1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * exynos_adc.c - Support for ADC in EXYNOS SoCs
4 *
5 * 8 ~ 10 channel, 10/12-bit ADC
6 *
7 * Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8 */
9
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_platform.h>
24 #include <linux/err.h>
25 #include <linux/input.h>
26
27 #include <linux/iio/iio.h>
28 #include <linux/iio/machine.h>
29 #include <linux/iio/driver.h>
30 #include <linux/mfd/syscon.h>
31 #include <linux/regmap.h>
32
33 #include <linux/platform_data/touchscreen-s3c2410.h>
34
35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36 #define ADC_V1_CON(x) ((x) + 0x00)
37 #define ADC_V1_TSC(x) ((x) + 0x04)
38 #define ADC_V1_DLY(x) ((x) + 0x08)
39 #define ADC_V1_DATX(x) ((x) + 0x0C)
40 #define ADC_V1_DATY(x) ((x) + 0x10)
41 #define ADC_V1_UPDN(x) ((x) + 0x14)
42 #define ADC_V1_INTCLR(x) ((x) + 0x18)
43 #define ADC_V1_MUX(x) ((x) + 0x1c)
44 #define ADC_V1_CLRINTPNDNUP(x) ((x) + 0x20)
45
46 /* S3C2410 ADC registers definitions */
47 #define ADC_S3C2410_MUX(x) ((x) + 0x18)
48
49 /* Future ADC_V2 registers definitions */
50 #define ADC_V2_CON1(x) ((x) + 0x00)
51 #define ADC_V2_CON2(x) ((x) + 0x04)
52 #define ADC_V2_STAT(x) ((x) + 0x08)
53 #define ADC_V2_INT_EN(x) ((x) + 0x10)
54 #define ADC_V2_INT_ST(x) ((x) + 0x14)
55 #define ADC_V2_VER(x) ((x) + 0x20)
56
57 /* Bit definitions for ADC_V1 */
58 #define ADC_V1_CON_RES (1u << 16)
59 #define ADC_V1_CON_PRSCEN (1u << 14)
60 #define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6)
61 #define ADC_V1_CON_STANDBY (1u << 2)
62
63 /* Bit definitions for S3C2410 ADC */
64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65 #define ADC_S3C2410_DATX_MASK 0x3FF
66 #define ADC_S3C2416_CON_RES_SEL (1u << 3)
67
68 /* touch screen always uses channel 0 */
69 #define ADC_S3C2410_MUX_TS 0
70
71 /* ADCTSC Register Bits */
72 #define ADC_S3C2443_TSC_UD_SEN (1u << 8)
73 #define ADC_S3C2410_TSC_YM_SEN (1u << 7)
74 #define ADC_S3C2410_TSC_YP_SEN (1u << 6)
75 #define ADC_S3C2410_TSC_XM_SEN (1u << 5)
76 #define ADC_S3C2410_TSC_XP_SEN (1u << 4)
77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3)
78 #define ADC_S3C2410_TSC_AUTO_PST (1u << 2)
79 #define ADC_S3C2410_TSC_XY_PST(x) (((x) & 0x3) << 0)
80
81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82 ADC_S3C2410_TSC_YP_SEN | \
83 ADC_S3C2410_TSC_XP_SEN | \
84 ADC_S3C2410_TSC_XY_PST(3))
85
86 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \
87 ADC_S3C2410_TSC_YP_SEN | \
88 ADC_S3C2410_TSC_XP_SEN | \
89 ADC_S3C2410_TSC_AUTO_PST | \
90 ADC_S3C2410_TSC_XY_PST(0))
91
92 /* Bit definitions for ADC_V2 */
93 #define ADC_V2_CON1_SOFT_RESET (1u << 2)
94
95 #define ADC_V2_CON2_OSEL (1u << 10)
96 #define ADC_V2_CON2_ESEL (1u << 9)
97 #define ADC_V2_CON2_HIGHF (1u << 8)
98 #define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4)
99 #define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0)
100 #define ADC_V2_CON2_ACH_MASK 0xF
101
102 #define MAX_ADC_V2_CHANNELS 10
103 #define MAX_ADC_V1_CHANNELS 8
104 #define MAX_EXYNOS3250_ADC_CHANNELS 2
105 #define MAX_EXYNOS4212_ADC_CHANNELS 4
106 #define MAX_S5PV210_ADC_CHANNELS 10
107
108 /* Bit definitions common for ADC_V1 and ADC_V2 */
109 #define ADC_CON_EN_START (1u << 0)
110 #define ADC_CON_EN_START_MASK (0x3 << 0)
111 #define ADC_DATX_PRESSED (1u << 15)
112 #define ADC_DATX_MASK 0xFFF
113 #define ADC_DATY_MASK 0xFFF
114
115 #define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100))
116
117 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718
118 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720
119
120 struct exynos_adc {
121 struct exynos_adc_data *data;
122 struct device *dev;
123 struct input_dev *input;
124 void __iomem *regs;
125 struct regmap *pmu_map;
126 struct clk *clk;
127 struct clk *sclk;
128 unsigned int irq;
129 unsigned int tsirq;
