1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 /**
135 * mpt3sas_base_check_cmd_timeout - Function
136 * to check timeout and command termination due
137 * to Host reset.
138 *
139 * @ioc: per adapter object.
140 * @status: Status of issued command.
141 * @mpi_request:mf request pointer.
142 * @sz: size of buffer.
143 *
144 * @Returns - 1/0 Reset to be done or Not
145 */
146 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 u8 status, void *mpi_request, int sz)
149 {
150 u8 issue_reset = 0;
151
152 if (!(status & MPT3_CMD_RESET))
153 issue_reset = 1;
154
155 ioc_err(ioc, "Command %s\n",
156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 _debug_dump_mf(mpi_request, sz);
158
159 return issue_reset;
160 }
161
162 /**
163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164 * @val: ?
165 * @kp: ?
166 *
167 * Return: ?
168 */
169 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 int ret = param_set_int(val, kp);
173 struct MPT3SAS_ADAPTER *ioc;
174
175 if (ret)
176 return ret;
177
178 /* global ioc spinlock to protect controller list on list operations */
179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 spin_lock(&gioc_lock);
181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 spin_unlock(&gioc_lock);
184 return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 param_get_int, &mpt3sas_fwfault_debug, 0644);
188
189 /**
190 * _base_readl_aero - retry readl for max three times.
191 * @addr: MPT Fusion system interface register address
192 *
193 * Retry the readl() for max three times if it gets zero value
194 * while reading the system interface register.
195 */
196 static inline u32
_base_readl_aero(const volatile void __iomem * addr)197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 u32 i = 0, ret_val;
200
201 do {
202 ret_val = readl(addr);
203 i++;
204 } while (ret_val == 0 && i < 3);
205
206 return ret_val;
207 }
208
209 static inline u32
_base_readl(const volatile void __iomem * addr)210 _base_readl(const volatile void __iomem *addr)
211 {
212 return readl(addr);
213 }
214
215 /**
216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217 * in BAR0 space.
218 *
219 * @ioc: per adapter object
220 * @reply: reply message frame(lower 32bit addr)
221 * @index: System request message index.
222 */
223 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 u32 index)
226 {
227 /*
228 * 256 is offset within sys register.
229 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 */
232 u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 MPI_FRAME_START_OFFSET +
235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236
237 writel(reply, reply_free_iomem);
238 }
239
240 /**
241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242 * to system/BAR0 region.
243 *
244 * @dst_iomem: Pointer to the destination location in BAR0 space.
245 * @src: Pointer to the Source data.
246 * @size: Size of data to be copied.
247 */
248 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 int i;
252 u32 *src_virt_mem = (u32 *)src;
253
254 for (i = 0; i < size/4; i++)
255 writel((u32)src_virt_mem[i],
256 (void __iomem *)dst_iomem + (i * 4));
257 }
258
259 /**
260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261 *
262 * @dst_iomem: Pointer to the destination location in BAR0 space.
263 * @src: Pointer to the Source data.
264 * @size: Size of data to be copied.
265 */
266 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 int i;
270 u32 *src_virt_mem = (u32 *)(src);
271
272 for (i = 0; i < size/4; i++)
273 writel((u32)src_virt_mem[i],
274 (void __iomem *)dst_iomem + (i * 4));
275 }
276
277 /**
278 * _base_get_chain - Calculates and Returns virtual chain address
279 * for the provided smid in BAR0 space.
280 *
281 * @ioc: per adapter object
282 * @smid: system request message index
283 * @sge_chain_count: Scatter gather chain count.
284 *
285 * Return: the chain address.
286 */
287 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 u8 sge_chain_count)
290 {
291 void __iomem *base_chain, *chain_virt;
292 u16 cmd_credit = ioc->facts.RequestCredit + 1;
293
294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 (cmd_credit * ioc->request_sz) +
296 REPLY_FREE_POOL_SIZE;
297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 return chain_virt;
300 }
301
302 /**
303 * _base_get_chain_phys - Calculates and Returns physical address
304 * in BAR0 for scatter gather chains, for
305 * the provided smid.
306 *
307 * @ioc: per adapter object
308 * @smid: system request message index
309 * @sge_chain_count: Scatter gather chain count.
310 *
311 * Return: Physical chain address.
312 */
313 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 u8 sge_chain_count)
316 {
317 phys_addr_t base_chain_phys, chain_phys;
318 u16 cmd_credit = ioc->facts.RequestCredit + 1;
319
320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 (cmd_credit * ioc->request_sz) +
322 REPLY_FREE_POOL_SIZE;
323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 return chain_phys;
326 }
327
328 /**
329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330 * buffer address for the provided smid.
