1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI K3 DSP Remote Processor(s) driver
4 *
5 * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9 #include <linux/io.h>
10 #include <linux/mailbox_client.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/of_reserved_mem.h>
14 #include <linux/omap-mailbox.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19
20 #include "omap_remoteproc.h"
21 #include "remoteproc_internal.h"
22 #include "ti_sci_proc.h"
23
24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
25
26 /**
27 * struct k3_dsp_mem - internal memory structure
28 * @cpu_addr: MPU virtual address of the memory region
29 * @bus_addr: Bus address used to access the memory region
30 * @dev_addr: Device address of the memory region from DSP view
31 * @size: Size of the memory region
32 */
33 struct k3_dsp_mem {
34 void __iomem *cpu_addr;
35 phys_addr_t bus_addr;
36 u32 dev_addr;
37 size_t size;
38 };
39
40 /**
41 * struct k3_dsp_mem_data - memory definitions for a DSP
42 * @name: name for this memory entry
43 * @dev_addr: device address for the memory entry
44 */
45 struct k3_dsp_mem_data {
46 const char *name;
47 const u32 dev_addr;
48 };
49
50 /**
51 * struct k3_dsp_dev_data - device data structure for a DSP
52 * @mems: pointer to memory definitions for a DSP
53 * @num_mems: number of memory regions in @mems
54 * @boot_align_addr: boot vector address alignment granularity
55 * @uses_lreset: flag to denote the need for local reset management
56 */
57 struct k3_dsp_dev_data {
58 const struct k3_dsp_mem_data *mems;
59 u32 num_mems;
60 u32 boot_align_addr;
61 bool uses_lreset;
62 };
63
64 /**
65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66 * @dev: cached device pointer
67 * @rproc: remoteproc device handle
68 * @mem: internal memory regions data
69 * @num_mems: number of internal memory regions
70 * @rmem: reserved memory regions data
71 * @num_rmems: number of reserved memory regions
72 * @reset: reset control handle
73 * @data: pointer to DSP-specific device data
74 * @tsp: TI-SCI processor control handle
75 * @ti_sci: TI-SCI handle
76 * @ti_sci_id: TI-SCI device identifier
77 * @mbox: mailbox channel handle
78 * @client: mailbox client to request the mailbox channel
79 */
80 struct k3_dsp_rproc {
81 struct device *dev;
82 struct rproc *rproc;
83 struct k3_dsp_mem *mem;
84 int num_mems;
85 struct k3_dsp_mem *rmem;
86 int num_rmems;
87 struct reset_control *reset;
88 const struct k3_dsp_dev_data *data;
89 struct ti_sci_proc *tsp;
90 const struct ti_sci_handle *ti_sci;
91 u32 ti_sci_id;
92 struct mbox_chan *mbox;
93 struct mbox_client client;
94 };
95
96 /**
97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98 * @client: mailbox client pointer used for requesting the mailbox channel
99 * @data: mailbox payload
100 *
101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102 * message is received. Usually, the mailbox payload simply contains
103 * the index of the virtqueue that is kicked by the remote processor,
104 * and we let remoteproc core handle it.
105 *
106 * In addition to virtqueue indices, we also have some out-of-band values
107 * that indicate different events. Those values are deliberately very
108 * large so they don't coincide with virtqueue indices.
109 */
k3_dsp_rproc_mbox_callback(struct mbox_client * client,void * data)110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111 {
112 struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113 client);
114 struct device *dev = kproc->rproc->dev.parent;
115 const char *name = kproc->rproc->name;
116 u32 msg = omap_mbox_message(data);
117
118 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119
120 switch (msg) {
121 case RP_MBOX_CRASH:
122 /*
123 * remoteproc detected an exception, but error recovery is not
124 * supported. So, just log this for now
125 */
126 dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127 break;
128 case RP_MBOX_ECHO_REPLY:
129 dev_info(dev, "received echo reply from %s\n", name);
130 break;
131 default:
132 /* silently handle all other valid messages */
133 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134 return;
135 if (msg > kproc->rproc->max_notifyid) {
136 dev_dbg(dev, "dropping unknown message 0x%x", msg);
137 return;
138 }
139 /* msg contains the index of the triggered vring */
140 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141 dev_dbg(dev, "no message was found in vqid %d\n", msg);
142 }
143 }
144
145 /*
146 * Kick the remote processor to notify about pending unprocessed messages.
