4_I2C_SR1_BERR BIT(8)
64 #define STM32F4_I2C_SR1_TXE BIT(7)
65 #define STM32F4_I2C_SR1_RXNE BIT(6)
66 #define STM32F4_I2C_SR1_BTF BIT(2)
67 #define STM32F4_I2C_SR1_ADDR BIT(1)
68 #define STM32F4_I2C_SR1_SB BIT(0)
69 #define STM32F4_I2C_SR1_ITEVTEN_MASK (STM32F4_I2C_SR1_BTF | \
70 STM32F4_I2C_SR1_ADDR | \
71 STM32F4_I2C_SR1_SB)
72 #define STM32F4_I2C_SR1_ITBUFEN_MASK (STM32F4_I2C_SR1_TXE | \
73 STM32F4_I2C_SR1_RXNE)
74 #define STM32F4_I2C_SR1_ITERREN_MASK (STM32F4_I2C_SR1_AF | \
75 STM32F4_I2C_SR1_ARLO | \
76 STM32F4_I2C_SR1_BERR)
77
78 /* STM32F4 I2C Status 2 */
79 #define STM32F4_I2C_SR2_BUSY BIT(1)
80
81 /* STM32F4 I2C Control Clock */
82 #define STM32F4_I2C_CCR_CCR_MASK GENMASK(11, 0)
83 #define STM32F4_I2C_CCR_CCR(n) ((n) & STM32F4_I2C_CCR_CCR_MASK)
84 #define STM32F4_I2C_CCR_FS BIT(15)
85 #define STM32F4_I2C_CCR_DUTY BIT(14)
86
87 /* STM32F4 I2C Trise */
88 #define STM32F4_I2C_TRISE_VALUE_MASK GENMASK(5, 0)
89 #define STM32F4_I2C_TRISE_VALUE(n) ((n) & STM32F4_I2C_TRISE_VALUE_MASK)
90
91 #define STM32F4_I2C_MIN_STANDARD_FREQ 2U
92 #define STM32F4_I2C_MIN_FAST_FREQ 6U
93 #define STM32F4_I2C_MAX_FREQ 46U
94 #define HZ_TO_MHZ 1000000
95
96 /**
97 * struct stm32f4_i2c_msg - client specific data
98 * @addr: 8-bit slave addr, including r/w bit
99 * @count: number of bytes to be transferred
100 * @buf: data buffer
101 * @result: result of the transfer
102 * @stop: last I2C msg to be sent, i.e. STOP to be generated
103 */
104 struct stm32f4_i2c_msg {
105 u8 addr;
106 u32 count;
107 u8 *buf;
108 int result;
109 bool stop;
110 };
111
112 /**
113 * struct stm32f4_i2c_dev - private data of the controller
114 * @adap: I2C adapter for this controller
115 * @dev: device for this controller
116 * @base: virtual memory area
117 * @complete: completion of I2C message
118 * @clk: hw i2c clock
119 * @speed: I2C clock frequency of the controller. Standard or Fast are supported
120 * @parent_rate: I2C clock parent rate in MHz
121 * @msg: I2C transfer information
122 */
123 struct stm32f4_i2c_dev {
124 struct i2c_adapter adap;
125 struct device *dev;
126 void __iomem *base;
127 struct completion complete;
128 struct clk *clk;
129 int speed;
130 int parent_rate;
131 struct stm32f4_i2c_msg msg;
132 };
133
stm32f4_i2c_set_bits(void __iomem * reg,u32 mask)134 static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
135 {
136 writel_relaxed(readl_relaxed(reg) | mask, reg);
137 }
138
stm32f4_i2c_clr_bits(void __iomem * reg,u32 mask)139 static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
140 {
141 writel_relaxed(readl_relaxed(reg) & ~mask, reg);
142 }
143
stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev * i2c_dev)144 static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
145 {
146 void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
147
148 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
149 }
150
stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev * i2c_dev)151 static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
152 {
153 u32 freq;
154 u32 cr2 = 0;
155
156 i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
157 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
158
159 if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
160 /*
161 * To reach 100 kHz, the parent clk frequency should be between
162 * a minimum value of 2 MHz and a maximum value of 46 MHz due
163 * to hardware limitation
164 */
165 if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
166 freq > STM32F4_I2C_MAX_FREQ) {
167 dev_err(i2c_dev->dev,
168 "bad parent clk freq for standard mode\n");
169 return -EINVAL;
170 }
171 } else {
172 /*
173 * To be as close as possible to 400 kHz, the parent clk
174 * frequency should be between a minimum value of 6 MHz and a
175 * maximum value of 46 MHz due to hardware limitation
176 */
177 if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
178 freq > STM32F4_I2C_MAX_FREQ) {
179 dev_err(i2c_dev->dev,
180 "bad parent clk freq for fast mode\n");
181 return -EINVAL;
182 }
183 }
184
185 cr2 |= STM32F4_I2C_CR2_FREQ(freq);
186 writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
187
188 return 0;
189 }
190
stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev * i2c_dev)191 static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
192 {
193 u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
194 u32 trise;
195
196 /*
197 * These bits must be programmed with the maximum SCL rise time given in
198 * the I2C bus specification, incremented by 1.
