1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3 *
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
6 *
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
34
35 #include "nuvoton-cir.h"
36
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38
39 static const struct nvt_chip nvt_chips[] = {
40 { "w83667hg", NVT_W83667HG },
41 { "NCT6775F", NVT_6775F },
42 { "NCT6776F", NVT_6776F },
43 { "NCT6779D", NVT_6779D },
44 };
45
nvt_get_dev(const struct nvt_dev * nvt)46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47 {
48 return nvt->rdev->dev.parent;
49 }
50
is_w83667hg(struct nvt_dev * nvt)51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 return nvt->chip_ver == NVT_W83667HG;
54 }
55
56 /* write val to config reg */
nvt_cr_write(struct nvt_dev * nvt,u8 val,u8 reg)57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 outb(reg, nvt->cr_efir);
60 outb(val, nvt->cr_efdr);
61 }
62
63 /* read val from config reg */
nvt_cr_read(struct nvt_dev * nvt,u8 reg)64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 outb(reg, nvt->cr_efir);
67 return inb(nvt->cr_efdr);
68 }
69
70 /* update config register bit without changing other bits */
nvt_set_reg_bit(struct nvt_dev * nvt,u8 val,u8 reg)71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 u8 tmp = nvt_cr_read(nvt, reg) | val;
74 nvt_cr_write(nvt, tmp, reg);
75 }
76
77 /* enter extended function mode */
nvt_efm_enable(struct nvt_dev * nvt)78 static inline int nvt_efm_enable(struct nvt_dev *nvt)
79 {
80 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
81 return -EBUSY;
82
83 /* Enabling Extended Function Mode explicitly requires writing 2x */
84 outb(EFER_EFM_ENABLE, nvt->cr_efir);
85 outb(EFER_EFM_ENABLE, nvt->cr_efir);
86
87 return 0;
88 }
89
90 /* exit extended function mode */
nvt_efm_disable(struct nvt_dev * nvt)91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
92 {
93 outb(EFER_EFM_DISABLE, nvt->cr_efir);
94
95 release_region(nvt->cr_efir, 2);
96 }
97
98 /*
99 * When you want to address a specific logical device, write its logical
100 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
101 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
102 */
nvt_select_logical_dev(struct nvt_dev * nvt,u8 ldev)103 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
104 {
105 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
106 }
107
108 /* select and enable logical device with setting EFM mode*/
nvt_enable_logical_dev(struct nvt_dev * nvt,u8 ldev)109 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
110 {
111 nvt_efm_enable(nvt);
112 nvt_select_logical_dev(nvt, ldev);
113 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
114 nvt_efm_disable(nvt);
115 }
116
117 /* select and disable logical device with setting EFM mode*/
nvt_disable_logical_dev(struct nvt_dev * nvt,u8 ldev)118 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
119 {
120 nvt_efm_enable(nvt);
121 nvt_select_logical_dev(nvt, ldev);
122 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
123 nvt_efm_disable(nvt);
124 }
125
126 /* write val to cir config register */
nvt_cir_reg_write(struct nvt_dev * nvt,u8 val,u8 offset)127 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
128 {
129 outb(val, nvt->cir_addr + offset);
130 }
131
132 /* read val from cir config register */
nvt_cir_reg_read(struct nvt_dev * nvt,u8 offset)133 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
134 {
135 return inb(nvt->cir_addr + offset);
136 }
137
138 /* write val to cir wake register */
nvt_cir_wake_reg_write(struct nvt_dev * nvt,u8 val,u8 offset)139 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
140 u8 val, u8 offset)
141 {
142 outb(val, nvt->cir_wake_addr + offset);
143 }
144
145 /* read val from cir wake config register */
nvt_cir_wake_reg_read(struct nvt_dev * nvt,u8 offset)146 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
147 {
148 return inb(nvt->cir_wake_addr + offset);
149 }
150
151 /* don't override io address if one is set already */
nvt_set_ioaddr(struct nvt_dev * nvt,unsigned long * ioaddr)152 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
153 {
154 unsigned long old_addr;
155
156 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
157 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
158
159 if (old_addr)
160 *ioaddr = old_addr;
161 else {
162 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
163 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
164 }
165 }
166