147 * The vqid usage is not used and is inconsequential, as the kick is performed
148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149 * the remote processor is expected to process both its Tx and Rx virtqueues.
150 */
k3_dsp_rproc_kick(struct rproc * rproc,int vqid)151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152 {
153 struct k3_dsp_rproc *kproc = rproc->priv;
154 struct device *dev = rproc->dev.parent;
155 mbox_msg_t msg = (mbox_msg_t)vqid;
156 int ret;
157
158 /* send the index of the triggered virtqueue in the mailbox payload */
159 ret = mbox_send_message(kproc->mbox, (void *)msg);
160 if (ret < 0)
161 dev_err(dev, "failed to send mailbox message, status = %d\n",
162 ret);
163 }
164
165 /* Put the DSP processor into reset */
k3_dsp_rproc_reset(struct k3_dsp_rproc * kproc)166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167 {
168 struct device *dev = kproc->dev;
169 int ret;
170
171 ret = reset_control_assert(kproc->reset);
172 if (ret) {
173 dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
174 return ret;
175 }
176
177 if (kproc->data->uses_lreset)
178 return ret;
179
180 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181 kproc->ti_sci_id);
182 if (ret) {
183 dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
184 if (reset_control_deassert(kproc->reset))
185 dev_warn(dev, "local-reset deassert back failed\n");
186 }
187
188 return ret;
189 }
190
191 /* Release the DSP processor from reset */
k3_dsp_rproc_release(struct k3_dsp_rproc * kproc)192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193 {
194 struct device *dev = kproc->dev;
195 int ret;
196
197 if (kproc->data->uses_lreset)
198 goto lreset;
199
200 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201 kproc->ti_sci_id);
202 if (ret) {
203 dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
204 return ret;
205 }
206
207 lreset:
208 ret = reset_control_deassert(kproc->reset);
209 if (ret) {
210 dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
211 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212 kproc->ti_sci_id))
213 dev_warn(dev, "module-reset assert back failed\n");
214 }
215
216 return ret;
217 }
218
219 /*
220 * The C66x DSP cores have a local reset that affects only the CPU, and a
221 * generic module reset that powers on the device and allows the DSP internal
222 * memories to be accessed while the local reset is asserted. This function is
223 * used to release the global reset on C66x DSPs to allow loading into the DSP
224 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
225 * firmware loading, and is followed by the .start() ops after loading to
226 * actually let the C66x DSP cores run.
227 */
k3_dsp_rproc_prepare(struct rproc * rproc)228 static int k3_dsp_rproc_prepare(struct rproc *rproc)
229 {
230 struct k3_dsp_rproc *kproc = rproc->priv;
231 struct device *dev = kproc->dev;
232 int ret;
233
234 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
235 kproc->ti_sci_id);
236 if (ret)
237 dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
238 ret);
239
240 return ret;
241 }
242
243 /*
244 * This function implements the .unprepare() ops and performs the complimentary
245 * operations to that of the .prepare() ops. The function is used to assert the
246 * global reset on applicable C66x cores. This completes the second portion of
247 * powering down the C66x DSP cores. The cores themselves are only halted in the
248 * .stop() callback through the local reset, and the .unprepare() ops is invoked
249 * by the remoteproc core after the remoteproc is stopped to balance the global
250 * reset.
251 */
k3_dsp_rproc_unprepare(struct rproc * rproc)252 static int k3_dsp_rproc_unprepare(struct rproc *rproc)
253 {
254 struct k3_dsp_rproc *kproc = rproc->priv;
255 struct device *dev = kproc->dev;
256 int ret;
257
258 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
259 kproc->ti_sci_id);
260 if (ret)
261 dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
262
263 return ret;
264 }
265
266 /*
267 * Power up the DSP remote processor.