199 *
200 * In standard mode, the maximum allowed SCL rise time is 1000 ns.
201 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
202 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
203 * programmed with 0x9. (1000 ns / 125 ns + 1)
204 * So, for I2C standard mode TRISE = FREQ[5:0] + 1
205 *
206 * In fast mode, the maximum allowed SCL rise time is 300 ns.
207 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
208 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
209 * programmed with 0x3. (300 ns / 125 ns + 1)
210 * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
211 *
212 * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
213 * is not higher than 46 MHz . As a result trise is at most 4 bits wide
214 * and so fits into the TRISE bits [5:0].
215 */
216 if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
217 trise = freq + 1;
218 else
219 trise = freq * 3 / 10 + 1;
220
221 writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
222 i2c_dev->base + STM32F4_I2C_TRISE);
223 }
224
stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev * i2c_dev)225 static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
226 {
227 u32 val;
228 u32 ccr = 0;
229
230 if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
231 /*
232 * In standard mode:
233 * t_scl_high = t_scl_low = CCR * I2C parent clk period
234 * So to reach 100 kHz, we have:
235 * CCR = I2C parent rate / (100 kHz * 2)
236 *
237 * For example with parent rate = 2 MHz:
238 * CCR = 2000000 / (100000 * 2) = 10
239 * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
240 * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
241 *
242 * Function stm32f4_i2c_set_periph_clk_freq made sure that
243 * parent rate is not higher than 46 MHz . As a result val
244 * is at most 8 bits wide and so fits into the CCR bits [11:0].
245 */
246 val = i2c_dev->parent_rate / (I2C_MAX_STANDARD_MODE_FREQ * 2);
247 } else {
248 /*
249 * In fast mode, we compute CCR with duty = 0 as with low
250 * frequencies we are not able to reach 400 kHz.
251 * In that case:
252 * t_scl_high = CCR * I2C parent clk period
253 * t_scl_low = 2 * CCR * I2C parent clk period
254 * So, CCR = I2C parent rate / (400 kHz * 3)
255 *
256 * For example with parent rate = 6 MHz:
257 * CCR = 6000000 / (400000 * 3) = 5
258 * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
259 * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
260 * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
261 *
262 * Function stm32f4_i2c_set_periph_clk_freq made sure that
263 * parent rate is not higher than 46 MHz . As a result val
264 * is at most 6 bits wide and so fits into the CCR bits [11:0].