nvt_write_wakeup_codes(struct rc_dev * dev,const u8 * wbuf,int count)167 static void nvt_write_wakeup_codes(struct rc_dev *dev,
168 const u8 *wbuf, int count)
169 {
170 u8 tolerance, config;
171 struct nvt_dev *nvt = dev->priv;
172 unsigned long flags;
173 int i;
174
175 /* hardcode the tolerance to 10% */
176 tolerance = DIV_ROUND_UP(count, 10);
177
178 spin_lock_irqsave(&nvt->lock, flags);
179
180 nvt_clear_cir_wake_fifo(nvt);
181 nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
182 nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
183
184 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
185
186 /* enable writes to wake fifo */
187 nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
188 CIR_WAKE_IRCON);
189
190 if (count)
191 pr_info("Wake samples (%d) =", count);
192 else
193 pr_info("Wake sample fifo cleared");
194
195 for (i = 0; i < count; i++)
196 nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
197
198 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
199
200 spin_unlock_irqrestore(&nvt->lock, flags);
201 }
202
wakeup_data_show(struct device * dev,struct device_attribute * attr,char * buf)203 static ssize_t wakeup_data_show(struct device *dev,
204 struct device_attribute *attr,
205 char *buf)
206 {
207 struct rc_dev *rc_dev = to_rc_dev(dev);
208 struct nvt_dev *nvt = rc_dev->priv;
209 int fifo_len, duration;
210 unsigned long flags;
211 ssize_t buf_len = 0;
212 int i;
213
214 spin_lock_irqsave(&nvt->lock, flags);
215
216 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
217 fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
218
219 /* go to first element to be read */
220 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
221 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
222
223 for (i = 0; i < fifo_len; i++) {
224 duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
225 duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
226 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
227 "%d ", duration);
228 }
229 buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
230
231 spin_unlock_irqrestore(&nvt->lock, flags);
232
233 return buf_len;
234 }
235
wakeup_data_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)236 static ssize_t wakeup_data_store(struct device *dev,
237 struct device_attribute *attr,
238 const char *buf, size_t len)
239 {
240 struct rc_dev *rc_dev = to_rc_dev(dev);
241 u8 wake_buf[WAKEUP_MAX_SIZE];
242 char **argv;
243 int i, count;
244 unsigned int val;
245 ssize_t ret;
246
247 argv = argv_split(GFP_KERNEL, buf, &count);
248 if (!argv)
249 return -ENOMEM;
250 if (!count || count > WAKEUP_MAX_SIZE) {
251 ret = -EINVAL;
252 goto out;
253 }
254
255 for (i = 0; i < count; i++) {
256 ret = kstrtouint(argv[i], 10, &val);
257 if (ret)
258 goto out;
259 val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
260 if (!val || val > 0x7f) {
261 ret = -EINVAL;
262 goto out;
263 }
264 wake_buf[i] = val;
265 /* sequence must start with a pulse */
266 if (i % 2 == 0)
267 wake_buf[i] |= BUF_PULSE_BIT;
268 }
269
270 nvt_write_wakeup_codes(rc_dev, wake_buf, count);
271
272 ret = len;
273 out:
274 argv_free(argv);
275 return ret;
276 }
277 static DEVICE_ATTR_RW(wakeup_data);
278
279 /* dump current cir register contents */
cir_dump_regs(struct nvt_dev * nvt)280 static void cir_dump_regs(struct nvt_dev *nvt)
281 {
282 nvt_efm_enable(nvt);
283 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
284
285 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
286 pr_info(" * CR CIR ACTIVE : 0x%x\n",
287 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
288 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
289 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
290 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
291 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
292 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
293
294 nvt_efm_disable(nvt);
295
296 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
297 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
298 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
299 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
300 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
301 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
302 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
303 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
304 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
305 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