130 unsigned int delay;
131 struct regulator *vdd;
132
133 struct completion completion;
134
135 u32 value;
136 unsigned int version;
137
138 bool read_ts;
139 u32 ts_x;
140 u32 ts_y;
141
142 /*
143 * Lock to protect from potential concurrent access to the
144 * completion callback during a manual conversion. For this driver
145 * a wait-callback is used to wait for the conversion result,
146 * so in the meantime no other read request (or conversion start)
147 * must be performed, otherwise it would interfere with the
148 * current conversion result.
149 */
150 struct mutex lock;
151 };
152
153 struct exynos_adc_data {
154 int num_channels;
155 bool needs_sclk;
156 bool needs_adc_phy;
157 int phy_offset;
158 u32 mask;
159
160 void (*init_hw)(struct exynos_adc *info);
161 void (*exit_hw)(struct exynos_adc *info);
162 void (*clear_irq)(struct exynos_adc *info);
163 void (*start_conv)(struct exynos_adc *info, unsigned long addr);
164 };
165
exynos_adc_unprepare_clk(struct exynos_adc * info)166 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
167 {
168 if (info->data->needs_sclk)
169 clk_unprepare(info->sclk);
170 clk_unprepare(info->clk);
171 }
172
exynos_adc_prepare_clk(struct exynos_adc * info)173 static int exynos_adc_prepare_clk(struct exynos_adc *info)
174 {
175 int ret;
176
177 ret = clk_prepare(info->clk);
178 if (ret) {
179 dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
180 return ret;
181 }
182
183 if (info->data->needs_sclk) {
184 ret = clk_prepare(info->sclk);
185 if (ret) {
186 clk_unprepare(info->clk);
187 dev_err(info->dev,
188 "failed preparing sclk_adc clock: %d\n", ret);
189 return ret;
190 }
191 }
192
193 return 0;
194 }
195
exynos_adc_disable_clk(struct exynos_adc * info)196 static void exynos_adc_disable_clk(struct exynos_adc *info)
197 {
198 if (info->data->needs_sclk)
199 clk_disable(info->sclk);
200 clk_disable(info->clk);
201 }
202
exynos_adc_enable_clk(struct exynos_adc * info)203 static int exynos_adc_enable_clk(struct exynos_adc *info)
204 {
205 int ret;
206
207 ret = clk_enable(info->clk);
208 if (ret) {
209 dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
210 return ret;
211 }
212
213 if (info->data->needs_sclk) {
214 ret = clk_enable(info->sclk);
215 if (ret) {
216 clk_disable(info->clk);
217 dev_err(info->dev,
218 "failed enabling sclk_adc clock: %d\n", ret);
219 return ret;
220 }
221 }
222
223 return 0;
224 }
225
exynos_adc_v1_init_hw(struct exynos_adc * info)226 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
227 {
228 u32 con1;
229
230 if (info->data->needs_adc_phy)
231 regmap_write(info->pmu_map, info->data->phy_offset, 1);
232
233 /* set default prescaler values and Enable prescaler */
234 con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
235
236 /* Enable 12-bit ADC resolution */
237 con1 |= ADC_V1_CON_RES;
238 writel(con1, ADC_V1_CON(info->regs));
239
240 /* set touchscreen delay */
241 writel(info->delay, ADC_V1_DLY(info->regs));
242 }
243
exynos_adc_v1_exit_hw(struct exynos_adc * info)244 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
245 {
246 u32 con;
247
248 if (info->data->needs_adc_phy)
249 regmap_write(info->pmu_map, info->data->phy_offset, 0);
250
251 con = readl(ADC_V1_CON(info->regs));
252 con |= ADC_V1_CON_STANDBY;
253 writel(con, ADC_V1_CON(info->regs));
254 }
255
exynos_adc_v1_clear_irq(struct exynos_adc * info)256 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
257 {
258 writel(1, ADC_V1_INTCLR(info->regs));
259 }
260
exynos_adc_v1_start_conv(struct exynos_adc * info,unsigned long addr)261 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
262 unsigned long addr)
263 {
264 u32 con1;
265
266 writel(addr, ADC_V1_MUX(info->regs));
267
268 con1 = readl(ADC_V1_CON(info->regs));
269 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
270 }
271