268 *
269 * This function will be invoked only after the firmware for this rproc
270 * was loaded, parsed successfully, and all of its resource requirements
271 * were met.
272 */
k3_dsp_rproc_start(struct rproc * rproc)273 static int k3_dsp_rproc_start(struct rproc *rproc)
274 {
275 struct k3_dsp_rproc *kproc = rproc->priv;
276 struct mbox_client *client = &kproc->client;
277 struct device *dev = kproc->dev;
278 u32 boot_addr;
279 int ret;
280
281 client->dev = dev;
282 client->tx_done = NULL;
283 client->rx_callback = k3_dsp_rproc_mbox_callback;
284 client->tx_block = false;
285 client->knows_txdone = false;
286
287 kproc->mbox = mbox_request_channel(client, 0);
288 if (IS_ERR(kproc->mbox)) {
289 ret = -EBUSY;
290 dev_err(dev, "mbox_request_channel failed: %ld\n",
291 PTR_ERR(kproc->mbox));
292 return ret;
293 }
294
295 /*
296 * Ping the remote processor, this is only for sanity-sake for now;
297 * there is no functional effect whatsoever.
298 *
299 * Note that the reply will _not_ arrive immediately: this message
300 * will wait in the mailbox fifo until the remote processor is booted.
301 */
302 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
303 if (ret < 0) {
304 dev_err(dev, "mbox_send_message failed: %d\n", ret);
305 goto put_mbox;
306 }
307
308 boot_addr = rproc->bootaddr;
309 if (boot_addr & (kproc->data->boot_align_addr - 1)) {
310 dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
311 boot_addr, kproc->data->boot_align_addr);
312 ret = -EINVAL;
313 goto put_mbox;
314 }
315
316 dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
317 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
318 if (ret)
319 goto put_mbox;
320
321 ret = k3_dsp_rproc_release(kproc);
322 if (ret)
323 goto put_mbox;
324
325 return 0;
326
327 put_mbox:
328 mbox_free_channel(kproc->mbox);
329 return ret;
330 }
331
332 /*
333 * Stop the DSP remote processor.
334 *
335 * This function puts the DSP processor into reset, and finishes processing
336 * of any pending messages.
337 */
k3_dsp_rproc_stop(struct rproc * rproc)338 static int k3_dsp_rproc_stop(struct rproc *rproc)
339 {
340 struct k3_dsp_rproc *kproc = rproc->priv;
341
342 mbox_free_channel(kproc->mbox);
343
344 k3_dsp_rproc_reset(kproc);
345
346 return 0;
347 }
348
349 /*
350 * Custom function to translate a DSP device address (internal RAMs only) to a
351 * kernel virtual address. The DSPs can access their RAMs at either an internal
352 * address visible only from a DSP, or at the SoC-level bus address. Both these
353 * addresses need to be looked through for translation. The translated addresses
354 * can be used either by the remoteproc core for loading (when using kernel
355 * remoteproc loader), or by any rpmsg bus drivers.