306 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
307 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
308 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
309 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
310 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
311 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
312 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
313 }
314
315 /* dump current cir wake register contents */
cir_wake_dump_regs(struct nvt_dev * nvt)316 static void cir_wake_dump_regs(struct nvt_dev *nvt)
317 {
318 u8 i, fifo_len;
319
320 nvt_efm_enable(nvt);
321 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
322
323 pr_info("%s: Dump CIR WAKE logical device registers:\n",
324 NVT_DRIVER_NAME);
325 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
326 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
327 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
328 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
329 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
330 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
331 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
332
333 nvt_efm_disable(nvt);
334
335 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
336 pr_info(" * IRCON: 0x%x\n",
337 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
338 pr_info(" * IRSTS: 0x%x\n",
339 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
340 pr_info(" * IREN: 0x%x\n",
341 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
342 pr_info(" * FIFO CMP DEEP: 0x%x\n",
343 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
344 pr_info(" * FIFO CMP TOL: 0x%x\n",
345 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
346 pr_info(" * FIFO COUNT: 0x%x\n",
347 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
348 pr_info(" * SLCH: 0x%x\n",
349 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
350 pr_info(" * SLCL: 0x%x\n",
351 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
352 pr_info(" * FIFOCON: 0x%x\n",
353 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
354 pr_info(" * SRXFSTS: 0x%x\n",
355 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
356 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
357 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
358 pr_info(" * WR FIFO DATA: 0x%x\n",
359 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
360 pr_info(" * RD FIFO ONLY: 0x%x\n",
361 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
362 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
363 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
364 pr_info(" * FIFO IGNORE: 0x%x\n",
365 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
366 pr_info(" * IRFSM: 0x%x\n",
367 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
368
369 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
370 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
371 pr_info("* Contents =");
372 for (i = 0; i < fifo_len; i++)
373 pr_cont(" %02x",
374 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
375 pr_cont("\n");
376 }
377
nvt_find_chip(struct nvt_dev * nvt,int id)378 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
379 {
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
383 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
384 nvt->chip_ver = nvt_chips[i].chip_ver;
385 return nvt_chips[i].name;
386 }
387
388 return NULL;
389 }
390
391
392 /* detect hardware features */
nvt_hw_detect(struct nvt_dev * nvt)393 static int nvt_hw_detect(struct nvt_dev *nvt)
394 {
395 struct device *dev = nvt_get_dev(nvt);
396 const char *chip_name;
397 int chip_id;
398
399 nvt_efm_enable(nvt);
400
401 /* Check if we're wired for the alternate EFER setup */
402 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
403 if (nvt->chip_major == 0xff) {
404 nvt_efm_disable(nvt);
405 nvt->cr_efir = CR_EFIR2;
406 nvt->cr_efdr = CR_EFDR2;
407 nvt_efm_enable(nvt);
408 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
409 }
410 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
411
412 nvt_efm_disable(nvt);
413
414 chip_id = nvt->chip_major << 8 | nvt->chip_minor;
415 if (chip_id == NVT_INVALID) {
416 dev_err(dev, "No device found on either EFM port\n");
417 return -ENODEV;
418 }
419
420 chip_name = nvt_find_chip(nvt, chip_id);
421
422 /* warn, but still let the driver load, if we don't know this chip */
423 if (!chip_name)
424 dev_warn(dev,
425 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