272 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
273 static const struct exynos_adc_data exynos4212_adc_data = {
274 .num_channels = MAX_EXYNOS4212_ADC_CHANNELS,
275 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
276 .needs_adc_phy = true,
277 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
278
279 .init_hw = exynos_adc_v1_init_hw,
280 .exit_hw = exynos_adc_v1_exit_hw,
281 .clear_irq = exynos_adc_v1_clear_irq,
282 .start_conv = exynos_adc_v1_start_conv,
283 };
284
285 static const struct exynos_adc_data exynos_adc_v1_data = {
286 .num_channels = MAX_ADC_V1_CHANNELS,
287 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
288 .needs_adc_phy = true,
289 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
290
291 .init_hw = exynos_adc_v1_init_hw,
292 .exit_hw = exynos_adc_v1_exit_hw,
293 .clear_irq = exynos_adc_v1_clear_irq,
294 .start_conv = exynos_adc_v1_start_conv,
295 };
296
297 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
298 .num_channels = MAX_S5PV210_ADC_CHANNELS,
299 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
300
301 .init_hw = exynos_adc_v1_init_hw,
302 .exit_hw = exynos_adc_v1_exit_hw,
303 .clear_irq = exynos_adc_v1_clear_irq,
304 .start_conv = exynos_adc_v1_start_conv,
305 };
306
exynos_adc_s3c2416_start_conv(struct exynos_adc * info,unsigned long addr)307 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
308 unsigned long addr)
309 {
310 u32 con1;
311
312 /* Enable 12 bit ADC resolution */
313 con1 = readl(ADC_V1_CON(info->regs));
314 con1 |= ADC_S3C2416_CON_RES_SEL;
315 writel(con1, ADC_V1_CON(info->regs));
316
317 /* Select channel for S3C2416 */
318 writel(addr, ADC_S3C2410_MUX(info->regs));
319
320 con1 = readl(ADC_V1_CON(info->regs));
321 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
322 }
323
324 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
325 .num_channels = MAX_ADC_V1_CHANNELS,
326 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
327
328 .init_hw = exynos_adc_v1_init_hw,
329 .exit_hw = exynos_adc_v1_exit_hw,
330 .start_conv = exynos_adc_s3c2416_start_conv,
331 };
332
exynos_adc_s3c2443_start_conv(struct exynos_adc * info,unsigned long addr)333 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
334 unsigned long addr)
335 {
336 u32 con1;
337
338 /* Select channel for S3C2433 */
339 writel(addr, ADC_S3C2410_MUX(info->regs));
340
341 con1 = readl(ADC_V1_CON(info->regs));
342 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
343 }
344
345 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
346 .num_channels = MAX_ADC_V1_CHANNELS,
347 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
348
349 .init_hw = exynos_adc_v1_init_hw,
350 .exit_hw = exynos_adc_v1_exit_hw,
351 .start_conv = exynos_adc_s3c2443_start_conv,
352 };
353
exynos_adc_s3c64xx_start_conv(struct exynos_adc * info,unsigned long addr)354 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
355 unsigned long addr)
356 {
357 u32 con1;
358
359 con1 = readl(ADC_V1_CON(info->regs));
360 con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
361 con1 |= ADC_S3C2410_CON_SELMUX(addr);
362 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
363 }
364
365 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
366 .num_channels = MAX_ADC_V1_CHANNELS,
367 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
368
369 .init_hw = exynos_adc_v1_init_hw,
370 .exit_hw = exynos_adc_v1_exit_hw,
371 .start_conv = exynos_adc_s3c64xx_start_conv,
372 };
373
374 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
375 .num_channels = MAX_ADC_V1_CHANNELS,
376 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
377
378 .init_hw = exynos_adc_v1_init_hw,
379 .exit_hw = exynos_adc_v1_exit_hw,
380 .clear_irq = exynos_adc_v1_clear_irq,
381 .start_conv = exynos_adc_s3c64xx_start_conv,
382 };
383
