1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4 * Provides Bus interface for MIIM regs
5 *
6 * Author: Andy Fleming <afleming@freescale.com>
7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8 *
9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10 *
11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/module.h>
20 #include <linux/mii.h>
21 #include <linux/of_address.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_device.h>
24
25 #include <asm/io.h>
26 #if IS_ENABLED(CONFIG_UCC_GETH)
27 #include <soc/fsl/qe/ucc.h>
28 #endif
29
30 #include "gianfar.h"
31
32 #define MIIMIND_BUSY 0x00000001
33 #define MIIMIND_NOTVALID 0x00000004
34 #define MIIMCFG_INIT_VALUE 0x00000007
35 #define MIIMCFG_RESET 0x80000000
36
37 #define MII_READ_COMMAND 0x00000001
38
39 struct fsl_pq_mii {
40 u32 miimcfg; /* MII management configuration reg */
41 u32 miimcom; /* MII management command reg */
42 u32 miimadd; /* MII management address reg */
43 u32 miimcon; /* MII management control reg */
44 u32 miimstat; /* MII management status reg */
45 u32 miimind; /* MII management indication reg */
46 };
47
48 struct fsl_pq_mdio {
49 u8 res1[16];
50 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
51 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
52 u8 res2[4];
53 u32 emapm; /* MDIO Event mapping register (for etsec2)*/
54 u8 res3[1280];
55 struct fsl_pq_mii mii;
56 u8 res4[28];
57 u32 utbipar; /* TBI phy address reg (only on UCC) */
58 u8 res5[2728];
59 } __packed;
60
61 /* Number of microseconds to wait for an MII register to respond */
62 #define MII_TIMEOUT 1000
63
64 struct fsl_pq_mdio_priv {
65 void __iomem *map;
66 struct fsl_pq_mii __iomem *regs;
67 };
68
69 /*
70 * Per-device-type data. Each type of device tree node that we support gets
71 * one of these.
72 *
73 * @mii_offset: the offset of the MII registers within the memory map of the
74 * node. Some nodes define only the MII registers, and some define the whole
75 * MAC (which includes the MII registers).
76 *
77 * @get_tbipa: determines the address of the TBIPA register
78 *
79 * @ucc_configure: a special function for extra QE configuration
80 */
81 struct fsl_pq_mdio_data {
82 unsigned int mii_offset; /* offset of the MII registers */
83 uint32_t __iomem * (*get_tbipa)(void __iomem *p);
84 void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
85 };
86
87 /*
88 * Write value to the PHY at mii_id at register regnum, on the bus attached
89 * to the local interface, which may be different from the generic mdio bus
90 * (tied to a single interface), waiting until the write is done before
91 * returning. This is helpful in programming interfaces like the TBI which
92 * control interfaces like onchip SERDES and are always tied to the local
93 * mdio pins, which may not be the same as system mdio bus, used for
94 * controlling the external PHYs, for example.
95 */
fsl_pq_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)96 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
97 u16 value)
98 {
99 struct fsl_pq_mdio_priv *priv = bus->priv;
100 struct fsl_pq_mii __iomem *regs = priv->regs;
101 unsigned int timeout;
102
103 /* Set the PHY address and the register address we want to write */
104 iowrite32be((mii_id << 8) | regnum, ®s->miimadd);
105
106 /* Write out the value we want */
107 iowrite32be(value, ®s->miimcon);
108
109 /* Wait for the transaction to finish */
110 timeout = MII_TIMEOUT;
111 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) {
112 cpu_relax();
113 timeout--;
114 }
115
116 return timeout ? 0 : -ETIMEDOUT;
117 }
118
119 /*
120 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
121 * Clears miimcom first.
122 *
123 * All PHY operation done on the bus attached to the local interface, which
124 * may be different from the generic mdio bus. This is helpful in programming
125 * interfaces like the TBI which, in turn, control interfaces like on-chip
126 * SERDES and are always tied to the local mdio pins, which may not be the
127 * same as system mdio bus, used for controlling the external PHYs, for eg.