426 nvt->chip_major, nvt->chip_minor);
427 else
428 dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
429 chip_name, nvt->chip_major, nvt->chip_minor);
430
431 return 0;
432 }
433
nvt_cir_ldev_init(struct nvt_dev * nvt)434 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
435 {
436 u8 val, psreg, psmask, psval;
437
438 if (is_w83667hg(nvt)) {
439 psreg = CR_MULTIFUNC_PIN_SEL;
440 psmask = MULTIFUNC_PIN_SEL_MASK;
441 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
442 } else {
443 psreg = CR_OUTPUT_PIN_SEL;
444 psmask = OUTPUT_PIN_SEL_MASK;
445 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
446 }
447
448 /* output pin selection: enable CIR, with WB sensor enabled */
449 val = nvt_cr_read(nvt, psreg);
450 val &= psmask;
451 val |= psval;
452 nvt_cr_write(nvt, val, psreg);
453
454 /* Select CIR logical device */
455 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
456
457 nvt_set_ioaddr(nvt, &nvt->cir_addr);
458
459 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
460
461 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
462 nvt->cir_addr, nvt->cir_irq);
463 }
464
nvt_cir_wake_ldev_init(struct nvt_dev * nvt)465 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
466 {
467 /* Select ACPI logical device and anable it */
468 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
469 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
470
471 /* Enable CIR Wake via PSOUT# (Pin60) */
472 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
473
474 /* enable pme interrupt of cir wakeup event */
475 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
476
477 /* Select CIR Wake logical device */
478 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
479
480 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
481
482 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
483 nvt->cir_wake_addr);
484 }
485
486 /* clear out the hardware's cir rx fifo */
nvt_clear_cir_fifo(struct nvt_dev * nvt)487 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
488 {
489 u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
490 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
491 }
492
493 /* clear out the hardware's cir wake rx fifo */
nvt_clear_cir_wake_fifo(struct nvt_dev * nvt)494 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
495 {
496 u8 val, config;
497
498 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
499
500 /* clearing wake fifo works in learning mode only */
501 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
502 CIR_WAKE_IRCON);
503
504 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
505 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
506 CIR_WAKE_FIFOCON);
507
508 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
509 }
510
511 /* clear out the hardware's cir tx fifo */
nvt_clear_tx_fifo(struct nvt_dev * nvt)512 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
513 {
514 u8 val;
515
516 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
517 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
518 }
519
520 /* enable RX Trigger Level Reach and Packet End interrupts */
nvt_set_cir_iren(struct nvt_dev * nvt)521 static void nvt_set_cir_iren(struct nvt_dev *nvt)
522 {
523 u8 iren;
524
525 iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
526 nvt_cir_reg_write(nvt, iren, CIR_IREN);
527 }
528
nvt_cir_regs_init(struct nvt_dev * nvt)529 static void nvt_cir_regs_init(struct nvt_dev *nvt)
530 {
531 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
532
533 /* set sample limit count (PE interrupt raised when reached) */
534 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
535 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
536
537 /* set fifo irq trigger levels */
538 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
539 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
540
541 /* clear hardware rx and tx fifos */
542 nvt_clear_cir_fifo(nvt);
543 nvt_clear_tx_fifo(nvt);
544
545 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
546 }
547
nvt_cir_wake_regs_init(struct nvt_dev * nvt)548 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
549 {
550 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
551
552 /*
553 * Disable RX, set specific carrier on = low, off = high,
554 * and sample period (currently 50us)
555 */
556 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
557 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
558 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
