• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19 
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT			BIT(0)
22 #define NEW_XMII			BIT(1)
23 #define IS_9893				BIT(2)
24 
25 static const struct {
26 	int index;
27 	char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 	{ 0x00, "rx_hi" },
30 	{ 0x01, "rx_undersize" },
31 	{ 0x02, "rx_fragments" },
32 	{ 0x03, "rx_oversize" },
33 	{ 0x04, "rx_jabbers" },
34 	{ 0x05, "rx_symbol_err" },
35 	{ 0x06, "rx_crc_err" },
36 	{ 0x07, "rx_align_err" },
37 	{ 0x08, "rx_mac_ctrl" },
38 	{ 0x09, "rx_pause" },
39 	{ 0x0A, "rx_bcast" },
40 	{ 0x0B, "rx_mcast" },
41 	{ 0x0C, "rx_ucast" },
42 	{ 0x0D, "rx_64_or_less" },
43 	{ 0x0E, "rx_65_127" },
44 	{ 0x0F, "rx_128_255" },
45 	{ 0x10, "rx_256_511" },
46 	{ 0x11, "rx_512_1023" },
47 	{ 0x12, "rx_1024_1522" },
48 	{ 0x13, "rx_1523_2000" },
49 	{ 0x14, "rx_2001" },
50 	{ 0x15, "tx_hi" },
51 	{ 0x16, "tx_late_col" },
52 	{ 0x17, "tx_pause" },
53 	{ 0x18, "tx_bcast" },
54 	{ 0x19, "tx_mcast" },
55 	{ 0x1A, "tx_ucast" },
56 	{ 0x1B, "tx_deferred" },
57 	{ 0x1C, "tx_total_col" },
58 	{ 0x1D, "tx_exc_col" },
59 	{ 0x1E, "tx_single_col" },
60 	{ 0x1F, "tx_mult_col" },
61 	{ 0x80, "rx_total" },
62 	{ 0x81, "tx_total" },
63 	{ 0x82, "rx_discards" },
64 	{ 0x83, "tx_discards" },
65 };
66 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 			 bool set)
74 {
75 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 			   bits, set ? bits : 0);
77 }
78 
ksz9477_cfg32(struct ksz_device * dev,u32 addr,u32 bits,bool set)79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83 
ksz9477_port_cfg32(struct ksz_device * dev,int port,int offset,u32 bits,bool set)84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 			       u32 bits, bool set)
86 {
87 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 			   bits, set ? bits : 0);
89 }
90 
ksz9477_wait_vlan_ctrl_ready(struct ksz_device * dev)91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 	unsigned int val;
94 
95 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 					val, !(val & VLAN_START), 10, 1000);
97 }
98 
ksz9477_get_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 				  u32 *vlan_table)
101 {
102 	int ret;
103 
104 	mutex_lock(&dev->vlan_mutex);
105 
106 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108 
109 	/* wait to be cleared */
110 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 	if (ret) {
112 		dev_dbg(dev->dev, "Failed to read vlan table\n");
113 		goto exit;
114 	}
115 
116 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119 
120 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121 
122 exit:
123 	mutex_unlock(&dev->vlan_mutex);
124 
125 	return ret;
126 }
127 
ksz9477_set_vlan_table(struct ksz_device * dev,u16 vid,u32 * vlan_table)128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 				  u32 *vlan_table)
130 {
131 	int ret;
132 
133 	mutex_lock(&dev->vlan_mutex);
134 
135 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138 
139 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141 
142 	/* wait to be cleared */
143 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 	if (ret) {
145 		dev_dbg(dev->dev, "Failed to write vlan table\n");
146 		goto exit;
147 	}
148 
149 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150 
151 	/* update vlan cache table */
152 	dev->vlan_cache[vid].table[0] = vlan_table[0];
153 	dev->vlan_cache[vid].table[1] = vlan_table[1];
154 	dev->vlan_cache[vid].table[2] = vlan_table[2];
155 
156 exit:
157 	mutex_unlock(&dev->vlan_mutex);
158 
159 	return ret;
160 }
161 
ksz9477_read_table(struct ksz_device * dev,u32 * table)162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169 
ksz9477_write_table(struct ksz_device * dev,u32 * table)170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177 
ksz9477_wait_alu_ready(struct ksz_device * dev)178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 	unsigned int val;
181 
182 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 					val, !(val & ALU_START), 10, 1000);
184 }
185 
ksz9477_wait_alu_sta_ready(struct ksz_device * dev)186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 	unsigned int val;
189 
190 	return regmap_read_poll_timeout(dev->regmap[2],
191 					REG_SW_ALU_STAT_CTRL__4,
192 					val, !(val & ALU_STAT_START),
193 					10, 1000);
194 }
195 
ksz9477_reset_switch(struct ksz_device * dev)196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 	u8 data8;
199 	u32 data32;
200 
201 	/* reset switch */
202 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203 
204 	/* turn off SPI DO Edge select */
205 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 			   SPI_AUTO_EDGE_DETECTION, 0);
207 
208 	/* default configuration */
209 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213 
214 	/* disable interrupts */
215 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218 
219 	/* set broadcast storm protection 10% rate */
220 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 			   BROADCAST_STORM_RATE,
222 			   (BROADCAST_STORM_VALUE *
223 			   BROADCAST_STORM_PROT_RATE) / 100);
224 
225 	if (dev->synclko_125)
226 		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228 
229 	return 0;
230 }
231 
ksz9477_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 			      u64 *cnt)
234 {
235 	struct ksz_port *p = &dev->ports[port];
236 	unsigned int val;
237 	u32 data;
238 	int ret;
239 
240 	/* retain the flush/freeze bit */
241 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 	data |= MIB_COUNTER_READ;
243 	data |= (addr << MIB_COUNTER_INDEX_S);
244 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245 
246 	ret = regmap_read_poll_timeout(dev->regmap[2],
247 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 			val, !(val & MIB_COUNTER_READ), 10, 1000);
249 	/* failed to read MIB. get out of loop */
250 	if (ret) {
251 		dev_dbg(dev->dev, "Failed to get MIB\n");
252 		return;
253 	}
254 
255 	/* count resets upon read */
256 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 	*cnt += data;
258 }
259 