331 * (Each smid can have 64K starts from 17024)
332 *
333 * @ioc: per adapter object
334 * @smid: system request message index
335 *
336 * Return: Pointer to buffer location in BAR0.
337 */
338
339 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 // Added extra 1 to reach end of chain.
344 void __iomem *chain_end = _base_get_chain(ioc,
345 cmd_credit + 1,
346 ioc->facts.MaxChainDepth);
347 return chain_end + (smid * 64 * 1024);
348 }
349
350 /**
351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352 * Host buffer Physical address for the provided smid.
353 * (Each smid can have 64K starts from 17024)
354 *
355 * @ioc: per adapter object
356 * @smid: system request message index
357 *
358 * Return: Pointer to buffer location in BAR0.
359 */
360 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 cmd_credit + 1,
366 ioc->facts.MaxChainDepth);
367 return chain_end_phys + (smid * 64 * 1024);
368 }
369
370 /**
371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372 * lookup list and Provides chain_buffer
373 * address for the matching dma address.
374 * (Each smid can have 64K starts from 17024)
375 *
376 * @ioc: per adapter object
377 * @chain_buffer_dma: Chain buffer dma address.
378 *
379 * Return: Pointer to chain buffer. Or Null on Failure.
380 */
381 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 dma_addr_t chain_buffer_dma)
384 {
385 u16 index, j;
386 struct chain_tracker *ct;
387
388 for (index = 0; index < ioc->scsiio_depth; index++) {
389 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 return ct->chain_buffer;
393 }
394 }
395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 return NULL;
397 }
398
399 /**
400 * _clone_sg_entries - MPI EP's scsiio and config requests
401 * are handled here. Base function for
402 * double buffering, before submitting
403 * the requests.
404 *
405 * @ioc: per adapter object.
406 * @mpi_request: mf request pointer.
407 * @smid: system request message index.
408 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 void *mpi_request, u16 smid)
411 {
412 Mpi2SGESimple32_t *sgel, *sgel_next;
413 u32 sgl_flags, sge_chain_count = 0;
414 bool is_write = false;
415 u16 i = 0;
416 void __iomem *buffer_iomem;
417 phys_addr_t buffer_iomem_phys;
418 void __iomem *buff_ptr;
419 phys_addr_t buff_ptr_phys;
420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 phys_addr_t dst_addr_phys;
423 MPI2RequestHeader_t *request_hdr;
424 struct scsi_cmnd *scmd;
425 struct scatterlist *sg_scmd = NULL;
426 int is_scsiio_req = 0;
427
428 request_hdr = (MPI2RequestHeader_t *) mpi_request;
429
430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 Mpi25SCSIIORequest_t *scsiio_request =
432 (Mpi25SCSIIORequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 is_scsiio_req = 1;
435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 Mpi2ConfigRequest_t *config_req =
437 (Mpi2ConfigRequest_t *)mpi_request;
438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 } else
440 return;
441
442 /* From smid we can get scsi_cmd, once we have sg_scmd,
443 * we just need to get sg_virt and sg_next to get virual
444 * address associated with sgel->Address.
445 */
446
447 if (is_scsiio_req) {
448 /* Get scsi_cmd using smid */
449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 if (scmd == NULL) {
451 ioc_err(ioc, "scmd is NULL\n");
452 return;
453 }
454
455 /* Get sg_scmd from scmd provided */
456 sg_scmd = scsi_sglist(scmd);
457 }
458
459 /*
460 * 0 - 255 System register
461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
462 * 4352 - 4864 Reply_free pool (512 byte is reserved
463 * considering maxCredit 32. Reply need extra
464 * room, for mCPU case kept four times of
465 * maxCredit).
466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467 * 128 byte size = 12288)
468 * 17152 - x Host buffer mapped with smid.
469 * (Each smid can have 64K Max IO.)
