• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
clear_poll_bit(void __iomem * addr,u32 mask)38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
gpmi_init(struct gpmi_nand_data * this)146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_get_sync(this->dev);
152 	if (ret < 0) {
153 		pm_runtime_put_noidle(this->dev);
154 		return ret;
155 	}
156 
157 	ret = gpmi_reset_block(r->gpmi_regs, false);
158 	if (ret)
159 		goto err_out;
160 
161 	/*
162 	 * Reset BCH here, too. We got failures otherwise :(
163 	 * See later BCH reset for explanation of MX23 and MX28 handling
164 	 */
165 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166 	if (ret)
167 		goto err_out;
168 
169 	/* Choose NAND mode. */
170 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171 
172 	/* Set the IRQ polarity. */
173 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
175 
176 	/* Disable Write-Protection. */
177 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178 
179 	/* Select BCH ECC. */
180 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181 
182 	/*
183 	 * Decouple the chip select from dma channel. We use dma0 for all
184 	 * the chips.
185 	 */
186 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187 
188 err_out:
189 	pm_runtime_mark_last_busy(this->dev);
190 	pm_runtime_put_autosuspend(this->dev);
191 	return ret;
192 }
193 
194 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)195 static void gpmi_dump_info(struct gpmi_nand_data *this)
196 {
197 	struct resources *r = &this->resources;
198 	struct bch_geometry *geo = &this->bch_geometry;
199 	u32 reg;
200 	int i;
201 
202 	dev_err(this->dev, "Show GPMI registers :\n");
203 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
204 		reg = readl(r->gpmi_regs + i * 0x10);
205 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
206 	}
207 
208 	/* start to print out the BCH info */
209 	dev_err(this->dev, "Show BCH registers :\n");
210 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
211 		reg = readl(r->bch_regs + i * 0x10);
212 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
213 	}
214 	dev_err(this->dev, "BCH Geometry :\n"
215 		"GF length              : %u\n"
216 		"ECC Strength           : %u\n"
217 		"Page Size in Bytes     : %u\n"
218 		"Metadata Size in Bytes : %u\n"
219 		"ECC Chunk Size in Bytes: %u\n"
220 		"ECC Chunk Count        : %u\n"
221 		"Payload Size in Bytes  : %u\n"
222 		"Auxiliary Size in Bytes: %u\n"
223 		"Auxiliary Status Offset: %u\n"
224 		"Block Mark Byte Offset : %u\n"
225 		"Block Mark Bit Offset  : %u\n",
226 		geo->gf_len,
227 		geo->ecc_strength,
228 		geo->page_size,
229 		geo->metadata_size,
230 		geo->ecc_chunk_size,
231 		geo->ecc_chunk_count,
232 		geo->payload_size,
233 		geo->auxiliary_size,
234 		geo->auxiliary_status_offset,
235 		geo->block_mark_byte_offset,
236 		geo->block_mark_bit_offset);
237 }
238 
gpmi_check_ecc(struct gpmi_nand_data * this)239 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
240 {
241 	struct bch_geometry *geo = &this->bch_geometry;
242 
243 	/* Do the sanity check. */
244 	if (GPMI_IS_MXS(this)) {
245 		/* The mx23/mx28 only support the GF13. */
246 		if (geo->gf_len == 14)
247 			return false;
248 	}
249 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
250 }
251 
252 /*
253  * If we can get the ECC information from the nand chip, we do not
254  * need to calculate them ourselves.
255  *
256  * We may have available oob space in this case.
257  */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)258 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
259 				    unsigned int ecc_strength,
260 				    unsigned int ecc_step)
261 {
262 	struct bch_geometry *geo = &this->bch_geometry;
263 	struct nand_chip *chip = &this->nand;
264 	struct mtd_info *mtd = nand_to_mtd(chip);
265 	unsigned int block_mark_bit_offset;
266 
267 	switch (ecc_step) {
268 	case SZ_512:
269 		geo->gf_len = 13;
270 		break;
271 	case SZ_1K:
272 		geo->gf_len = 14;
273 		break;
274 	default:
275 		dev_err(this->dev,
276 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
277 			nanddev_get_ecc_requirements(&chip->base)->strength,
278 			nanddev_get_ecc_requirements(&chip->base)->step_size);
279 		return -EINVAL;
280 	}
281 	geo->ecc_chunk_size = ecc_step;
282 	geo->ecc_strength = round_up(ecc_strength, 2);
283 	if (!gpmi_check_ecc(this))
284 		return -EINVAL;
285 
286 	/* Keep the C >= O */
287 	if (geo->ecc_chunk_size < mtd->oobsize) {
288 		dev_err(this->dev,
289 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
290 			ecc_step, mtd->oobsize);
291 		return -EINVAL;
292 	}
293 
294 	/* The default value, see comment in the legacy_set_geometry(). */
295 	geo->metadata_size = 10;
296 
297 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
298 
299 	/*
300 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
301 	 *
302 	 *    |                          P                            |
303 	 *    |<----------------------------------------------------->|
304 	 *    |                                                       |
305 	 *    |                                        (Block Mark)   |
306 	 *    |                      P'                      |      | |     |
307 	 *    |<-------------------------------------------->|  D   | |  O' |
308 	 *    |                                              |<---->| |<--->|
309 	 *    V                                              V      V V     V
310 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
311 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
312 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
313 	 *                                                   ^              ^
314 	 *                                                   |      O       |
315 	 *                                                   |<------------>|
316 	 *                                                   |              |
317 	 *
318 	 *	P : the page size for BCH module.
319 	 *	E : The ECC strength.
320 	 *	G : the length of Galois Field.
321 	 *	N : The chunk count of per page.
322 	 *	M : the metasize of per page.
323 	 *	C : the ecc chunk size, aka the "data" above.
324 	 *	P': the nand chip's page size.
325 	 *	O : the nand chip's oob size.
326 	 *	O': the free oob.
327 	 *
328 	 *	The formula for P is :
329 	 *
330 	 *	            E * G * N
331 	 *	       P = ------------ + P' + M
332 	 *                      8
333 	 *
334 	 * The position of block mark moves forward in the ECC-based view
335 	 * of page, and the delta is:
336 	 *
337 	 *                   E * G * (N - 1)
338 	 *             D = (---------------- + M)
339 	 *                          8
340 	 *
341 	 * Please see the comment in legacy_set_geometry().
342 	 * With the condition C >= O , we still can get same result.
343 	 * So the bit position of the physical block mark within the ECC-based
344 	 * view of the page is :
345 	 *             (P' - D) * 8
346 	 */
347 	geo->page_size = mtd->writesize + geo->metadata_size +
348 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
349 
350 	geo->payload_size = mtd->writesize;
351 
352 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
353 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
354 				+ ALIGN(geo->ecc_chunk_count, 4);
355 
356 	if (!this->swap_block_mark)
357 		return 0;
358 
359 	/* For bit swap. */
360 	block_mark_bit_offset = mtd->writesize * 8 -
361 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
362 				+ geo->metadata_size * 8);
363 
364 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
365 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
366 	return 0;
367 }
368 
369 /*
370  *  Calculate the ECC strength by hand:
371  *	E : The ECC strength.
372  *	G : the length of Galois Field.
373  *	N : The chunk count of per page.
374  *	O : the oobsize of the NAND chip.
375  *	M : the metasize of per page.
376  *
377  *	The formula is :
378  *		E * G * N
379  *	      ------------ <= (O - M)
380  *                  8
381  *
382  *      So, we get E by:
383  *                    (O - M) * 8
384  *              E <= -------------
385  *                       G * N
386  */
get_ecc_strength(struct gpmi_nand_data * this)387 static inline int get_ecc_strength(struct gpmi_nand_data *this)
388 {
389 	struct bch_geometry *geo = &this->bch_geometry;
390 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
391 	int ecc_strength;
392 
393 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
394 			/ (geo->gf_len * geo->ecc_chunk_count);
395 
396 	/* We need the minor even number. */
397 	return round_down(ecc_strength, 2);
398 }
399 
legacy_set_geometry(struct gpmi_nand_data * this)400 static int legacy_set_geometry(struct gpmi_nand_data *this)
401 {
402 	struct bch_geometry *geo = &this->bch_geometry;
403 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
404 	unsigned int metadata_size;
405 	unsigned int status_size;
406 	unsigned int block_mark_bit_offset;
407 
408 	/*
409 	 * The size of the metadata can be changed, though we set it to 10
410 	 * bytes now. But it can't be too large, because we have to save
411 	 * enough space for BCH.
412 	 */
413 	geo->metadata_size = 10;
414 
415 	/* The default for the length of Galois Field. */
416 	geo->gf_len = 13;
417 
418 	/* The default for chunk size. */
419 	geo->ecc_chunk_size = 512;
420 	while (geo->ecc_chunk_size < mtd->oobsize) {
421 		geo->ecc_chunk_size *= 2; /* keep C >= O */
422 		geo->gf_len = 14;
423 	}
424 
425 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
426 
427 	/* We use the same ECC strength for all chunks. */
428 	geo->ecc_strength = get_ecc_strength(this);
429 	if (!gpmi_check_ecc(this)) {
430 		dev_err(this->dev,
431 			"ecc strength: %d cannot be supported by the controller (%d)\n"
432 			"try to use minimum ecc strength that NAND chip required\n",
433 			geo->ecc_strength,
434 			this->devdata->bch_max_ecc_strength);
435 		return -EINVAL;
436 	}
437 
438 	geo->page_size = mtd->writesize + geo->metadata_size +
439 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
440 	geo->payload_size = mtd->writesize;
441 
442 	/*
443 	 * The auxiliary buffer contains the metadata and the ECC status. The
444 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
445 	 * contains one byte for every ECC chunk, and is also padded to the
446 	 * nearest 32-bit boundary.
