1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
ath9k_get_txgain_index(struct ath_hw * ah,struct ath9k_channel * chan,struct calDataPerFreqOpLoop * rawDatasetOpLoop,u8 * calChans,u16 availPiers,u8 * pwr,u8 * pcdacIdx)21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
30
31 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
32
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
36
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 }
48
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
52
53 *pcdacIdx = i;
54 }
55
ath9k_olc_get_pdadcs(struct ath_hw * ah,u32 initTxGain,int txPower,u8 * pPDADCValues)56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
60 {
61 u32 i;
62 u32 offset;
63
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
78 }
79
ath9k_hw_def_get_eeprom_ver(struct ath_hw * ah)80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82 u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
83
84 return (version & AR5416_EEP_VER_MAJOR_MASK) >>
85 AR5416_EEP_VER_MAJOR_SHIFT;
86 }
87
ath9k_hw_def_get_eeprom_rev(struct ath_hw * ah)88 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
89 {
90 u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
91
92 return version & AR5416_EEP_VER_MINOR_MASK;
93 }
94
95 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
96
__ath9k_hw_def_fill_eeprom(struct ath_hw * ah)97 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
98 {
99 u16 *eep_data = (u16 *)&ah->eeprom.def;
100 int addr, ar5416_eep_start_loc = 0x100;
101
102 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
103 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
104 eep_data))
105 return false;
106 eep_data++;
107 }
108 return true;
109 }
110
__ath9k_hw_usb_def_fill_eeprom(struct ath_hw * ah)111 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
112 {
113 u16 *eep_data = (u16 *)&ah->eeprom.def;
114
115 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
116 0x100, SIZE_EEPROM_DEF);
117 return true;
118 }
119
ath9k_hw_def_fill_eeprom(struct ath_hw * ah)120 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
121 {
122 struct ath_common *common = ath9k_hw_common(ah);
123
124 if (!ath9k_hw_use_flash(ah)) {
125 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
126 }
127
128 if (common->bus_ops->ath_bus_type == ATH_USB)
129 return __ath9k_hw_usb_def_fill_eeprom(ah);
130 else
131 return __ath9k_hw_def_fill_eeprom(ah);
132 }
133
134 #ifdef CONFIG_ATH9K_COMMON_DEBUG
ath9k_def_dump_modal_eeprom(char * buf,u32 len,u32 size,struct modal_eep_header * modal_hdr)135 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
136 struct modal_eep_header *modal_hdr)
137 {
138 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
139 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
140 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
141 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
142 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
143 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
144 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
145 PR_EEP("Switch Settle", modal_hdr->switchSettling);
146 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
147 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
148 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
149 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
150 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
151 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
152 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
153 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
154 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
155 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
156 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
157 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
158 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
159 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
160 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
161 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
162 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
163 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
164 PR_EEP("xpdGain", modal_hdr->xpdGain);
165 PR_EEP("External PD", modal_hdr->xpd);
166 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
167 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
168 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
169 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
170 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
171 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
172 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
173 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
174 PR_EEP("Chain0 DriverBias", modal_hdr->db);
175 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
176 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
177 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
178 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
179 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
180 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
181 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
182 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
183 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
184 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
185 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
186 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
187 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
188 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
189 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
190 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
191 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
192 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
193 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
194 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
195 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
196 PR_EEP("LNA Control", modal_hdr->lna_ctl);
197 PR_EEP("XPA Bias Freq0", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[0]));