ksz9477_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 			      u64 *dropped, u64 *cnt)
262 {
263 	addr = ksz9477_mib_names[addr].index;
264 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266 
ksz9477_freeze_mib(struct ksz_device * dev,int port,bool freeze)267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 	struct ksz_port *p = &dev->ports[port];
271 
272 	/* enable/disable the port for flush/freeze function */
273 	mutex_lock(&p->mib.cnt_mutex);
274 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275 
276 	/* used by MIB counter reading code to know freeze is enabled */
277 	p->freeze = freeze;
278 	mutex_unlock(&p->mib.cnt_mutex);
279 }
280 
ksz9477_port_init_cnt(struct ksz_device * dev,int port)281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283 	struct ksz_port_mib *mib = &dev->ports[port].mib;
284 
285 	/* flush all enabled port MIB counters */
286 	mutex_lock(&mib->cnt_mutex);
287 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 		     MIB_COUNTER_FLUSH_FREEZE);
289 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 	mutex_unlock(&mib->cnt_mutex);
292 
293 	mib->cnt_ptr = 0;
294 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296 
ksz9477_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 						      int port,
299 						      enum dsa_tag_protocol mp)
300 {
301 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 	struct ksz_device *dev = ds->priv;
303 
304 	if (dev->features & IS_9893)
305 		proto = DSA_TAG_PROTO_KSZ9893;
306 	return proto;
307 }
308 
ksz9477_phy_read16(struct dsa_switch * ds,int addr,int reg)309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311 	struct ksz_device *dev = ds->priv;
312 	u16 val = 0xffff;
313 
314 	/* No real PHY after this. Simulate the PHY.
315 	 * A fixed PHY can be setup in the device tree, but this function is
316 	 * still called for that port during initialization.
317 	 * For RGMII PHY there is no way to access it so the fixed PHY should
318 	 * be used.  For SGMII PHY the supporting code will be added later.
319 	 */
320 	if (addr >= dev->phy_port_cnt) {
321 		struct ksz_port *p = &dev->ports[addr];
322 
323 		switch (reg) {
324 		case MII_BMCR:
325 			val = 0x1140;
326 			break;
327 		case MII_BMSR:
328 			val = 0x796d;
329 			break;
330 		case MII_PHYSID1:
331 			val = 0x0022;
332 			break;
333 		case MII_PHYSID2:
334 			val = 0x1631;
335 			break;
336 		case MII_ADVERTISE:
337 			val = 0x05e1;
338 			break;
339 		case MII_LPA:
340 			val = 0xc5e1;
341 			break;
342 		case MII_CTRL1000:
343 			val = 0x0700;
344 			break;
345 		case MII_STAT1000:
346 			if (p->phydev.speed == SPEED_1000)
347 				val = 0x3800;
348 			else
349 				val = 0;
350 			break;
351 		}
352 	} else {
353 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 	}
355 
356 	return val;
357 }
358 
ksz9477_phy_write16(struct dsa_switch * ds,int addr,int reg,u16 val)359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 			       u16 val)
361 {
362 	struct ksz_device *dev = ds->priv;
363 
364 	/* No real PHY after this. */
365 	if (addr >= dev->phy_port_cnt)
366 		return 0;
367 
368 	/* No gigabit support.  Do not write to this register. */
369 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 		return 0;
371 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372 
373 	return 0;
374 }
375 
ksz9477_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 				u32 stringset, uint8_t *buf)
378 {
379 	int i;
380 
381 	if (stringset != ETH_SS_STATS)
382 		return;
383 
384 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 		       ETH_GSTRING_LEN);
387 	}
388 }
389 
ksz9477_cfg_port_member(struct ksz_device * dev,int port,u8 member)390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 				    u8 member)
392 {
393 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 	dev->ports[port].member = member;
395 }
396 
ksz9477_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 				       u8 state)
399 {
400 	struct ksz_device *dev = ds->priv;
401 	struct ksz_port *p = &dev->ports[port];
402 	u8 data;
403 	int member = -1;
404 	int forward = dev->member;
405 
406 	ksz_pread8(dev, port, P_STP_CTRL, &data);
407 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408 
409 	switch (state) {
410 	case BR_STATE_DISABLED:
411 		data |= PORT_LEARN_DISABLE;
412 		if (port != dev->cpu_port)
413 			member = 0;
414 		break;
415 	case BR_STATE_LISTENING:
416 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 		if (port != dev->cpu_port &&
418 		    p->stp_state == BR_STATE_DISABLED)
419 			member = dev->host_mask | p->vid_member;
420 		break;
421 	case BR_STATE_LEARNING:
422 		data |= PORT_RX_ENABLE;
423 		break;
424 	case BR_STATE_FORWARDING:
425 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426 
427 		/* This function is also used internally. */
428 		if (port == dev->cpu_port)
429 			break;
430 
431 		member = dev->host_mask | p->vid_member;
432 		mutex_lock(&dev->dev_mutex);
433 
434 		/* Port is a member of a bridge. */
435 		if (dev->br_member & (1 << port)) {
436 			dev->member |= (1 << port);
437 			member = dev->member;
438 		}
439 		mutex_unlock(&dev->dev_mutex);
440 		break;
441 	case BR_STATE_BLOCKING:
442 		data |= PORT_LEARN_DISABLE;
443 		if (port != dev->cpu_port &&
444 		    p->stp_state == BR_STATE_DISABLED)
445 			member = dev->host_mask | p->vid_member;
446 		break;
447 	default:
448 		dev_err(ds->dev, "invalid STP state: %d\n", state);
449 		return;
450 	}
451 
452 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 	p->stp_state = state;
454 	mutex_lock(&dev->dev_mutex);
455 	/* Port membership may share register with STP state. */
456 	if (member >= 0 && member != p->member)
457 		ksz9477_cfg_port_member(dev, port, (u8)member);
458 
459 	/* Check if forwarding needs to be updated. */
460 	if (state != BR_STATE_FORWARDING) {
461 		if (dev->br_member & (1 << port))
462 			dev->member &= ~(1 << port);
463 	}
464 
465 	/* When topology has changed the function ksz_update_port_member
466 	 * should be called to modify port forwarding behavior.
