1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * These are the two Sharp GP2AP002 variants supported by this driver:
4 * GP2AP002A00F Ambient Light and Proximity Sensor
5 * GP2AP002S00F Proximity Sensor
6 *
7 * Copyright (C) 2020 Linaro Ltd.
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Based partly on the code in Sony Ericssons GP2AP00200F driver by
11 * Courtney Cavin and Oskar Andero in drivers/input/misc/gp2ap002a00f.c
12 * Based partly on a Samsung misc driver submitted by
13 * Donggeun Kim & Minkyu Kang in 2011:
14 * https://lore.kernel.org/lkml/1315556546-7445-1-git-send-email-dg77.kim@samsung.com/
15 * Based partly on a submission by
16 * Jonathan Bakker and Paweł Chmiel in january 2019:
17 * https://lore.kernel.org/linux-input/20190125175045.22576-1-pawel.mikolaj.chmiel@gmail.com/
18 * Based partly on code from the Samsung GT-S7710 by <mjchen@sta.samsung.com>
19 * Based partly on the code in LG Electronics GP2AP00200F driver by
20 * Kenobi Lee <sungyoung.lee@lge.com> and EunYoung Cho <ey.cho@lge.com>
21 */
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/regmap.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/sysfs.h>
27 #include <linux/iio/events.h>
28 #include <linux/iio/consumer.h> /* To get our ADC channel */
29 #include <linux/iio/types.h> /* To deal with our ADC channel */
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/interrupt.h>
35 #include <linux/bits.h>
36 #include <linux/math64.h>
37 #include <linux/pm.h>
38
39 #define GP2AP002_PROX_CHANNEL 0
40 #define GP2AP002_ALS_CHANNEL 1
41
42 /* ------------------------------------------------------------------------ */
43 /* ADDRESS SYMBOL DATA Init R/W */
44 /* D7 D6 D5 D4 D3 D2 D1 D0 */
45 /* ------------------------------------------------------------------------ */
46 /* 0 PROX X X X X X X X VO H'00 R */
47 /* 1 GAIN X X X X LED0 X X X H'00 W */
48 /* 2 HYS HYSD HYSC1 HYSC0 X HYSF3 HYSF2 HYSF1 HYSF0 H'00 W */
49 /* 3 CYCLE X X CYCL2 CYCL1 CYCL0 OSC2 X X H'00 W */
50 /* 4 OPMOD X X X ASD X X VCON SSD H'00 W */
51 /* 6 CON X X X OCON1 OCON0 X X X H'00 W */
52 /* ------------------------------------------------------------------------ */
53 /* VO :Proximity sensing result(0: no detection, 1: detection) */
54 /* LED0 :Select switch for LED driver's On-registence(0:2x higher, 1:normal)*/
55 /* HYSD/HYSF :Adjusts the receiver sensitivity */
56 /* OSC :Select switch internal clocl frequency hoppling(0:effective) */
57 /* CYCL :Determine the detection cycle(typically 8ms, up to 128x) */
58 /* SSD :Software Shutdown function(0:shutdown, 1:operating) */
59 /* VCON :VOUT output method control(0:normal, 1:interrupt) */
60 /* ASD :Select switch for analog sleep function(0:ineffective, 1:effective)*/
61 /* OCON :Select switch for enabling/disabling VOUT (00:enable, 11:disable) */
62
63 #define GP2AP002_PROX 0x00
64 #define GP2AP002_GAIN 0x01
65 #define GP2AP002_HYS 0x02
66 #define GP2AP002_CYCLE 0x03
67 #define GP2AP002_OPMOD 0x04
68 #define GP2AP002_CON 0x06
69
70 #define GP2AP002_PROX_VO_DETECT BIT(0)
71
72 /* Setting this bit to 0 means 2x higher LED resistance */
73 #define GP2AP002_GAIN_LED_NORMAL BIT(3)
74
75 /*
76 * These bits adjusts the proximity sensitivity, determining characteristics
77 * of the detection distance and its hysteresis.