198 PR_EEP("XPA Bias Freq1", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[1]));
199 PR_EEP("XPA Bias Freq2", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[2]));
200
201 return len;
202 }
203
ath9k_hw_def_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)204 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
205 u8 *buf, u32 len, u32 size)
206 {
207 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
208 struct base_eep_header *pBase = &eep->baseEepHeader;
209 u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
210
211 if (!dump_base_hdr) {
212 len += scnprintf(buf + len, size - len,
213 "%20s :\n", "2GHz modal Header");
214 len = ath9k_def_dump_modal_eeprom(buf, len, size,
215 &eep->modalHeader[0]);
216 len += scnprintf(buf + len, size - len,
217 "%20s :\n", "5GHz modal Header");
218 len = ath9k_def_dump_modal_eeprom(buf, len, size,
219 &eep->modalHeader[1]);
220 goto out;
221 }
222
223 PR_EEP("Major Version", ath9k_hw_def_get_eeprom_ver(ah));
224 PR_EEP("Minor Version", ath9k_hw_def_get_eeprom_rev(ah));
225 PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
226 PR_EEP("Length", le16_to_cpu(pBase->length));
227 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
228 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
229 PR_EEP("TX Mask", pBase->txMask);
230 PR_EEP("RX Mask", pBase->rxMask);
231 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
232 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
233 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_2G_HT20));
235 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
236 AR5416_OPFLAGS_N_2G_HT40));
237 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
238 AR5416_OPFLAGS_N_5G_HT20));
239 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
240 AR5416_OPFLAGS_N_5G_HT40));
241 PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
242 PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
243 PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
244 PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
245 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
246
247 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
248 pBase->macAddr);
249
250 out:
251 if (len > size)
252 len = size;
253
254 return len;
255 }
256 #else
ath9k_hw_def_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)257 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
258 u8 *buf, u32 len, u32 size)
259 {
260 return 0;
261 }
262 #endif
263
ath9k_hw_def_check_eeprom(struct ath_hw * ah)264 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
265 {
266 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
267 struct ath_common *common = ath9k_hw_common(ah);
268 u32 el;
269 bool need_swap;
270 int i, err;
271
272 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_DEF);
273 if (err)
274 return err;
275
276 if (need_swap)
277 el = swab16((__force u16)eep->baseEepHeader.length);
278 else
279 el = le16_to_cpu(eep->baseEepHeader.length);
280
281 el = min(el / sizeof(u16), SIZE_EEPROM_DEF);
282 if (!ath9k_hw_nvram_validate_checksum(ah, el))
283 return -EINVAL;
284
285 if (need_swap) {
286 u32 j;
287
288 EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
289 EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
290 EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
291 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
292 EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
293 EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
294 EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
295 EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
296
297 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
298 struct modal_eep_header *pModal =
299 &eep->modalHeader[j];
300 EEPROM_FIELD_SWAB32(pModal->antCtrlCommon);
301
302 for (i = 0; i < AR5416_MAX_CHAINS; i++)
303 EEPROM_FIELD_SWAB32(pModal->antCtrlChain[i]);
304
305 for (i = 0; i < 3; i++)
306 EEPROM_FIELD_SWAB16(pModal->xpaBiasLvlFreq[i]);
307
308 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
309 EEPROM_FIELD_SWAB16(
310 pModal->spurChans[i].spurChan);
311 }
312 }
313
314 if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
315 AR5416_EEP_NO_BACK_VER))
316 return -EINVAL;
317
318 /* Enable fixup for AR_AN_TOP2 if necessary */
319 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
320 ((le16_to_cpu(eep->baseEepHeader.version) & 0xff) > 0x0a) &&
321 (eep->baseEepHeader.pwdclkind == 0))
322 ah->need_an_top2_fixup = true;
323
324 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
325 (AR_SREV_9280(ah)))
326 eep->modalHeader[0].xpaBiasLvl = 0;
327
328 return 0;
329 }
330
331 #undef SIZE_EEPROM_DEF
332
ath9k_hw_def_get_eeprom(struct ath_hw * ah,enum eeprom_param param)333 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
334 enum eeprom_param param)
335 {
336 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
337 struct modal_eep_header *pModal = eep->modalHeader;
338 struct base_eep_header *pBase = &eep->baseEepHeader;
339 int band = 0;
340
341 switch (param) {
342 case EEP_NFTHRESH_5:
343 return pModal[0].noiseFloorThreshCh[0];
344 case EEP_NFTHRESH_2:
345 return pModal[1].noiseFloorThreshCh[0];
346 case EEP_MAC_LSW:
347 return get_unaligned_be16(pBase->macAddr);
348 case EEP_MAC_MID:
349 return get_unaligned_be16(pBase->macAddr + 2);
350 case EEP_MAC_MSW:
351 return get_unaligned_be16(pBase->macAddr + 4);
352 case EEP_REG_0:
353 return le16_to_cpu(pBase->regDmn[0]);
354 case EEP_OP_CAP:
355 return le16_to_cpu(pBase->deviceCap);
356 case EEP_OP_MODE:
357 return pBase->opCapFlags;
358 case EEP_RF_SILENT:
359 return le16_to_cpu(pBase->rfSilent);
360 case EEP_OB_5:
361 return pModal[0].ob;
362 case EEP_DB_5:
363 return pModal[0].db;
364 case EEP_OB_2:
365 return pModal[1].ob;
366 case EEP_DB_2:
367 return pModal[1].db;
368 case EEP_TX_MASK:
369 return pBase->txMask;
370 case EEP_RX_MASK:
371 return pBase->rxMask;
372 case EEP_FSTCLK_5G:
373 return pBase->fastClk5g;
374 case EEP_RXGAIN_TYPE:
375 return pBase->rxGainType;
376 case EEP_TXGAIN_TYPE:
377 return pBase->txGainType;