265 */
266 val = DIV_ROUND_UP(i2c_dev->parent_rate, I2C_MAX_FAST_MODE_FREQ * 3);
267
268 /* Select Fast mode */
269 ccr |= STM32F4_I2C_CCR_FS;
270 }
271
272 ccr |= STM32F4_I2C_CCR_CCR(val);
273 writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
274 }
275
276 /**
277 * stm32f4_i2c_hw_config() - Prepare I2C block
278 * @i2c_dev: Controller's private data
279 */
stm32f4_i2c_hw_config(struct stm32f4_i2c_dev * i2c_dev)280 static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
281 {
282 int ret;
283
284 ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
285 if (ret)
286 return ret;
287
288 stm32f4_i2c_set_rise_time(i2c_dev);
289
290 stm32f4_i2c_set_speed_mode(i2c_dev);
291
292 /* Enable I2C */
293 writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
294
295 return 0;
296 }
297
stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev * i2c_dev)298 static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
299 {
300 u32 status;
301 int ret;
302
303 ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
304 status,
305 !(status & STM32F4_I2C_SR2_BUSY),
306 10, 1000);
307 if (ret) {
308 dev_dbg(i2c_dev->dev, "bus not free\n");
309 ret = -EBUSY;
310 }
311
312 return ret;
313 }
314
315 /**
316 * stm32f4_i2c_write_ byte() - Write a byte in the data register
317 * @i2c_dev: Controller's private data
318 * @byte: Data to write in the register
319 */
stm32f4_i2c_write_byte(struct stm32f4_i2c_dev * i2c_dev,u8 byte)320 static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
321 {
322 writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
323 }
324
325 /**
326 * stm32f4_i2c_write_msg() - Fill the data register in write mode
327 * @i2c_dev: Controller's private data
328 *
329 * This function fills the data register with I2C transfer buffer
330 */
stm32f4_i2c_write_msg(struct stm32f4_i2c_dev * i2c_dev)331 static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
332 {
333 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
334
335 stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
336 msg->count--;
337 }
338
stm32f4_i2c_read_msg(struct stm32f4_i2c_dev * i2c_dev)339 static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
340 {
341 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
342 u32 rbuf;
343
344 rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
345 *msg->buf++ = rbuf;
346 msg->count--;
347 }
348
stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev * i2c_dev)349 static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
350 {
351 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
352 void __iomem *reg;
353
354 stm32f4_i2c_disable_irq(i2c_dev);
355
356 reg = i2c_dev->base + STM32F4_I2C_CR1;
357 if (msg->stop)
358 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
359 else
360 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
361
362 complete(&i2c_dev->complete);
363 }
364
365 /**
366 * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
367 * @i2c_dev: Controller's private data
368 */
stm32f4_i2c_handle_write(struct stm32f4_i2c_dev * i2c_dev)369 static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
370 {
371 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
372 void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
373
374 if (msg->count) {
375 stm32f4_i2c_write_msg(i2c_dev);
376 if (!msg->count) {
377 /*
378 * Disable buffer interrupts for RX not empty and TX
379 * empty events
380 */
381 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
382 }
383 } else {
384 stm32f4_i2c_terminate_xfer(i2c_dev);
385 }
386 }
387
388 /**
389 * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
390 * @i2c_dev: Controller's private data
391 *
392 * This function is called when a new data is received in data register
393 */
stm32f4_i2c_handle_read(struct stm32f4_i2c_dev * i2c_dev)394 static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
395 {
396 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
397 void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
398
399 switch (msg->count) {
400 case 1:
401 stm32f4_i2c_disable_irq(i2c_dev);
402 stm32f4_i2c_read_msg(i2c_dev);
403 complete(&i2c_dev->complete);
404 break;
405 /*
406 * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
407 * for N-byte reception with N > 3, we do not have to read the data
408 * register when RX not empty event occurs as we have to wait for byte
409 * transferred finished event before reading data.
410 * So, here we just disable buffer interrupt in order to avoid another
411 * system preemption due to RX not empty event.
412 */
413 case 2:
414 case 3:
415 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
416 break;
417 /*
418 * For N byte reception with N > 3 we directly read data register
419 * until N-2 data.
420 */
421 default:
422 stm32f4_i2c_read_msg(i2c_dev);
423 }
424 }
425
426 /**
427 * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
428 * in case of read
429 * @i2c_dev: Controller's private data
430 *
431 * This function is called when a new data is received in the shift register
432 * but data register has not been read yet.
433 */
stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev * i2c_dev)434 static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
435 {
436 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
437 void __iomem *reg;
438 u32 mask;
439 int i;
440
441 switch (msg->count) {
442 case 2:
443 /*
444 * In order to correctly send the Stop or Repeated Start
445 * condition on the I2C bus, the STOP/START bit has to be set
446 * before reading the last two bytes (data N-1 and N).