78 */
79 #define GP2AP002_HYS_HYSD_SHIFT 7
80 #define GP2AP002_HYS_HYSD_MASK BIT(7)
81 #define GP2AP002_HYS_HYSC_SHIFT 5
82 #define GP2AP002_HYS_HYSC_MASK GENMASK(6, 5)
83 #define GP2AP002_HYS_HYSF_SHIFT 0
84 #define GP2AP002_HYS_HYSF_MASK GENMASK(3, 0)
85 #define GP2AP002_HYS_MASK (GP2AP002_HYS_HYSD_MASK | \
86 GP2AP002_HYS_HYSC_MASK | \
87 GP2AP002_HYS_HYSF_MASK)
88
89 /*
90 * These values determine the detection cycle response time
91 * 0: 8ms, 1: 16ms, 2: 32ms, 3: 64ms, 4: 128ms,
92 * 5: 256ms, 6: 512ms, 7: 1024ms
93 */
94 #define GP2AP002_CYCLE_CYCL_SHIFT 3
95 #define GP2AP002_CYCLE_CYCL_MASK GENMASK(5, 3)
96
97 /*
98 * Select switch for internal clock frequency hopping
99 * 0: effective,
100 * 1: ineffective
101 */
102 #define GP2AP002_CYCLE_OSC_EFFECTIVE 0
103 #define GP2AP002_CYCLE_OSC_INEFFECTIVE BIT(2)
104 #define GP2AP002_CYCLE_OSC_MASK BIT(2)
105
106 /* Analog sleep effective */
107 #define GP2AP002_OPMOD_ASD BIT(4)
108 /* Enable chip */
109 #define GP2AP002_OPMOD_SSD_OPERATING BIT(0)
110 /* IRQ mode */
111 #define GP2AP002_OPMOD_VCON_IRQ BIT(1)
112 #define GP2AP002_OPMOD_MASK (BIT(0) | BIT(1) | BIT(4))
113
114 /*
115 * Select switch for enabling/disabling Vout pin
116 * 0: enable
117 * 2: force to go Low
118 * 3: force to go High
119 */
120 #define GP2AP002_CON_OCON_SHIFT 3
121 #define GP2AP002_CON_OCON_ENABLE (0x0 << GP2AP002_CON_OCON_SHIFT)
122 #define GP2AP002_CON_OCON_LOW (0x2 << GP2AP002_CON_OCON_SHIFT)
123 #define GP2AP002_CON_OCON_HIGH (0x3 << GP2AP002_CON_OCON_SHIFT)
124 #define GP2AP002_CON_OCON_MASK (0x3 << GP2AP002_CON_OCON_SHIFT)
125
126 /**
127 * struct gp2ap002 - GP2AP002 state
128 * @map: regmap pointer for the i2c regmap
129 * @dev: pointer to parent device
130 * @vdd: regulator controlling VDD
131 * @vio: regulator controlling VIO
132 * @alsout: IIO ADC channel to convert the ALSOUT signal
133 * @hys_far: hysteresis control from device tree
134 * @hys_close: hysteresis control from device tree
135 * @is_gp2ap002s00f: this is the GP2AP002F variant of the chip
136 * @irq: the IRQ line used by this device
137 * @enabled: we cannot read the status of the hardware so we need to
138 * keep track of whether the event is enabled using this state variable
139 */
140 struct gp2ap002 {
141 struct regmap *map;
142 struct device *dev;
143 struct regulator *vdd;
144 struct regulator *vio;
145 struct iio_channel *alsout;
146 u8 hys_far;
147 u8 hys_close;
148 bool is_gp2ap002s00f;
149 int irq;
150 bool enabled;
151 };
152
gp2ap002_prox_irq(int irq,void * d)153 static irqreturn_t gp2ap002_prox_irq(int irq, void *d)
154 {
155 struct iio_dev *indio_dev = d;
156 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
157 u64 ev;
158 int val;
159 int ret;
160
161 if (!gp2ap002->enabled)
162 goto err_retrig;
163
164 ret = regmap_read(gp2ap002->map, GP2AP002_PROX, &val);
165 if (ret) {
166 dev_err(gp2ap002->dev, "error reading proximity\n");
167 goto err_retrig;
168 }
169
170 if (val & GP2AP002_PROX_VO_DETECT) {
171 /* Close */
172 dev_dbg(gp2ap002->dev, "close\n");
173 ret = regmap_write(gp2ap002->map, GP2AP002_HYS,
174 gp2ap002->hys_far);
175 if (ret)
176 dev_err(gp2ap002->dev,
177 "error setting up proximity hysteresis\n");
178 ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL,
179 IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING);
180 } else {
181 /* Far */
182 dev_dbg(gp2ap002->dev, "far\n");
183 ret = regmap_write(gp2ap002->map, GP2AP002_HYS,
184 gp2ap002->hys_close);
185 if (ret)
186 dev_err(gp2ap002->dev,
187 "error setting up proximity hysteresis\n");
188 ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, GP2AP002_PROX_CHANNEL,
189 IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING);
190 }
191 iio_push_event(indio_dev, ev, iio_get_time_ns(indio_dev));
192
193 /*
194 * After changing hysteresis, we need to wait for one detection
195 * cycle to see if anything changed, or we will just trigger the
196 * previous interrupt again. A detection cycle depends on the CYCLE
197 * register, we are hard-coding ~8 ms in probe() so wait some more
198 * than this, 20-30 ms.