378 case EEP_OL_PWRCTRL:
379 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
380 return pBase->openLoopPwrCntl ? true : false;
381 else
382 return false;
383 case EEP_RC_CHAIN_MASK:
384 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
385 return pBase->rcChainMask;
386 else
387 return 0;
388 case EEP_DAC_HPWR_5G:
389 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20)
390 return pBase->dacHiPwrMode_5G;
391 else
392 return 0;
393 case EEP_FRAC_N_5G:
394 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_22)
395 return pBase->frac_n_5g;
396 else
397 return 0;
398 case EEP_PWR_TABLE_OFFSET:
399 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_21)
400 return pBase->pwr_table_offset;
401 else
402 return AR5416_PWR_TABLE_OFFSET_DB;
403 case EEP_ANTENNA_GAIN_2G:
404 band = 1;
405 fallthrough;
406 case EEP_ANTENNA_GAIN_5G:
407 return max_t(u8, max_t(u8,
408 pModal[band].antennaGainCh[0],
409 pModal[band].antennaGainCh[1]),
410 pModal[band].antennaGainCh[2]);
411 default:
412 return 0;
413 }
414 }
415
ath9k_hw_def_set_gain(struct ath_hw * ah,struct modal_eep_header * pModal,struct ar5416_eeprom_def * eep,u8 txRxAttenLocal,int regChainOffset,int i)416 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
417 struct modal_eep_header *pModal,
418 struct ar5416_eeprom_def *eep,
419 u8 txRxAttenLocal, int regChainOffset, int i)
420 {
421 ENABLE_REG_RMW_BUFFER(ah);
422 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
423 txRxAttenLocal = pModal->txRxAttenCh[i];
424
425 if (AR_SREV_9280_20_OR_LATER(ah)) {
426 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
427 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
428 pModal->bswMargin[i]);
429 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
430 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
431 pModal->bswAtten[i]);
432 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
433 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
434 pModal->xatten2Margin[i]);
435 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
436 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
437 pModal->xatten2Db[i]);
438 } else {
439 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
440 SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN),
441 AR_PHY_GAIN_2GHZ_BSW_MARGIN);
442 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
443 SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN),
444 AR_PHY_GAIN_2GHZ_BSW_ATTEN);
445 }
446 }
447
448 if (AR_SREV_9280_20_OR_LATER(ah)) {
449 REG_RMW_FIELD(ah,
450 AR_PHY_RXGAIN + regChainOffset,
451 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
452 REG_RMW_FIELD(ah,
453 AR_PHY_RXGAIN + regChainOffset,
454 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
455 } else {
456 REG_RMW(ah, AR_PHY_RXGAIN + regChainOffset,
457 SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN),
458 AR_PHY_RXGAIN_TXRX_ATTEN);
459 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
460 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN),
461 AR_PHY_GAIN_2GHZ_RXTX_MARGIN);
462 }
463 REG_RMW_BUFFER_FLUSH(ah);
464 }
465
ath9k_hw_def_set_board_values(struct ath_hw * ah,struct ath9k_channel * chan)466 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
467 struct ath9k_channel *chan)
468 {
469 struct modal_eep_header *pModal;
470 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
471 int i, regChainOffset;
472 u8 txRxAttenLocal;
473 u32 antCtrlCommon;
474
475 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
476 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
477 antCtrlCommon = le32_to_cpu(pModal->antCtrlCommon);
478
479 REG_WRITE(ah, AR_PHY_SWITCH_COM, antCtrlCommon & 0xffff);
480
481 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
482 if (AR_SREV_9280(ah)) {
483 if (i >= 2)
484 break;
485 }
486
487 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
488 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
489 else
490 regChainOffset = i * 0x1000;
491
492 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
493 le32_to_cpu(pModal->antCtrlChain[i]));
494
495 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
496 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
497 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
498 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
499 SM(pModal->iqCalICh[i],
500 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
501 SM(pModal->iqCalQCh[i],
502 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
503
504 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
505 regChainOffset, i);
506 }
507
508 if (AR_SREV_9280_20_OR_LATER(ah)) {
509 if (IS_CHAN_2GHZ(chan)) {
510 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
511 AR_AN_RF2G1_CH0_OB,
512 AR_AN_RF2G1_CH0_OB_S,
513 pModal->ob);
514 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
515 AR_AN_RF2G1_CH0_DB,
516 AR_AN_RF2G1_CH0_DB_S,
517 pModal->db);
518 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
519 AR_AN_RF2G1_CH1_OB,
520 AR_AN_RF2G1_CH1_OB_S,
521 pModal->ob_ch1);
522 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
523 AR_AN_RF2G1_CH1_DB,
524 AR_AN_RF2G1_CH1_DB_S,
525 pModal->db_ch1);
526 } else {
527 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
528 AR_AN_RF5G1_CH0_OB5,
529 AR_AN_RF5G1_CH0_OB5_S,
530 pModal->ob);
531 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
532 AR_AN_RF5G1_CH0_DB5,
533 AR_AN_RF5G1_CH0_DB5_S,
534 pModal->db);
535 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
536 AR_AN_RF5G1_CH1_OB5,
537 AR_AN_RF5G1_CH1_OB5_S,
538 pModal->ob_ch1);
539 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
540 AR_AN_RF5G1_CH1_DB5,
541 AR_AN_RF5G1_CH1_DB5_S,
542 pModal->db_ch1);
543 }
544 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
545 AR_AN_TOP2_XPABIAS_LVL,
546 AR_AN_TOP2_XPABIAS_LVL_S,
547 pModal->xpaBiasLvl);
548 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
549 AR_AN_TOP2_LOCALBIAS,
550 AR_AN_TOP2_LOCALBIAS_S,
551 !!(pModal->lna_ctl &
552 LNA_CTL_LOCAL_BIAS));
553 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