559 CIR_WAKE_IRCON);
560
561 /* clear any and all stray interrupts */
562 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
563 }
564
nvt_enable_wake(struct nvt_dev * nvt)565 static void nvt_enable_wake(struct nvt_dev *nvt)
566 {
567 unsigned long flags;
568
569 nvt_efm_enable(nvt);
570
571 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
572 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
573 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
574
575 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
576 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
577
578 nvt_efm_disable(nvt);
579
580 spin_lock_irqsave(&nvt->lock, flags);
581
582 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
583 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
584 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
585 CIR_WAKE_IRCON);
586 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
587 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
588
589 spin_unlock_irqrestore(&nvt->lock, flags);
590 }
591
592 #if 0 /* Currently unused */
593 /* rx carrier detect only works in learning mode, must be called w/lock */
594 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
595 {
596 u32 count, carrier, duration = 0;
597 int i;
598
599 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
600 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
601
602 for (i = 0; i < nvt->pkts; i++) {
603 if (nvt->buf[i] & BUF_PULSE_BIT)
604 duration += nvt->buf[i] & BUF_LEN_MASK;
605 }
606
607 duration *= SAMPLE_PERIOD;
608
609 if (!count || !duration) {
610 dev_notice(nvt_get_dev(nvt),
611 "Unable to determine carrier! (c:%u, d:%u)",
612 count, duration);
613 return 0;
614 }
615
616 carrier = MS_TO_NS(count) / duration;
617
618 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
619 nvt_dbg("WTF? Carrier frequency out of range!");
620
621 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
622 carrier, count, duration);
623
624 return carrier;
625 }
626 #endif
627
nvt_ir_raw_set_wakeup_filter(struct rc_dev * dev,struct rc_scancode_filter * sc_filter)628 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
629 struct rc_scancode_filter *sc_filter)
630 {
631 u8 buf_val;
632 int i, ret, count;
633 unsigned int val;
634 struct ir_raw_event *raw;
635 u8 wake_buf[WAKEUP_MAX_SIZE];
636 bool complete;
637
638 /* Require mask to be set */
639 if (!sc_filter->mask)
640 return 0;
641
642 raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
643 if (!raw)
644 return -ENOMEM;
645
646 ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
647 raw, WAKEUP_MAX_SIZE);
648 complete = (ret != -ENOBUFS);
649 if (!complete)
650 ret = WAKEUP_MAX_SIZE;
651 else if (ret < 0)
652 goto out_raw;
653
654 /* Inspect the ir samples */
655 for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
656 val = raw[i].duration / SAMPLE_PERIOD;
657
658 /* Split too large values into several smaller ones */
659 while (val > 0 && count < WAKEUP_MAX_SIZE) {
660 /* Skip last value for better comparison tolerance */
661 if (complete && i == ret - 1 && val < BUF_LEN_MASK)
662 break;
663
664 /* Clamp values to BUF_LEN_MASK at most */
665 buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
666
667 wake_buf[count] = buf_val;
668 val -= buf_val;
669 if ((raw[i]).pulse)
670 wake_buf[count] |= BUF_PULSE_BIT;
671 count++;
672 }
673 }
674
675 nvt_write_wakeup_codes(dev, wake_buf, count);
676 ret = 0;
677 out_raw:
678 kfree(raw);
679
680 return ret;
681 }
682
683 /* dump contents of the last rx buffer we got from the hw rx fifo */
nvt_dump_rx_buf(struct nvt_dev * nvt)684 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
685 {
686 int i;
687
688 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
689 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
690 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
691 printk(KERN_CONT "\n");
692 }
693
694 /*
695 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
696 * trigger decode when appropriate.
697 *
698 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
699 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
700 * (default 50us) intervals for that pulse/space. A discrete signal is
701 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
702 * to signal more IR coming (repeats) or end of IR, respectively. We store
703 * sample data in the raw event kfifo until we see 0x7<something> (except f)
704 * or 0x80, at which time, we trigger a decode operation.