447 * After that, we could read the last two bytes, disable
448 * remaining interrupts and notify the end of xfer to the
449 * client
450 */
451 reg = i2c_dev->base + STM32F4_I2C_CR1;
452 if (msg->stop)
453 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
454 else
455 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
456
457 for (i = 2; i > 0; i--)
458 stm32f4_i2c_read_msg(i2c_dev);
459
460 reg = i2c_dev->base + STM32F4_I2C_CR2;
461 mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
462 stm32f4_i2c_clr_bits(reg, mask);
463
464 complete(&i2c_dev->complete);
465 break;
466 case 3:
467 /*
468 * In order to correctly generate the NACK pulse after the last
469 * received data byte, we have to enable NACK before reading N-2
470 * data
471 */
472 reg = i2c_dev->base + STM32F4_I2C_CR1;
473 stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
474 stm32f4_i2c_read_msg(i2c_dev);
475 break;
476 default:
477 stm32f4_i2c_read_msg(i2c_dev);
478 }
479 }
480
481 /**
482 * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
483 * master receiver
484 * @i2c_dev: Controller's private data
485 */
stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev * i2c_dev)486 static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
487 {
488 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
489 u32 cr1;
490
491 switch (msg->count) {
492 case 0:
493 stm32f4_i2c_terminate_xfer(i2c_dev);
494
495 /* Clear ADDR flag */
496 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
497 break;
498 case 1:
499 /*
500 * Single byte reception:
501 * Enable NACK and reset POS (Acknowledge position).
502 * Then, clear ADDR flag and set STOP or RepSTART.
503 * In that way, the NACK and STOP or RepStart pulses will be
504 * sent as soon as the byte will be received in shift register
505 */
506 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
507 cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
508 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
509
510 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
511
512 if (msg->stop)
513 cr1 |= STM32F4_I2C_CR1_STOP;
514 else
515 cr1 |= STM32F4_I2C_CR1_START;
516 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
517 break;
518 case 2:
519 /*
520 * 2-byte reception:
521 * Enable NACK, set POS (NACK position) and clear ADDR flag.
522 * In that way, NACK will be sent for the next byte which will
523 * be received in the shift register instead of the current
524 * one.
525 */
526 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
527 cr1 &= ~STM32F4_I2C_CR1_ACK;
528 cr1 |= STM32F4_I2C_CR1_POS;
529 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
530
531 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
532 break;
533
534 default:
535 /*
536 * N-byte reception:
537 * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
538 * In that way, ACK will be sent as soon as the current byte
539 * will be received in the shift register
540 */
541 cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
542 cr1 |= STM32F4_I2C_CR1_ACK;
543 cr1 &= ~STM32F4_I2C_CR1_POS;
544 writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
545
546 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
547 break;
548 }
549 }
550
551 /**
552 * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
553 * @irq: interrupt number
554 * @data: Controller's private data
555 */
stm32f4_i2c_isr_event(int irq,void * data)556 static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
557 {
558 struct stm32f4_i2c_dev *i2c_dev = data;
559 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
560 u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
561 u32 status, ien, event, cr2;
562
563 cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
564 ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
565
566 /* Update possible_status if buffer interrupt is enabled */
567 if (ien & STM32F4_I2C_CR2_ITBUFEN)
568 possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
569
570 status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
571 event = status & possible_status;
572 if (!event) {
573 dev_dbg(i2c_dev->dev,
574 "spurious evt irq (status=0x%08x, ien=0x%08x)\n",
575 status, ien);
576 return IRQ_NONE;
577 }
578
579 /* Start condition generated */