447 	 */
448 	metadata_size = ALIGN(geo->metadata_size, 4);
449 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
450 
451 	geo->auxiliary_size = metadata_size + status_size;
452 	geo->auxiliary_status_offset = metadata_size;
453 
454 	if (!this->swap_block_mark)
455 		return 0;
456 
457 	/*
458 	 * We need to compute the byte and bit offsets of
459 	 * the physical block mark within the ECC-based view of the page.
460 	 *
461 	 * NAND chip with 2K page shows below:
462 	 *                                             (Block Mark)
463 	 *                                                   |      |
464 	 *                                                   |  D   |
465 	 *                                                   |<---->|
466 	 *                                                   V      V
467 	 *    +---+----------+-+----------+-+----------+-+----------+-+
468 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
469 	 *    +---+----------+-+----------+-+----------+-+----------+-+
470 	 *
471 	 * The position of block mark moves forward in the ECC-based view
472 	 * of page, and the delta is:
473 	 *
474 	 *                   E * G * (N - 1)
475 	 *             D = (---------------- + M)
476 	 *                          8
477 	 *
478 	 * With the formula to compute the ECC strength, and the condition
479 	 *       : C >= O         (C is the ecc chunk size)
480 	 *
481 	 * It's easy to deduce to the following result:
482 	 *
483 	 *         E * G       (O - M)      C - M         C - M
484 	 *      ----------- <= ------- <=  --------  <  ---------
485 	 *           8            N           N          (N - 1)
486 	 *
487 	 *  So, we get:
488 	 *
489 	 *                   E * G * (N - 1)
490 	 *             D = (---------------- + M) < C
491 	 *                          8
492 	 *
493 	 *  The above inequality means the position of block mark
494 	 *  within the ECC-based view of the page is still in the data chunk,
495 	 *  and it's NOT in the ECC bits of the chunk.
496 	 *
497 	 *  Use the following to compute the bit position of the
498 	 *  physical block mark within the ECC-based view of the page:
499 	 *          (page_size - D) * 8
500 	 *
501 	 *  --Huang Shijie
502 	 */
503 	block_mark_bit_offset = mtd->writesize * 8 -
504 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
505 				+ geo->metadata_size * 8);
506 
507 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
508 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
509 	return 0;
510 }
511 
common_nfc_set_geometry(struct gpmi_nand_data * this)512 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
513 {
514 	struct nand_chip *chip = &this->nand;
515 	const struct nand_ecc_props *requirements =
516 		nanddev_get_ecc_requirements(&chip->base);
517 
518 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
519 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
520 						chip->ecc.size);
521 
522 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
523 				|| legacy_set_geometry(this)) {
524 		if (!(requirements->strength > 0 && requirements->step_size > 0))
525 			return -EINVAL;
526 
527 		return set_geometry_by_ecc_info(this,
528 						requirements->strength,
529 						requirements->step_size);
530 	}
531 
532 	return 0;
533 }
534 
535 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)536 static int bch_set_geometry(struct gpmi_nand_data *this)
537 {
538 	struct resources *r = &this->resources;
539 	int ret;
540 
541 	ret = common_nfc_set_geometry(this);
542 	if (ret)
543 		return ret;
544 
545 	ret = pm_runtime_get_sync(this->dev);
546 	if (ret < 0) {
547 		pm_runtime_put_autosuspend(this->dev);
548 		return ret;
549 	}
550 
551 	/*
552 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
553 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
554 	* and MX28.
555 	*/
556 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
557 	if (ret)
558 		goto err_out;
559 
560 	/* Set *all* chip selects to use layout 0. */
561 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
562 
563 	ret = 0;
564 err_out:
565 	pm_runtime_mark_last_busy(this->dev);
566 	pm_runtime_put_autosuspend(this->dev);
567 
568 	return ret;
569 }
570 
571 /*
572  * <1> Firstly, we should know what's the GPMI-clock means.
573  *     The GPMI-clock is the internal clock in the gpmi nand controller.
574  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
575  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
576  *
577  * <2> Secondly, we should know what's the frequency on the nand chip pins.
578  *     The frequency on the nand chip pins is derived from the GPMI-clock.
579  *     We can get it from the following equation:
580  *
581  *         F = G / (DS + DH)
582  *
583  *         F  : the frequency on the nand chip pins.
584  *         G  : the GPMI clock, such as 100MHz.
585  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
586  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
587  *
588  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
589  *     the nand EDO(extended Data Out) timing could be applied.
590  *     The GPMI implements a feedback read strobe to sample the read data.
591  *     The feedback read strobe can be delayed to support the nand EDO timing
592  *     where the read strobe may deasserts before the read data is valid, and
593  *     read data is valid for some time after read strobe.
594  *
595  *     The following figure illustrates some aspects of a NAND Flash read:
596  *
597  *                   |<---tREA---->|
598  *                   |             |
599  *                   |         |   |
600  *                   |<--tRP-->|   |
601  *                   |         |   |
602  *                  __          ___|__________________________________
603  *     RDN            \________/   |
604  *                                 |
605  *                                 /---------\
606  *     Read Data    --------------<           >---------
607  *                                 \---------/
608  *                                |     |
609  *                                |<-D->|
610  *     FeedbackRDN  ________             ____________
611  *                          \___________/
612  *
613  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
614  *
615  *
616  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
617  *
618  *  4.1) From the aspect of the nand chip pins:
619  *        Delay = (tREA + C - tRP)               {1}
620  *
621  *        tREA : the maximum read access time.
622  *        C    : a constant to adjust the delay. default is 4000ps.
623  *        tRP  : the read pulse width, which is exactly:
624  *                   tRP = (GPMI-clock-period) * DATA_SETUP
625  *
626  *  4.2) From the aspect of the GPMI nand controller:
627  *         Delay = RDN_DELAY * 0.125 * RP        {2}
628  *
629  *         RP   : the DLL reference period.
630  *            if (GPMI-clock-period > DLL_THRETHOLD)
631  *                   RP = GPMI-clock-period / 2;
632  *            else
633  *                   RP = GPMI-clock-period;
634  *
635  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
636  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
637  *            is 16000ps, but in mx6q, we use 12000ps.
638  *
639  *  4.3) since {1} equals {2}, we get:
640  *
641  *                     (tREA + 4000 - tRP) * 8
642  *         RDN_DELAY = -----------------------     {3}
643  *                           RP
644  */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)645 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
646 				     const struct nand_sdr_timings *sdr)
647 {
648 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
649 	struct resources *r = &this->resources;
650 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
651 	unsigned int period_ps, reference_period_ps;
652 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
653 	unsigned int tRP_ps;
654 	bool use_half_period;
655 	int sample_delay_ps, sample_delay_factor;
656 	unsigned int busy_timeout_cycles;
657 	u8 wrn_dly_sel;
658 	u64 busy_timeout_ps;
659 
660 	if (sdr->tRC_min >= 30000) {
661 		/* ONFI non-EDO modes [0-3] */
662 		hw->clk_rate = 22000000;
663 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
664 	} else if (sdr->tRC_min >= 25000) {
665 		/* ONFI EDO mode 4 */
666 		hw->clk_rate = 80000000;
667 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
668 	} else {
669 		/* ONFI EDO mode 5 */
670 		hw->clk_rate = 100000000;
671 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
672 	}
673 
674 	hw->clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
675 
676 	/* SDR core timings are given in picoseconds */
677 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
678 
679 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
680 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
681 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
682 	busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
683 	busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
684 
685 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
686 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
687 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
688 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
689 
690 	/*
691 	 * Derive NFC ideal delay from {3}:
692 	 *
693 	 *                     (tREA + 4000 - tRP) * 8
694 	 *         RDN_DELAY = -----------------------
695 	 *                                RP
696 	 */
697 	if (period_ps > dll_threshold_ps) {
698 		use_half_period = true;
699 		reference_period_ps = period_ps / 2;
700 	} else {
701 		use_half_period = false;
702 		reference_period_ps = period_ps;
703 	}
704 
705 	tRP_ps = data_setup_cycles * period_ps;
706 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
707 	if (sample_delay_ps > 0)
708 		sample_delay_factor = sample_delay_ps / reference_period_ps;
709 	else
710 		sample_delay_factor = 0;
711 
712 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
713 	if (sample_delay_factor)
714 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
715 			      BM_GPMI_CTRL1_DLL_ENABLE |
716 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
717 }
718 
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)719 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
720 {
721 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
722 	struct resources *r = &this->resources;
723 	void __iomem *gpmi_regs = r->gpmi_regs;
724 	unsigned int dll_wait_time_us;
725 	int ret;
726 
727 	/* Clock dividers do NOT guarantee a clean clock signal on its output
728 	 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
729 	 * all clock dividers provide these guarantee.
730 	 */
731 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
732 		clk_disable_unprepare(r->clock[0]);
733 
734 	ret = clk_set_rate(r->clock[0], hw->clk_rate);
735 	if (ret) {
736 		dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
737 		return ret;
738 	}
739 
740 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
741 		ret = clk_prepare_enable(r->clock[0]);
742 		if (ret)
743 			return ret;
744 	}
745 
746 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
747 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
748 
749 	/*
750 	 * Clear several CTRL1 fields, DLL must be disabled when setting
751 	 * RDN_DELAY or HALF_PERIOD.