467 	 */
468 	if (forward != dev->member)
469 		ksz_update_port_member(dev, port);
470 	mutex_unlock(&dev->dev_mutex);
471 }
472 
ksz9477_flush_dyn_mac_table(struct ksz_device * dev,int port)473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475 	u8 data;
476 
477 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480 
481 	if (port < dev->mib_port_cnt) {
482 		/* flush individual port */
483 		ksz_pread8(dev, port, P_STP_CTRL, &data);
484 		if (!(data & PORT_LEARN_DISABLE))
485 			ksz_pwrite8(dev, port, P_STP_CTRL,
486 				    data | PORT_LEARN_DISABLE);
487 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 	} else {
490 		/* flush all */
491 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 	}
493 }
494 
ksz9477_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct switchdev_trans * trans)495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 				       bool flag,
497 				       struct switchdev_trans *trans)
498 {
499 	struct ksz_device *dev = ds->priv;
500 
501 	if (switchdev_trans_ph_prepare(trans))
502 		return 0;
503 
504 	if (flag) {
505 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
506 			     PORT_VLAN_LOOKUP_VID_0, true);
507 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
508 	} else {
509 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
510 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511 			     PORT_VLAN_LOOKUP_VID_0, false);
512 	}
513 
514 	return 0;
515 }
516 
ksz9477_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)517 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
518 				  const struct switchdev_obj_port_vlan *vlan)
519 {
520 	struct ksz_device *dev = ds->priv;
521 	u32 vlan_table[3];
522 	u16 vid;
523 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
524 
525 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
526 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
527 			dev_dbg(dev->dev, "Failed to get vlan table\n");
528 			return;
529 		}
530 
531 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
532 		if (untagged)
533 			vlan_table[1] |= BIT(port);
534 		else
535 			vlan_table[1] &= ~BIT(port);
536 		vlan_table[1] &= ~(BIT(dev->cpu_port));
537 
538 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
539 
540 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
541 			dev_dbg(dev->dev, "Failed to set vlan table\n");
542 			return;
543 		}
544 
545 		/* change PVID */
546 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
547 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
548 	}
549 }
550 
ksz9477_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)551 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
552 				 const struct switchdev_obj_port_vlan *vlan)
553 {
554 	struct ksz_device *dev = ds->priv;
555 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
556 	u32 vlan_table[3];
557 	u16 vid;
558 	u16 pvid;
559 
560 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
561 	pvid = pvid & 0xFFF;
562 
563 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
564 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
565 			dev_dbg(dev->dev, "Failed to get vlan table\n");
566 			return -ETIMEDOUT;
567 		}
568 
569 		vlan_table[2] &= ~BIT(port);
570 
571 		if (pvid == vid)
572 			pvid = 1;
573 
574 		if (untagged)
575 			vlan_table[1] &= ~BIT(port);
576 
577 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
578 			dev_dbg(dev->dev, "Failed to set vlan table\n");
579 			return -ETIMEDOUT;
580 		}
581 	}
582 
583 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
584 
585 	return 0;
586 }
587 
ksz9477_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)588 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
589 				const unsigned char *addr, u16 vid)
590 {
591 	struct ksz_device *dev = ds->priv;
592 	u32 alu_table[4];
593 	u32 data;
594 	int ret = 0;
595 
596 	mutex_lock(&dev->alu_mutex);
597 
598 	/* find any entry with mac & vid */
599 	data = vid << ALU_FID_INDEX_S;
600 	data |= ((addr[0] << 8) | addr[1]);
601 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602 
603 	data = ((addr[2] << 24) | (addr[3] << 16));
604 	data |= ((addr[4] << 8) | addr[5]);
605 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606 
607 	/* start read operation */
608 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609 
610 	/* wait to be finished */
611 	ret = ksz9477_wait_alu_ready(dev);
612 	if (ret) {
613 		dev_dbg(dev->dev, "Failed to read ALU\n");
614 		goto exit;
615 	}
616 
617 	/* read ALU entry */
618 	ksz9477_read_table(dev, alu_table);
619 
620 	/* update ALU entry */
621 	alu_table[0] = ALU_V_STATIC_VALID;
622 	alu_table[1] |= BIT(port);
623 	if (vid)
624 		alu_table[1] |= ALU_V_USE_FID;
625 	alu_table[2] = (vid << ALU_V_FID_S);
626 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
627 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
628 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
629 
630 	ksz9477_write_table(dev, alu_table);
631 
632 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
633 
634 	/* wait to be finished */
635 	ret = ksz9477_wait_alu_ready(dev);
636 	if (ret)
637 		dev_dbg(dev->dev, "Failed to write ALU\n");
638 
639 exit:
640 	mutex_unlock(&dev->alu_mutex);
641 
642 	return ret;
643 }
644 
ksz9477_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)645 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
646 				const unsigned char *addr, u16 vid)
647 {
648 	struct ksz_device *dev = ds->priv;
649 	u32 alu_table[4];
650 	u32 data;
651 	int ret = 0;
652 
653 	mutex_lock(&dev->alu_mutex);
654 
655 	/* read any entry with mac & vid */
656 	data = vid << ALU_FID_INDEX_S;
657 	data |= ((addr[0] << 8) | addr[1]);
658 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
659 
660 	data = ((addr[2] << 24) | (addr[3] << 16));
661 	data |= ((addr[4] << 8) | addr[5]);
662 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
663 
664 	/* start read operation */
665 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
666 
667 	/* wait to be finished */
668 	ret = ksz9477_wait_alu_ready(dev);
669 	if (ret) {
670 		dev_dbg(dev->dev, "Failed to read ALU\n");
671 		goto exit;
672 	}
673 
674 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
675 	if (alu_table[0] & ALU_V_STATIC_VALID) {
676 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
677 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