580 if (event & STM32F4_I2C_SR1_SB)
581 stm32f4_i2c_write_byte(i2c_dev, msg->addr);
582
583 /* I2C Address sent */
584 if (event & STM32F4_I2C_SR1_ADDR) {
585 if (msg->addr & I2C_M_RD)
586 stm32f4_i2c_handle_rx_addr(i2c_dev);
587 else
588 readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
589
590 /*
591 * Enable buffer interrupts for RX not empty and TX empty
592 * events
593 */
594 cr2 |= STM32F4_I2C_CR2_ITBUFEN;
595 writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
596 }
597
598 /* TX empty */
599 if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
600 stm32f4_i2c_handle_write(i2c_dev);
601
602 /* RX not empty */
603 if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
604 stm32f4_i2c_handle_read(i2c_dev);
605
606 /*
607 * The BTF (Byte Transfer finished) event occurs when:
608 * - in reception : a new byte is received in the shift register
609 * but the previous byte has not been read yet from data register
610 * - in transmission: a new byte should be sent but the data register
611 * has not been written yet
612 */
613 if (event & STM32F4_I2C_SR1_BTF) {
614 if (msg->addr & I2C_M_RD)
615 stm32f4_i2c_handle_rx_done(i2c_dev);
616 else
617 stm32f4_i2c_handle_write(i2c_dev);
618 }
619
620 return IRQ_HANDLED;
621 }
622
623 /**
624 * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
625 * @irq: interrupt number
626 * @data: Controller's private data
627 */
stm32f4_i2c_isr_error(int irq,void * data)628 static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
629 {
630 struct stm32f4_i2c_dev *i2c_dev = data;
631 struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
632 void __iomem *reg;
633 u32 status;
634
635 status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
636
637 /* Arbitration lost */
638 if (status & STM32F4_I2C_SR1_ARLO) {
639 status &= ~STM32F4_I2C_SR1_ARLO;
640 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
641 msg->result = -EAGAIN;
642 }
643
644 /*
645 * Acknowledge failure:
646 * In master transmitter mode a Stop must be generated by software
647 */
648 if (status & STM32F4_I2C_SR1_AF) {
649 if (!(msg->addr & I2C_M_RD)) {
650 reg = i2c_dev->base + STM32F4_I2C_CR1;
651 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
652 }
653 status &= ~STM32F4_I2C_SR1_AF;
654 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
655 msg->result = -EIO;
656 }
657
658 /* Bus error */
659 if (status & STM32F4_I2C_SR1_BERR) {
660 status &= ~STM32F4_I2C_SR1_BERR;
661 writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
662 msg->result = -EIO;
663 }
664
665 stm32f4_i2c_disable_irq(i2c_dev);
666 complete(&i2c_dev->complete);
667
668 return IRQ_HANDLED;
669 }
670
671 /**
672 * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
673 * @i2c_dev: Controller's private data
674 * @msg: I2C message to transfer
675 * @is_first: first message of the sequence
676 * @is_last: last message of the sequence
677 */
stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev * i2c_dev,struct i2c_msg * msg,bool is_first,bool is_last)678 static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
679 struct i2c_msg *msg, bool is_first,
680 bool is_last)
681 {
682 struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
683 void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
684 unsigned long timeout;
685 u32 mask;
686 int ret;
687
688 f4_msg->addr = i2c_8bit_addr_from_msg(msg);
689 f4_msg->buf = msg->buf;
690 f4_msg->count = msg->len;
691 f4_msg->result = 0;
692 f4_msg->stop = is_last;
693
694 reinit_completion(&i2c_dev->complete);
695
696 /* Enable events and errors interrupts */
697 mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
698 stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
699
700 if (is_first) {
701 ret = stm32f4_i2c_wait_free_bus(i2c_dev);
702 if (ret)
703 return ret;
704
705 /* START generation */
706 stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
707 }
708
709 timeout = wait_for_completion_timeout(&i2c_dev->complete,
710 i2c_dev->adap.timeout);
711 ret = f4_msg->result;
712
713 if (!timeout)
714 ret = -ETIMEDOUT;
715
716 return ret;
717 }
718
719 /**
720 * stm32f4_i2c_xfer() - Transfer combined I2C message
721 * @i2c_adap: Adapter pointer to the controller
722 * @msgs: Pointer to data to be written.