128 */
fsl_pq_mdio_read(struct mii_bus * bus,int mii_id,int regnum)129 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
130 {
131 struct fsl_pq_mdio_priv *priv = bus->priv;
132 struct fsl_pq_mii __iomem *regs = priv->regs;
133 unsigned int timeout;
134 u16 value;
135
136 /* Set the PHY address and the register address we want to read */
137 iowrite32be((mii_id << 8) | regnum, ®s->miimadd);
138
139 /* Clear miimcom, and then initiate a read */
140 iowrite32be(0, ®s->miimcom);
141 iowrite32be(MII_READ_COMMAND, ®s->miimcom);
142
143 /* Wait for the transaction to finish, normally less than 100us */
144 timeout = MII_TIMEOUT;
145 while ((ioread32be(®s->miimind) &
146 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
147 cpu_relax();
148 timeout--;
149 }
150
151 if (!timeout)
152 return -ETIMEDOUT;
153
154 /* Grab the value of the register from miimstat */
155 value = ioread32be(®s->miimstat);
156
157 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
158 return value;
159 }
160
161 /* Reset the MIIM registers, and wait for the bus to free */
fsl_pq_mdio_reset(struct mii_bus * bus)162 static int fsl_pq_mdio_reset(struct mii_bus *bus)
163 {
164 struct fsl_pq_mdio_priv *priv = bus->priv;
165 struct fsl_pq_mii __iomem *regs = priv->regs;
166 unsigned int timeout;
167
168 mutex_lock(&bus->mdio_lock);
169
170 /* Reset the management interface */
171 iowrite32be(MIIMCFG_RESET, ®s->miimcfg);
172
173 /* Setup the MII Mgmt clock speed */
174 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg);
175
176 /* Wait until the bus is free */
177 timeout = MII_TIMEOUT;
178 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) {
179 cpu_relax();
180 timeout--;
181 }
182
183 mutex_unlock(&bus->mdio_lock);
184
185 if (!timeout) {
186 dev_err(&bus->dev, "timeout waiting for MII bus\n");
187 return -EBUSY;
188 }
189
190 return 0;
191 }
192
193 #if IS_ENABLED(CONFIG_GIANFAR)
194 /*
195 * Return the TBIPA address, starting from the address
196 * of the mapped GFAR MDIO registers (struct gfar)
197 * This is mildly evil, but so is our hardware for doing this.
198 * Also, we have to cast back to struct gfar because of
199 * definition weirdness done in gianfar.h.
200 */
get_gfar_tbipa_from_mdio(void __iomem * p)201 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
202 {
203 struct gfar __iomem *enet_regs = p;
204
205 return &enet_regs->tbipa;
206 }
207
208 /*
209 * Return the TBIPA address, starting from the address
210 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
211 */
get_gfar_tbipa_from_mii(void __iomem * p)212 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
213 {
214 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
215 }
216
217 /*
218 * Return the TBIPAR address for an eTSEC2 node
219 */
get_etsec_tbipa(void __iomem * p)220 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
221 {
222 return p;
223 }
224 #endif
225
226 #if IS_ENABLED(CONFIG_UCC_GETH)
227 /*
228 * Return the TBIPAR address for a QE MDIO node, starting from the address
229 * of the mapped MII registers (struct fsl_pq_mii)
230 */
get_ucc_tbipa(void __iomem * p)231 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
232 {
233 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
234
235 return &mdio->utbipar;
236 }
237
238 /*
239 * Find the UCC node that controls the given MDIO node
240 *
241 * For some reason, the QE MDIO nodes are not children of the UCC devices
242 * that control them. Therefore, we need to scan all UCC nodes looking for
243 * the one that encompases the given MDIO node. We do this by comparing
244 * physical addresses. The 'start' and 'end' addresses of the MDIO node are
245 * passed, and the correct UCC node will cover the entire address range.
246 *
247 * This assumes that there is only one QE MDIO node in the entire device tree.