470 * BAR0+Last 1K MSIX Addr and Data
471 * Total size in use 2113664 bytes of 4MB BAR0
472 */
473
474 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476
477 buff_ptr = buffer_iomem;
478 buff_ptr_phys = buffer_iomem_phys;
479 WARN_ON(buff_ptr_phys > U32_MAX);
480
481 if (le32_to_cpu(sgel->FlagsLength) &
482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 is_write = true;
484
485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486
487 sgl_flags =
488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489
490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 /*
493 * Helper function which on passing
494 * chain_buffer_dma returns chain_buffer. Get
495 * the virtual address for sgel->Address
496 */
497 sgel_next =
498 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 le32_to_cpu(sgel->Address));
500 if (sgel_next == NULL)
501 return;
502 /*
503 * This is coping 128 byte chain
504 * frame (not a host buffer)
505 */
506 dst_chain_addr[sge_chain_count] =
507 _base_get_chain(ioc,
508 smid, sge_chain_count);
509 src_chain_addr[sge_chain_count] =
510 (void *) sgel_next;
511 dst_addr_phys = _base_get_chain_phys(ioc,
512 smid, sge_chain_count);
513 WARN_ON(dst_addr_phys > U32_MAX);
514 sgel->Address =
515 cpu_to_le32(lower_32_bits(dst_addr_phys));
516 sgel = sgel_next;
517 sge_chain_count++;
518 break;
519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 if (is_write) {
521 if (is_scsiio_req) {
522 _base_clone_to_sys_mem(buff_ptr,
523 sg_virt(sg_scmd),
524 (le32_to_cpu(sgel->FlagsLength) &
525 0x00ffffff));
526 /*
527 * FIXME: this relies on a a zero
528 * PCI mem_offset.
529 */
530 sgel->Address =
531 cpu_to_le32((u32)buff_ptr_phys);
532 } else {
533 _base_clone_to_sys_mem(buff_ptr,
534 ioc->config_vaddr,
535 (le32_to_cpu(sgel->FlagsLength) &
536 0x00ffffff));
537 sgel->Address =
538 cpu_to_le32((u32)buff_ptr_phys);
539 }
540 }
541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 0x00ffffff);
543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 0x00ffffff);
545 if ((le32_to_cpu(sgel->FlagsLength) &
546 (MPI2_SGE_FLAGS_END_OF_BUFFER
547 << MPI2_SGE_FLAGS_SHIFT)))
548 goto eob_clone_chain;
549 else {
550 /*
551 * Every single element in MPT will have
552 * associated sg_next. Better to sanity that
553 * sg_next is not NULL, but it will be a bug
554 * if it is null.
555 */
556 if (is_scsiio_req) {
557 sg_scmd = sg_next(sg_scmd);
558 if (sg_scmd)
559 sgel++;
560 else
561 goto eob_clone_chain;
562 }
563 }
564 break;
565 }
566 }
567
568 eob_clone_chain:
569 for (i = 0; i < sge_chain_count; i++) {
570 if (is_scsiio_req)
571 _base_clone_to_sys_mem(dst_chain_addr[i],
572 src_chain_addr[i], ioc->request_sz);
573 }
574 }
575
576 /**
577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578 * @arg: input argument, used to derive ioc
579 *
580 * Return:
581 * 0 if controller is removed from pci subsystem.
582 * -1 for other case.
583 */
mpt3sas_remove_dead_ioc_func(void * arg)584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 struct pci_dev *pdev;
588
589 if (!ioc)
590 return -1;
591
592 pdev = ioc->pdev;
593 if (!pdev)
594 return -1;
595 pci_stop_and_remove_bus_device_locked(pdev);
596 return 0;
597 }
598
599 /**
600 * _base_fault_reset_work - workq handling ioc fault conditions
601 * @work: input argument, used to derive ioc
602 *
603 * Context: sleep.
604 */
605 static void
_base_fault_reset_work(struct work_struct * work)606 _base_fault_reset_work(struct work_struct *work)
607 {
608 struct MPT3SAS_ADAPTER *ioc =
609 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610 unsigned long flags;
611 u32 doorbell;
612 int rc;
613 struct task_struct *p;
614
615
616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618 ioc->pci_error_recovery)
619 goto rearm_timer;
620 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621
622 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624 ioc_err(ioc, "SAS host is non-operational !!!!\n");
625
626 /* It may be possible that EEH recovery can resolve some of
627 * pci bus failure issues rather removing the dead ioc function
628 * by considering controller is in a non-operational state. So
629 * here priority is given to the EEH recovery. If it doesn't
630 * not resolve this issue, mpt3sas driver will consider this
631 * controller to non-operational state and remove the dead ioc
632 * function.
633 */
634 if (ioc->non_operational_loop++ < 5) {
635 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636 flags);
637 goto rearm_timer;
638 }
639
640 /*
641 * Call _scsih_flush_pending_cmds callback so that we flush all
642 * pending commands back to OS. This call is required to aovid
643 * deadlock at block layer. Dead IOC will fail to do diag reset,
644 * and this call is safe since dead ioc will never return any
645 * command back from HW.
646 */
647 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648 /*
649 * Set remove_host flag early since kernel thread will
650 * take some time to execute.