678 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
679 
680 		/* clear forwarding port */
681 		alu_table[2] &= ~BIT(port);
682 
683 		/* if there is no port to forward, clear table */
684 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
685 			alu_table[0] = 0;
686 			alu_table[1] = 0;
687 			alu_table[2] = 0;
688 			alu_table[3] = 0;
689 		}
690 	} else {
691 		alu_table[0] = 0;
692 		alu_table[1] = 0;
693 		alu_table[2] = 0;
694 		alu_table[3] = 0;
695 	}
696 
697 	ksz9477_write_table(dev, alu_table);
698 
699 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
700 
701 	/* wait to be finished */
702 	ret = ksz9477_wait_alu_ready(dev);
703 	if (ret)
704 		dev_dbg(dev->dev, "Failed to write ALU\n");
705 
706 exit:
707 	mutex_unlock(&dev->alu_mutex);
708 
709 	return ret;
710 }
711 
ksz9477_convert_alu(struct alu_struct * alu,u32 * alu_table)712 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
713 {
714 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
715 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
716 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
717 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
718 			ALU_V_PRIO_AGE_CNT_M;
719 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
720 
721 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
722 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
723 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
724 
725 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
726 
727 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
728 	alu->mac[1] = alu_table[2] & 0xFF;
729 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
730 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
731 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
732 	alu->mac[5] = alu_table[3] & 0xFF;
733 }
734 
ksz9477_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)735 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
736 				 dsa_fdb_dump_cb_t *cb, void *data)
737 {
738 	struct ksz_device *dev = ds->priv;
739 	int ret = 0;
740 	u32 ksz_data;
741 	u32 alu_table[4];
742 	struct alu_struct alu;
743 	int timeout;
744 
745 	mutex_lock(&dev->alu_mutex);
746 
747 	/* start ALU search */
748 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
749 
750 	do {
751 		timeout = 1000;
752 		do {
753 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
754 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
755 				break;
756 			usleep_range(1, 10);
757 		} while (timeout-- > 0);
758 
759 		if (!timeout) {
760 			dev_dbg(dev->dev, "Failed to search ALU\n");
761 			ret = -ETIMEDOUT;
762 			goto exit;
763 		}
764 
765 		if (!(ksz_data & ALU_VALID))
766 			continue;
767 
768 		/* read ALU table */
769 		ksz9477_read_table(dev, alu_table);
770 
771 		ksz9477_convert_alu(&alu, alu_table);
772 
773 		if (alu.port_forward & BIT(port)) {
774 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
775 			if (ret)
776 				goto exit;
777 		}
778 	} while (ksz_data & ALU_START);
779 
780 exit:
781 
782 	/* stop ALU search */
783 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
784 
785 	mutex_unlock(&dev->alu_mutex);
786 
787 	return ret;
788 }
789 
ksz9477_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb)790 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
791 				 const struct switchdev_obj_port_mdb *mdb)
792 {
793 	struct ksz_device *dev = ds->priv;
794 	u32 static_table[4];
795 	u32 data;
796 	int index;
797 	u32 mac_hi, mac_lo;
798 
799 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
800 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
801 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
802 
803 	mutex_lock(&dev->alu_mutex);
804 
805 	for (index = 0; index < dev->num_statics; index++) {
806 		/* find empty slot first */
807 		data = (index << ALU_STAT_INDEX_S) |
808 			ALU_STAT_READ | ALU_STAT_START;
809 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
810 
811 		/* wait to be finished */
812 		if (ksz9477_wait_alu_sta_ready(dev)) {
813 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
814 			goto exit;
815 		}
816 
817 		/* read ALU static table */
818 		ksz9477_read_table(dev, static_table);
819 
820 		if (static_table[0] & ALU_V_STATIC_VALID) {
821 			/* check this has same vid & mac address */
822 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
823 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
824 			    static_table[3] == mac_lo) {
825 				/* found matching one */
826 				break;
827 			}
828 		} else {
829 			/* found empty one */
830 			break;
831 		}
832 	}
833 
834 	/* no available entry */
835 	if (index == dev->num_statics)
836 		goto exit;
837 
838 	/* add entry */
839 	static_table[0] = ALU_V_STATIC_VALID;
840 	static_table[1] |= BIT(port);
841 	if (mdb->vid)
842 		static_table[1] |= ALU_V_USE_FID;
843 	static_table[2] = (mdb->vid << ALU_V_FID_S);
844 	static_table[2] |= mac_hi;
845 	static_table[3] = mac_lo;
846 
847 	ksz9477_write_table(dev, static_table);
848 
849 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
850 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
851 
852 	/* wait to be finished */
853 	if (ksz9477_wait_alu_sta_ready(dev))
854 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
855 
856 exit:
857 	mutex_unlock(&dev->alu_mutex);
858 }
859 
ksz9477_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb)860 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
861 				const struct switchdev_obj_port_mdb *mdb)
862 {
863 	struct ksz_device *dev = ds->priv;
864 	u32 static_table[4];
865 	u32 data;
866 	int index;
867 	int ret = 0;
868 	u32 mac_hi, mac_lo;
869 
870 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
871 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
872 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
873 
874 	mutex_lock(&dev->alu_mutex);
875 
876 	for (index = 0; index < dev->num_statics; index++) {
877 		/* find empty slot first */
878 		data = (index << ALU_STAT_INDEX_S) |
879 			ALU_STAT_READ | ALU_STAT_START;
880 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
881 
882 		/* wait to be finished */
883 		ret = ksz9477_wait_alu_sta_ready(dev);
884 		if (ret) {
885 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
886 			goto exit;
887 		}
888 
889 		/* read ALU static table */
890 		ksz9477_read_table(dev, static_table);
891 