199 */
200 usleep_range(20000, 30000);
201
202 err_retrig:
203 ret = regmap_write(gp2ap002->map, GP2AP002_CON,
204 GP2AP002_CON_OCON_ENABLE);
205 if (ret)
206 dev_err(gp2ap002->dev, "error setting up VOUT control\n");
207
208 return IRQ_HANDLED;
209 }
210
211 /*
212 * This array maps current and lux.
213 *
214 * Ambient light sensing range is 3 to 55000 lux.
215 *
216 * This mapping is based on the following formula.
217 * illuminance = 10 ^ (current[mA] / 10)
218 *
219 * When the ADC measures 0, return 0 lux.
220 */
221 static const u16 gp2ap002_illuminance_table[] = {
222 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 79,
223 100, 126, 158, 200, 251, 316, 398, 501, 631, 794, 1000, 1259, 1585,
224 1995, 2512, 3162, 3981, 5012, 6310, 7943, 10000, 12589, 15849, 19953,
225 25119, 31623, 39811, 50119,
226 };
227
gp2ap002_get_lux(struct gp2ap002 * gp2ap002)228 static int gp2ap002_get_lux(struct gp2ap002 *gp2ap002)
229 {
230 int ret, res;
231 u16 lux;
232
233 ret = iio_read_channel_processed(gp2ap002->alsout, &res);
234 if (ret < 0)
235 return ret;
236
237 dev_dbg(gp2ap002->dev, "read %d mA from ADC\n", res);
238
239 /* ensure we don't under/overflow */
240 res = clamp(res, 0, (int)ARRAY_SIZE(gp2ap002_illuminance_table) - 1);
241 lux = gp2ap002_illuminance_table[res];
242
243 return (int)lux;
244 }
245
gp2ap002_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)246 static int gp2ap002_read_raw(struct iio_dev *indio_dev,
247 struct iio_chan_spec const *chan,
248 int *val, int *val2, long mask)
249 {
250 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
251 int ret;
252
253 pm_runtime_get_sync(gp2ap002->dev);
254
255 switch (mask) {
256 case IIO_CHAN_INFO_RAW:
257 switch (chan->type) {
258 case IIO_LIGHT:
259 ret = gp2ap002_get_lux(gp2ap002);
260 if (ret < 0)
261 return ret;
262 *val = ret;
263 ret = IIO_VAL_INT;
264 goto out;
265 default:
266 ret = -EINVAL;
267 goto out;
268 }
269 default:
270 ret = -EINVAL;
271 }
272
273 out:
274 pm_runtime_mark_last_busy(gp2ap002->dev);
275 pm_runtime_put_autosuspend(gp2ap002->dev);
276
277 return ret;
278 }
279
gp2ap002_init(struct gp2ap002 * gp2ap002)280 static int gp2ap002_init(struct gp2ap002 *gp2ap002)
281 {
282 int ret;
283
284 /* Set up the IR LED resistance */
285 ret = regmap_write(gp2ap002->map, GP2AP002_GAIN,
286 GP2AP002_GAIN_LED_NORMAL);
287 if (ret) {
288 dev_err(gp2ap002->dev, "error setting up LED gain\n");
289 return ret;
290 }
291 ret = regmap_write(gp2ap002->map, GP2AP002_HYS, gp2ap002->hys_far);
292 if (ret) {
293 dev_err(gp2ap002->dev,
294 "error setting up proximity hysteresis\n");
295 return ret;
296 }
297
298 /* Disable internal frequency hopping */
299 ret = regmap_write(gp2ap002->map, GP2AP002_CYCLE,
300 GP2AP002_CYCLE_OSC_INEFFECTIVE);
301 if (ret) {
302 dev_err(gp2ap002->dev,