554 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
555 }
556
557 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
558 pModal->switchSettling);
559 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
560 pModal->adcDesiredSize);
561
562 if (!AR_SREV_9280_20_OR_LATER(ah))
563 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
564 AR_PHY_DESIRED_SZ_PGA,
565 pModal->pgaDesiredSize);
566
567 REG_WRITE(ah, AR_PHY_RF_CTL4,
568 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
569 | SM(pModal->txEndToXpaOff,
570 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
571 | SM(pModal->txFrameToXpaOn,
572 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
573 | SM(pModal->txFrameToXpaOn,
574 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
575
576 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
577 pModal->txEndToRxOn);
578
579 if (AR_SREV_9280_20_OR_LATER(ah)) {
580 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
581 pModal->thresh62);
582 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
583 AR_PHY_EXT_CCA0_THRESH62,
584 pModal->thresh62);
585 } else {
586 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
587 pModal->thresh62);
588 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
589 AR_PHY_EXT_CCA_THRESH62,
590 pModal->thresh62);
591 }
592
593 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
594 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
595 AR_PHY_TX_END_DATA_START,
596 pModal->txFrameToDataStart);
597 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
598 pModal->txFrameToPaOn);
599 }
600
601 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_3) {
602 if (IS_CHAN_HT40(chan))
603 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
604 AR_PHY_SETTLING_SWITCH,
605 pModal->swSettleHt40);
606 }
607
608 if (AR_SREV_9280_20_OR_LATER(ah) &&
609 ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_19)
610 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
611 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
612 pModal->miscBits);
613
614
615 if (AR_SREV_9280_20(ah) &&
616 ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_20) {
617 if (IS_CHAN_2GHZ(chan))
618 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
619 eep->baseEepHeader.dacLpMode);
620 else if (eep->baseEepHeader.dacHiPwrMode_5G)
621 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
622 else
623 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
624 eep->baseEepHeader.dacLpMode);
625
626 udelay(100);
627
628 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
629 pModal->miscBits >> 2);
630
631 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
632 AR_PHY_TX_DESIRED_SCALE_CCK,
633 eep->baseEepHeader.desiredScaleCCK);
634 }
635 }
636
ath9k_hw_def_set_addac(struct ath_hw * ah,struct ath9k_channel * chan)637 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
638 struct ath9k_channel *chan)
639 {
640 #define XPA_LVL_FREQ(cnt) (le16_to_cpu(pModal->xpaBiasLvlFreq[cnt]))
641 struct modal_eep_header *pModal;
642 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
643 u8 biaslevel;
644
645 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
646 return;
647
648 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
649 return;
650
651 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
652
653 if (pModal->xpaBiasLvl != 0xff) {
654 biaslevel = pModal->xpaBiasLvl;
655 } else {
656 u16 resetFreqBin, freqBin, freqCount = 0;
657 struct chan_centers centers;
658
659 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
660
661 resetFreqBin = FREQ2FBIN(centers.synth_center,
662 IS_CHAN_2GHZ(chan));
663 freqBin = XPA_LVL_FREQ(0) & 0xff;
664 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
665
666 freqCount++;
667
668 while (freqCount < 3) {
669 if (XPA_LVL_FREQ(freqCount) == 0x0)
670 break;
671
672 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
673 if (resetFreqBin >= freqBin)
674 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
675 else
676 break;
677 freqCount++;
678 }
679 }
680
681 if (IS_CHAN_2GHZ(chan)) {
682 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
683 7, 1) & (~0x18)) | biaslevel << 3;
684 } else {
685 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
686 6, 1) & (~0xc0)) | biaslevel << 6;
687 }
688 #undef XPA_LVL_FREQ
689 }
690
ath9k_change_gain_boundary_setting(struct ath_hw * ah,u16 * gb,u16 numXpdGain,u16 pdGainOverlap_t2,int8_t pwr_table_offset,int16_t * diff)691 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
692 u16 *gb,
693 u16 numXpdGain,
694 u16 pdGainOverlap_t2,
695 int8_t pwr_table_offset,
696 int16_t *diff)
697
698 {
699 u16 k;
700
701 /* Prior to writing the boundaries or the pdadc vs. power table
702 * into the chip registers the default starting point on the pdadc
703 * vs. power table needs to be checked and the curve boundaries
704 * adjusted accordingly
705 */
706 if (AR_SREV_9280_20_OR_LATER(ah)) {
707 u16 gb_limit;
708
709 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
710 /* get the difference in dB */
711 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
712 /* get the number of half dB steps */
713 *diff *= 2;
714 /* change the original gain boundary settings
715 * by the number of half dB steps
716 */
717 for (k = 0; k < numXpdGain; k++)
718 gb[k] = (u16)(gb[k] - *diff);
719 }
720 /* Because of a hardware limitation, ensure the gain boundary
721 * is not larger than (63 - overlap)
722 */
723 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
724
725 for (k = 0; k < numXpdGain; k++)
726 gb[k] = (u16)min(gb_limit, gb[k]);
727 }
728
729 return *diff;
730 }
731
ath9k_adjust_pdadc_values(struct ath_hw * ah,int8_t pwr_table_offset,int16_t diff,u8 * pdadcValues)732 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
733 int8_t pwr_table_offset,
734 int16_t diff,
735 u8 *pdadcValues)
736 {
737 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
738 u16 k;
739
740 /* If this is a board that has a pwrTableOffset that differs from
741 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
742 * pdadc vs pwr table needs to be adjusted prior to writing to the
743 * chip.