752 	 */
753 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
754 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
755 
756 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
757 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
758 	if (!dll_wait_time_us)
759 		dll_wait_time_us = 1;
760 
761 	/* Wait for the DLL to settle. */
762 	udelay(dll_wait_time_us);
763 
764 	return 0;
765 }
766 
gpmi_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)767 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
768 				const struct nand_interface_config *conf)
769 {
770 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
771 	const struct nand_sdr_timings *sdr;
772 
773 	/* Retrieve required NAND timings */
774 	sdr = nand_get_sdr_timings(conf);
775 	if (IS_ERR(sdr))
776 		return PTR_ERR(sdr);
777 
778 	/* Only MX6 GPMI controller can reach EDO timings */
779 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
780 		return -ENOTSUPP;
781 
782 	/* Stop here if this call was just a check */
783 	if (chipnr < 0)
784 		return 0;
785 
786 	/* Do the actual derivation of the controller timings */
787 	gpmi_nfc_compute_timings(this, sdr);
788 
789 	this->hw.must_apply_timings = true;
790 
791 	return 0;
792 }
793 
794 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)795 static void gpmi_clear_bch(struct gpmi_nand_data *this)
796 {
797 	struct resources *r = &this->resources;
798 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
799 }
800 
get_dma_chan(struct gpmi_nand_data * this)801 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
802 {
803 	/* We use the DMA channel 0 to access all the nand chips. */
804 	return this->dma_chans[0];
805 }
806 
807 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)808 static void dma_irq_callback(void *param)
809 {
810 	struct gpmi_nand_data *this = param;
811 	struct completion *dma_c = &this->dma_done;
812 
813 	complete(dma_c);
814 }
815 
bch_irq(int irq,void * cookie)816 static irqreturn_t bch_irq(int irq, void *cookie)
817 {
818 	struct gpmi_nand_data *this = cookie;
819 
820 	gpmi_clear_bch(this);
821 	complete(&this->bch_done);
822 	return IRQ_HANDLED;
823 }
824 
gpmi_raw_len_to_len(struct gpmi_nand_data * this,int raw_len)825 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
826 {
827 	/*
828 	 * raw_len is the length to read/write including bch data which
829 	 * we are passed in exec_op. Calculate the data length from it.
830 	 */
831 	if (this->bch)
832 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
833 	else
834 		return raw_len;
835 }
836 
837 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int raw_len,struct scatterlist * sgl,enum dma_data_direction dr)838 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
839 			     int raw_len, struct scatterlist *sgl,
840 			     enum dma_data_direction dr)
841 {
842 	int ret;
843 	int len = gpmi_raw_len_to_len(this, raw_len);
844 
845 	/* first try to map the upper buffer directly */
846 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
847 		sg_init_one(sgl, buf, len);
848 		ret = dma_map_sg(this->dev, sgl, 1, dr);
849 		if (ret == 0)
850 			goto map_fail;
851 
852 		return true;
853 	}
854 
855 map_fail:
856 	/* We have to use our own DMA buffer. */
857 	sg_init_one(sgl, this->data_buffer_dma, len);
858 
859 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
860 		memcpy(this->data_buffer_dma, buf, len);
861 
862 	dma_map_sg(this->dev, sgl, 1, dr);
863 
864 	return false;
865 }
866 
867 /* add our owner bbt descriptor */
868 static uint8_t scan_ff_pattern[] = { 0xff };
869 static struct nand_bbt_descr gpmi_bbt_descr = {
870 	.options	= 0,
871 	.offs		= 0,
872 	.len		= 1,
873 	.pattern	= scan_ff_pattern
874 };
875 
876 /*
877  * We may change the layout if we can get the ECC info from the datasheet,
878  * else we will use all the (page + OOB).
879  */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)880 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
881 			      struct mtd_oob_region *oobregion)
882 {
883 	struct nand_chip *chip = mtd_to_nand(mtd);
884 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
885 	struct bch_geometry *geo = &this->bch_geometry;
886 
887 	if (section)
888 		return -ERANGE;
889 
890 	oobregion->offset = 0;
891 	oobregion->length = geo->page_size - mtd->writesize;
892 
893 	return 0;
894 }
895 
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)896 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
897 			       struct mtd_oob_region *oobregion)
898 {
899 	struct nand_chip *chip = mtd_to_nand(mtd);
900 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
901 	struct bch_geometry *geo = &this->bch_geometry;
902 
903 	if (section)
904 		return -ERANGE;
905 
906 	/* The available oob size we have. */
907 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
908 		oobregion->offset = geo->page_size - mtd->writesize;
909 		oobregion->length = mtd->oobsize - oobregion->offset;
910 	}
911 
912 	return 0;
913 }
914 
915 static const char * const gpmi_clks_for_mx2x[] = {
916 	"gpmi_io",
917 };
918 
919 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
920 	.ecc = gpmi_ooblayout_ecc,
921 	.free = gpmi_ooblayout_free,
922 };
923 
924 static const struct gpmi_devdata gpmi_devdata_imx23 = {
925 	.type = IS_MX23,
926 	.bch_max_ecc_strength = 20,
927 	.max_chain_delay = 16000,
928 	.clks = gpmi_clks_for_mx2x,
929 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
930 };
931 
932 static const struct gpmi_devdata gpmi_devdata_imx28 = {
933 	.type = IS_MX28,
934 	.bch_max_ecc_strength = 20,
935 	.max_chain_delay = 16000,
936 	.clks = gpmi_clks_for_mx2x,
937 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
938 };
939 
940 static const char * const gpmi_clks_for_mx6[] = {
941 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
942 };
943 
944 static const struct gpmi_devdata gpmi_devdata_imx6q = {
945 	.type = IS_MX6Q,
946 	.bch_max_ecc_strength = 40,
947 	.max_chain_delay = 12000,
948 	.clks = gpmi_clks_for_mx6,
949 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
950 };
951 
952 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
953 	.type = IS_MX6SX,
954 	.bch_max_ecc_strength = 62,
955 	.max_chain_delay = 12000,
956 	.clks = gpmi_clks_for_mx6,
957 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
958 };
959 
960 static const char * const gpmi_clks_for_mx7d[] = {
961 	"gpmi_io", "gpmi_bch_apb",
962 };
963 
964 static const struct gpmi_devdata gpmi_devdata_imx7d = {
965 	.type = IS_MX7D,
966 	.bch_max_ecc_strength = 62,
967 	.max_chain_delay = 12000,
968 	.clks = gpmi_clks_for_mx7d,
969 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
970 };
971 
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)972 static int acquire_register_block(struct gpmi_nand_data *this,
973 				  const char *res_name)
974 {
975 	struct platform_device *pdev = this->pdev;
976 	struct resources *res = &this->resources;
977 	struct resource *r;
978 	void __iomem *p;
979 
980 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
981 	p = devm_ioremap_resource(&pdev->dev, r);
982 	if (IS_ERR(p))
983 		return PTR_ERR(p);
984 
985 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
986 		res->gpmi_regs = p;
987 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
988 		res->bch_regs = p;
989 	else
990 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
991 
992 	return 0;
993 }
994 
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)995 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
996 {
997 	struct platform_device *pdev = this->pdev;
998 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
999 	struct resource *r;
1000 	int err;
1001 
1002 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
1003 	if (!r) {
1004 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
1005 		return -ENODEV;
1006 	}
1007 
1008 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
1009 	if (err)
1010 		dev_err(this->dev, "error requesting BCH IRQ\n");
1011 
1012 	return err;
1013 }
1014 
release_dma_channels(struct gpmi_nand_data * this)1015 static void release_dma_channels(struct gpmi_nand_data *this)
1016 {
1017 	unsigned int i;
1018 	for (i = 0; i < DMA_CHANS; i++)
1019 		if (this->dma_chans[i]) {
1020 			dma_release_channel(this->dma_chans[i]);
1021 			this->dma_chans[i] = NULL;
1022 		}
1023 }
1024 
acquire_dma_channels(struct gpmi_nand_data * this)1025 static int acquire_dma_channels(struct gpmi_nand_data *this)
1026 {
1027 	struct platform_device *pdev = this->pdev;
1028 	struct dma_chan *dma_chan;
1029 	int ret = 0;
1030 
1031 	/* request dma channel */
1032 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1033 	if (IS_ERR(dma_chan)) {
1034 		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1035 				    "DMA channel request failed\n");
1036 		release_dma_channels(this);
1037 	} else {
1038 		this->dma_chans[0] = dma_chan;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
gpmi_get_clks(struct gpmi_nand_data * this)1044 static int gpmi_get_clks(struct gpmi_nand_data *this)
1045 {
1046 	struct resources *r = &this->resources;
1047 	struct clk *clk;
1048 	int err, i;
1049 
1050 	for (i = 0; i < this->devdata->clks_count; i++) {
1051 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1052 		if (IS_ERR(clk)) {
1053 			err = PTR_ERR(clk);
1054 			goto err_clock;
1055 		}
1056 
1057 		r->clock[i] = clk;
1058 	}
1059 
1060 	return 0;
1061 
1062 err_clock:
1063 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1064 	return err;
1065 }
1066 
acquire_resources(struct gpmi_nand_data * this)1067 static int acquire_resources(struct gpmi_nand_data *this)
1068 {
1069 	int ret;
1070 
1071 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1072 	if (ret)
1073 		goto exit_regs;
1074 
1075 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1076 	if (ret)
1077 		goto exit_regs;
1078 
1079 	ret = acquire_bch_irq(this, bch_irq);
1080 	if (ret)
1081 		goto exit_regs;
1082 
1083 	ret = acquire_dma_channels(this);
1084 	if (ret)
1085 		goto exit_regs;
1086 
1087 	ret = gpmi_get_clks(this);
1088 	if (ret)
1089 		goto exit_clock;
1090 	return 0;
1091 
1092 exit_clock:
1093 	release_dma_channels(this);
1094 exit_regs:
1095 	return ret;
1096 }
1097 
release_resources(struct gpmi_nand_data * this)1098 static void release_resources(struct gpmi_nand_data *this)
1099 {
1100 	release_dma_channels(this);
1101 }
1102 
gpmi_free_dma_buffer(struct gpmi_nand_data * this)1103 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1104 {
1105 	struct device *dev = this->dev;
1106 	struct bch_geometry *geo = &this->bch_geometry;
1107 
1108 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1109 		dma_free_coherent(dev, geo->auxiliary_size,
1110 					this->auxiliary_virt,
1111 					this->auxiliary_phys);
1112 	kfree(this->data_buffer_dma);
1113 	kfree(this->raw_buffer);
1114 
1115 	this->data_buffer_dma	= NULL;
1116 	this->raw_buffer	= NULL;
1117 }
1118 
1119 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)1120 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1121 {
1122 	struct bch_geometry *geo = &this->bch_geometry;
1123 	struct device *dev = this->dev;
1124 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1125 
1126 	/*
1127 	 * [2] Allocate a read/write data buffer.