651 */
652 ioc->remove_host = 1;
653 /*Remove the Dead Host */
654 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656 if (IS_ERR(p))
657 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658 __func__);
659 else
660 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661 __func__);
662 return; /* don't rearm timer */
663 }
664
665 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667 ioc->manu_pg11.CoreDumpTOSec :
668 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669
670 timeout /= (FAULT_POLLING_INTERVAL/1000);
671
672 if (ioc->ioc_coredump_loop == 0) {
673 mpt3sas_print_coredump_info(ioc,
674 doorbell & MPI2_DOORBELL_DATA_MASK);
675 /* do not accept any IOs and disable the interrupts */
676 spin_lock_irqsave(
677 &ioc->ioc_reset_in_progress_lock, flags);
678 ioc->shost_recovery = 1;
679 spin_unlock_irqrestore(
680 &ioc->ioc_reset_in_progress_lock, flags);
681 mpt3sas_base_mask_interrupts(ioc);
682 _base_clear_outstanding_commands(ioc);
683 }
684
685 ioc_info(ioc, "%s: CoreDump loop %d.",
686 __func__, ioc->ioc_coredump_loop);
687
688 /* Wait until CoreDump completes or times out */
689 if (ioc->ioc_coredump_loop++ < timeout) {
690 spin_lock_irqsave(
691 &ioc->ioc_reset_in_progress_lock, flags);
692 goto rearm_timer;
693 }
694 }
695
696 if (ioc->ioc_coredump_loop) {
697 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699 __func__, ioc->ioc_coredump_loop);
700 else
701 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702 __func__, ioc->ioc_coredump_loop);
703 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704 }
705 ioc->non_operational_loop = 0;
706 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708 ioc_warn(ioc, "%s: hard reset: %s\n",
709 __func__, rc == 0 ? "success" : "failed");
710 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712 mpt3sas_print_fault_code(ioc, doorbell &
713 MPI2_DOORBELL_DATA_MASK);
714 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715 MPI2_IOC_STATE_COREDUMP)
716 mpt3sas_print_coredump_info(ioc, doorbell &
717 MPI2_DOORBELL_DATA_MASK);
718 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719 MPI2_IOC_STATE_OPERATIONAL)
720 return; /* don't rearm timer */
721 }
722 ioc->ioc_coredump_loop = 0;
723
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725 rearm_timer:
726 if (ioc->fault_reset_work_q)
727 queue_delayed_work(ioc->fault_reset_work_q,
728 &ioc->fault_reset_work,
729 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732
733 /**
734 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735 * @ioc: per adapter object
736 *
737 * Context: sleep.
738 */
739 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742 unsigned long flags;
743
744 if (ioc->fault_reset_work_q)
745 return;
746
747 /* initialize fault polling */
748
749 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750 snprintf(ioc->fault_reset_work_q_name,
751 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752 ioc->driver_name, ioc->id);
753 ioc->fault_reset_work_q =
754 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755 if (!ioc->fault_reset_work_q) {
756 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757 return;
758 }
759 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760 if (ioc->fault_reset_work_q)
761 queue_delayed_work(ioc->fault_reset_work_q,
762 &ioc->fault_reset_work,
763 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766
767 /**
768 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769 * @ioc: per adapter object
770 *
771 * Context: sleep.
772 */
773 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776 unsigned long flags;
777 struct workqueue_struct *wq;
778
779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780 wq = ioc->fault_reset_work_q;
781 ioc->fault_reset_work_q = NULL;
782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783 if (wq) {
784 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785 flush_workqueue(wq);
786 destroy_workqueue(wq);
787 }
788 }
789
790 /**
791 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792 * @ioc: per adapter object
793 * @fault_code: fault code
794 */
795 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800
801 /**
802 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803 * @ioc: per adapter object
804 * @fault_code: fault code
805 *
806 * Return nothing.
807 */
808 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813
814 /**
815 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816 * completes or times out
817 * @ioc: per adapter object
818 * @caller: caller function name
819 *
820 * Returns 0 for success, non-zero for failure.
821 */
822 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824 const char *caller)
825 {
826 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827 ioc->manu_pg11.CoreDumpTOSec :
828 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829
830 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831 timeout);
832
833 if (ioc_state)
834 ioc_err(ioc,
835 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836 caller, ioc_state);
837 else
838 ioc_info(ioc,
839 "%s: CoreDump completed. (ioc_state=0x%x)\n",
840 caller, ioc_state);
841
842 return ioc_state;
843 }
844
845 /**
846 * mpt3sas_halt_firmware - halt's mpt controller firmware
847 * @ioc: per adapter object
848 *
849 * For debugging timeout related issues. Writing 0xCOFFEE00
850 * to the doorbell register will halt controller firmware. With
851 * the purpose to stop both driver and firmware, the enduser can
852 * obtain a ring buffer from controller UART.