303 "error setting up internal frequency hopping\n");
304 return ret;
305 }
306
307 /* Enable chip and IRQ, disable analog sleep */
308 ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD,
309 GP2AP002_OPMOD_SSD_OPERATING |
310 GP2AP002_OPMOD_VCON_IRQ);
311 if (ret) {
312 dev_err(gp2ap002->dev, "error setting up operation mode\n");
313 return ret;
314 }
315
316 /* Interrupt on VOUT enabled */
317 ret = regmap_write(gp2ap002->map, GP2AP002_CON,
318 GP2AP002_CON_OCON_ENABLE);
319 if (ret)
320 dev_err(gp2ap002->dev, "error setting up VOUT control\n");
321
322 return ret;
323 }
324
gp2ap002_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)325 static int gp2ap002_read_event_config(struct iio_dev *indio_dev,
326 const struct iio_chan_spec *chan,
327 enum iio_event_type type,
328 enum iio_event_direction dir)
329 {
330 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
331
332 /*
333 * We just keep track of this internally, as it is not possible to
334 * query the hardware.
335 */
336 return gp2ap002->enabled;
337 }
338
gp2ap002_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)339 static int gp2ap002_write_event_config(struct iio_dev *indio_dev,
340 const struct iio_chan_spec *chan,
341 enum iio_event_type type,
342 enum iio_event_direction dir,
343 int state)
344 {
345 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
346
347 if (state) {
348 /*
349 * This will bring the regulators up (unless they are on
350 * already) and reintialize the sensor by using runtime_pm
351 * callbacks.
352 */
353 pm_runtime_get_sync(gp2ap002->dev);
354 gp2ap002->enabled = true;
355 } else {
356 pm_runtime_mark_last_busy(gp2ap002->dev);
357 pm_runtime_put_autosuspend(gp2ap002->dev);
358 gp2ap002->enabled = false;
359 }
360
361 return 0;
362 }
363
364 static const struct iio_info gp2ap002_info = {
365 .read_raw = gp2ap002_read_raw,
366 .read_event_config = gp2ap002_read_event_config,
367 .write_event_config = gp2ap002_write_event_config,
368 };
369
370 static const struct iio_event_spec gp2ap002_events[] = {
371 {
372 .type = IIO_EV_TYPE_THRESH,
373 .dir = IIO_EV_DIR_EITHER,
374 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
375 },
376 };
377
378 static const struct iio_chan_spec gp2ap002_channels[] = {
379 {
380 .type = IIO_PROXIMITY,
381 .event_spec = gp2ap002_events,
382 .num_event_specs = ARRAY_SIZE(gp2ap002_events),
383 },
384 {
385 .type = IIO_LIGHT,
386 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
387 .channel = GP2AP002_ALS_CHANNEL,
388 },
389 };
390
391 /*
392 * We need a special regmap because this hardware expects to
393 * write single bytes to registers but read a 16bit word on some
394 * variants and discard the lower 8 bits so combine
395 * i2c_smbus_read_word_data() with i2c_smbus_write_byte_data()
396 * selectively like this.