exynos_adc_v2_init_hw(struct exynos_adc * info)384 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
385 {
386 u32 con1, con2;
387
388 if (info->data->needs_adc_phy)
389 regmap_write(info->pmu_map, info->data->phy_offset, 1);
390
391 con1 = ADC_V2_CON1_SOFT_RESET;
392 writel(con1, ADC_V2_CON1(info->regs));
393
394 con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
395 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
396 writel(con2, ADC_V2_CON2(info->regs));
397
398 /* Enable interrupts */
399 writel(1, ADC_V2_INT_EN(info->regs));
400 }
401
exynos_adc_v2_exit_hw(struct exynos_adc * info)402 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
403 {
404 u32 con;
405
406 if (info->data->needs_adc_phy)
407 regmap_write(info->pmu_map, info->data->phy_offset, 0);
408
409 con = readl(ADC_V2_CON1(info->regs));
410 con &= ~ADC_CON_EN_START;
411 writel(con, ADC_V2_CON1(info->regs));
412 }
413
exynos_adc_v2_clear_irq(struct exynos_adc * info)414 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
415 {
416 writel(1, ADC_V2_INT_ST(info->regs));
417 }
418
exynos_adc_v2_start_conv(struct exynos_adc * info,unsigned long addr)419 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
420 unsigned long addr)
421 {
422 u32 con1, con2;
423
424 con2 = readl(ADC_V2_CON2(info->regs));
425 con2 &= ~ADC_V2_CON2_ACH_MASK;
426 con2 |= ADC_V2_CON2_ACH_SEL(addr);
427 writel(con2, ADC_V2_CON2(info->regs));
428
429 con1 = readl(ADC_V2_CON1(info->regs));
430 writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
431 }
432
433 static const struct exynos_adc_data exynos_adc_v2_data = {
434 .num_channels = MAX_ADC_V2_CHANNELS,
435 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
436 .needs_adc_phy = true,
437 .phy_offset = EXYNOS_ADCV2_PHY_OFFSET,
438
439 .init_hw = exynos_adc_v2_init_hw,
440 .exit_hw = exynos_adc_v2_exit_hw,
441 .clear_irq = exynos_adc_v2_clear_irq,
442 .start_conv = exynos_adc_v2_start_conv,
443 };
444
445 static const struct exynos_adc_data exynos3250_adc_data = {
446 .num_channels = MAX_EXYNOS3250_ADC_CHANNELS,
447 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
448 .needs_sclk = true,
449 .needs_adc_phy = true,
450 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
451
452 .init_hw = exynos_adc_v2_init_hw,
453 .exit_hw = exynos_adc_v2_exit_hw,
454 .clear_irq = exynos_adc_v2_clear_irq,
455 .start_conv = exynos_adc_v2_start_conv,
456 };
457
exynos_adc_exynos7_init_hw(struct exynos_adc * info)458 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
459 {
460 u32 con1, con2;
461
462 con1 = ADC_V2_CON1_SOFT_RESET;
463 writel(con1, ADC_V2_CON1(info->regs));
464
465 con2 = readl(ADC_V2_CON2(info->regs));
466 con2 &= ~ADC_V2_CON2_C_TIME(7);
467 con2 |= ADC_V2_CON2_C_TIME(0);
468 writel(con2, ADC_V2_CON2(info->regs));
469
470 /* Enable interrupts */
471 writel(1, ADC_V2_INT_EN(info->regs));
472 }
473
474 static const struct exynos_adc_data exynos7_adc_data = {
475 .num_channels = MAX_ADC_V1_CHANNELS,
476 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
477
478 .init_hw = exynos_adc_exynos7_init_hw,
479 .exit_hw = exynos_adc_v2_exit_hw,
480 .clear_irq = exynos_adc_v2_clear_irq,
481 .start_conv = exynos_adc_v2_start_conv,
482 };
483
484 static const struct of_device_id exynos_adc_match[] = {
485 {
486 .compatible = "samsung,s3c2410-adc",
487 .data = &exynos_adc_s3c24xx_data,
488 }, {
489 .compatible = "samsung,s3c2416-adc",
490 .data = &exynos_adc_s3c2416_data,
491 }, {
492 .compatible = "samsung,s3c2440-adc",
493 .data = &exynos_adc_s3c24xx_data,
494 }, {
495 .compatible = "samsung,s3c2443-adc",
496 .data = &exynos_adc_s3c2443_data,
497 }, {
498 .compatible = "samsung,s3c6410-adc",
499 .data = &exynos_adc_s3c64xx_data,
500 }, {
501 .compatible = "samsung,s5pv210-adc",
502 .data = &exynos_adc_s5pv210_data,
503 }, {
504 .compatible = "samsung,exynos4212-adc",
505 .data = &exynos4212_adc_data,