853 */
854 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857 u32 doorbell;
858
859 if (!ioc->fwfault_debug)
860 return;
861
862 dump_stack();
863
864 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866 mpt3sas_print_fault_code(ioc, doorbell &
867 MPI2_DOORBELL_DATA_MASK);
868 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869 MPI2_IOC_STATE_COREDUMP) {
870 mpt3sas_print_coredump_info(ioc, doorbell &
871 MPI2_DOORBELL_DATA_MASK);
872 } else {
873 writel(0xC0FFEE00, &ioc->chip->Doorbell);
874 ioc_err(ioc, "Firmware is halted due to command timeout\n");
875 }
876
877 if (ioc->fwfault_debug == 2)
878 for (;;)
879 ;
880 else
881 panic("panic in %s\n", __func__);
882 }
883
884 /**
885 * _base_sas_ioc_info - verbose translation of the ioc status
886 * @ioc: per adapter object
887 * @mpi_reply: reply mf payload returned from firmware
888 * @request_hdr: request mf
889 */
890 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892 MPI2RequestHeader_t *request_hdr)
893 {
894 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895 MPI2_IOCSTATUS_MASK;
896 char *desc = NULL;
897 u16 frame_sz;
898 char *func_str = NULL;
899
900 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904 return;
905
906 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907 return;
908
909 switch (ioc_status) {
910
911 /****************************************************************************
912 * Common IOCStatus values for all replies
913 ****************************************************************************/
914
915 case MPI2_IOCSTATUS_INVALID_FUNCTION:
916 desc = "invalid function";
917 break;
918 case MPI2_IOCSTATUS_BUSY:
919 desc = "busy";
920 break;
921 case MPI2_IOCSTATUS_INVALID_SGL:
922 desc = "invalid sgl";
923 break;
924 case MPI2_IOCSTATUS_INTERNAL_ERROR:
925 desc = "internal error";
926 break;
927 case MPI2_IOCSTATUS_INVALID_VPID:
928 desc = "invalid vpid";
929 break;
930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931 desc = "insufficient resources";
932 break;
933 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934 desc = "insufficient power";
935 break;
936 case MPI2_IOCSTATUS_INVALID_FIELD:
937 desc = "invalid field";
938 break;
939 case MPI2_IOCSTATUS_INVALID_STATE:
940 desc = "invalid state";
941 break;
942 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943 desc = "op state not supported";
944 break;
945
946 /****************************************************************************
947 * Config IOCStatus values
948 ****************************************************************************/
949
950 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951 desc = "config invalid action";
952 break;
953 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954 desc = "config invalid type";
955 break;
956 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957 desc = "config invalid page";
958 break;
959 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960 desc = "config invalid data";
961 break;
962 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963 desc = "config no defaults";
964 break;
965 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966 desc = "config cant commit";
967 break;
968
969 /****************************************************************************
970 * SCSI IO Reply
971 ****************************************************************************/
972
973 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985 break;
986
987 /****************************************************************************
988 * For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990
991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992 desc = "eedp guard error";
993 break;
994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995 desc = "eedp ref tag error";
996 break;
997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998 desc = "eedp app tag error";
999 break;
1000
1001 /****************************************************************************
1002 * SCSI Target values
1003 ****************************************************************************/
1004
1005 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006 desc = "target invalid io index";
1007 break;
1008 case MPI2_IOCSTATUS_TARGET_ABORTED:
1009 desc = "target aborted";
1010 break;
1011 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012 desc = "target no conn retryable";
1013 break;
1014 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015 desc = "target no connection";
1016 break;
1017 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018 desc = "target xfer count mismatch";
1019 break;
1020 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021 desc = "target data offset error";
1022 break;
1023 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024 desc = "target too much write data";
1025 break;
1026 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027 desc = "target iu too short";
1028 break;
1029 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030 desc = "target ack nak timeout";
1031 break;
1032 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033 desc = "target nak received";
1034 break;
1035
1036 /****************************************************************************
1037 * Serial Attached SCSI values
1038 ****************************************************************************/
1039
1040 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041 desc = "smp request failed";