705 */
nvt_process_rx_ir_data(struct nvt_dev * nvt)706 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
707 {
708 struct ir_raw_event rawir = {};
709 u8 sample;
710 int i;
711
712 nvt_dbg_verbose("%s firing", __func__);
713
714 if (debug)
715 nvt_dump_rx_buf(nvt);
716
717 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
718
719 for (i = 0; i < nvt->pkts; i++) {
720 sample = nvt->buf[i];
721
722 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
723 rawir.duration = (sample & BUF_LEN_MASK) * SAMPLE_PERIOD;
724
725 nvt_dbg("Storing %s with duration %d",
726 rawir.pulse ? "pulse" : "space", rawir.duration);
727
728 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
729 }
730
731 nvt->pkts = 0;
732
733 nvt_dbg("Calling ir_raw_event_handle\n");
734 ir_raw_event_handle(nvt->rdev);
735
736 nvt_dbg_verbose("%s done", __func__);
737 }
738
nvt_handle_rx_fifo_overrun(struct nvt_dev * nvt)739 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
740 {
741 dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
742
743 nvt->pkts = 0;
744 nvt_clear_cir_fifo(nvt);
745 ir_raw_event_reset(nvt->rdev);
746 }
747
748 /* copy data from hardware rx fifo into driver buffer */
nvt_get_rx_ir_data(struct nvt_dev * nvt)749 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
750 {
751 u8 fifocount;
752 int i;
753
754 /* Get count of how many bytes to read from RX FIFO */
755 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
756
757 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
758
759 /* Read fifocount bytes from CIR Sample RX FIFO register */
760 for (i = 0; i < fifocount; i++)
761 nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
762
763 nvt->pkts = fifocount;
764 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
765
766 nvt_process_rx_ir_data(nvt);
767 }
768
nvt_cir_log_irqs(u8 status,u8 iren)769 static void nvt_cir_log_irqs(u8 status, u8 iren)
770 {
771 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
772 status, iren,
773 status & CIR_IRSTS_RDR ? " RDR" : "",
774 status & CIR_IRSTS_RTR ? " RTR" : "",
775 status & CIR_IRSTS_PE ? " PE" : "",
776 status & CIR_IRSTS_RFO ? " RFO" : "",
777 status & CIR_IRSTS_TE ? " TE" : "",
778 status & CIR_IRSTS_TTR ? " TTR" : "",
779 status & CIR_IRSTS_TFU ? " TFU" : "",
780 status & CIR_IRSTS_GH ? " GH" : "",
781 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
782 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
783 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
784 }
785
786 /* interrupt service routine for incoming and outgoing CIR data */
nvt_cir_isr(int irq,void * data)787 static irqreturn_t nvt_cir_isr(int irq, void *data)
788 {
789 struct nvt_dev *nvt = data;
790 u8 status, iren;
791
792 nvt_dbg_verbose("%s firing", __func__);
793
794 spin_lock(&nvt->lock);
795
796 /*
797 * Get IR Status register contents. Write 1 to ack/clear
798 *
799 * bit: reg name - description
800 * 7: CIR_IRSTS_RDR - RX Data Ready
801 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
802 * 5: CIR_IRSTS_PE - Packet End
803 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
804 * 3: CIR_IRSTS_TE - TX FIFO Empty
805 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
806 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
807 * 0: CIR_IRSTS_GH - Min Length Detected
808 */
809 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
810 iren = nvt_cir_reg_read(nvt, CIR_IREN);
811
812 /* At least NCT6779D creates a spurious interrupt when the
813 * logical device is being disabled.
814 */
815 if (status == 0xff && iren == 0xff) {
816 spin_unlock(&nvt->lock);
817 nvt_dbg_verbose("Spurious interrupt detected");
818 return IRQ_HANDLED;
819 }
820
821 /* IRQ may be shared with CIR WAKE, therefore check for each
822 * status bit whether the related interrupt source is enabled
823 */
824 if (!(status & iren)) {
825 spin_unlock(&nvt->lock);
826 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
827 return IRQ_NONE;
828 }
829
830 /* ack/clear all irq flags we've got */
831 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