1128 	 *     The gpmi_alloc_dma_buffer can be called twice.
1129 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1130 	 *     is called before the NAND identification; and we allocate a
1131 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1132 	 *     is called after.
1133 	 */
1134 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1135 					GFP_DMA | GFP_KERNEL);
1136 	if (this->data_buffer_dma == NULL)
1137 		goto error_alloc;
1138 
1139 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1140 					&this->auxiliary_phys, GFP_DMA);
1141 	if (!this->auxiliary_virt)
1142 		goto error_alloc;
1143 
1144 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1145 	if (!this->raw_buffer)
1146 		goto error_alloc;
1147 
1148 	return 0;
1149 
1150 error_alloc:
1151 	gpmi_free_dma_buffer(this);
1152 	return -ENOMEM;
1153 }
1154 
1155 /*
1156  * Handles block mark swapping.
1157  * It can be called in swapping the block mark, or swapping it back,
1158  * because the the operations are the same.
1159  */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)1160 static void block_mark_swapping(struct gpmi_nand_data *this,
1161 				void *payload, void *auxiliary)
1162 {
1163 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1164 	unsigned char *p;
1165 	unsigned char *a;
1166 	unsigned int  bit;
1167 	unsigned char mask;
1168 	unsigned char from_data;
1169 	unsigned char from_oob;
1170 
1171 	if (!this->swap_block_mark)
1172 		return;
1173 
1174 	/*
1175 	 * If control arrives here, we're swapping. Make some convenience
1176 	 * variables.
1177 	 */
1178 	bit = nfc_geo->block_mark_bit_offset;
1179 	p   = payload + nfc_geo->block_mark_byte_offset;
1180 	a   = auxiliary;
1181 
1182 	/*
1183 	 * Get the byte from the data area that overlays the block mark. Since
1184 	 * the ECC engine applies its own view to the bits in the page, the
1185 	 * physical block mark won't (in general) appear on a byte boundary in
1186 	 * the data.
1187 	 */
1188 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1189 
1190 	/* Get the byte from the OOB. */
1191 	from_oob = a[0];
1192 
1193 	/* Swap them. */
1194 	a[0] = from_data;
1195 
1196 	mask = (0x1 << bit) - 1;
1197 	p[0] = (p[0] & mask) | (from_oob << bit);
1198 
1199 	mask = ~0 << bit;
1200 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1201 }
1202 
gpmi_count_bitflips(struct nand_chip * chip,void * buf,int first,int last,int meta)1203 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1204 			       int last, int meta)
1205 {
1206 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1207 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1208 	struct mtd_info *mtd = nand_to_mtd(chip);
1209 	int i;
1210 	unsigned char *status;
1211 	unsigned int max_bitflips = 0;
1212 
1213 	/* Loop over status bytes, accumulating ECC status. */
1214 	status = this->auxiliary_virt + ALIGN(meta, 4);
1215 
1216 	for (i = first; i < last; i++, status++) {
1217 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1218 			continue;
1219 
1220 		if (*status == STATUS_UNCORRECTABLE) {
1221 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1222 			u8 *eccbuf = this->raw_buffer;
1223 			int offset, bitoffset;
1224 			int eccbytes;
1225 			int flips;
1226 
1227 			/* Read ECC bytes into our internal raw_buffer */
1228 			offset = nfc_geo->metadata_size * 8;
1229 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1230 			offset -= eccbits;
1231 			bitoffset = offset % 8;
1232 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1233 			offset /= 8;
1234 			eccbytes -= offset;
1235 			nand_change_read_column_op(chip, offset, eccbuf,
1236 						   eccbytes, false);
1237 
1238 			/*
1239 			 * ECC data are not byte aligned and we may have
1240 			 * in-band data in the first and last byte of
1241 			 * eccbuf. Set non-eccbits to one so that
1242 			 * nand_check_erased_ecc_chunk() does not count them
1243 			 * as bitflips.
1244 			 */
1245 			if (bitoffset)
1246 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1247 
1248 			bitoffset = (bitoffset + eccbits) % 8;
1249 			if (bitoffset)
1250 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1251 
1252 			/*
1253 			 * The ECC hardware has an uncorrectable ECC status
1254 			 * code in case we have bitflips in an erased page. As
1255 			 * nothing was written into this subpage the ECC is
1256 			 * obviously wrong and we can not trust it. We assume
1257 			 * at this point that we are reading an erased page and
1258 			 * try to correct the bitflips in buffer up to
1259 			 * ecc_strength bitflips. If this is a page with random
1260 			 * data, we exceed this number of bitflips and have a
1261 			 * ECC failure. Otherwise we use the corrected buffer.
1262 			 */
1263 			if (i == 0) {
1264 				/* The first block includes metadata */
1265 				flips = nand_check_erased_ecc_chunk(
1266 						buf + i * nfc_geo->ecc_chunk_size,
1267 						nfc_geo->ecc_chunk_size,
1268 						eccbuf, eccbytes,
1269 						this->auxiliary_virt,
1270 						nfc_geo->metadata_size,
1271 						nfc_geo->ecc_strength);
1272 			} else {
1273 				flips = nand_check_erased_ecc_chunk(
1274 						buf + i * nfc_geo->ecc_chunk_size,
1275 						nfc_geo->ecc_chunk_size,
1276 						eccbuf, eccbytes,
1277 						NULL, 0,
1278 						nfc_geo->ecc_strength);
1279 			}
1280 
1281 			if (flips > 0) {
1282 				max_bitflips = max_t(unsigned int, max_bitflips,
1283 						     flips);
1284 				mtd->ecc_stats.corrected += flips;
1285 				continue;
1286 			}
1287 
1288 			mtd->ecc_stats.failed++;
1289 			continue;
1290 		}
1291 
1292 		mtd->ecc_stats.corrected += *status;
1293 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1294 	}
1295 
1296 	return max_bitflips;
1297 }
1298 
gpmi_bch_layout_std(struct gpmi_nand_data * this)1299 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1300 {
1301 	struct bch_geometry *geo = &this->bch_geometry;
1302 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1303 	unsigned int gf_len = geo->gf_len;
1304 	unsigned int block_size = geo->ecc_chunk_size;
1305 
1306 	this->bch_flashlayout0 =
1307 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1308 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1309 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1310 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1311 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1312 
1313 	this->bch_flashlayout1 =
1314 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1315 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1316 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1317 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1318 }
1319 
gpmi_ecc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1320 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1321 			      int oob_required, int page)
1322 {
1323 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1324 	struct mtd_info *mtd = nand_to_mtd(chip);
1325 	struct bch_geometry *geo = &this->bch_geometry;
1326 	unsigned int max_bitflips;
1327 	int ret;
1328 
1329 	gpmi_bch_layout_std(this);
1330 	this->bch = true;
1331 
1332 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1333 	if (ret)
1334 		return ret;
1335 
1336 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1337 					   geo->ecc_chunk_count,
1338 					   geo->auxiliary_status_offset);
1339 
1340 	/* handle the block mark swapping */
1341 	block_mark_swapping(this, buf, this->auxiliary_virt);
1342 
1343 	if (oob_required) {
1344 		/*
1345 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1346 		 * for details about our policy for delivering the OOB.
1347 		 *
1348 		 * We fill the caller's buffer with set bits, and then copy the
1349 		 * block mark to th caller's buffer. Note that, if block mark
1350 		 * swapping was necessary, it has already been done, so we can
1351 		 * rely on the first byte of the auxiliary buffer to contain
1352 		 * the block mark.
1353 		 */
1354 		memset(chip->oob_poi, ~0, mtd->oobsize);
1355 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1356 	}
1357 
1358 	return max_bitflips;
1359 }
1360 
1361 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1362 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1363 				 uint32_t len, uint8_t *buf, int page)
1364 {
1365 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1366 	struct bch_geometry *geo = &this->bch_geometry;
1367 	int size = chip->ecc.size; /* ECC chunk size */
1368 	int meta, n, page_size;
1369 	unsigned int max_bitflips;
1370 	unsigned int ecc_strength;
1371 	int first, last, marker_pos;
1372 	int ecc_parity_size;
1373 	int col = 0;
1374 	int ret;
1375 
1376 	/* The size of ECC parity */
1377 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1378 
1379 	/* Align it with the chunk size */
1380 	first = offs / size;
1381 	last = (offs + len - 1) / size;
1382 
1383 	if (this->swap_block_mark) {
1384 		/*
1385 		 * Find the chunk which contains the Block Marker.
1386 		 * If this chunk is in the range of [first, last],
1387 		 * we have to read out the whole page.
1388 		 * Why? since we had swapped the data at the position of Block
1389 		 * Marker to the metadata which is bound with the chunk 0.
1390 		 */
1391 		marker_pos = geo->block_mark_byte_offset / size;
1392 		if (last >= marker_pos && first <= marker_pos) {
1393 			dev_dbg(this->dev,
1394 				"page:%d, first:%d, last:%d, marker at:%d\n",
1395 				page, first, last, marker_pos);
1396 			return gpmi_ecc_read_page(chip, buf, 0, page);
1397 		}
1398 	}
1399 
1400 	meta = geo->metadata_size;
1401 	if (first) {
1402 		col = meta + (size + ecc_parity_size) * first;
1403 		meta = 0;
1404 		buf = buf + first * size;
1405 	}
1406 
1407 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1408 
1409 	n = last - first + 1;
1410 	page_size = meta + (size + ecc_parity_size) * n;
1411 	ecc_strength = geo->ecc_strength >> 1;
1412 
1413 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1414 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1415 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1416 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1417 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1418 
1419 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1420 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1421 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1422 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1423 
1424 	this->bch = true;
1425 
1426 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1427 	if (ret)
1428 		return ret;
1429 
1430 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1431 		page, offs, len, col, first, n, page_size);
1432 
1433 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1434 
1435 	return max_bitflips;
1436 }
1437 
gpmi_ecc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1438 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1439 			       int oob_required, int page)
1440 {
1441 	struct mtd_info *mtd = nand_to_mtd(chip);
1442 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1443 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1444 	int ret;
1445 
1446 	dev_dbg(this->dev, "ecc write page.\n");
1447 
1448 	gpmi_bch_layout_std(this);
1449 	this->bch = true;
1450 
1451 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1452 
1453 	if (this->swap_block_mark) {
1454 		/*
1455 		 * When doing bad block marker swapping we must always copy the
1456 		 * input buffer as we can't modify the const buffer.