1042 break;
1043 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044 desc = "smp data overrun";
1045 break;
1046
1047 /****************************************************************************
1048 * Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050
1051 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052 desc = "diagnostic released";
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 if (!desc)
1059 return;
1060
1061 switch (request_hdr->Function) {
1062 case MPI2_FUNCTION_CONFIG:
1063 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064 func_str = "config_page";
1065 break;
1066 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068 func_str = "task_mgmt";
1069 break;
1070 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072 func_str = "sas_iounit_ctl";
1073 break;
1074 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075 frame_sz = sizeof(Mpi2SepRequest_t);
1076 func_str = "enclosure";
1077 break;
1078 case MPI2_FUNCTION_IOC_INIT:
1079 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080 func_str = "ioc_init";
1081 break;
1082 case MPI2_FUNCTION_PORT_ENABLE:
1083 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084 func_str = "port_enable";
1085 break;
1086 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088 func_str = "smp_passthru";
1089 break;
1090 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092 ioc->sge_size;
1093 func_str = "nvme_encapsulated";
1094 break;
1095 default:
1096 frame_sz = 32;
1097 func_str = "unknown";
1098 break;
1099 }
1100
1101 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102 desc, ioc_status, request_hdr, func_str);
1103
1104 _debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106
1107 /**
1108 * _base_display_event_data - verbose translation of firmware asyn events
1109 * @ioc: per adapter object
1110 * @mpi_reply: reply mf payload returned from firmware
1111 */
1112 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114 Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116 char *desc = NULL;
1117 u16 event;
1118
1119 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120 return;
1121
1122 event = le16_to_cpu(mpi_reply->Event);
1123
1124 switch (event) {
1125 case MPI2_EVENT_LOG_DATA:
1126 desc = "Log Data";
1127 break;
1128 case MPI2_EVENT_STATE_CHANGE:
1129 desc = "Status Change";
1130 break;
1131 case MPI2_EVENT_HARD_RESET_RECEIVED:
1132 desc = "Hard Reset Received";
1133 break;
1134 case MPI2_EVENT_EVENT_CHANGE:
1135 desc = "Event Change";
1136 break;
1137 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138 desc = "Device Status Change";
1139 break;
1140 case MPI2_EVENT_IR_OPERATION_STATUS:
1141 if (!ioc->hide_ir_msg)
1142 desc = "IR Operation Status";
1143 break;
1144 case MPI2_EVENT_SAS_DISCOVERY:
1145 {
1146 Mpi2EventDataSasDiscovery_t *event_data =
1147 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148 ioc_info(ioc, "Discovery: (%s)",
1149 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150 "start" : "stop");
1151 if (event_data->DiscoveryStatus)
1152 pr_cont(" discovery_status(0x%08x)",
1153 le32_to_cpu(event_data->DiscoveryStatus));
1154 pr_cont("\n");
1155 return;
1156 }
1157 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158 desc = "SAS Broadcast Primitive";
1159 break;
1160 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161 desc = "SAS Init Device Status Change";
1162 break;
1163 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164 desc = "SAS Init Table Overflow";
1165 break;
1166 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167 desc = "SAS Topology Change List";
1168 break;
1169 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170 desc = "SAS Enclosure Device Status Change";
1171 break;
1172 case MPI2_EVENT_IR_VOLUME:
1173 if (!ioc->hide_ir_msg)
1174 desc = "IR Volume";
1175 break;
1176 case MPI2_EVENT_IR_PHYSICAL_DISK:
1177 if (!ioc->hide_ir_msg)
1178 desc = "IR Physical Disk";
1179 break;
1180 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181 if (!ioc->hide_ir_msg)
1182 desc = "IR Configuration Change List";
1183 break;
1184 case MPI2_EVENT_LOG_ENTRY_ADDED:
1185 if (!ioc->hide_ir_msg)
1186 desc = "Log Entry Added";
1187 break;
1188 case MPI2_EVENT_TEMP_THRESHOLD:
1189 desc = "Temperature Threshold";
1190 break;
1191 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192 desc = "Cable Event";
1193 break;
1194 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195 desc = "SAS Device Discovery Error";
1196 break;
1197 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198 desc = "PCIE Device Status Change";
1199 break;
1200 case MPI2_EVENT_PCIE_ENUMERATION:
1201 {
1202 Mpi26EventDataPCIeEnumeration_t *event_data =
1203 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204 ioc_info(ioc, "PCIE Enumeration: (%s)",
1205 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206 "start" : "stop");
1207 if (event_data->EnumerationStatus)
1208 pr_cont("enumeration_status(0x%08x)",
1209 le32_to_cpu(event_data->EnumerationStatus));
1210 pr_cont("\n");
1211 return;
1212 }
1213 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214 desc = "PCIE Topology Change List";
1215 break;
1216 }
1217
1218 if (!desc)
1219 return;
1220
1221 ioc_info(ioc, "%s\n", desc);
1222 }
1223
1224 /**
1225 * _base_sas_log_info - verbose translation of firmware log info
1226 * @ioc: per adapter object
1227 * @log_info: log info
1228 */
1229 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232 union loginfo_type {