248 */
ucc_configure(phys_addr_t start,phys_addr_t end)249 static void ucc_configure(phys_addr_t start, phys_addr_t end)
250 {
251 static bool found_mii_master;
252 struct device_node *np = NULL;
253
254 if (found_mii_master)
255 return;
256
257 for_each_compatible_node(np, NULL, "ucc_geth") {
258 struct resource res;
259 const uint32_t *iprop;
260 uint32_t id;
261 int ret;
262
263 ret = of_address_to_resource(np, 0, &res);
264 if (ret < 0) {
265 pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
266 np);
267 continue;
268 }
269
270 /* if our mdio regs fall within this UCC regs range */
271 if ((start < res.start) || (end > res.end))
272 continue;
273
274 iprop = of_get_property(np, "cell-index", NULL);
275 if (!iprop) {
276 iprop = of_get_property(np, "device-id", NULL);
277 if (!iprop) {
278 pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
279 np);
280 continue;
281 }
282 }
283
284 id = be32_to_cpup(iprop);
285
286 /*
287 * cell-index and device-id for QE nodes are
288 * numbered from 1, not 0.
289 */
290 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
291 pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
292 np);
293 continue;
294 }
295
296 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
297 found_mii_master = true;
298 }
299 }
300
301 #endif
302
303 static const struct of_device_id fsl_pq_mdio_match[] = {
304 #if IS_ENABLED(CONFIG_GIANFAR)
305 {
306 .compatible = "fsl,gianfar-tbi",
307 .data = &(struct fsl_pq_mdio_data) {
308 .mii_offset = 0,
309 .get_tbipa = get_gfar_tbipa_from_mii,
310 },
311 },
312 {
313 .compatible = "fsl,gianfar-mdio",
314 .data = &(struct fsl_pq_mdio_data) {
315 .mii_offset = 0,
316 .get_tbipa = get_gfar_tbipa_from_mii,
317 },
318 },
319 {
320 .type = "mdio",
321 .compatible = "gianfar",
322 .data = &(struct fsl_pq_mdio_data) {
323 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
324 .get_tbipa = get_gfar_tbipa_from_mdio,
325 },
326 },
327 {
328 .compatible = "fsl,etsec2-tbi",
329 .data = &(struct fsl_pq_mdio_data) {
330 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
331 .get_tbipa = get_etsec_tbipa,
332 },
333 },
334 {
335 .compatible = "fsl,etsec2-mdio",
336 .data = &(struct fsl_pq_mdio_data) {
337 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
338 .get_tbipa = get_etsec_tbipa,
339 },
340 },
341 #endif
342 #if IS_ENABLED(CONFIG_UCC_GETH)
343 {
344 .compatible = "fsl,ucc-mdio",
345 .data = &(struct fsl_pq_mdio_data) {
346 .mii_offset = 0,
347 .get_tbipa = get_ucc_tbipa,
348 .ucc_configure = ucc_configure,
349 },
350 },
351 {
352 /* Legacy UCC MDIO node */
353 .type = "mdio",
354 .compatible = "ucc_geth_phy",
355 .data = &(struct fsl_pq_mdio_data) {
356 .mii_offset = 0,
357 .get_tbipa = get_ucc_tbipa,
358 .ucc_configure = ucc_configure,
359 },
360 },
361 #endif
362 /* No Kconfig option for Fman support yet */
363 {
364 .compatible = "fsl,fman-mdio",
365 .data = &(struct fsl_pq_mdio_data) {
366 .mii_offset = 0,
367 /* Fman TBI operations are handled elsewhere */
368 },
369 },
370
371 {},
372 };
373 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
374
set_tbipa(const u32 tbipa_val,struct platform_device * pdev,uint32_t __iomem * (* get_tbipa)(void __iomem *),void __iomem * reg_map,struct resource * reg_res)375 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
376 uint32_t __iomem * (*get_tbipa)(void __iomem *),
377 void __iomem *reg_map, struct resource *reg_res)
378 {
379 struct device_node *np = pdev->dev.of_node;
380 uint32_t __iomem *tbipa;
381 bool tbipa_mapped;
382
383 tbipa = of_iomap(np, 1);
384 if (tbipa) {
385 tbipa_mapped = true;
386 } else {
387 tbipa_mapped = false;
388 tbipa = (*get_tbipa)(reg_map);
389
390 /*
391 * Add consistency check to make sure TBI is contained within
392 * the mapped range (not because we would get a segfault,
393 * rather to catch bugs in computing TBI address). Print error
394 * message but continue anyway.