892 		if (static_table[0] & ALU_V_STATIC_VALID) {
893 			/* check this has same vid & mac address */
894 
895 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
896 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
897 			    static_table[3] == mac_lo) {
898 				/* found matching one */
899 				break;
900 			}
901 		}
902 	}
903 
904 	/* no available entry */
905 	if (index == dev->num_statics)
906 		goto exit;
907 
908 	/* clear port */
909 	static_table[1] &= ~BIT(port);
910 
911 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
912 		/* delete entry */
913 		static_table[0] = 0;
914 		static_table[1] = 0;
915 		static_table[2] = 0;
916 		static_table[3] = 0;
917 	}
918 
919 	ksz9477_write_table(dev, static_table);
920 
921 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
922 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
923 
924 	/* wait to be finished */
925 	ret = ksz9477_wait_alu_sta_ready(dev);
926 	if (ret)
927 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
928 
929 exit:
930 	mutex_unlock(&dev->alu_mutex);
931 
932 	return ret;
933 }
934 
ksz9477_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress)935 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
936 				   struct dsa_mall_mirror_tc_entry *mirror,
937 				   bool ingress)
938 {
939 	struct ksz_device *dev = ds->priv;
940 
941 	if (ingress)
942 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
943 	else
944 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
945 
946 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
947 
948 	/* configure mirror port */
949 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
950 		     PORT_MIRROR_SNIFFER, true);
951 
952 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
953 
954 	return 0;
955 }
956 
ksz9477_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)957 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
958 				    struct dsa_mall_mirror_tc_entry *mirror)
959 {
960 	struct ksz_device *dev = ds->priv;
961 	u8 data;
962 
963 	if (mirror->ingress)
964 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
965 	else
966 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
967 
968 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
969 
970 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
971 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
972 			     PORT_MIRROR_SNIFFER, false);
973 }
974 
ksz9477_get_gbit(struct ksz_device * dev,u8 data)975 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
976 {
977 	bool gbit;
978 
979 	if (dev->features & NEW_XMII)
980 		gbit = !(data & PORT_MII_NOT_1GBIT);
981 	else
982 		gbit = !!(data & PORT_MII_1000MBIT_S1);
983 	return gbit;
984 }
985 
ksz9477_set_gbit(struct ksz_device * dev,bool gbit,u8 * data)986 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
987 {
988 	if (dev->features & NEW_XMII) {
989 		if (gbit)
990 			*data &= ~PORT_MII_NOT_1GBIT;
991 		else
992 			*data |= PORT_MII_NOT_1GBIT;
993 	} else {
994 		if (gbit)
995 			*data |= PORT_MII_1000MBIT_S1;
996 		else
997 			*data &= ~PORT_MII_1000MBIT_S1;
998 	}
999 }
1000 
ksz9477_get_xmii(struct ksz_device * dev,u8 data)1001 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1002 {
1003 	int mode;
1004 
1005 	if (dev->features & NEW_XMII) {
1006 		switch (data & PORT_MII_SEL_M) {
1007 		case PORT_MII_SEL:
1008 			mode = 0;
1009 			break;
1010 		case PORT_RMII_SEL:
1011 			mode = 1;
1012 			break;
1013 		case PORT_GMII_SEL:
1014 			mode = 2;
1015 			break;
1016 		default:
1017 			mode = 3;
1018 		}
1019 	} else {
1020 		switch (data & PORT_MII_SEL_M) {
1021 		case PORT_MII_SEL_S1:
1022 			mode = 0;
1023 			break;
1024 		case PORT_RMII_SEL_S1:
1025 			mode = 1;
1026 			break;
1027 		case PORT_GMII_SEL_S1:
1028 			mode = 2;
1029 			break;
1030 		default:
1031 			mode = 3;
1032 		}
1033 	}
1034 	return mode;
1035 }
1036 
ksz9477_set_xmii(struct ksz_device * dev,int mode,u8 * data)1037 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1038 {
1039 	u8 xmii;
1040 
1041 	if (dev->features & NEW_XMII) {
1042 		switch (mode) {
1043 		case 0:
1044 			xmii = PORT_MII_SEL;
1045 			break;
1046 		case 1:
1047 			xmii = PORT_RMII_SEL;
1048 			break;
1049 		case 2:
1050 			xmii = PORT_GMII_SEL;
1051 			break;
1052 		default:
1053 			xmii = PORT_RGMII_SEL;
1054 			break;
1055 		}
1056 	} else {
1057 		switch (mode) {
1058 		case 0:
1059 			xmii = PORT_MII_SEL_S1;
1060 			break;
1061 		case 1:
1062 			xmii = PORT_RMII_SEL_S1;
1063 			break;
1064 		case 2:
1065 			xmii = PORT_GMII_SEL_S1;
1066 			break;
1067 		default:
1068 			xmii = PORT_RGMII_SEL_S1;
1069 			break;
1070 		}
1071 	}
1072 	*data &= ~PORT_MII_SEL_M;
1073 	*data |= xmii;
1074 }
1075 
ksz9477_get_interface(struct ksz_device * dev,int port)1076 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1077 {
1078 	phy_interface_t interface;
1079 	bool gbit;
1080 	int mode;
1081 	u8 data8;
1082 
1083 	if (port < dev->phy_port_cnt)
1084 		return PHY_INTERFACE_MODE_NA;
1085 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1086 	gbit = ksz9477_get_gbit(dev, data8);
1087 	mode = ksz9477_get_xmii(dev, data8);
1088 	switch (mode) {
1089 	case 2:
1090 		interface = PHY_INTERFACE_MODE_GMII;
1091 		if (gbit)
1092 			break;
1093 		fallthrough;
1094 	case 0:
1095 		interface = PHY_INTERFACE_MODE_MII;
1096 		break;
1097 	case 1:
1098 		interface = PHY_INTERFACE_MODE_RMII;
1099 		break;
1100 	default:
1101 		interface = PHY_INTERFACE_MODE_RGMII;
1102 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1103 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1104 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1105 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1106 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1107 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1108 		}
1109 		break;
1110 	}
1111 	return interface;
1112 }
1113 
ksz9477_port_mmd_write(struct ksz_device * dev,int port,u8 dev_addr,u16 reg_addr,u16 val)1114 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1115 				   u8 dev_addr, u16 reg_addr, u16 val)
1116 {
1117 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1118 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1119 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1120 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1121 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1122 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1123 }