1233 u32 loginfo;
1234 struct {
1235 u32 subcode:16;
1236 u32 code:8;
1237 u32 originator:4;
1238 u32 bus_type:4;
1239 } dw;
1240 };
1241 union loginfo_type sas_loginfo;
1242 char *originator_str = NULL;
1243
1244 sas_loginfo.loginfo = log_info;
1245 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246 return;
1247
1248 /* each nexus loss loginfo */
1249 if (log_info == 0x31170000)
1250 return;
1251
1252 /* eat the loginfos associated with task aborts */
1253 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254 0x31140000 || log_info == 0x31130000))
1255 return;
1256
1257 switch (sas_loginfo.dw.originator) {
1258 case 0:
1259 originator_str = "IOP";
1260 break;
1261 case 1:
1262 originator_str = "PL";
1263 break;
1264 case 2:
1265 if (!ioc->hide_ir_msg)
1266 originator_str = "IR";
1267 else
1268 originator_str = "WarpDrive";
1269 break;
1270 }
1271
1272 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273 log_info,
1274 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276
1277 /**
1278 * _base_display_reply_info -
1279 * @ioc: per adapter object
1280 * @smid: system request message index
1281 * @msix_index: MSIX table index supplied by the OS
1282 * @reply: reply message frame(lower 32bit addr)
1283 */
1284 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286 u32 reply)
1287 {
1288 MPI2DefaultReply_t *mpi_reply;
1289 u16 ioc_status;
1290 u32 loginfo = 0;
1291
1292 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293 if (unlikely(!mpi_reply)) {
1294 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295 __FILE__, __LINE__, __func__);
1296 return;
1297 }
1298 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299
1300 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302 _base_sas_ioc_info(ioc , mpi_reply,
1303 mpt3sas_base_get_msg_frame(ioc, smid));
1304 }
1305
1306 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308 _base_sas_log_info(ioc, loginfo);
1309 }
1310
1311 if (ioc_status || loginfo) {
1312 ioc_status &= MPI2_IOCSTATUS_MASK;
1313 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314 }
1315 }
1316
1317 /**
1318 * mpt3sas_base_done - base internal command completion routine
1319 * @ioc: per adapter object
1320 * @smid: system request message index
1321 * @msix_index: MSIX table index supplied by the OS
1322 * @reply: reply message frame(lower 32bit addr)
1323 *
1324 * Return:
1325 * 1 meaning mf should be freed from _base_interrupt
1326 * 0 means the mf is freed from this function.
1327 */
1328 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330 u32 reply)
1331 {
1332 MPI2DefaultReply_t *mpi_reply;
1333
1334 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337
1338 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339 return 1;
1340
1341 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342 if (mpi_reply) {
1343 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345 }
1346 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347
1348 complete(&ioc->base_cmds.done);
1349 return 1;
1350 }
1351
1352 /**
1353 * _base_async_event - main callback handler for firmware asyn events
1354 * @ioc: per adapter object
1355 * @msix_index: MSIX table index supplied by the OS
1356 * @reply: reply message frame(lower 32bit addr)
1357 *
1358 * Return:
1359 * 1 meaning mf should be freed from _base_interrupt
1360 * 0 means the mf is freed from this function.
1361 */
1362 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365 Mpi2EventNotificationReply_t *mpi_reply;
1366 Mpi2EventAckRequest_t *ack_request;
1367 u16 smid;
1368 struct _event_ack_list *delayed_event_ack;
1369
1370 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371 if (!mpi_reply)
1372 return 1;
1373 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374 return 1;
1375
1376 _base_display_event_data(ioc, mpi_reply);
1377
1378 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379 goto out;
1380 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381 if (!smid) {
1382 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383 GFP_ATOMIC);
1384 if (!delayed_event_ack)
1385 goto out;
1386 INIT_LIST_HEAD(&delayed_event_ack->list);
1387 delayed_event_ack->Event = mpi_reply->Event;
1388 delayed_event_ack->EventContext = mpi_reply->EventContext;
1389 list_add_tail(&delayed_event_ack->list,
1390 &ioc->delayed_event_ack_list);
1391 dewtprintk(ioc,
1392 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393 le16_to_cpu(mpi_reply->Event)));
1394 goto out;
1395 }
1396
1397 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400 ack_request->Event = mpi_reply->Event;
1401 ack_request->EventContext = mpi_reply->EventContext;
1402 ack_request->VF_ID = 0; /* TODO */
1403 ack_request->VP_ID = 0;
1404 ioc->put_smid_default(ioc, smid);
1405
1406 out:
1407
1408 /* scsih callback handler */
1409 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410
1411 /* ctl callback handler */
1412 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413
1414 return 1;
1415 }
1416
1417 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420 struct scsi_cmnd *cmd;
1421
1422 if (WARN_ON(!smid) ||
1423 WARN_ON(smid >= ioc->hi_priority_smid))
1424 return NULL;
1425
1426 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427 if (cmd)
1428 return scsi_cmd_priv(cmd);
1429
1430 return NULL;
1431 }
1432
1433 /**
1434 * _base_get_cb_idx - obtain the callback index
1435 * @ioc: per adapter object
1436 * @smid: system request message index
1437 *
1438 * Return: callback index.