744 */
745 if (AR_SREV_9280_20_OR_LATER(ah)) {
746 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
747 /* shift the table to start at the new offset */
748 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
749 pdadcValues[k] = pdadcValues[k + diff];
750 }
751
752 /* fill the back of the table */
753 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
754 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
755 }
756 }
757 }
758 #undef NUM_PDADC
759 }
760
ath9k_hw_set_def_power_cal_table(struct ath_hw * ah,struct ath9k_channel * chan)761 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
762 struct ath9k_channel *chan)
763 {
764 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
765 #define SM_PDGAIN_B(x, y) \
766 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
767 struct ath_common *common = ath9k_hw_common(ah);
768 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
769 struct cal_data_per_freq *pRawDataset;
770 u8 *pCalBChans = NULL;
771 u16 pdGainOverlap_t2;
772 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
773 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
774 u16 numPiers, i, j;
775 int16_t diff = 0;
776 u16 numXpdGain, xpdMask;
777 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
778 u32 reg32, regOffset, regChainOffset;
779 int16_t modalIdx;
780 int8_t pwr_table_offset;
781
782 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
783 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
784
785 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
786
787 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2) {
788 pdGainOverlap_t2 =
789 pEepData->modalHeader[modalIdx].pdGainOverlap;
790 } else {
791 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
792 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
793 }
794
795 if (IS_CHAN_2GHZ(chan)) {
796 pCalBChans = pEepData->calFreqPier2G;
797 numPiers = AR5416_NUM_2G_CAL_PIERS;
798 } else {
799 pCalBChans = pEepData->calFreqPier5G;
800 numPiers = AR5416_NUM_5G_CAL_PIERS;
801 }
802
803 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
804 pRawDataset = pEepData->calPierData2G[0];
805 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
806 pRawDataset)->vpdPdg[0][0];
807 }
808
809 numXpdGain = 0;
810
811 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
812 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
813 if (numXpdGain >= AR5416_NUM_PD_GAINS)
814 break;
815 xpdGainValues[numXpdGain] =
816 (u16)(AR5416_PD_GAINS_IN_MASK - i);
817 numXpdGain++;
818 }
819 }
820
821 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
822 (numXpdGain - 1) & 0x3);
823 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
824 xpdGainValues[0]);
825 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
826 xpdGainValues[1]);
827 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
828 xpdGainValues[2]);
829
830 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
831 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
832 (i != 0)) {
833 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
834 } else
835 regChainOffset = i * 0x1000;
836
837 if (pEepData->baseEepHeader.txMask & (1 << i)) {
838 if (IS_CHAN_2GHZ(chan))
839 pRawDataset = pEepData->calPierData2G[i];
840 else
841 pRawDataset = pEepData->calPierData5G[i];
842
843
844 if (OLC_FOR_AR9280_20_LATER) {
845 u8 pcdacIdx;
846 u8 txPower;
847
848 ath9k_get_txgain_index(ah, chan,
849 (struct calDataPerFreqOpLoop *)pRawDataset,
850 pCalBChans, numPiers, &txPower, &pcdacIdx);
851 ath9k_olc_get_pdadcs(ah, pcdacIdx,
852 txPower/2, pdadcValues);
853 } else {
854 ath9k_hw_get_gain_boundaries_pdadcs(ah,
855 chan, pRawDataset,
856 pCalBChans, numPiers,
857 pdGainOverlap_t2,
858 gainBoundaries,
859 pdadcValues,
860 numXpdGain);
861 }
862
863 diff = ath9k_change_gain_boundary_setting(ah,
864 gainBoundaries,
865 numXpdGain,
866 pdGainOverlap_t2,
867 pwr_table_offset,
868 &diff);
869
870 ENABLE_REGWRITE_BUFFER(ah);
871
872 if (OLC_FOR_AR9280_20_LATER) {
873 REG_WRITE(ah,
874 AR_PHY_TPCRG5 + regChainOffset,
875 SM(0x6,
876 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
877 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
878 SM_PD_GAIN(3) | SM_PD_GAIN(4));
879 } else {
880 REG_WRITE(ah,
881 AR_PHY_TPCRG5 + regChainOffset,
882 SM(pdGainOverlap_t2,
883 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
884 SM_PDGAIN_B(0, 1) |
885 SM_PDGAIN_B(1, 2) |
886 SM_PDGAIN_B(2, 3) |
887 SM_PDGAIN_B(3, 4));
888 }
889
890 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
891 diff, pdadcValues);
892
893 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
894 for (j = 0; j < 32; j++) {
895 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
896 REG_WRITE(ah, regOffset, reg32);
897
898 ath_dbg(common, EEPROM,
899 "PDADC (%d,%4x): %4.4x %8.8x\n",
900 i, regChainOffset, regOffset,
901 reg32);
902 ath_dbg(common, EEPROM,
903 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