506 }, {
507 .compatible = "samsung,exynos-adc-v1",
508 .data = &exynos_adc_v1_data,
509 }, {
510 .compatible = "samsung,exynos-adc-v2",
511 .data = &exynos_adc_v2_data,
512 }, {
513 .compatible = "samsung,exynos3250-adc",
514 .data = &exynos3250_adc_data,
515 }, {
516 .compatible = "samsung,exynos7-adc",
517 .data = &exynos7_adc_data,
518 },
519 {},
520 };
521 MODULE_DEVICE_TABLE(of, exynos_adc_match);
522
exynos_adc_get_data(struct platform_device * pdev)523 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
524 {
525 const struct of_device_id *match;
526
527 match = of_match_node(exynos_adc_match, pdev->dev.of_node);
528 return (struct exynos_adc_data *)match->data;
529 }
530
exynos_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)531 static int exynos_read_raw(struct iio_dev *indio_dev,
532 struct iio_chan_spec const *chan,
533 int *val,
534 int *val2,
535 long mask)
536 {
537 struct exynos_adc *info = iio_priv(indio_dev);
538 unsigned long timeout;
539 int ret;
540
541 if (mask == IIO_CHAN_INFO_SCALE) {
542 ret = regulator_get_voltage(info->vdd);
543 if (ret < 0)
544 return ret;
545
546 /* Regulator voltage is in uV, but need mV */
547 *val = ret / 1000;
548 *val2 = info->data->mask;
549
550 return IIO_VAL_FRACTIONAL;
551 } else if (mask != IIO_CHAN_INFO_RAW) {
552 return -EINVAL;
553 }
554
555 mutex_lock(&info->lock);
556 reinit_completion(&info->completion);
557
558 /* Select the channel to be used and Trigger conversion */
559 if (info->data->start_conv)
560 info->data->start_conv(info, chan->address);
561
562 timeout = wait_for_completion_timeout(&info->completion,
563 EXYNOS_ADC_TIMEOUT);
564 if (timeout == 0) {
565 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
566 if (info->data->init_hw)
567 info->data->init_hw(info);
568 ret = -ETIMEDOUT;
569 } else {
570 *val = info->value;
571 *val2 = 0;
572 ret = IIO_VAL_INT;
573 }
574
575 mutex_unlock(&info->lock);
576
577 return ret;
578 }
579
exynos_read_s3c64xx_ts(struct iio_dev * indio_dev,int * x,int * y)580 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
581 {
582 struct exynos_adc *info = iio_priv(indio_dev);
583 unsigned long timeout;
584 int ret;
585
586 mutex_lock(&info->lock);
587 info->read_ts = true;
588
589 reinit_completion(&info->completion);
590
591 writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
592 ADC_V1_TSC(info->regs));
593
594 /* Select the ts channel to be used and Trigger conversion */
595 info->data->start_conv(info, ADC_S3C2410_MUX_TS);
596
597 timeout = wait_for_completion_timeout(&info->completion,
598 EXYNOS_ADC_TIMEOUT);
599 if (timeout == 0) {
600 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
601 if (info->data->init_hw)
602 info->data->init_hw(info);
603 ret = -ETIMEDOUT;
604 } else {
605 *x = info->ts_x;
606 *y = info->ts_y;
607 ret = 0;
608 }
609
610 info->read_ts = false;
611 mutex_unlock(&info->lock);
612
613 return ret;
614 }
615
exynos_adc_isr(int irq,void * dev_id)616 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
617 {
618 struct exynos_adc *info = dev_id;
619 u32 mask = info->data->mask;
620
621 /* Read value */
622 if (info->read_ts) {
623 info->ts_x = readl(ADC_V1_DATX(info->regs));
624 info->ts_y = readl(ADC_V1_DATY(info->regs));
625 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
626 } else {
627 info->value = readl(ADC_V1_DATX(info->regs)) & mask;
628 }
629
630 /* clear irq */
631 if (info->data->clear_irq)
632 info->data->clear_irq(info);
633
634 complete(&info->completion);
635
636 return IRQ_HANDLED;
637 }
638
639 /*
640 * Here we (ab)use a threaded interrupt handler to stay running
641 * for as long as the touchscreen remains pressed, we report
642 * a new event with the latest data and then sleep until the
643 * next timer tick. This mirrors the behavior of the old
644 * driver, with much less code.