1124 
ksz9477_phy_errata_setup(struct ksz_device * dev,int port)1125 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1126 {
1127 	/* Apply PHY settings to address errata listed in
1128 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1129 	 * Silicon Errata and Data Sheet Clarification documents:
1130 	 *
1131 	 * Register settings are needed to improve PHY receive performance
1132 	 */
1133 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1134 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1135 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1136 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1137 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1138 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1139 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1140 
1141 	/* Transmit waveform amplitude can be improved
1142 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1143 	 */
1144 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1145 
1146 	/* Energy Efficient Ethernet (EEE) feature select must
1147 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1148 	 */
1149 	if (dev->features & GBIT_SUPPORT)
1150 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1151 
1152 	/* Register settings are required to meet data sheet
1153 	 * supply current specifications
1154 	 */
1155 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1156 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1157 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1158 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1159 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1160 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1161 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1162 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1163 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1164 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1165 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1166 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1167 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1168 }
1169 
ksz9477_port_setup(struct ksz_device * dev,int port,bool cpu_port)1170 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1171 {
1172 	u8 data8;
1173 	u8 member;
1174 	u16 data16;
1175 	struct ksz_port *p = &dev->ports[port];
1176 
1177 	/* enable tag tail for host port */
1178 	if (cpu_port)
1179 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1180 			     true);
1181 
1182 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1183 
1184 	/* set back pressure */
1185 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1186 
1187 	/* enable broadcast storm limit */
1188 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1189 
1190 	/* disable DiffServ priority */
1191 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1192 
1193 	/* replace priority */
1194 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1195 		     false);
1196 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1197 			   MTI_PVID_REPLACE, false);
1198 
1199 	/* enable 802.1p priority */
1200 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1201 
1202 	if (port < dev->phy_port_cnt) {
1203 		/* do not force flow control */
1204 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1205 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1206 			     false);
1207 
1208 		if (dev->phy_errata_9477)
1209 			ksz9477_phy_errata_setup(dev, port);
1210 	} else {
1211 		/* force flow control */
1212 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1213 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1214 			     true);
1215 
1216 		/* configure MAC to 1G & RGMII mode */
1217 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1218 		switch (p->interface) {
1219 		case PHY_INTERFACE_MODE_MII:
1220 			ksz9477_set_xmii(dev, 0, &data8);
1221 			ksz9477_set_gbit(dev, false, &data8);
1222 			p->phydev.speed = SPEED_100;
1223 			break;
1224 		case PHY_INTERFACE_MODE_RMII:
1225 			ksz9477_set_xmii(dev, 1, &data8);
1226 			ksz9477_set_gbit(dev, false, &data8);
1227 			p->phydev.speed = SPEED_100;
1228 			break;
1229 		case PHY_INTERFACE_MODE_GMII:
1230 			ksz9477_set_xmii(dev, 2, &data8);
1231 			ksz9477_set_gbit(dev, true, &data8);
1232 			p->phydev.speed = SPEED_1000;
1233 			break;
1234 		default:
1235 			ksz9477_set_xmii(dev, 3, &data8);
1236 			ksz9477_set_gbit(dev, true, &data8);
1237 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1238 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1239 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1240 			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1241 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1242 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1243 			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1244 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1245 			/* On KSZ9893, disable RGMII in-band status support */
1246 			if (dev->features & IS_9893)
1247 				data8 &= ~PORT_MII_MAC_MODE;
1248 			p->phydev.speed = SPEED_1000;
1249 			break;
1250 		}
1251 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1252 		p->phydev.duplex = 1;
1253 	}
1254 	mutex_lock(&dev->dev_mutex);
1255 	if (cpu_port)
1256 		member = dev->port_mask;
1257 	else
1258 		member = dev->host_mask | p->vid_member;
1259 	mutex_unlock(&dev->dev_mutex);
1260 	ksz9477_cfg_port_member(dev, port, member);
1261 
1262 	/* clear pending interrupts */
1263 	if (port < dev->phy_port_cnt)
1264 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1265 }
1266 
ksz9477_config_cpu_port(struct dsa_switch * ds)1267 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1268 {
1269 	struct ksz_device *dev = ds->priv;
1270 	struct ksz_port *p;
1271 	int i;
1272 
1273 	ds->num_ports = dev->port_cnt;
1274 
1275 	for (i = 0; i < dev->port_cnt; i++) {
1276 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1277 			phy_interface_t interface;
1278 			const char *prev_msg;
1279 			const char *prev_mode;
1280 
1281 			dev->cpu_port = i;
1282 			dev->host_mask = (1 << dev->cpu_port);
1283 			dev->port_mask |= dev->host_mask;
1284 			p = &dev->ports[i];
1285 
1286 			/* Read from XMII register to determine host port
1287 			 * interface.  If set specifically in device tree
1288 			 * note the difference to help debugging.