1457 		 */
1458 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1459 		buf = this->data_buffer_dma;
1460 		block_mark_swapping(this, this->data_buffer_dma,
1461 				    this->auxiliary_virt);
1462 	}
1463 
1464 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * There are several places in this driver where we have to handle the OOB and
1471  * block marks. This is the function where things are the most complicated, so
1472  * this is where we try to explain it all. All the other places refer back to
1473  * here.
1474  *
1475  * These are the rules, in order of decreasing importance:
1476  *
1477  * 1) Nothing the caller does can be allowed to imperil the block mark.
1478  *
1479  * 2) In read operations, the first byte of the OOB we return must reflect the
1480  *    true state of the block mark, no matter where that block mark appears in
1481  *    the physical page.
1482  *
1483  * 3) ECC-based read operations return an OOB full of set bits (since we never
1484  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1485  *    return).
1486  *
1487  * 4) "Raw" read operations return a direct view of the physical bytes in the
1488  *    page, using the conventional definition of which bytes are data and which
1489  *    are OOB. This gives the caller a way to see the actual, physical bytes
1490  *    in the page, without the distortions applied by our ECC engine.
1491  *
1492  *
1493  * What we do for this specific read operation depends on two questions:
1494  *
1495  * 1) Are we doing a "raw" read, or an ECC-based read?
1496  *
1497  * 2) Are we using block mark swapping or transcription?
1498  *
1499  * There are four cases, illustrated by the following Karnaugh map:
1500  *
1501  *                    |           Raw           |         ECC-based       |
1502  *       -------------+-------------------------+-------------------------+
1503  *                    | Read the conventional   |                         |
1504  *                    | OOB at the end of the   |                         |
1505  *       Swapping     | page and return it. It  |                         |
1506  *                    | contains exactly what   |                         |
1507  *                    | we want.                | Read the block mark and |
1508  *       -------------+-------------------------+ return it in a buffer   |
1509  *                    | Read the conventional   | full of set bits.       |
1510  *                    | OOB at the end of the   |                         |
1511  *                    | page and also the block |                         |
1512  *       Transcribing | mark in the metadata.   |                         |
1513  *                    | Copy the block mark     |                         |
1514  *                    | into the first byte of  |                         |
1515  *                    | the OOB.                |                         |
1516  *       -------------+-------------------------+-------------------------+
1517  *
1518  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1519  * giving an accurate view of the actual, physical bytes in the page (we're
1520  * overwriting the block mark). That's OK because it's more important to follow
1521  * rule #2.
1522  *
1523  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1524  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1525  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1526  * ECC-based or raw view of the page is implicit in which function it calls
1527  * (there is a similar pair of ECC-based/raw functions for writing).
1528  */
gpmi_ecc_read_oob(struct nand_chip * chip,int page)1529 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1530 {
1531 	struct mtd_info *mtd = nand_to_mtd(chip);
1532 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1533 	int ret;
1534 
1535 	/* clear the OOB buffer */
1536 	memset(chip->oob_poi, ~0, mtd->oobsize);
1537 
1538 	/* Read out the conventional OOB. */
1539 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1540 				mtd->oobsize);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/*
1545 	 * Now, we want to make sure the block mark is correct. In the
1546 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1547 	 * Otherwise, we need to explicitly read it.
1548 	 */
1549 	if (GPMI_IS_MX23(this)) {
1550 		/* Read the block mark into the first byte of the OOB buffer. */
1551 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1552 		if (ret)
1553 			return ret;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
gpmi_ecc_write_oob(struct nand_chip * chip,int page)1559 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1560 {
1561 	struct mtd_info *mtd = nand_to_mtd(chip);
1562 	struct mtd_oob_region of = { };
1563 
1564 	/* Do we have available oob area? */
1565 	mtd_ooblayout_free(mtd, 0, &of);
1566 	if (!of.length)
1567 		return -EPERM;
1568 
1569 	if (!nand_is_slc(chip))
1570 		return -EPERM;
1571 
1572 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1573 				 chip->oob_poi + of.offset, of.length);
1574 }
1575 
1576 /*
1577  * This function reads a NAND page without involving the ECC engine (no HW
1578  * ECC correction).
1579  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1580  * inline (interleaved with payload DATA), and do not align data chunk on
1581  * byte boundaries.
1582  * We thus need to take care moving the payload data and ECC bits stored in the
1583  * page into the provided buffers, which is why we're using nand_extract_bits().
1584  *
1585  * See set_geometry_by_ecc_info inline comments to have a full description
1586  * of the layout used by the GPMI controller.
1587  */
gpmi_ecc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1588 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1589 				  int oob_required, int page)
1590 {
1591 	struct mtd_info *mtd = nand_to_mtd(chip);
1592 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1593 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1594 	int eccsize = nfc_geo->ecc_chunk_size;
1595 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1596 	u8 *tmp_buf = this->raw_buffer;
1597 	size_t src_bit_off;
1598 	size_t oob_bit_off;
1599 	size_t oob_byte_off;
1600 	uint8_t *oob = chip->oob_poi;
1601 	int step;
1602 	int ret;
1603 
1604 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1605 				mtd->writesize + mtd->oobsize);
1606 	if (ret)
1607 		return ret;
1608 
1609 	/*
1610 	 * If required, swap the bad block marker and the data stored in the
1611 	 * metadata section, so that we don't wrongly consider a block as bad.
1612 	 *
1613 	 * See the layout description for a detailed explanation on why this
1614 	 * is needed.
1615 	 */
1616 	if (this->swap_block_mark)
1617 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1618 
1619 	/*
1620 	 * Copy the metadata section into the oob buffer (this section is
1621 	 * guaranteed to be aligned on a byte boundary).
1622 	 */
1623 	if (oob_required)
1624 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1625 
1626 	oob_bit_off = nfc_geo->metadata_size * 8;
1627 	src_bit_off = oob_bit_off;
1628 
1629 	/* Extract interleaved payload data and ECC bits */
1630 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1631 		if (buf)
1632 			nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1633 					  src_bit_off, eccsize * 8);
1634 		src_bit_off += eccsize * 8;
1635 
1636 		/* Align last ECC block to align a byte boundary */
1637 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1638 		    (oob_bit_off + eccbits) % 8)
1639 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1640 
1641 		if (oob_required)
1642 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1643 					  src_bit_off, eccbits);
1644 
1645 		src_bit_off += eccbits;
1646 		oob_bit_off += eccbits;
1647 	}
1648 
1649 	if (oob_required) {
1650 		oob_byte_off = oob_bit_off / 8;
1651 
1652 		if (oob_byte_off < mtd->oobsize)
1653 			memcpy(oob + oob_byte_off,
1654 			       tmp_buf + mtd->writesize + oob_byte_off,
1655 			       mtd->oobsize - oob_byte_off);
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 /*
1662  * This function writes a NAND page without involving the ECC engine (no HW
1663  * ECC generation).
1664  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1665  * inline (interleaved with payload DATA), and do not align data chunk on
1666  * byte boundaries.
1667  * We thus need to take care moving the OOB area at the right place in the
1668  * final page, which is why we're using nand_extract_bits().
1669  *
1670  * See set_geometry_by_ecc_info inline comments to have a full description
1671  * of the layout used by the GPMI controller.
1672  */
gpmi_ecc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1673 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1674 				   int oob_required, int page)
1675 {
1676 	struct mtd_info *mtd = nand_to_mtd(chip);
1677 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1678 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1679 	int eccsize = nfc_geo->ecc_chunk_size;
1680 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1681 	u8 *tmp_buf = this->raw_buffer;
1682 	uint8_t *oob = chip->oob_poi;
1683 	size_t dst_bit_off;
1684 	size_t oob_bit_off;
1685 	size_t oob_byte_off;
1686 	int step;
1687 
1688 	/*
1689 	 * Initialize all bits to 1 in case we don't have a buffer for the
1690 	 * payload or oob data in order to leave unspecified bits of data
1691 	 * to their initial state.
1692 	 */
1693 	if (!buf || !oob_required)
1694 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1695 
1696 	/*
1697 	 * First copy the metadata section (stored in oob buffer) at the
1698 	 * beginning of the page, as imposed by the GPMI layout.
1699 	 */
1700 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1701 	oob_bit_off = nfc_geo->metadata_size * 8;
1702 	dst_bit_off = oob_bit_off;
1703 
1704 	/* Interleave payload data and ECC bits */
1705 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1706 		if (buf)
1707 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1708 					  step * eccsize * 8, eccsize * 8);
1709 		dst_bit_off += eccsize * 8;
1710 
1711 		/* Align last ECC block to align a byte boundary */
1712 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1713 		    (oob_bit_off + eccbits) % 8)
1714 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1715 
1716 		if (oob_required)
1717 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1718 					  oob_bit_off, eccbits);
1719 
1720 		dst_bit_off += eccbits;
1721 		oob_bit_off += eccbits;
1722 	}
1723 
1724 	oob_byte_off = oob_bit_off / 8;
1725 
1726 	if (oob_required && oob_byte_off < mtd->oobsize)
1727 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1728 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1729 
1730 	/*
1731 	 * If required, swap the bad block marker and the first byte of the
1732 	 * metadata section, so that we don't modify the bad block marker.