645 */
exynos_ts_isr(int irq,void * dev_id)646 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
647 {
648 struct exynos_adc *info = dev_id;
649 struct iio_dev *dev = dev_get_drvdata(info->dev);
650 u32 x, y;
651 bool pressed;
652 int ret;
653
654 while (info->input->users) {
655 ret = exynos_read_s3c64xx_ts(dev, &x, &y);
656 if (ret == -ETIMEDOUT)
657 break;
658
659 pressed = x & y & ADC_DATX_PRESSED;
660 if (!pressed) {
661 input_report_key(info->input, BTN_TOUCH, 0);
662 input_sync(info->input);
663 break;
664 }
665
666 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
667 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
668 input_report_key(info->input, BTN_TOUCH, 1);
669 input_sync(info->input);
670
671 usleep_range(1000, 1100);
672 }
673
674 writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
675
676 return IRQ_HANDLED;
677 }
678
exynos_adc_reg_access(struct iio_dev * indio_dev,unsigned reg,unsigned writeval,unsigned * readval)679 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
680 unsigned reg, unsigned writeval,
681 unsigned *readval)
682 {
683 struct exynos_adc *info = iio_priv(indio_dev);
684
685 if (readval == NULL)
686 return -EINVAL;
687
688 *readval = readl(info->regs + reg);
689
690 return 0;
691 }
692
693 static const struct iio_info exynos_adc_iio_info = {
694 .read_raw = &exynos_read_raw,
695 .debugfs_reg_access = &exynos_adc_reg_access,
696 };
697
698 #define ADC_CHANNEL(_index, _id) { \
699 .type = IIO_VOLTAGE, \
700 .indexed = 1, \
701 .channel = _index, \
702 .address = _index, \
703 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
704 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE), \
705 .datasheet_name = _id, \
706 }
707
708 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
709 ADC_CHANNEL(0, "adc0"),
710 ADC_CHANNEL(1, "adc1"),
711 ADC_CHANNEL(2, "adc2"),
712 ADC_CHANNEL(3, "adc3"),
713 ADC_CHANNEL(4, "adc4"),
714 ADC_CHANNEL(5, "adc5"),
715 ADC_CHANNEL(6, "adc6"),
716 ADC_CHANNEL(7, "adc7"),
717 ADC_CHANNEL(8, "adc8"),
718 ADC_CHANNEL(9, "adc9"),
719 };
720
exynos_adc_remove_devices(struct device * dev,void * c)721 static int exynos_adc_remove_devices(struct device *dev, void *c)
722 {
723 struct platform_device *pdev = to_platform_device(dev);
724
725 platform_device_unregister(pdev);
726
727 return 0;
728 }
729
exynos_adc_ts_open(struct input_dev * dev)730 static int exynos_adc_ts_open(struct input_dev *dev)
731 {
732 struct exynos_adc *info = input_get_drvdata(dev);
733
734 enable_irq(info->tsirq);
735
736 return 0;
737 }
738
exynos_adc_ts_close(struct input_dev * dev)739 static void exynos_adc_ts_close(struct input_dev *dev)
740 {
741 struct exynos_adc *info = input_get_drvdata(dev);
742
743 disable_irq(info->tsirq);
744 }
745
exynos_adc_ts_init(struct exynos_adc * info)746 static int exynos_adc_ts_init(struct exynos_adc *info)
747 {
748 int ret;
749
750 if (info->tsirq <= 0)
751 return -ENODEV;
752
753 info->input = input_allocate_device();
754 if (!info->input)
755 return -ENOMEM;
756
757 info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
758 info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
759
760 input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
761 input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
762
763 info->input->name = "S3C24xx TouchScreen";
764 info->input->id.bustype = BUS_HOST;