1289 			 */
1290 			interface = ksz9477_get_interface(dev, i);
1291 			if (!p->interface) {
1292 				if (dev->compat_interface) {
1293 					dev_warn(dev->dev,
1294 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1295 						 "Please update your device tree.\n",
1296 						 i);
1297 					p->interface = dev->compat_interface;
1298 				} else {
1299 					p->interface = interface;
1300 				}
1301 			}
1302 			if (interface && interface != p->interface) {
1303 				prev_msg = " instead of ";
1304 				prev_mode = phy_modes(interface);
1305 			} else {
1306 				prev_msg = "";
1307 				prev_mode = "";
1308 			}
1309 			dev_info(dev->dev,
1310 				 "Port%d: using phy mode %s%s%s\n",
1311 				 i,
1312 				 phy_modes(p->interface),
1313 				 prev_msg,
1314 				 prev_mode);
1315 
1316 			/* enable cpu port */
1317 			ksz9477_port_setup(dev, i, true);
1318 			p->vid_member = dev->port_mask;
1319 			p->on = 1;
1320 		}
1321 	}
1322 
1323 	dev->member = dev->host_mask;
1324 
1325 	for (i = 0; i < dev->mib_port_cnt; i++) {
1326 		if (i == dev->cpu_port)
1327 			continue;
1328 		p = &dev->ports[i];
1329 
1330 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1331 		 * be called.
1332 		 */
1333 		p->vid_member = (1 << i);
1334 		p->member = dev->port_mask;
1335 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1336 		p->on = 1;
1337 		if (i < dev->phy_port_cnt)
1338 			p->phy = 1;
1339 		if (dev->chip_id == 0x00947700 && i == 6) {
1340 			p->sgmii = 1;
1341 
1342 			/* SGMII PHY detection code is not implemented yet. */
1343 			p->phy = 0;
1344 		}
1345 	}
1346 }
1347 
ksz9477_setup(struct dsa_switch * ds)1348 static int ksz9477_setup(struct dsa_switch *ds)
1349 {
1350 	struct ksz_device *dev = ds->priv;
1351 	int ret = 0;
1352 
1353 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1354 				       dev->num_vlans, GFP_KERNEL);
1355 	if (!dev->vlan_cache)
1356 		return -ENOMEM;
1357 
1358 	ret = ksz9477_reset_switch(dev);
1359 	if (ret) {
1360 		dev_err(ds->dev, "failed to reset switch\n");
1361 		return ret;
1362 	}
1363 
1364 	/* Required for port partitioning. */
1365 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1366 		      true);
1367 
1368 	/* Do not work correctly with tail tagging. */
1369 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1370 
1371 	/* accept packet up to 2000bytes */
1372 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1373 
1374 	ksz9477_config_cpu_port(ds);
1375 
1376 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1377 
1378 	/* queue based egress rate limit */
1379 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1380 
1381 	/* enable global MIB counter freeze function */
1382 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1383 
1384 	/* start switch */
1385 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1386 
1387 	ksz_init_mib_timer(dev);
1388 
1389 	return 0;
1390 }
1391 
1392 static const struct dsa_switch_ops ksz9477_switch_ops = {
1393 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1394 	.setup			= ksz9477_setup,
1395 	.phy_read		= ksz9477_phy_read16,
1396 	.phy_write		= ksz9477_phy_write16,
1397 	.phylink_mac_link_down	= ksz_mac_link_down,
1398 	.port_enable		= ksz_enable_port,
1399 	.get_strings		= ksz9477_get_strings,
1400 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1401 	.get_sset_count		= ksz_sset_count,
1402 	.port_bridge_join	= ksz_port_bridge_join,
1403 	.port_bridge_leave	= ksz_port_bridge_leave,
1404 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1405 	.port_fast_age		= ksz_port_fast_age,
1406 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1407 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1408 	.port_vlan_add		= ksz9477_port_vlan_add,
1409 	.port_vlan_del		= ksz9477_port_vlan_del,
1410 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1411 	.port_fdb_add		= ksz9477_port_fdb_add,
1412 	.port_fdb_del		= ksz9477_port_fdb_del,
1413 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1414 	.port_mdb_add           = ksz9477_port_mdb_add,
1415 	.port_mdb_del           = ksz9477_port_mdb_del,
1416 	.port_mirror_add	= ksz9477_port_mirror_add,
1417 	.port_mirror_del	= ksz9477_port_mirror_del,
1418 };
1419 
ksz9477_get_port_addr(int port,int offset)1420 static u32 ksz9477_get_port_addr(int port, int offset)
1421 {
1422 	return PORT_CTRL_ADDR(port, offset);
1423 }
1424 
ksz9477_switch_detect(struct ksz_device * dev)1425 static int ksz9477_switch_detect(struct ksz_device *dev)
1426 {
1427 	u8 data8;
1428 	u8 id_hi;
1429 	u8 id_lo;
1430 	u32 id32;
1431 	int ret;
1432 
1433 	/* turn off SPI DO Edge select */
1434 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1435 	if (ret)
1436 		return ret;
1437 
1438 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1439 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1440 	if (ret)
1441 		return ret;
1442 
1443 	/* read chip id */
1444 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1445 	if (ret)
1446 		return ret;
1447 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1448 	if (ret)
1449 		return ret;
1450 
1451 	/* Number of ports can be reduced depending on chip. */
1452 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1453 	dev->phy_port_cnt = 5;
1454 
1455 	/* Default capability is gigabit capable. */
1456 	dev->features = GBIT_SUPPORT;
1457 
1458 	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1459 	id_hi = (u8)(id32 >> 16);
1460 	id_lo = (u8)(id32 >> 8);
1461 	if ((id_lo & 0xf) == 3) {
1462 		/* Chip is from KSZ9893 design. */
1463 		dev_info(dev->dev, "Found KSZ9893\n");