1733 	 *
1734 	 * See the layout description for a detailed explanation on why this
1735 	 * is needed.
1736 	 */
1737 	if (this->swap_block_mark)
1738 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1739 
1740 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1741 				 mtd->writesize + mtd->oobsize);
1742 }
1743 
gpmi_ecc_read_oob_raw(struct nand_chip * chip,int page)1744 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1745 {
1746 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1747 }
1748 
gpmi_ecc_write_oob_raw(struct nand_chip * chip,int page)1749 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1750 {
1751 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1752 }
1753 
gpmi_block_markbad(struct nand_chip * chip,loff_t ofs)1754 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1755 {
1756 	struct mtd_info *mtd = nand_to_mtd(chip);
1757 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1758 	int ret = 0;
1759 	uint8_t *block_mark;
1760 	int column, page, chipnr;
1761 
1762 	chipnr = (int)(ofs >> chip->chip_shift);
1763 	nand_select_target(chip, chipnr);
1764 
1765 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1766 
1767 	/* Write the block mark. */
1768 	block_mark = this->data_buffer_dma;
1769 	block_mark[0] = 0; /* bad block marker */
1770 
1771 	/* Shift to get page */
1772 	page = (int)(ofs >> chip->page_shift);
1773 
1774 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1775 
1776 	nand_deselect_target(chip);
1777 
1778 	return ret;
1779 }
1780 
nand_boot_set_geometry(struct gpmi_nand_data * this)1781 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1782 {
1783 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1784 
1785 	/*
1786 	 * Set the boot block stride size.
1787 	 *
1788 	 * In principle, we should be reading this from the OTP bits, since
1789 	 * that's where the ROM is going to get it. In fact, we don't have any
1790 	 * way to read the OTP bits, so we go with the default and hope for the
1791 	 * best.
1792 	 */
1793 	geometry->stride_size_in_pages = 64;
1794 
1795 	/*
1796 	 * Set the search area stride exponent.
1797 	 *
1798 	 * In principle, we should be reading this from the OTP bits, since
1799 	 * that's where the ROM is going to get it. In fact, we don't have any
1800 	 * way to read the OTP bits, so we go with the default and hope for the
1801 	 * best.
1802 	 */
1803 	geometry->search_area_stride_exponent = 2;
1804 	return 0;
1805 }
1806 
1807 static const char  *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)1808 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1809 {
1810 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1811 	struct device *dev = this->dev;
1812 	struct nand_chip *chip = &this->nand;
1813 	unsigned int search_area_size_in_strides;
1814 	unsigned int stride;
1815 	unsigned int page;
1816 	u8 *buffer = nand_get_data_buf(chip);
1817 	int found_an_ncb_fingerprint = false;
1818 	int ret;
1819 
1820 	/* Compute the number of strides in a search area. */
1821 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1822 
1823 	nand_select_target(chip, 0);
1824 
1825 	/*
1826 	 * Loop through the first search area, looking for the NCB fingerprint.
1827 	 */
1828 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1829 
1830 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1831 		/* Compute the page addresses. */
1832 		page = stride * rom_geo->stride_size_in_pages;
1833 
1834 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1835 
1836 		/*
1837 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1838 		 * and starts in the 12th byte of the page.
1839 		 */
1840 		ret = nand_read_page_op(chip, page, 12, buffer,
1841 					strlen(fingerprint));
1842 		if (ret)
1843 			continue;
1844 
1845 		/* Look for the fingerprint. */
1846 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1847 			found_an_ncb_fingerprint = true;
1848 			break;
1849 		}
1850 
1851 	}
1852 
1853 	nand_deselect_target(chip);
1854 
1855 	if (found_an_ncb_fingerprint)
1856 		dev_dbg(dev, "\tFound a fingerprint\n");
1857 	else
1858 		dev_dbg(dev, "\tNo fingerprint found\n");
1859 	return found_an_ncb_fingerprint;
1860 }
1861 
1862 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)1863 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1864 {
1865 	struct device *dev = this->dev;
1866 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1867 	struct nand_chip *chip = &this->nand;
1868 	struct mtd_info *mtd = nand_to_mtd(chip);
1869 	unsigned int block_size_in_pages;
1870 	unsigned int search_area_size_in_strides;
1871 	unsigned int search_area_size_in_pages;
1872 	unsigned int search_area_size_in_blocks;
1873 	unsigned int block;
1874 	unsigned int stride;
1875 	unsigned int page;
1876 	u8 *buffer = nand_get_data_buf(chip);
1877 	int status;
1878 
1879 	/* Compute the search area geometry. */
1880 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1881 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1882 	search_area_size_in_pages = search_area_size_in_strides *
1883 					rom_geo->stride_size_in_pages;
1884 	search_area_size_in_blocks =
1885 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1886 				    block_size_in_pages;
1887 
1888 	dev_dbg(dev, "Search Area Geometry :\n");
1889 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1890 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1891 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1892 
1893 	nand_select_target(chip, 0);
1894 
1895 	/* Loop over blocks in the first search area, erasing them. */
1896 	dev_dbg(dev, "Erasing the search area...\n");
1897 
1898 	for (block = 0; block < search_area_size_in_blocks; block++) {
1899 		/* Erase this block. */
1900 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1901 		status = nand_erase_op(chip, block);
1902 		if (status)
1903 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1904 	}
1905 
1906 	/* Write the NCB fingerprint into the page buffer. */
1907 	memset(buffer, ~0, mtd->writesize);
1908 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1909 
1910 	/* Loop through the first search area, writing NCB fingerprints. */
1911 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1912 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1913 		/* Compute the page addresses. */
1914 		page = stride * rom_geo->stride_size_in_pages;
1915 
1916 		/* Write the first page of the current stride. */
1917 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1918 
1919 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1920 		if (status)
1921 			dev_err(dev, "[%s] Write failed.\n", __func__);
1922 	}
1923 
1924 	nand_deselect_target(chip);
1925 
1926 	return 0;
1927 }
1928 
mx23_boot_init(struct gpmi_nand_data * this)1929 static int mx23_boot_init(struct gpmi_nand_data  *this)
1930 {
1931 	struct device *dev = this->dev;
1932 	struct nand_chip *chip = &this->nand;
1933 	struct mtd_info *mtd = nand_to_mtd(chip);
1934 	unsigned int block_count;
1935 	unsigned int block;
1936 	int     chipnr;
1937 	int     page;
1938 	loff_t  byte;
1939 	uint8_t block_mark;
1940 	int     ret = 0;
1941 
1942 	/*
1943 	 * If control arrives here, we can't use block mark swapping, which
1944 	 * means we're forced to use transcription. First, scan for the
1945 	 * transcription stamp. If we find it, then we don't have to do
1946 	 * anything -- the block marks are already transcribed.
1947 	 */
1948 	if (mx23_check_transcription_stamp(this))
1949 		return 0;
1950 
1951 	/*
1952 	 * If control arrives here, we couldn't find a transcription stamp, so
1953 	 * so we presume the block marks are in the conventional location.
1954 	 */
1955 	dev_dbg(dev, "Transcribing bad block marks...\n");
1956 
1957 	/* Compute the number of blocks in the entire medium. */
1958 	block_count = nanddev_eraseblocks_per_target(&chip->base);
1959 
1960 	/*
1961 	 * Loop over all the blocks in the medium, transcribing block marks as
1962 	 * we go.
1963 	 */
1964 	for (block = 0; block < block_count; block++) {
1965 		/*
1966 		 * Compute the chip, page and byte addresses for this block's
1967 		 * conventional mark.
1968 		 */
1969 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1970 		page = block << (chip->phys_erase_shift - chip->page_shift);
1971 		byte = block <<  chip->phys_erase_shift;
1972 
1973 		/* Send the command to read the conventional block mark. */
1974 		nand_select_target(chip, chipnr);
1975 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1976 					1);
1977 		nand_deselect_target(chip);
1978 
1979 		if (ret)
1980 			continue;
1981 
1982 		/*
1983 		 * Check if the block is marked bad. If so, we need to mark it
1984 		 * again, but this time the result will be a mark in the
1985 		 * location where we transcribe block marks.
1986 		 */
1987 		if (block_mark != 0xff) {
1988 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1989 			ret = chip->legacy.block_markbad(chip, byte);
1990 			if (ret)
1991 				dev_err(dev,
1992 					"Failed to mark block bad with ret %d\n",
1993 					ret);
1994 		}
1995 	}
1996 
1997 	/* Write the stamp that indicates we've transcribed the block marks. */
1998 	mx23_write_transcription_stamp(this);
1999 	return 0;
2000 }
2001 
nand_boot_init(struct gpmi_nand_data * this)2002 static int nand_boot_init(struct gpmi_nand_data  *this)
2003 {
2004 	nand_boot_set_geometry(this);
2005 
2006 	/* This is ROM arch-specific initilization before the BBT scanning. */
2007 	if (GPMI_IS_MX23(this))
2008 		return mx23_boot_init(this);
2009 	return 0;
2010 }
2011 
gpmi_set_geometry(struct gpmi_nand_data * this)2012 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2013 {
2014 	int ret;
2015 
2016 	/* Free the temporary DMA memory for reading ID. */
2017 	gpmi_free_dma_buffer(this);
2018 
2019 	/* Set up the NFC geometry which is used by BCH. */
2020 	ret = bch_set_geometry(this);
2021 	if (ret) {
2022 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2023 		return ret;
2024 	}
2025 
2026 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2027 	return gpmi_alloc_dma_buffer(this);
2028 }
2029 
gpmi_init_last(struct gpmi_nand_data * this)2030 static int gpmi_init_last(struct gpmi_nand_data *this)
2031 {
2032 	struct nand_chip *chip = &this->nand;
2033 	struct mtd_info *mtd = nand_to_mtd(chip);
2034 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2035 	struct bch_geometry *bch_geo = &this->bch_geometry;
2036 	int ret;
2037 
2038 	/* Set up the medium geometry */
2039 	ret = gpmi_set_geometry(this);
2040 	if (ret)
2041 		return ret;
2042 
2043 	/* Init the nand_ecc_ctrl{} */
2044 	ecc->read_page	= gpmi_ecc_read_page;
2045 	ecc->write_page	= gpmi_ecc_write_page;
2046 	ecc->read_oob	= gpmi_ecc_read_oob;
2047 	ecc->write_oob	= gpmi_ecc_write_oob;
2048 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2049 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2050 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2051 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2052 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2053 	ecc->size	= bch_geo->ecc_chunk_size;
2054 	ecc->strength	= bch_geo->ecc_strength;
2055 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2056 
2057 	/*
2058 	 * We only enable the subpage read when:
2059 	 *  (1) the chip is imx6, and
2060 	 *  (2) the size of the ECC parity is byte aligned.