765 info->input->open = exynos_adc_ts_open;
766 info->input->close = exynos_adc_ts_close;
767
768 input_set_drvdata(info->input, info);
769
770 ret = input_register_device(info->input);
771 if (ret) {
772 input_free_device(info->input);
773 return ret;
774 }
775
776 disable_irq(info->tsirq);
777 ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
778 IRQF_ONESHOT, "touchscreen", info);
779 if (ret)
780 input_unregister_device(info->input);
781
782 return ret;
783 }
784
exynos_adc_probe(struct platform_device * pdev)785 static int exynos_adc_probe(struct platform_device *pdev)
786 {
787 struct exynos_adc *info = NULL;
788 struct device_node *np = pdev->dev.of_node;
789 struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
790 struct iio_dev *indio_dev = NULL;
791 bool has_ts = false;
792 int ret = -ENODEV;
793 int irq;
794
795 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
796 if (!indio_dev) {
797 dev_err(&pdev->dev, "failed allocating iio device\n");
798 return -ENOMEM;
799 }
800
801 info = iio_priv(indio_dev);
802
803 info->data = exynos_adc_get_data(pdev);
804 if (!info->data) {
805 dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
806 return -EINVAL;
807 }
808
809 info->regs = devm_platform_ioremap_resource(pdev, 0);
810 if (IS_ERR(info->regs))
811 return PTR_ERR(info->regs);
812
813
814 if (info->data->needs_adc_phy) {
815 info->pmu_map = syscon_regmap_lookup_by_phandle(
816 pdev->dev.of_node,
817 "samsung,syscon-phandle");
818 if (IS_ERR(info->pmu_map)) {
819 dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
820 return PTR_ERR(info->pmu_map);
821 }
822 }
823
824 irq = platform_get_irq(pdev, 0);
825 if (irq < 0)
826 return irq;
827 info->irq = irq;
828
829 irq = platform_get_irq(pdev, 1);
830 if (irq == -EPROBE_DEFER)
831 return irq;
832
833 info->tsirq = irq;
834
835 info->dev = &pdev->dev;
836
837 init_completion(&info->completion);
838
839 info->clk = devm_clk_get(&pdev->dev, "adc");
840 if (IS_ERR(info->clk)) {
841 dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
842 PTR_ERR(info->clk));
843 return PTR_ERR(info->clk);
844 }
845
846 if (info->data->needs_sclk) {
847 info->sclk = devm_clk_get(&pdev->dev, "sclk");
848 if (IS_ERR(info->sclk)) {
849 dev_err(&pdev->dev,
850 "failed getting sclk clock, err = %ld\n",
851 PTR_ERR(info->sclk));
852 return PTR_ERR(info->sclk);
853 }
854 }
855
856 info->vdd = devm_regulator_get(&pdev->dev, "vdd");
857 if (IS_ERR(info->vdd))
858 return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
859 "failed getting regulator");
860
861 ret = regulator_enable(info->vdd);
862 if (ret)
863 return ret;
864
865 ret = exynos_adc_prepare_clk(info);
866 if (ret)
867 goto err_disable_reg;
868
869 ret = exynos_adc_enable_clk(info);
870 if (ret)
871 goto err_unprepare_clk;
872
873 platform_set_drvdata(pdev, indio_dev);
874
875 indio_dev->name = dev_name(&pdev->dev);
876 indio_dev->info = &exynos_adc_iio_info;
877 indio_dev->modes = INDIO_DIRECT_MODE;
878 indio_dev->channels = exynos_adc_iio_channels;
879 indio_dev->num_channels = info->data->num_channels;
880
881 mutex_init(&info->lock);
882
883 ret = request_irq(info->irq, exynos_adc_isr,
884 0, dev_name(&pdev->dev), info);
885 if (ret < 0) {
886 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
887 info->irq);
888 goto err_disable_clk;
889 }
890
891 ret = iio_device_register(indio_dev);