1464 		dev->features |= IS_9893;
1465 
1466 		/* Chip does not support gigabit. */
1467 		if (data8 & SW_QW_ABLE)
1468 			dev->features &= ~GBIT_SUPPORT;
1469 		dev->mib_port_cnt = 3;
1470 		dev->phy_port_cnt = 2;
1471 	} else {
1472 		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1473 		/* Chip uses new XMII register definitions. */
1474 		dev->features |= NEW_XMII;
1475 
1476 		/* Chip does not support gigabit. */
1477 		if (!(data8 & SW_GIGABIT_ABLE))
1478 			dev->features &= ~GBIT_SUPPORT;
1479 	}
1480 
1481 	/* Change chip id to known ones so it can be matched against them. */
1482 	id32 = (id_hi << 16) | (id_lo << 8);
1483 
1484 	dev->chip_id = id32;
1485 
1486 	return 0;
1487 }
1488 
1489 struct ksz_chip_data {
1490 	u32 chip_id;
1491 	const char *dev_name;
1492 	int num_vlans;
1493 	int num_alus;
1494 	int num_statics;
1495 	int cpu_ports;
1496 	int port_cnt;
1497 	bool phy_errata_9477;
1498 };
1499 
1500 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1501 	{
1502 		.chip_id = 0x00947700,
1503 		.dev_name = "KSZ9477",
1504 		.num_vlans = 4096,
1505 		.num_alus = 4096,
1506 		.num_statics = 16,
1507 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1508 		.port_cnt = 7,		/* total physical port count */
1509 		.phy_errata_9477 = true,
1510 	},
1511 	{
1512 		.chip_id = 0x00989700,
1513 		.dev_name = "KSZ9897",
1514 		.num_vlans = 4096,
1515 		.num_alus = 4096,
1516 		.num_statics = 16,
1517 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1518 		.port_cnt = 7,		/* total physical port count */
1519 		.phy_errata_9477 = true,
1520 	},
1521 	{
1522 		.chip_id = 0x00989300,
1523 		.dev_name = "KSZ9893",
1524 		.num_vlans = 4096,
1525 		.num_alus = 4096,
1526 		.num_statics = 16,
1527 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1528 		.port_cnt = 3,		/* total port count */
1529 	},
1530 	{
1531 		.chip_id = 0x00956700,
1532 		.dev_name = "KSZ9567",
1533 		.num_vlans = 4096,
1534 		.num_alus = 4096,
1535 		.num_statics = 16,
1536 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1537 		.port_cnt = 7,		/* total physical port count */
1538 		.phy_errata_9477 = true,
1539 	},
1540 };
1541 
ksz9477_switch_init(struct ksz_device * dev)1542 static int ksz9477_switch_init(struct ksz_device *dev)
1543 {
1544 	int i;
1545 
1546 	dev->ds->ops = &ksz9477_switch_ops;
1547 
1548 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1549 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1550 
1551 		if (dev->chip_id == chip->chip_id) {
1552 			dev->name = chip->dev_name;
1553 			dev->num_vlans = chip->num_vlans;
1554 			dev->num_alus = chip->num_alus;
1555 			dev->num_statics = chip->num_statics;
1556 			dev->port_cnt = chip->port_cnt;
1557 			dev->cpu_ports = chip->cpu_ports;
1558 			dev->phy_errata_9477 = chip->phy_errata_9477;
1559 
1560 			break;
1561 		}
1562 	}
1563 
1564 	/* no switch found */
1565 	if (!dev->port_cnt)
1566 		return -ENODEV;
1567 
1568 	dev->port_mask = (1 << dev->port_cnt) - 1;
1569 
1570 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1571 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1572 
1573 	i = dev->mib_port_cnt;
1574 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1575 				  GFP_KERNEL);
1576 	if (!dev->ports)
1577 		return -ENOMEM;
1578 	for (i = 0; i < dev->mib_port_cnt; i++) {
1579 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1580 		dev->ports[i].mib.counters =
1581 			devm_kzalloc(dev->dev,
1582 				     sizeof(u64) *
1583 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1584 				     GFP_KERNEL);
1585 		if (!dev->ports[i].mib.counters)
1586 			return -ENOMEM;
1587 	}
1588 
1589 	/* set the real number of ports */
1590 	dev->ds->num_ports = dev->port_cnt;
1591 
1592 	return 0;
1593 }
1594 
ksz9477_switch_exit(struct ksz_device * dev)1595 static void ksz9477_switch_exit(struct ksz_device *dev)
1596 {
1597 	ksz9477_reset_switch(dev);
1598 }
1599 
1600 static const struct ksz_dev_ops ksz9477_dev_ops = {
1601 	.get_port_addr = ksz9477_get_port_addr,
1602 	.cfg_port_member = ksz9477_cfg_port_member,
1603 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1604 	.port_setup = ksz9477_port_setup,
1605 	.r_mib_cnt = ksz9477_r_mib_cnt,
1606 	.r_mib_pkt = ksz9477_r_mib_pkt,
1607 	.freeze_mib = ksz9477_freeze_mib,
1608 	.port_init_cnt = ksz9477_port_init_cnt,
1609 	.shutdown = ksz9477_reset_switch,
1610 	.detect = ksz9477_switch_detect,
1611 	.init = ksz9477_switch_init,
1612 	.exit = ksz9477_switch_exit,
1613 };
1614 
ksz9477_switch_register(struct ksz_device * dev)1615 int ksz9477_switch_register(struct ksz_device *dev)
1616 {
1617 	int ret, i;
1618 	struct phy_device *phydev;
1619 
1620 	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1621 	if (ret)
1622 		return ret;
1623 
1624 	for (i = 0; i < dev->phy_port_cnt; ++i) {
1625 		if (!dsa_is_user_port(dev->ds, i))
1626 			continue;
1627 
1628 		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1629 
1630 		/* The MAC actually cannot run in 1000 half-duplex mode. */
1631 		phy_remove_link_mode(phydev,
1632 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1633 
1634 		/* PHY does not support gigabit. */
1635 		if (!(dev->features & GBIT_SUPPORT))
1636 			phy_remove_link_mode(phydev,
1637 					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1638 	}
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL(ksz9477_switch_register);
1642 
1643 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1644 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1645 MODULE_LICENSE("GPL");
1646