904 i, 4 * j, pdadcValues[4 * j],
905 4 * j + 1, pdadcValues[4 * j + 1],
906 4 * j + 2, pdadcValues[4 * j + 2],
907 4 * j + 3, pdadcValues[4 * j + 3]);
908
909 regOffset += 4;
910 }
911 REGWRITE_BUFFER_FLUSH(ah);
912 }
913 }
914
915 #undef SM_PD_GAIN
916 #undef SM_PDGAIN_B
917 }
918
ath9k_hw_set_def_power_per_rate_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * ratesArray,u16 cfgCtl,u16 antenna_reduction,u16 powerLimit)919 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
920 struct ath9k_channel *chan,
921 int16_t *ratesArray,
922 u16 cfgCtl,
923 u16 antenna_reduction,
924 u16 powerLimit)
925 {
926 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
927 u16 twiceMaxEdgePower;
928 int i;
929 struct cal_ctl_data *rep;
930 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
931 0, { 0, 0, 0, 0}
932 };
933 struct cal_target_power_leg targetPowerOfdmExt = {
934 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
935 0, { 0, 0, 0, 0 }
936 };
937 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
938 0, {0, 0, 0, 0}
939 };
940 u16 scaledPower = 0, minCtlPower;
941 static const u16 ctlModesFor11a[] = {
942 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
943 };
944 static const u16 ctlModesFor11g[] = {
945 CTL_11B, CTL_11G, CTL_2GHT20,
946 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
947 };
948 u16 numCtlModes;
949 const u16 *pCtlMode;
950 u16 ctlMode, freq;
951 struct chan_centers centers;
952 int tx_chainmask;
953 u16 twiceMinEdgePower;
954
955 tx_chainmask = ah->txchainmask;
956
957 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
958
959 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
960 antenna_reduction);
961
962 if (IS_CHAN_2GHZ(chan)) {
963 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
964 SUB_NUM_CTL_MODES_AT_2G_40;
965 pCtlMode = ctlModesFor11g;
966
967 ath9k_hw_get_legacy_target_powers(ah, chan,
968 pEepData->calTargetPowerCck,
969 AR5416_NUM_2G_CCK_TARGET_POWERS,
970 &targetPowerCck, 4, false);
971 ath9k_hw_get_legacy_target_powers(ah, chan,
972 pEepData->calTargetPower2G,
973 AR5416_NUM_2G_20_TARGET_POWERS,
974 &targetPowerOfdm, 4, false);
975 ath9k_hw_get_target_powers(ah, chan,
976 pEepData->calTargetPower2GHT20,
977 AR5416_NUM_2G_20_TARGET_POWERS,
978 &targetPowerHt20, 8, false);
979
980 if (IS_CHAN_HT40(chan)) {
981 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
982 ath9k_hw_get_target_powers(ah, chan,
983 pEepData->calTargetPower2GHT40,
984 AR5416_NUM_2G_40_TARGET_POWERS,
985 &targetPowerHt40, 8, true);
986 ath9k_hw_get_legacy_target_powers(ah, chan,
987 pEepData->calTargetPowerCck,
988 AR5416_NUM_2G_CCK_TARGET_POWERS,
989 &targetPowerCckExt, 4, true);
990 ath9k_hw_get_legacy_target_powers(ah, chan,
991 pEepData->calTargetPower2G,
992 AR5416_NUM_2G_20_TARGET_POWERS,
993 &targetPowerOfdmExt, 4, true);
994 }
995 } else {
996 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
997 SUB_NUM_CTL_MODES_AT_5G_40;
998 pCtlMode = ctlModesFor11a;
999
1000 ath9k_hw_get_legacy_target_powers(ah, chan,
1001 pEepData->calTargetPower5G,
1002 AR5416_NUM_5G_20_TARGET_POWERS,
1003 &targetPowerOfdm, 4, false);
1004 ath9k_hw_get_target_powers(ah, chan,
1005 pEepData->calTargetPower5GHT20,
1006 AR5416_NUM_5G_20_TARGET_POWERS,
1007 &targetPowerHt20, 8, false);
1008
1009 if (IS_CHAN_HT40(chan)) {
1010 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1011 ath9k_hw_get_target_powers(ah, chan,
1012 pEepData->calTargetPower5GHT40,
1013 AR5416_NUM_5G_40_TARGET_POWERS,
1014 &targetPowerHt40, 8, true);
1015 ath9k_hw_get_legacy_target_powers(ah, chan,
1016 pEepData->calTargetPower5G,
1017 AR5416_NUM_5G_20_TARGET_POWERS,
1018 &targetPowerOfdmExt, 4, true);
1019 }
1020 }
1021
1022 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1023 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1024 (pCtlMode[ctlMode] == CTL_2GHT40);
1025 if (isHt40CtlMode)
1026 freq = centers.synth_center;
1027 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1028 freq = centers.ext_center;
1029 else
1030 freq = centers.ctl_center;
1031
1032 twiceMaxEdgePower = MAX_RATE_POWER;
1033
1034 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1035 if ((((cfgCtl & ~CTL_MODE_M) |
1036 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1037 pEepData->ctlIndex[i]) ||
1038 (((cfgCtl & ~CTL_MODE_M) |
1039 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1040 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1041 rep = &(pEepData->ctlData[i]);
1042
1043 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1044 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1045 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1046
1047 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1048 twiceMaxEdgePower = min(twiceMaxEdgePower,
1049 twiceMinEdgePower);
1050 } else {
1051 twiceMaxEdgePower = twiceMinEdgePower;
1052 break;
1053 }
1054 }
1055 }
1056
1057 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1058
1059 switch (pCtlMode[ctlMode]) {