2061 	 */
2062 	if (GPMI_IS_MX6(this) &&
2063 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2064 		ecc->read_subpage = gpmi_ecc_read_subpage;
2065 		chip->options |= NAND_SUBPAGE_READ;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
gpmi_nand_attach_chip(struct nand_chip * chip)2071 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2072 {
2073 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2074 	int ret;
2075 
2076 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2077 		chip->bbt_options |= NAND_BBT_NO_OOB;
2078 
2079 		if (of_property_read_bool(this->dev->of_node,
2080 					  "fsl,no-blockmark-swap"))
2081 			this->swap_block_mark = false;
2082 	}
2083 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2084 		this->swap_block_mark ? "en" : "dis");
2085 
2086 	ret = gpmi_init_last(this);
2087 	if (ret)
2088 		return ret;
2089 
2090 	chip->options |= NAND_SKIP_BBTSCAN;
2091 
2092 	return 0;
2093 }
2094 
get_next_transfer(struct gpmi_nand_data * this)2095 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2096 {
2097 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2098 
2099 	this->ntransfers++;
2100 
2101 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2102 		return NULL;
2103 
2104 	return transfer;
2105 }
2106 
gpmi_chain_command(struct gpmi_nand_data * this,u8 cmd,const u8 * addr,int naddr)2107 static struct dma_async_tx_descriptor *gpmi_chain_command(
2108 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2109 {
2110 	struct dma_chan *channel = get_dma_chan(this);
2111 	struct dma_async_tx_descriptor *desc;
2112 	struct gpmi_transfer *transfer;
2113 	int chip = this->nand.cur_cs;
2114 	u32 pio[3];
2115 
2116 	/* [1] send out the PIO words */
2117 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2118 		| BM_GPMI_CTRL0_WORD_LENGTH
2119 		| BF_GPMI_CTRL0_CS(chip, this)
2120 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2121 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2122 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2123 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2124 	pio[1] = 0;
2125 	pio[2] = 0;
2126 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2127 				      DMA_TRANS_NONE, 0);
2128 	if (!desc)
2129 		return NULL;
2130 
2131 	transfer = get_next_transfer(this);
2132 	if (!transfer)
2133 		return NULL;
2134 
2135 	transfer->cmdbuf[0] = cmd;
2136 	if (naddr)
2137 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2138 
2139 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2140 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2141 
2142 	transfer->direction = DMA_TO_DEVICE;
2143 
2144 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2145 				       MXS_DMA_CTRL_WAIT4END);
2146 	return desc;
2147 }
2148 
gpmi_chain_wait_ready(struct gpmi_nand_data * this)2149 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2150 	struct gpmi_nand_data *this)
2151 {
2152 	struct dma_chan *channel = get_dma_chan(this);
2153 	u32 pio[2];
2154 
2155 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2156 		| BM_GPMI_CTRL0_WORD_LENGTH
2157 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2158 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2159 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2160 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2161 	pio[1] = 0;
2162 
2163 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2164 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2165 }
2166 
gpmi_chain_data_read(struct gpmi_nand_data * this,void * buf,int raw_len,bool * direct)2167 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2168 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2169 {
2170 	struct dma_async_tx_descriptor *desc;
2171 	struct dma_chan *channel = get_dma_chan(this);
2172 	struct gpmi_transfer *transfer;
2173 	u32 pio[6] = {};
2174 
2175 	transfer = get_next_transfer(this);
2176 	if (!transfer)
2177 		return NULL;
2178 
2179 	transfer->direction = DMA_FROM_DEVICE;
2180 
2181 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2182 				   DMA_FROM_DEVICE);
2183 
2184 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2185 		| BM_GPMI_CTRL0_WORD_LENGTH
2186 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2187 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2188 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2189 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2190 
2191 	if (this->bch) {
2192 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2193 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2194 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2195 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2196 		pio[3] = raw_len;
2197 		pio[4] = transfer->sgl.dma_address;
2198 		pio[5] = this->auxiliary_phys;
2199 	}
2200 
2201 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2202 				      DMA_TRANS_NONE, 0);
2203 	if (!desc)
2204 		return NULL;
2205 
2206 	if (!this->bch)
2207 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2208 					     DMA_DEV_TO_MEM,
2209 					     MXS_DMA_CTRL_WAIT4END);
2210 
2211 	return desc;
2212 }
2213 
gpmi_chain_data_write(struct gpmi_nand_data * this,const void * buf,int raw_len)2214 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2215 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2216 {
2217 	struct dma_chan *channel = get_dma_chan(this);
2218 	struct dma_async_tx_descriptor *desc;
2219 	struct gpmi_transfer *transfer;
2220 	u32 pio[6] = {};
2221 
2222 	transfer = get_next_transfer(this);
2223 	if (!transfer)
2224 		return NULL;
2225 
2226 	transfer->direction = DMA_TO_DEVICE;
2227 
2228 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2229 
2230 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2231 		| BM_GPMI_CTRL0_WORD_LENGTH
2232 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2233 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2234 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2235 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2236 
2237 	if (this->bch) {
2238 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2239 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2240 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2241 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2242 		pio[3] = raw_len;
2243 		pio[4] = transfer->sgl.dma_address;
2244 		pio[5] = this->auxiliary_phys;
2245 	}
2246 
2247 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2248 				      DMA_TRANS_NONE,
2249 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2250 	if (!desc)
2251 		return NULL;
2252 
2253 	if (!this->bch)
2254 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2255 					       DMA_MEM_TO_DEV,
2256 					       MXS_DMA_CTRL_WAIT4END);
2257 
2258 	return desc;
2259 }
2260 
gpmi_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2261 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2262 			     const struct nand_operation *op,
2263 			     bool check_only)
2264 {
2265 	const struct nand_op_instr *instr;
2266 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2267 	struct dma_async_tx_descriptor *desc = NULL;
2268 	int i, ret, buf_len = 0, nbufs = 0;
2269 	u8 cmd = 0;
2270 	void *buf_read = NULL;
2271 	const void *buf_write = NULL;
2272 	bool direct = false;
2273 	struct completion *dma_completion, *bch_completion;
2274 	unsigned long to;
2275 
2276 	if (check_only)
2277 		return 0;
2278 
2279 	this->ntransfers = 0;
2280 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2281 		this->transfers[i].direction = DMA_NONE;
2282 
2283 	ret = pm_runtime_get_sync(this->dev);
2284 	if (ret < 0) {
2285 		pm_runtime_put_noidle(this->dev);
2286 		return ret;
2287 	}
2288 
2289 	/*
2290 	 * This driver currently supports only one NAND chip. Plus, dies share
2291 	 * the same configuration. So once timings have been applied on the
2292 	 * controller side, they will not change anymore. When the time will
2293 	 * come, the check on must_apply_timings will have to be dropped.