395 */
396 if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
397 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
398 ((void *)tbipa - reg_map) + 4);
399 }
400
401 iowrite32be(be32_to_cpu(tbipa_val), tbipa);
402
403 if (tbipa_mapped)
404 iounmap(tbipa);
405 }
406
fsl_pq_mdio_probe(struct platform_device * pdev)407 static int fsl_pq_mdio_probe(struct platform_device *pdev)
408 {
409 const struct of_device_id *id =
410 of_match_device(fsl_pq_mdio_match, &pdev->dev);
411 const struct fsl_pq_mdio_data *data;
412 struct device_node *np = pdev->dev.of_node;
413 struct resource res;
414 struct device_node *tbi;
415 struct fsl_pq_mdio_priv *priv;
416 struct mii_bus *new_bus;
417 int err;
418
419 if (!id) {
420 dev_err(&pdev->dev, "Failed to match device\n");
421 return -ENODEV;
422 }
423
424 data = id->data;
425
426 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
427
428 new_bus = mdiobus_alloc_size(sizeof(*priv));
429 if (!new_bus)
430 return -ENOMEM;
431
432 priv = new_bus->priv;
433 new_bus->name = "Freescale PowerQUICC MII Bus",
434 new_bus->read = &fsl_pq_mdio_read;
435 new_bus->write = &fsl_pq_mdio_write;
436 new_bus->reset = &fsl_pq_mdio_reset;
437
438 err = of_address_to_resource(np, 0, &res);
439 if (err < 0) {
440 dev_err(&pdev->dev, "could not obtain address information\n");
441 goto error;
442 }
443
444 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
445 (unsigned long long)res.start);
446
447 priv->map = of_iomap(np, 0);
448 if (!priv->map) {
449 err = -ENOMEM;
450 goto error;
451 }
452
453 /*
454 * Some device tree nodes represent only the MII registers, and
455 * others represent the MAC and MII registers. The 'mii_offset' field
456 * contains the offset of the MII registers inside the mapped register
457 * space.
458 */
459 if (data->mii_offset > resource_size(&res)) {
460 dev_err(&pdev->dev, "invalid register map\n");
461 err = -EINVAL;
462 goto error;
463 }
464 priv->regs = priv->map + data->mii_offset;
465
466 new_bus->parent = &pdev->dev;
467 platform_set_drvdata(pdev, new_bus);
468
469 if (data->get_tbipa) {
470 for_each_child_of_node(np, tbi) {
471 if (of_node_is_type(tbi, "tbi-phy")) {
472 dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
473 tbi);
474 break;
475 }
476 }
477
478 if (tbi) {
479 const u32 *prop = of_get_property(tbi, "reg", NULL);
480 if (!prop) {
481 dev_err(&pdev->dev,
482 "missing 'reg' property in node %pOF\n",
483 tbi);
484 err = -EBUSY;
485 goto error;
486 }
487 set_tbipa(*prop, pdev,
488 data->get_tbipa, priv->map, &res);
489 }
490 }
491
492 if (data->ucc_configure)
493 data->ucc_configure(res.start, res.end);
494
495 err = of_mdiobus_register(new_bus, np);
496 if (err) {
497 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
498 new_bus->name);
499 goto error;
500 }
501
502 return 0;
503
504 error:
505 if (priv->map)
506 iounmap(priv->map);
507
508 kfree(new_bus);
509
510 return err;
511 }
512
513
fsl_pq_mdio_remove(struct platform_device * pdev)514 static int fsl_pq_mdio_remove(struct platform_device *pdev)
515 {
516 struct device *device = &pdev->dev;
517 struct mii_bus *bus = dev_get_drvdata(device);
518 struct fsl_pq_mdio_priv *priv = bus->priv;
519
520 mdiobus_unregister(bus);
521
522 iounmap(priv->map);
523 mdiobus_free(bus);
524
525 return 0;
526 }
527
528 static struct platform_driver fsl_pq_mdio_driver = {
529 .driver = {
530 .name = "fsl-pq_mdio",
531 .of_match_table = fsl_pq_mdio_match,
532 },
533 .probe = fsl_pq_mdio_probe,
534 .remove = fsl_pq_mdio_remove,
535 };
536
537 module_platform_driver(fsl_pq_mdio_driver);
538
539 MODULE_LICENSE("GPL");
540