1060 case CTL_11B:
1061 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1062 targetPowerCck.tPow2x[i] =
1063 min((u16)targetPowerCck.tPow2x[i],
1064 minCtlPower);
1065 }
1066 break;
1067 case CTL_11A:
1068 case CTL_11G:
1069 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1070 targetPowerOfdm.tPow2x[i] =
1071 min((u16)targetPowerOfdm.tPow2x[i],
1072 minCtlPower);
1073 }
1074 break;
1075 case CTL_5GHT20:
1076 case CTL_2GHT20:
1077 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1078 targetPowerHt20.tPow2x[i] =
1079 min((u16)targetPowerHt20.tPow2x[i],
1080 minCtlPower);
1081 }
1082 break;
1083 case CTL_11B_EXT:
1084 targetPowerCckExt.tPow2x[0] = min((u16)
1085 targetPowerCckExt.tPow2x[0],
1086 minCtlPower);
1087 break;
1088 case CTL_11A_EXT:
1089 case CTL_11G_EXT:
1090 targetPowerOfdmExt.tPow2x[0] = min((u16)
1091 targetPowerOfdmExt.tPow2x[0],
1092 minCtlPower);
1093 break;
1094 case CTL_5GHT40:
1095 case CTL_2GHT40:
1096 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1097 targetPowerHt40.tPow2x[i] =
1098 min((u16)targetPowerHt40.tPow2x[i],
1099 minCtlPower);
1100 }
1101 break;
1102 default:
1103 break;
1104 }
1105 }
1106
1107 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1108 ratesArray[rate18mb] = ratesArray[rate24mb] =
1109 targetPowerOfdm.tPow2x[0];
1110 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1111 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1112 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1113 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1114
1115 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1116 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1117
1118 if (IS_CHAN_2GHZ(chan)) {
1119 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1120 ratesArray[rate2s] = ratesArray[rate2l] =
1121 targetPowerCck.tPow2x[1];
1122 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1123 targetPowerCck.tPow2x[2];
1124 ratesArray[rate11s] = ratesArray[rate11l] =
1125 targetPowerCck.tPow2x[3];
1126 }
1127 if (IS_CHAN_HT40(chan)) {
1128 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1129 ratesArray[rateHt40_0 + i] =
1130 targetPowerHt40.tPow2x[i];
1131 }
1132 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1133 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1134 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1135 if (IS_CHAN_2GHZ(chan)) {
1136 ratesArray[rateExtCck] =
1137 targetPowerCckExt.tPow2x[0];
1138 }
1139 }
1140 }
1141
ath9k_hw_def_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u16 cfgCtl,u8 twiceAntennaReduction,u8 powerLimit,bool test)1142 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1143 struct ath9k_channel *chan,
1144 u16 cfgCtl,
1145 u8 twiceAntennaReduction,
1146 u8 powerLimit, bool test)
1147 {
1148 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1149 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1150 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1151 struct modal_eep_header *pModal =
1152 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1153 int16_t ratesArray[Ar5416RateSize];
1154 u8 ht40PowerIncForPdadc = 2;
1155 int i, cck_ofdm_delta = 0;
1156
1157 memset(ratesArray, 0, sizeof(ratesArray));
1158
1159 if (ath9k_hw_def_get_eeprom_rev(ah) >= AR5416_EEP_MINOR_VER_2)
1160 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1161
1162 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1163 &ratesArray[0], cfgCtl,
1164 twiceAntennaReduction,
1165 powerLimit);
1166
1167 ath9k_hw_set_def_power_cal_table(ah, chan);
1168
1169 regulatory->max_power_level = 0;
1170 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1171 if (ratesArray[i] > MAX_RATE_POWER)
1172 ratesArray[i] = MAX_RATE_POWER;
1173 if (ratesArray[i] > regulatory->max_power_level)
1174 regulatory->max_power_level = ratesArray[i];
1175 }
1176
1177 ath9k_hw_update_regulatory_maxpower(ah);
1178
1179 if (test)
1180 return;
1181
1182 if (AR_SREV_9280_20_OR_LATER(ah)) {
1183 for (i = 0; i < Ar5416RateSize; i++) {
1184 int8_t pwr_table_offset;
1185
1186 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1187 EEP_PWR_TABLE_OFFSET);
1188 ratesArray[i] -= pwr_table_offset * 2;
1189 }
1190 }
1191
1192 ENABLE_REGWRITE_BUFFER(ah);
1193
1194 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1195 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1196 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1197 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1198 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1199 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1200 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1201 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1202 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1203 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1204
1205 if (IS_CHAN_2GHZ(chan)) {
1206 if (OLC_FOR_AR9280_20_LATER) {
1207 cck_ofdm_delta = 2;