397 */
gp2ap002_regmap_i2c_read(void * context,unsigned int reg,unsigned int * val)398 static int gp2ap002_regmap_i2c_read(void *context, unsigned int reg,
399 unsigned int *val)
400 {
401 struct device *dev = context;
402 struct i2c_client *i2c = to_i2c_client(dev);
403 int ret;
404
405 ret = i2c_smbus_read_word_data(i2c, reg);
406 if (ret < 0)
407 return ret;
408
409 *val = (ret >> 8) & 0xFF;
410
411 return 0;
412 }
413
gp2ap002_regmap_i2c_write(void * context,unsigned int reg,unsigned int val)414 static int gp2ap002_regmap_i2c_write(void *context, unsigned int reg,
415 unsigned int val)
416 {
417 struct device *dev = context;
418 struct i2c_client *i2c = to_i2c_client(dev);
419
420 return i2c_smbus_write_byte_data(i2c, reg, val);
421 }
422
423 static struct regmap_bus gp2ap002_regmap_bus = {
424 .reg_read = gp2ap002_regmap_i2c_read,
425 .reg_write = gp2ap002_regmap_i2c_write,
426 };
427
gp2ap002_probe(struct i2c_client * client,const struct i2c_device_id * id)428 static int gp2ap002_probe(struct i2c_client *client,
429 const struct i2c_device_id *id)
430 {
431 struct gp2ap002 *gp2ap002;
432 struct iio_dev *indio_dev;
433 struct device *dev = &client->dev;
434 enum iio_chan_type ch_type;
435 static const struct regmap_config config = {
436 .reg_bits = 8,
437 .val_bits = 8,
438 .max_register = GP2AP002_CON,
439 };
440 struct regmap *regmap;
441 int num_chan;
442 const char *compat;
443 u8 val;
444 int ret;
445
446 indio_dev = devm_iio_device_alloc(dev, sizeof(*gp2ap002));
447 if (!indio_dev)
448 return -ENOMEM;
449 i2c_set_clientdata(client, indio_dev);
450
451 gp2ap002 = iio_priv(indio_dev);
452 gp2ap002->dev = dev;
453
454 /*
455 * Check the device compatible like this makes it possible to use
456 * ACPI PRP0001 for registering the sensor using device tree
457 * properties.
458 */
459 ret = device_property_read_string(dev, "compatible", &compat);
460 if (ret) {
461 dev_err(dev, "cannot check compatible\n");
462 return ret;
463 }
464 gp2ap002->is_gp2ap002s00f = !strcmp(compat, "sharp,gp2ap002s00f");
465
466 regmap = devm_regmap_init(dev, &gp2ap002_regmap_bus, dev, &config);
467 if (IS_ERR(regmap)) {
468 dev_err(dev, "Failed to register i2c regmap %d\n",
469 (int)PTR_ERR(regmap));
470 return PTR_ERR(regmap);
471 }
472 gp2ap002->map = regmap;
473
474 /*
475 * The hysteresis settings are coded into the device tree as values
476 * to be written into the hysteresis register. The datasheet defines
477 * modes "A", "B1" and "B2" with fixed values to be use but vendor
478 * code trees for actual devices are tweaking these values and refer to
479 * modes named things like "B1.5". To be able to support any devices,
480 * we allow passing an arbitrary hysteresis setting for "near" and
481 * "far".