892 if (ret)
893 goto err_irq;
894
895 if (info->data->init_hw)
896 info->data->init_hw(info);
897
898 /* leave out any TS related code if unreachable */
899 if (IS_REACHABLE(CONFIG_INPUT)) {
900 has_ts = of_property_read_bool(pdev->dev.of_node,
901 "has-touchscreen") || pdata;
902 }
903
904 if (pdata)
905 info->delay = pdata->delay;
906 else
907 info->delay = 10000;
908
909 if (has_ts)
910 ret = exynos_adc_ts_init(info);
911 if (ret)
912 goto err_iio;
913
914 ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
915 if (ret < 0) {
916 dev_err(&pdev->dev, "failed adding child nodes\n");
917 goto err_of_populate;
918 }
919
920 return 0;
921
922 err_of_populate:
923 device_for_each_child(&indio_dev->dev, NULL,
924 exynos_adc_remove_devices);
925 if (has_ts) {
926 input_unregister_device(info->input);
927 free_irq(info->tsirq, info);
928 }
929 err_iio:
930 iio_device_unregister(indio_dev);
931 err_irq:
932 free_irq(info->irq, info);
933 err_disable_clk:
934 if (info->data->exit_hw)
935 info->data->exit_hw(info);
936 exynos_adc_disable_clk(info);
937 err_unprepare_clk:
938 exynos_adc_unprepare_clk(info);
939 err_disable_reg:
940 regulator_disable(info->vdd);
941 return ret;
942 }
943
exynos_adc_remove(struct platform_device * pdev)944 static int exynos_adc_remove(struct platform_device *pdev)
945 {
946 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
947 struct exynos_adc *info = iio_priv(indio_dev);
948
949 if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
950 free_irq(info->tsirq, info);
951 input_unregister_device(info->input);
952 }
953 device_for_each_child(&indio_dev->dev, NULL,
954 exynos_adc_remove_devices);
955 iio_device_unregister(indio_dev);
956 free_irq(info->irq, info);
957 if (info->data->exit_hw)
958 info->data->exit_hw(info);
959 exynos_adc_disable_clk(info);
960 exynos_adc_unprepare_clk(info);
961 regulator_disable(info->vdd);
962
963 return 0;
964 }
965
966 #ifdef CONFIG_PM_SLEEP
exynos_adc_suspend(struct device * dev)967 static int exynos_adc_suspend(struct device *dev)
968 {
969 struct iio_dev *indio_dev = dev_get_drvdata(dev);
970 struct exynos_adc *info = iio_priv(indio_dev);
971
972 if (info->data->exit_hw)
973 info->data->exit_hw(info);
974 exynos_adc_disable_clk(info);
975 regulator_disable(info->vdd);
976
977 return 0;
978 }
979
exynos_adc_resume(struct device * dev)980 static int exynos_adc_resume(struct device *dev)
981 {
982 struct iio_dev *indio_dev = dev_get_drvdata(dev);
983 struct exynos_adc *info = iio_priv(indio_dev);
984 int ret;
985
986 ret = regulator_enable(info->vdd);
987 if (ret)
988 return ret;
989
990 ret = exynos_adc_enable_clk(info);
991 if (ret)
992 return ret;
993
994 if (info->data->init_hw)
995 info->data->init_hw(info);
996
997 return 0;
998 }
999 #endif
1000
1001 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
1002 exynos_adc_suspend,
1003 exynos_adc_resume);
1004
1005 static struct platform_driver exynos_adc_driver = {
1006 .probe = exynos_adc_probe,
1007 .remove = exynos_adc_remove,
1008 .driver = {
1009 .name = "exynos-adc",
1010 .of_match_table = exynos_adc_match,
1011 .pm = &exynos_adc_pm_ops,
1012 },
1013 };
1014
1015 module_platform_driver(exynos_adc_driver);
1016
1017 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1018 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1019 MODULE_LICENSE("GPL v2");
1020