1208 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1209 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1210 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1211 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1212 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1213 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1214 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1215 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1216 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1217 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1218 } else {
1219 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1220 ATH9K_POW_SM(ratesArray[rate2s], 24)
1221 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1222 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1223 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1224 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1225 ATH9K_POW_SM(ratesArray[rate11s], 24)
1226 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1227 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1228 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1229 }
1230 }
1231
1232 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1233 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1234 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1235 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1236 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1237 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1238 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1239 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1240 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1241 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1242
1243 if (IS_CHAN_HT40(chan)) {
1244 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1245 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1246 ht40PowerIncForPdadc, 24)
1247 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1248 ht40PowerIncForPdadc, 16)
1249 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1250 ht40PowerIncForPdadc, 8)
1251 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1252 ht40PowerIncForPdadc, 0));
1253 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1254 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1255 ht40PowerIncForPdadc, 24)
1256 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1257 ht40PowerIncForPdadc, 16)
1258 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1259 ht40PowerIncForPdadc, 8)
1260 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1261 ht40PowerIncForPdadc, 0));
1262 if (OLC_FOR_AR9280_20_LATER) {
1263 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1264 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1265 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1266 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1267 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1268 } else {
1269 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1270 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1271 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1272 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1273 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1274 }
1275 }
1276
1277 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1278 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1279 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1280
1281 /* TPC initializations */
1282 if (ah->tpc_enabled) {
1283 int ht40_delta;
1284
1285 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
1286 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
1287 /* Enable TPC */
1288 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
1289 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
1290 } else {
1291 /* Disable TPC */
1292 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
1293 }
1294
1295 REGWRITE_BUFFER_FLUSH(ah);
1296 }
1297
ath9k_hw_def_get_spur_channel(struct ath_hw * ah,u16 i,bool is2GHz)1298 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1299 {
1300 __le16 spch = ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
1301
1302 return le16_to_cpu(spch);
1303 }
1304
ath9k_hw_def_get_eepmisc(struct ath_hw * ah)1305 static u8 ath9k_hw_def_get_eepmisc(struct ath_hw *ah)
1306 {
1307 return ah->eeprom.def.baseEepHeader.eepMisc;
1308 }
1309
1310 const struct eeprom_ops eep_def_ops = {
1311 .check_eeprom = ath9k_hw_def_check_eeprom,
1312 .get_eeprom = ath9k_hw_def_get_eeprom,
1313 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1314 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1315 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1316 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1317 .set_board_values = ath9k_hw_def_set_board_values,
1318 .set_addac = ath9k_hw_def_set_addac,
1319 .set_txpower = ath9k_hw_def_set_txpower,
1320 .get_spur_channel = ath9k_hw_def_get_spur_channel,
1321 .get_eepmisc = ath9k_hw_def_get_eepmisc
1322 };
1323