832 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
833
834 nvt_cir_log_irqs(status, iren);
835
836 if (status & CIR_IRSTS_RFO)
837 nvt_handle_rx_fifo_overrun(nvt);
838 else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
839 nvt_get_rx_ir_data(nvt);
840
841 spin_unlock(&nvt->lock);
842
843 nvt_dbg_verbose("%s done", __func__);
844 return IRQ_HANDLED;
845 }
846
nvt_enable_cir(struct nvt_dev * nvt)847 static void nvt_enable_cir(struct nvt_dev *nvt)
848 {
849 unsigned long flags;
850
851 /* enable the CIR logical device */
852 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
853
854 spin_lock_irqsave(&nvt->lock, flags);
855
856 /*
857 * Enable TX and RX, specify carrier on = low, off = high, and set
858 * sample period (currently 50us)
859 */
860 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
861 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
862 CIR_IRCON);
863
864 /* clear all pending interrupts */
865 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
866
867 /* enable interrupts */
868 nvt_set_cir_iren(nvt);
869
870 spin_unlock_irqrestore(&nvt->lock, flags);
871 }
872
nvt_disable_cir(struct nvt_dev * nvt)873 static void nvt_disable_cir(struct nvt_dev *nvt)
874 {
875 unsigned long flags;
876
877 spin_lock_irqsave(&nvt->lock, flags);
878
879 /* disable CIR interrupts */
880 nvt_cir_reg_write(nvt, 0, CIR_IREN);
881
882 /* clear any and all pending interrupts */
883 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
884
885 /* clear all function enable flags */
886 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
887
888 /* clear hardware rx and tx fifos */
889 nvt_clear_cir_fifo(nvt);
890 nvt_clear_tx_fifo(nvt);
891
892 spin_unlock_irqrestore(&nvt->lock, flags);
893
894 /* disable the CIR logical device */
895 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
896 }
897
nvt_open(struct rc_dev * dev)898 static int nvt_open(struct rc_dev *dev)
899 {
900 struct nvt_dev *nvt = dev->priv;
901
902 nvt_enable_cir(nvt);
903
904 return 0;
905 }
906
nvt_close(struct rc_dev * dev)907 static void nvt_close(struct rc_dev *dev)
908 {
909 struct nvt_dev *nvt = dev->priv;
910
911 nvt_disable_cir(nvt);
912 }
913
914 /* Allocate memory, probe hardware, and initialize everything */
nvt_probe(struct pnp_dev * pdev,const struct pnp_device_id * dev_id)915 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
916 {
917 struct nvt_dev *nvt;
918 struct rc_dev *rdev;
919 int ret;
920
921 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
922 if (!nvt)
923 return -ENOMEM;
924
925 /* input device for IR remote */
926 nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
927 if (!nvt->rdev)
928 return -ENOMEM;
929 rdev = nvt->rdev;
930
931 /* activate pnp device */
932 ret = pnp_activate_dev(pdev);
933 if (ret) {
934 dev_err(&pdev->dev, "Could not activate PNP device!\n");
935 return ret;
936 }
937
938 /* validate pnp resources */
939 if (!pnp_port_valid(pdev, 0) ||
940 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
941 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
942 return -EINVAL;
943 }
944
945 if (!pnp_irq_valid(pdev, 0)) {
946 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
947 return -EINVAL;
948 }
949
950 if (!pnp_port_valid(pdev, 1) ||
951 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
952 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
953 return -EINVAL;
954 }
955
956 nvt->cir_addr = pnp_port_start(pdev, 0);
957 nvt->cir_irq = pnp_irq(pdev, 0);
958
959 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
960
961 nvt->cr_efir = CR_EFIR;
962 nvt->cr_efdr = CR_EFDR;
963
964 spin_lock_init(&nvt->lock);
965
966 pnp_set_drvdata(pdev, nvt);
967
968 ret = nvt_hw_detect(nvt);
969 if (ret)
970 return ret;
971
972 /* Initialize CIR & CIR Wake Logical Devices */
973 nvt_efm_enable(nvt);
974 nvt_cir_ldev_init(nvt);
975 nvt_cir_wake_ldev_init(nvt);
976 nvt_efm_disable(nvt);
977
978 /*
979 * Initialize CIR & CIR Wake Config Registers
980 * and enable logical devices
981 */
982 nvt_cir_regs_init(nvt);
983 nvt_cir_wake_regs_init(nvt);