723 * @num: Number of messages to be executed
724 */
stm32f4_i2c_xfer(struct i2c_adapter * i2c_adap,struct i2c_msg msgs[],int num)725 static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
726 int num)
727 {
728 struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
729 int ret, i;
730
731 ret = clk_enable(i2c_dev->clk);
732 if (ret) {
733 dev_err(i2c_dev->dev, "Failed to enable clock\n");
734 return ret;
735 }
736
737 for (i = 0; i < num && !ret; i++)
738 ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
739 i == num - 1);
740
741 clk_disable(i2c_dev->clk);
742
743 return (ret < 0) ? ret : num;
744 }
745
stm32f4_i2c_func(struct i2c_adapter * adap)746 static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
747 {
748 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
749 }
750
751 static const struct i2c_algorithm stm32f4_i2c_algo = {
752 .master_xfer = stm32f4_i2c_xfer,
753 .functionality = stm32f4_i2c_func,
754 };
755
stm32f4_i2c_probe(struct platform_device * pdev)756 static int stm32f4_i2c_probe(struct platform_device *pdev)
757 {
758 struct device_node *np = pdev->dev.of_node;
759 struct stm32f4_i2c_dev *i2c_dev;
760 struct resource *res;
761 u32 irq_event, irq_error, clk_rate;
762 struct i2c_adapter *adap;
763 struct reset_control *rst;
764 int ret;
765
766 i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
767 if (!i2c_dev)
768 return -ENOMEM;
769
770 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
771 i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
772 if (IS_ERR(i2c_dev->base))
773 return PTR_ERR(i2c_dev->base);
774
775 irq_event = irq_of_parse_and_map(np, 0);
776 if (!irq_event) {
777 dev_err(&pdev->dev, "IRQ event missing or invalid\n");
778 return -EINVAL;
779 }
780
781 irq_error = irq_of_parse_and_map(np, 1);
782 if (!irq_error) {
783 dev_err(&pdev->dev, "IRQ error missing or invalid\n");
784 return -EINVAL;
785 }
786
787 i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
788 if (IS_ERR(i2c_dev->clk)) {
789 dev_err(&pdev->dev, "Error: Missing controller clock\n");
790 return PTR_ERR(i2c_dev->clk);
791 }
792 ret = clk_prepare_enable(i2c_dev->clk);
793 if (ret) {
794 dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
795 return ret;
796 }
797
798 rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
799 if (IS_ERR(rst)) {
800 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
801 "Error: Missing reset ctrl\n");
802 goto clk_free;
803 }
804 reset_control_assert(rst);
805 udelay(2);
806 reset_control_deassert(rst);
807
808 i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
809 ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
810 if (!ret && clk_rate >= I2C_MAX_FAST_MODE_FREQ)
811 i2c_dev->speed = STM32_I2C_SPEED_FAST;
812
813 i2c_dev->dev = &pdev->dev;
814
815 ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
816 pdev->name, i2c_dev);
817 if (ret) {
818 dev_err(&pdev->dev, "Failed to request irq event %i\n",
819 irq_event);
820 goto clk_free;
821 }
822
823 ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
824 pdev->name, i2c_dev);
825 if (ret) {
826 dev_err(&pdev->dev, "Failed to request irq error %i\n",
827 irq_error);
828 goto clk_free;
829 }
830
831 ret = stm32f4_i2c_hw_config(i2c_dev);
832 if (ret)
833 goto clk_free;
834
835 adap = &i2c_dev->adap;
836 i2c_set_adapdata(adap, i2c_dev);
837 snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
838 adap->owner = THIS_MODULE;
839 adap->timeout = 2 * HZ;
840 adap->retries = 0;
841 adap->algo = &stm32f4_i2c_algo;
842 adap->dev.parent = &pdev->dev;
843 adap->dev.of_node = pdev->dev.of_node;
844
845 init_completion(&i2c_dev->complete);
846
847 ret = i2c_add_adapter(adap);
848 if (ret)
849 goto clk_free;
850
851 platform_set_drvdata(pdev, i2c_dev);
852
853 clk_disable(i2c_dev->clk);
854
855 dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
856
857 return 0;
858
859 clk_free:
860 clk_disable_unprepare(i2c_dev->clk);
861 return ret;
862 }
863
stm32f4_i2c_remove(struct platform_device * pdev)864 static int stm32f4_i2c_remove(struct platform_device *pdev)
865 {
866 struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
867
868 i2c_del_adapter(&i2c_dev->adap);
869
870 clk_unprepare(i2c_dev->clk);
871
872 return 0;
873 }
874
875 static const struct of_device_id stm32f4_i2c_match[] = {
876 { .compatible = "st,stm32f4-i2c", },
877 {},
878 };
879 MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
880
881 static struct platform_driver stm32f4_i2c_driver = {
882 .driver = {
883 .name = "stm32f4-i2c",
884 .of_match_table = stm32f4_i2c_match,
885 },
886 .probe = stm32f4_i2c_probe,
887 .remove = stm32f4_i2c_remove,
888 };
889
890 module_platform_driver(stm32f4_i2c_driver);
891
892 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
893 MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
894 MODULE_LICENSE("GPL v2");
895