356 */
k3_dsp_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len)357 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
358 {
359 struct k3_dsp_rproc *kproc = rproc->priv;
360 void __iomem *va = NULL;
361 phys_addr_t bus_addr;
362 u32 dev_addr, offset;
363 size_t size;
364 int i;
365
366 if (len == 0)
367 return NULL;
368
369 for (i = 0; i < kproc->num_mems; i++) {
370 bus_addr = kproc->mem[i].bus_addr;
371 dev_addr = kproc->mem[i].dev_addr;
372 size = kproc->mem[i].size;
373
374 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
375 /* handle DSP-view addresses */
376 if (da >= dev_addr &&
377 ((da + len) <= (dev_addr + size))) {
378 offset = da - dev_addr;
379 va = kproc->mem[i].cpu_addr + offset;
380 return (__force void *)va;
381 }
382 } else {
383 /* handle SoC-view addresses */
384 if (da >= bus_addr &&
385 (da + len) <= (bus_addr + size)) {
386 offset = da - bus_addr;
387 va = kproc->mem[i].cpu_addr + offset;
388 return (__force void *)va;
389 }
390 }
391 }
392
393 /* handle static DDR reserved memory regions */
394 for (i = 0; i < kproc->num_rmems; i++) {
395 dev_addr = kproc->rmem[i].dev_addr;
396 size = kproc->rmem[i].size;
397
398 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
399 offset = da - dev_addr;
400 va = kproc->rmem[i].cpu_addr + offset;
401 return (__force void *)va;
402 }
403 }
404
405 return NULL;
406 }
407
408 static const struct rproc_ops k3_dsp_rproc_ops = {
409 .start = k3_dsp_rproc_start,
410 .stop = k3_dsp_rproc_stop,
411 .kick = k3_dsp_rproc_kick,
412 .da_to_va = k3_dsp_rproc_da_to_va,
413 };
414
k3_dsp_rproc_of_get_memories(struct platform_device * pdev,struct k3_dsp_rproc * kproc)415 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
416 struct k3_dsp_rproc *kproc)
417 {
418 const struct k3_dsp_dev_data *data = kproc->data;
419 struct device *dev = &pdev->dev;
420 struct resource *res;
421 int num_mems = 0;
422 int i;
423
424 num_mems = kproc->data->num_mems;
425 kproc->mem = devm_kcalloc(kproc->dev, num_mems,
426 sizeof(*kproc->mem), GFP_KERNEL);
427 if (!kproc->mem)
428 return -ENOMEM;
429
430 for (i = 0; i < num_mems; i++) {
431 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
432 data->mems[i].name);
433 if (!res) {
434 dev_err(dev, "found no memory resource for %s\n",
435 data->mems[i].name);
436 return -EINVAL;
437 }
438 if (!devm_request_mem_region(dev, res->start,
439 resource_size(res),
440 dev_name(dev))) {
441 dev_err(dev, "could not request %s region for resource\n",
442 data->mems[i].name);
443 return -EBUSY;
444 }
445
446 kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
447 resource_size(res));
448 if (!kproc->mem[i].cpu_addr) {
449 dev_err(dev, "failed to map %s memory\n",
450 data->mems[i].name);
451 return -ENOMEM;
452 }
453 kproc->mem[i].bus_addr = res->start;
454 kproc->mem[i].dev_addr = data->mems[i].dev_addr;
455 kproc->mem[i].size = resource_size(res);
456
457 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
458 data->mems[i].name, &kproc->mem[i].bus_addr,
459 kproc->mem[i].size, kproc->mem[i].cpu_addr,
460 kproc->mem[i].dev_addr);
461 }
462 kproc->num_mems = num_mems;
463
464 return 0;
465 }
466
k3_dsp_reserved_mem_init(struct k3_dsp_rproc * kproc)467 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
468 {
469 struct device *dev = kproc->dev;
470 struct device_node *np = dev->of_node;
471 struct device_node *rmem_np;
472 struct reserved_mem *rmem;
473 int num_rmems;
474 int ret, i;
475
476 num_rmems = of_property_count_elems_of_size(np, "memory-region",
477 sizeof(phandle));
478 if (num_rmems <= 0) {
479 dev_err(dev, "device does not reserved memory regions, ret = %d\n",
480 num_rmems);
481 return -EINVAL;
482 }
483 if (num_rmems < 2) {
484 dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
485 num_rmems);
486 return -EINVAL;
487 }
488
489 /* use reserved memory region 0 for vring DMA allocations */
490 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
491 if (ret) {
492 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
493 ret);
494 return ret;
495 }
496
497 num_rmems--;
498 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
499 if (!kproc->rmem) {
500 ret = -ENOMEM;
501 goto release_rmem;
502 }
503
504 /* use remaining reserved memory regions for static carveouts */
505 for (i = 0; i < num_rmems; i++) {
506 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
507 if (!rmem_np) {
508 ret = -EINVAL;
509 goto unmap_rmem;
510 }
511