984
985 /* Set up the rc device */
986 rdev->priv = nvt;
987 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
988 rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
989 rdev->encode_wakeup = true;
990 rdev->open = nvt_open;
991 rdev->close = nvt_close;
992 rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
993 rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
994 rdev->input_phys = "nuvoton/cir0";
995 rdev->input_id.bustype = BUS_HOST;
996 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
997 rdev->input_id.product = nvt->chip_major;
998 rdev->input_id.version = nvt->chip_minor;
999 rdev->driver_name = NVT_DRIVER_NAME;
1000 rdev->map_name = RC_MAP_RC6_MCE;
1001 rdev->timeout = MS_TO_US(100);
1002 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1003 rdev->rx_resolution = CIR_SAMPLE_PERIOD;
1004 #if 0
1005 rdev->min_timeout = XYZ;
1006 rdev->max_timeout = XYZ;
1007 #endif
1008 ret = devm_rc_register_device(&pdev->dev, rdev);
1009 if (ret)
1010 return ret;
1011
1012 /* now claim resources */
1013 if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1014 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1015 return -EBUSY;
1016
1017 ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1018 IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1019 if (ret)
1020 return ret;
1021
1022 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1023 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1024 return -EBUSY;
1025
1026 ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1027 if (ret)
1028 return ret;
1029
1030 device_init_wakeup(&pdev->dev, true);
1031
1032 dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1033 if (debug) {
1034 cir_dump_regs(nvt);
1035 cir_wake_dump_regs(nvt);
1036 }
1037
1038 return 0;
1039 }
1040
nvt_remove(struct pnp_dev * pdev)1041 static void nvt_remove(struct pnp_dev *pdev)
1042 {
1043 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1044
1045 device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1046
1047 nvt_disable_cir(nvt);
1048
1049 /* enable CIR Wake (for IR power-on) */
1050 nvt_enable_wake(nvt);
1051 }
1052
nvt_suspend(struct pnp_dev * pdev,pm_message_t state)1053 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1054 {
1055 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1056
1057 nvt_dbg("%s called", __func__);
1058
1059 mutex_lock(&nvt->rdev->lock);
1060 if (nvt->rdev->users)
1061 nvt_disable_cir(nvt);
1062 mutex_unlock(&nvt->rdev->lock);
1063
1064 /* make sure wake is enabled */
1065 nvt_enable_wake(nvt);
1066
1067 return 0;
1068 }
1069
nvt_resume(struct pnp_dev * pdev)1070 static int nvt_resume(struct pnp_dev *pdev)
1071 {
1072 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1073
1074 nvt_dbg("%s called", __func__);
1075
1076 nvt_cir_regs_init(nvt);
1077 nvt_cir_wake_regs_init(nvt);
1078
1079 mutex_lock(&nvt->rdev->lock);
1080 if (nvt->rdev->users)
1081 nvt_enable_cir(nvt);
1082 mutex_unlock(&nvt->rdev->lock);
1083
1084 return 0;
1085 }
1086
nvt_shutdown(struct pnp_dev * pdev)1087 static void nvt_shutdown(struct pnp_dev *pdev)
1088 {
1089 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1090
1091 nvt_enable_wake(nvt);
1092 }
1093
1094 static const struct pnp_device_id nvt_ids[] = {
1095 { "WEC0530", 0 }, /* CIR */
1096 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1097 { "", 0 },
1098 };
1099
1100 static struct pnp_driver nvt_driver = {
1101 .name = NVT_DRIVER_NAME,
1102 .id_table = nvt_ids,
1103 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1104 .probe = nvt_probe,
1105 .remove = nvt_remove,
1106 .suspend = nvt_suspend,
1107 .resume = nvt_resume,
1108 .shutdown = nvt_shutdown,
1109 };
1110
1111 module_param(debug, int, S_IRUGO | S_IWUSR);
1112 MODULE_PARM_DESC(debug, "Enable debugging output");
1113
1114 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1115 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1116
1117 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1118 MODULE_LICENSE("GPL");
1119
1120 module_pnp_driver(nvt_driver);
1121