482 */
483
484 /* Check the device tree for the IR LED hysteresis */
485 ret = device_property_read_u8(dev, "sharp,proximity-far-hysteresis",
486 &val);
487 if (ret) {
488 dev_err(dev, "failed to obtain proximity far setting\n");
489 return ret;
490 }
491 dev_dbg(dev, "proximity far setting %02x\n", val);
492 gp2ap002->hys_far = val;
493
494 ret = device_property_read_u8(dev, "sharp,proximity-close-hysteresis",
495 &val);
496 if (ret) {
497 dev_err(dev, "failed to obtain proximity close setting\n");
498 return ret;
499 }
500 dev_dbg(dev, "proximity close setting %02x\n", val);
501 gp2ap002->hys_close = val;
502
503 /* The GP2AP002A00F has a light sensor too */
504 if (!gp2ap002->is_gp2ap002s00f) {
505 gp2ap002->alsout = devm_iio_channel_get(dev, "alsout");
506 if (IS_ERR(gp2ap002->alsout)) {
507 if (PTR_ERR(gp2ap002->alsout) == -ENODEV) {
508 dev_err(dev, "no ADC, deferring...\n");
509 return -EPROBE_DEFER;
510 }
511 dev_err(dev, "failed to get ALSOUT ADC channel\n");
512 return PTR_ERR(gp2ap002->alsout);
513 }
514 ret = iio_get_channel_type(gp2ap002->alsout, &ch_type);
515 if (ret < 0)
516 return ret;
517 if (ch_type != IIO_CURRENT) {
518 dev_err(dev,
519 "wrong type of IIO channel specified for ALSOUT\n");
520 return -EINVAL;
521 }
522 }
523
524 gp2ap002->vdd = devm_regulator_get(dev, "vdd");
525 if (IS_ERR(gp2ap002->vdd)) {
526 dev_err(dev, "failed to get VDD regulator\n");
527 return PTR_ERR(gp2ap002->vdd);
528 }
529 gp2ap002->vio = devm_regulator_get(dev, "vio");
530 if (IS_ERR(gp2ap002->vio)) {
531 dev_err(dev, "failed to get VIO regulator\n");
532 return PTR_ERR(gp2ap002->vio);
533 }
534
535 /* Operating voltage 2.4V .. 3.6V according to datasheet */
536 ret = regulator_set_voltage(gp2ap002->vdd, 2400000, 3600000);
537 if (ret) {
538 dev_err(dev, "failed to sett VDD voltage\n");
539 return ret;
540 }
541
542 /* VIO should be between 1.65V and VDD */
543 ret = regulator_get_voltage(gp2ap002->vdd);
544 if (ret < 0) {
545 dev_err(dev, "failed to get VDD voltage\n");
546 return ret;
547 }
548 ret = regulator_set_voltage(gp2ap002->vio, 1650000, ret);
549 if (ret) {
550 dev_err(dev, "failed to set VIO voltage\n");
551 return ret;
552 }
553
554 ret = regulator_enable(gp2ap002->vdd);
555 if (ret) {
556 dev_err(dev, "failed to enable VDD regulator\n");
557 return ret;
558 }
559 ret = regulator_enable(gp2ap002->vio);
560 if (ret) {
561 dev_err(dev, "failed to enable VIO regulator\n");
562 goto out_disable_vdd;
563 }
564
565 msleep(20);
566
567 /*
568 * Initialize the device and signal to runtime PM that now we are
569 * definitely up and using power.
570 */
571 ret = gp2ap002_init(gp2ap002);
572 if (ret) {
573 dev_err(dev, "initialization failed\n");
574 goto out_disable_vio;
575 }
576 pm_runtime_get_noresume(dev);
577 pm_runtime_set_active(dev);
578 pm_runtime_enable(dev);
579 gp2ap002->enabled = false;
580
581 ret = devm_request_threaded_irq(dev, client->irq, NULL,
582 gp2ap002_prox_irq, IRQF_ONESHOT,
583 "gp2ap002", indio_dev);
584 if (ret) {
585 dev_err(dev, "unable to request IRQ\n");
586 goto out_put_pm;
587 }
588 gp2ap002->irq = client->irq;
589
590 /*
591 * As the device takes 20 ms + regulator delay to come up with a fresh
592 * measurement after power-on, do not shut it down unnecessarily.
593 * Set autosuspend to a one second.