512 rmem = of_reserved_mem_lookup(rmem_np);
513 if (!rmem) {
514 of_node_put(rmem_np);
515 ret = -EINVAL;
516 goto unmap_rmem;
517 }
518 of_node_put(rmem_np);
519
520 kproc->rmem[i].bus_addr = rmem->base;
521 /* 64-bit address regions currently not supported */
522 kproc->rmem[i].dev_addr = (u32)rmem->base;
523 kproc->rmem[i].size = rmem->size;
524 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
525 if (!kproc->rmem[i].cpu_addr) {
526 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
527 i + 1, &rmem->base, &rmem->size);
528 ret = -ENOMEM;
529 goto unmap_rmem;
530 }
531
532 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
533 i + 1, &kproc->rmem[i].bus_addr,
534 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
535 kproc->rmem[i].dev_addr);
536 }
537 kproc->num_rmems = num_rmems;
538
539 return 0;
540
541 unmap_rmem:
542 for (i--; i >= 0; i--)
543 iounmap(kproc->rmem[i].cpu_addr);
544 kfree(kproc->rmem);
545 release_rmem:
546 of_reserved_mem_device_release(kproc->dev);
547 return ret;
548 }
549
k3_dsp_reserved_mem_exit(struct k3_dsp_rproc * kproc)550 static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
551 {
552 int i;
553
554 for (i = 0; i < kproc->num_rmems; i++)
555 iounmap(kproc->rmem[i].cpu_addr);
556 kfree(kproc->rmem);
557
558 of_reserved_mem_device_release(kproc->dev);
559 }
560
561 static
k3_dsp_rproc_of_get_tsp(struct device * dev,const struct ti_sci_handle * sci)562 struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
563 const struct ti_sci_handle *sci)
564 {
565 struct ti_sci_proc *tsp;
566 u32 temp[2];
567 int ret;
568
569 ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
570 temp, 2);
571 if (ret < 0)
572 return ERR_PTR(ret);
573
574 tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
575 if (!tsp)
576 return ERR_PTR(-ENOMEM);
577
578 tsp->dev = dev;
579 tsp->sci = sci;
580 tsp->ops = &sci->ops.proc_ops;
581 tsp->proc_id = temp[0];
582 tsp->host_id = temp[1];
583
584 return tsp;
585 }
586
k3_dsp_rproc_probe(struct platform_device * pdev)587 static int k3_dsp_rproc_probe(struct platform_device *pdev)
588 {
589 struct device *dev = &pdev->dev;
590 struct device_node *np = dev->of_node;
591 const struct k3_dsp_dev_data *data;
592 struct k3_dsp_rproc *kproc;
593 struct rproc *rproc;
594 const char *fw_name;
595 int ret = 0;
596 int ret1;
597
598 data = of_device_get_match_data(dev);
599 if (!data)
600 return -ENODEV;
601
602 ret = rproc_of_parse_firmware(dev, 0, &fw_name);
603 if (ret) {
604 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
605 ret);
606 return ret;
607 }
608
609 rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
610 sizeof(*kproc));
611 if (!rproc)
612 return -ENOMEM;
613
614 rproc->has_iommu = false;
615 rproc->recovery_disabled = true;
616 if (data->uses_lreset) {
617 rproc->ops->prepare = k3_dsp_rproc_prepare;
618 rproc->ops->unprepare = k3_dsp_rproc_unprepare;
619 }
620 kproc = rproc->priv;
621 kproc->rproc = rproc;
622 kproc->dev = dev;
623 kproc->data = data;
624
625 kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
626 if (IS_ERR(kproc->ti_sci)) {
627 ret = PTR_ERR(kproc->ti_sci);
628 if (ret != -EPROBE_DEFER) {
629 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
630 ret);
631 }
632 kproc->ti_sci = NULL;
633 goto free_rproc;
634 }
635
636 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
637 if (ret) {
638 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
639 goto put_sci;
640 }
641
642 kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
643 if (IS_ERR(kproc->reset)) {
644 ret = PTR_ERR(kproc->reset);
645 dev_err(dev, "failed to get reset, status = %d\n", ret);
646 goto put_sci;
647 }
648
649 kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
650 if (IS_ERR(kproc->tsp)) {
651 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
652 ret);
653 ret = PTR_ERR(kproc->tsp);
654 goto put_sci;
655 }
656
657 ret = ti_sci_proc_request(kproc->tsp);
658 if (ret < 0) {
659 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
660 goto free_tsp;
661 }
662
663 ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
664 if (ret)
665 goto release_tsp;
666
667 ret = k3_dsp_reserved_mem_init(kproc);
668 if (ret) {
669 dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
670 goto release_tsp;
671 }
672
673 /*
674 * ensure the DSP local reset is asserted to ensure the DSP doesn't
675 * execute bogus code in .prepare() when the module reset is released.