2294 	 */
2295 	if (this->hw.must_apply_timings) {
2296 		this->hw.must_apply_timings = false;
2297 		ret = gpmi_nfc_apply_timings(this);
2298 		if (ret)
2299 			goto out_pm;
2300 	}
2301 
2302 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2303 
2304 	for (i = 0; i < op->ninstrs; i++) {
2305 		instr = &op->instrs[i];
2306 
2307 		nand_op_trace("  ", instr);
2308 
2309 		switch (instr->type) {
2310 		case NAND_OP_WAITRDY_INSTR:
2311 			desc = gpmi_chain_wait_ready(this);
2312 			break;
2313 		case NAND_OP_CMD_INSTR:
2314 			cmd = instr->ctx.cmd.opcode;
2315 
2316 			/*
2317 			 * When this command has an address cycle chain it
2318 			 * together with the address cycle
2319 			 */
2320 			if (i + 1 != op->ninstrs &&
2321 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2322 				continue;
2323 
2324 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2325 
2326 			break;
2327 		case NAND_OP_ADDR_INSTR:
2328 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2329 						  instr->ctx.addr.naddrs);
2330 			break;
2331 		case NAND_OP_DATA_OUT_INSTR:
2332 			buf_write = instr->ctx.data.buf.out;
2333 			buf_len = instr->ctx.data.len;
2334 			nbufs++;
2335 
2336 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2337 
2338 			break;
2339 		case NAND_OP_DATA_IN_INSTR:
2340 			if (!instr->ctx.data.len)
2341 				break;
2342 			buf_read = instr->ctx.data.buf.in;
2343 			buf_len = instr->ctx.data.len;
2344 			nbufs++;
2345 
2346 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2347 						   &direct);
2348 			break;
2349 		}
2350 
2351 		if (!desc) {
2352 			ret = -ENXIO;
2353 			goto unmap;
2354 		}
2355 	}
2356 
2357 	dev_dbg(this->dev, "%s setup done\n", __func__);
2358 
2359 	if (nbufs > 1) {
2360 		dev_err(this->dev, "Multiple data instructions not supported\n");
2361 		ret = -EINVAL;
2362 		goto unmap;
2363 	}
2364 
2365 	if (this->bch) {
2366 		writel(this->bch_flashlayout0,
2367 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2368 		writel(this->bch_flashlayout1,
2369 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2370 	}
2371 
2372 	desc->callback = dma_irq_callback;
2373 	desc->callback_param = this;
2374 	dma_completion = &this->dma_done;
2375 	bch_completion = NULL;
2376 
2377 	init_completion(dma_completion);
2378 
2379 	if (this->bch && buf_read) {
2380 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2381 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2382 		bch_completion = &this->bch_done;
2383 		init_completion(bch_completion);
2384 	}
2385 
2386 	dmaengine_submit(desc);
2387 	dma_async_issue_pending(get_dma_chan(this));
2388 
2389 	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2390 	if (!to) {
2391 		dev_err(this->dev, "DMA timeout, last DMA\n");
2392 		gpmi_dump_info(this);
2393 		ret = -ETIMEDOUT;
2394 		goto unmap;
2395 	}
2396 
2397 	if (this->bch && buf_read) {
2398 		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2399 		if (!to) {
2400 			dev_err(this->dev, "BCH timeout, last DMA\n");
2401 			gpmi_dump_info(this);
2402 			ret = -ETIMEDOUT;
2403 			goto unmap;
2404 		}
2405 	}
2406 
2407 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2408 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2409 	gpmi_clear_bch(this);
2410 
2411 	ret = 0;
2412 
2413 unmap:
2414 	for (i = 0; i < this->ntransfers; i++) {
2415 		struct gpmi_transfer *transfer = &this->transfers[i];
2416 
2417 		if (transfer->direction != DMA_NONE)
2418 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2419 				     transfer->direction);
2420 	}
2421 
2422 	if (!ret && buf_read && !direct)
2423 		memcpy(buf_read, this->data_buffer_dma,
2424 		       gpmi_raw_len_to_len(this, buf_len));
2425 
2426 	this->bch = false;
2427 
2428 out_pm:
2429 	pm_runtime_mark_last_busy(this->dev);
2430 	pm_runtime_put_autosuspend(this->dev);
2431 
2432 	return ret;
2433 }
2434 
2435 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2436 	.attach_chip = gpmi_nand_attach_chip,
2437 	.setup_interface = gpmi_setup_interface,
2438 	.exec_op = gpmi_nfc_exec_op,
2439 };
2440 
gpmi_nand_init(struct gpmi_nand_data * this)2441 static int gpmi_nand_init(struct gpmi_nand_data *this)
2442 {
2443 	struct nand_chip *chip = &this->nand;
2444 	struct mtd_info  *mtd = nand_to_mtd(chip);
2445 	int ret;
2446 
2447 	/* init the MTD data structures */
2448 	mtd->name		= "gpmi-nand";
2449 	mtd->dev.parent		= this->dev;
2450 
2451 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2452 	nand_set_controller_data(chip, this);
2453 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2454 	chip->legacy.block_markbad = gpmi_block_markbad;
2455 	chip->badblock_pattern	= &gpmi_bbt_descr;
2456 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2457 
2458 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2459 	this->swap_block_mark = !GPMI_IS_MX23(this);
2460 
2461 	/*
2462 	 * Allocate a temporary DMA buffer for reading ID in the
2463 	 * nand_scan_ident().
2464 	 */
2465 	this->bch_geometry.payload_size = 1024;
2466 	this->bch_geometry.auxiliary_size = 128;
2467 	ret = gpmi_alloc_dma_buffer(this);
2468 	if (ret)
2469 		return ret;
2470 
2471 	nand_controller_init(&this->base);
2472 	this->base.ops = &gpmi_nand_controller_ops;
2473 	chip->controller = &this->base;
2474 
2475 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2476 	if (ret)
2477 		goto err_out;
2478 
2479 	ret = nand_boot_init(this);
2480 	if (ret)
2481 		goto err_nand_cleanup;
2482 	ret = nand_create_bbt(chip);
2483 	if (ret)
2484 		goto err_nand_cleanup;
2485 
2486 	ret = mtd_device_register(mtd, NULL, 0);
2487 	if (ret)
2488 		goto err_nand_cleanup;
2489 	return 0;
2490 
2491 err_nand_cleanup:
2492 	nand_cleanup(chip);
2493 err_out:
2494 	gpmi_free_dma_buffer(this);
2495 	return ret;
2496 }
2497 
2498 static const struct of_device_id gpmi_nand_id_table[] = {
2499 	{
2500 		.compatible = "fsl,imx23-gpmi-nand",
2501 		.data = &gpmi_devdata_imx23,
2502 	}, {
2503 		.compatible = "fsl,imx28-gpmi-nand",
2504 		.data = &gpmi_devdata_imx28,
2505 	}, {
2506 		.compatible = "fsl,imx6q-gpmi-nand",
2507 		.data = &gpmi_devdata_imx6q,
2508 	}, {
2509 		.compatible = "fsl,imx6sx-gpmi-nand",
2510 		.data = &gpmi_devdata_imx6sx,
2511 	}, {
2512 		.compatible = "fsl,imx7d-gpmi-nand",
2513 		.data = &gpmi_devdata_imx7d,
2514 	}, {}
2515 };
2516 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2517 
gpmi_nand_probe(struct platform_device * pdev)2518 static int gpmi_nand_probe(struct platform_device *pdev)
2519 {
2520 	struct gpmi_nand_data *this;
2521 	const struct of_device_id *of_id;
2522 	int ret;
2523 
2524 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2525 	if (!this)
2526 		return -ENOMEM;
2527 
2528 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2529 	if (of_id) {
2530 		this->devdata = of_id->data;
2531 	} else {
2532 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2533 		return -ENODEV;
2534 	}
2535 
2536 	platform_set_drvdata(pdev, this);
2537 	this->pdev  = pdev;
2538 	this->dev   = &pdev->dev;
2539 
2540 	ret = acquire_resources(this);
2541 	if (ret)
2542 		goto exit_acquire_resources;
2543 
2544 	ret = __gpmi_enable_clk(this, true);
2545 	if (ret)
2546 		goto exit_acquire_resources;
2547 
2548 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2549 	pm_runtime_use_autosuspend(&pdev->dev);
2550 	pm_runtime_set_active(&pdev->dev);
2551 	pm_runtime_enable(&pdev->dev);
2552 	pm_runtime_get_sync(&pdev->dev);
2553 
2554 	ret = gpmi_init(this);
2555 	if (ret)
2556 		goto exit_nfc_init;
2557 
2558 	ret = gpmi_nand_init(this);
2559 	if (ret)
2560 		goto exit_nfc_init;
2561 
2562 	pm_runtime_mark_last_busy(&pdev->dev);
2563 	pm_runtime_put_autosuspend(&pdev->dev);
2564 
2565 	dev_info(this->dev, "driver registered.\n");
2566 
2567 	return 0;
2568 
2569 exit_nfc_init:
2570 	pm_runtime_put(&pdev->dev);
2571 	pm_runtime_disable(&pdev->dev);
2572 	release_resources(this);
2573 exit_acquire_resources:
2574 
2575 	return ret;
2576 }
2577 
gpmi_nand_remove(struct platform_device * pdev)2578 static int gpmi_nand_remove(struct platform_device *pdev)
2579 {
2580 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2581 	struct nand_chip *chip = &this->nand;
2582 	int ret;
2583 
2584 	pm_runtime_put_sync(&pdev->dev);
2585 	pm_runtime_disable(&pdev->dev);
2586 
2587 	ret = mtd_device_unregister(nand_to_mtd(chip));
2588 	WARN_ON(ret);
2589 	nand_cleanup(chip);
2590 	gpmi_free_dma_buffer(this);
2591 	release_resources(this);
2592 	return 0;
2593 }
2594 
2595 #ifdef CONFIG_PM_SLEEP
gpmi_pm_suspend(struct device * dev)2596 static int gpmi_pm_suspend(struct device *dev)
2597 {
2598 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2599 
2600 	release_dma_channels(this);
2601 	return 0;
2602 }
2603 
gpmi_pm_resume(struct device * dev)2604 static int gpmi_pm_resume(struct device *dev)
2605 {
2606 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2607 	int ret;
2608 
2609 	ret = acquire_dma_channels(this);
2610 	if (ret < 0)
2611 		return ret;
2612 
2613 	/* re-init the GPMI registers */
2614 	ret = gpmi_init(this);
2615 	if (ret) {
2616 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2617 		return ret;
2618 	}
2619 
2620 	/* Set flag to get timing setup restored for next exec_op */
2621 	if (this->hw.clk_rate)
2622 		this->hw.must_apply_timings = true;
2623 
2624 	/* re-init the BCH registers */
2625 	ret = bch_set_geometry(this);
2626 	if (ret) {
2627 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2628 		return ret;
2629 	}
2630 
2631 	return 0;
2632 }
2633 #endif /* CONFIG_PM_SLEEP */
2634 
gpmi_runtime_suspend(struct device * dev)2635 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2636 {
2637 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2638 
2639 	return __gpmi_enable_clk(this, false);
2640 }
2641 
gpmi_runtime_resume(struct device * dev)2642 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2643 {
2644 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2645 
2646 	return __gpmi_enable_clk(this, true);
2647 }
2648 
2649 static const struct dev_pm_ops gpmi_pm_ops = {
2650 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2651 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2652 };
2653 
2654 static struct platform_driver gpmi_nand_driver = {
2655 	.driver = {
2656 		.name = "gpmi-nand",
2657 		.pm = &gpmi_pm_ops,
2658 		.of_match_table = gpmi_nand_id_table,
2659 	},
2660 	.probe   = gpmi_nand_probe,
2661 	.remove  = gpmi_nand_remove,
2662 };
2663 module_platform_driver(gpmi_nand_driver);
2664 
2665 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2666 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2667 MODULE_LICENSE("GPL");
2668