594 */
595 pm_runtime_set_autosuspend_delay(dev, 1000);
596 pm_runtime_use_autosuspend(dev);
597 pm_runtime_put(dev);
598
599 indio_dev->info = &gp2ap002_info;
600 indio_dev->name = "gp2ap002";
601 indio_dev->channels = gp2ap002_channels;
602 /* Skip light channel for the proximity-only sensor */
603 num_chan = ARRAY_SIZE(gp2ap002_channels);
604 if (gp2ap002->is_gp2ap002s00f)
605 num_chan--;
606 indio_dev->num_channels = num_chan;
607 indio_dev->modes = INDIO_DIRECT_MODE;
608
609 ret = iio_device_register(indio_dev);
610 if (ret)
611 goto out_disable_pm;
612 dev_dbg(dev, "Sharp GP2AP002 probed successfully\n");
613
614 return 0;
615
616 out_put_pm:
617 pm_runtime_put_noidle(dev);
618 out_disable_pm:
619 pm_runtime_disable(dev);
620 out_disable_vio:
621 regulator_disable(gp2ap002->vio);
622 out_disable_vdd:
623 regulator_disable(gp2ap002->vdd);
624 return ret;
625 }
626
gp2ap002_remove(struct i2c_client * client)627 static int gp2ap002_remove(struct i2c_client *client)
628 {
629 struct iio_dev *indio_dev = i2c_get_clientdata(client);
630 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
631 struct device *dev = &client->dev;
632
633 pm_runtime_get_sync(dev);
634 pm_runtime_put_noidle(dev);
635 pm_runtime_disable(dev);
636 iio_device_unregister(indio_dev);
637 regulator_disable(gp2ap002->vio);
638 regulator_disable(gp2ap002->vdd);
639
640 return 0;
641 }
642
gp2ap002_runtime_suspend(struct device * dev)643 static int __maybe_unused gp2ap002_runtime_suspend(struct device *dev)
644 {
645 struct iio_dev *indio_dev = dev_get_drvdata(dev);
646 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
647 int ret;
648
649 /* Deactivate the IRQ */
650 disable_irq(gp2ap002->irq);
651
652 /* Disable chip and IRQ, everything off */
653 ret = regmap_write(gp2ap002->map, GP2AP002_OPMOD, 0x00);
654 if (ret) {
655 dev_err(gp2ap002->dev, "error setting up operation mode\n");
656 return ret;
657 }
658 /*
659 * As these regulators may be shared, at least we are now in
660 * sleep even if the regulators aren't really turned off.
661 */
662 regulator_disable(gp2ap002->vio);
663 regulator_disable(gp2ap002->vdd);
664
665 return 0;
666 }
667
gp2ap002_runtime_resume(struct device * dev)668 static int __maybe_unused gp2ap002_runtime_resume(struct device *dev)
669 {
670 struct iio_dev *indio_dev = dev_get_drvdata(dev);
671 struct gp2ap002 *gp2ap002 = iio_priv(indio_dev);
672 int ret;
673
674 ret = regulator_enable(gp2ap002->vdd);
675 if (ret) {
676 dev_err(dev, "failed to enable VDD regulator in resume path\n");
677 return ret;
678 }
679 ret = regulator_enable(gp2ap002->vio);
680 if (ret) {
681 dev_err(dev, "failed to enable VIO regulator in resume path\n");
682 return ret;
683 }
684
685 msleep(20);
686
687 ret = gp2ap002_init(gp2ap002);
688 if (ret) {
689 dev_err(dev, "re-initialization failed\n");
690 return ret;
691 }
692
693 /* Re-activate the IRQ */
694 enable_irq(gp2ap002->irq);
695
696 return 0;
697 }
698
699 static const struct dev_pm_ops gp2ap002_dev_pm_ops = {
700 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
701 pm_runtime_force_resume)
702 SET_RUNTIME_PM_OPS(gp2ap002_runtime_suspend,
703 gp2ap002_runtime_resume, NULL)
704 };
705
706 static const struct i2c_device_id gp2ap002_id_table[] = {
707 { "gp2ap002", 0 },
708 { },
709 };
710 MODULE_DEVICE_TABLE(i2c, gp2ap002_id_table);
711
712 static const struct of_device_id gp2ap002_of_match[] = {
713 { .compatible = "sharp,gp2ap002a00f" },
714 { .compatible = "sharp,gp2ap002s00f" },
715 { },
716 };
717 MODULE_DEVICE_TABLE(of, gp2ap002_of_match);
718
719 static struct i2c_driver gp2ap002_driver = {
720 .driver = {
721 .name = "gp2ap002",
722 .of_match_table = gp2ap002_of_match,
723 .pm = &gp2ap002_dev_pm_ops,
724 },
725 .probe = gp2ap002_probe,
726 .remove = gp2ap002_remove,
727 .id_table = gp2ap002_id_table,
728 };
729 module_i2c_driver(gp2ap002_driver);
730
731 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
732 MODULE_DESCRIPTION("GP2AP002 ambient light and proximity sensor driver");
733 MODULE_LICENSE("GPL v2");
734