676 */
677 if (data->uses_lreset) {
678 ret = reset_control_status(kproc->reset);
679 if (ret < 0) {
680 dev_err(dev, "failed to get reset status, status = %d\n",
681 ret);
682 goto release_mem;
683 } else if (ret == 0) {
684 dev_warn(dev, "local reset is deasserted for device\n");
685 k3_dsp_rproc_reset(kproc);
686 }
687 }
688
689 ret = rproc_add(rproc);
690 if (ret) {
691 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
692 ret);
693 goto release_mem;
694 }
695
696 platform_set_drvdata(pdev, kproc);
697
698 return 0;
699
700 release_mem:
701 k3_dsp_reserved_mem_exit(kproc);
702 release_tsp:
703 ret1 = ti_sci_proc_release(kproc->tsp);
704 if (ret1)
705 dev_err(dev, "failed to release proc, ret = %d\n", ret1);
706 free_tsp:
707 kfree(kproc->tsp);
708 put_sci:
709 ret1 = ti_sci_put_handle(kproc->ti_sci);
710 if (ret1)
711 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
712 free_rproc:
713 rproc_free(rproc);
714 return ret;
715 }
716
k3_dsp_rproc_remove(struct platform_device * pdev)717 static int k3_dsp_rproc_remove(struct platform_device *pdev)
718 {
719 struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
720 struct device *dev = &pdev->dev;
721 int ret;
722
723 rproc_del(kproc->rproc);
724
725 ret = ti_sci_proc_release(kproc->tsp);
726 if (ret)
727 dev_err(dev, "failed to release proc, ret = %d\n", ret);
728
729 kfree(kproc->tsp);
730
731 ret = ti_sci_put_handle(kproc->ti_sci);
732 if (ret)
733 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
734
735 k3_dsp_reserved_mem_exit(kproc);
736 rproc_free(kproc->rproc);
737
738 return 0;
739 }
740
741 static const struct k3_dsp_mem_data c66_mems[] = {
742 { .name = "l2sram", .dev_addr = 0x800000 },
743 { .name = "l1pram", .dev_addr = 0xe00000 },
744 { .name = "l1dram", .dev_addr = 0xf00000 },
745 };
746
747 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
748 static const struct k3_dsp_mem_data c71_mems[] = {
749 { .name = "l2sram", .dev_addr = 0x800000 },
750 { .name = "l1dram", .dev_addr = 0xe00000 },
751 };
752
753 static const struct k3_dsp_dev_data c66_data = {
754 .mems = c66_mems,
755 .num_mems = ARRAY_SIZE(c66_mems),
756 .boot_align_addr = SZ_1K,
757 .uses_lreset = true,
758 };
759
760 static const struct k3_dsp_dev_data c71_data = {
761 .mems = c71_mems,
762 .num_mems = ARRAY_SIZE(c71_mems),
763 .boot_align_addr = SZ_2M,
764 .uses_lreset = false,
765 };
766
767 static const struct of_device_id k3_dsp_of_match[] = {
768 { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
769 { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
770 { /* sentinel */ },
771 };
772 MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
773
774 static struct platform_driver k3_dsp_rproc_driver = {
775 .probe = k3_dsp_rproc_probe,
776 .remove = k3_dsp_rproc_remove,
777 .driver = {
778 .name = "k3-dsp-rproc",
779 .of_match_table = k3_dsp_of_match,
780 },
781 };
782
783 module_platform_driver(k3_dsp_rproc_driver);
784
785 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
786 MODULE_LICENSE("GPL v2");
787 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
788