1439 */
1440 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443 int i;
1444 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445 u8 cb_idx = 0xFF;
1446
1447 if (smid < ioc->hi_priority_smid) {
1448 struct scsiio_tracker *st;
1449
1450 if (smid < ctl_smid) {
1451 st = _get_st_from_smid(ioc, smid);
1452 if (st)
1453 cb_idx = st->cb_idx;
1454 } else if (smid == ctl_smid)
1455 cb_idx = ioc->ctl_cb_idx;
1456 } else if (smid < ioc->internal_smid) {
1457 i = smid - ioc->hi_priority_smid;
1458 cb_idx = ioc->hpr_lookup[i].cb_idx;
1459 } else if (smid <= ioc->hba_queue_depth) {
1460 i = smid - ioc->internal_smid;
1461 cb_idx = ioc->internal_lookup[i].cb_idx;
1462 }
1463 return cb_idx;
1464 }
1465
1466 /**
1467 * mpt3sas_base_mask_interrupts - disable interrupts
1468 * @ioc: per adapter object
1469 *
1470 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471 */
1472 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475 u32 him_register;
1476
1477 ioc->mask_interrupts = 1;
1478 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480 writel(him_register, &ioc->chip->HostInterruptMask);
1481 ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483
1484 /**
1485 * mpt3sas_base_unmask_interrupts - enable interrupts
1486 * @ioc: per adapter object
1487 *
1488 * Enabling only Reply Interrupts
1489 */
1490 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493 u32 him_register;
1494
1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 him_register &= ~MPI2_HIM_RIM;
1497 writel(him_register, &ioc->chip->HostInterruptMask);
1498 ioc->mask_interrupts = 0;
1499 }
1500
1501 union reply_descriptor {
1502 u64 word;
1503 struct {
1504 u32 low;
1505 u32 high;
1506 } u;
1507 };
1508
base_mod64(u64 dividend,u32 divisor)1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511 u32 remainder;
1512
1513 if (!divisor)
1514 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515 remainder = do_div(dividend, divisor);
1516 return remainder;
1517 }
1518
1519 /**
1520 * _base_process_reply_queue - Process reply descriptors from reply
1521 * descriptor post queue.
1522 * @reply_q: per IRQ's reply queue object.
1523 *
1524 * Return: number of reply descriptors processed from reply
1525 * descriptor queue.
1526 */
1527 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530 union reply_descriptor rd;
1531 u64 completed_cmds;
1532 u8 request_descript_type;
1533 u16 smid;
1534 u8 cb_idx;
1535 u32 reply;
1536 u8 msix_index = reply_q->msix_index;
1537 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538 Mpi2ReplyDescriptorsUnion_t *rpf;
1539 u8 rc;
1540
1541 completed_cmds = 0;
1542 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543 return completed_cmds;
1544
1545 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546 request_descript_type = rpf->Default.ReplyFlags
1547 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549 atomic_dec(&reply_q->busy);
1550 return completed_cmds;
1551 }
1552
1553 cb_idx = 0xFF;
1554 do {
1555 rd.word = le64_to_cpu(rpf->Words);
1556 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557 goto out;
1558 reply = 0;
1559 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560 if (request_descript_type ==
1561 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562 request_descript_type ==
1563 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564 request_descript_type ==
1565 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566 cb_idx = _base_get_cb_idx(ioc, smid);
1567 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568 (likely(mpt_callbacks[cb_idx] != NULL))) {
1569 rc = mpt_callbacks[cb_idx](ioc, smid,
1570 msix_index, 0);
1571 if (rc)
1572 mpt3sas_base_free_smid(ioc, smid);
1573 }
1574 } else if (request_descript_type ==
1575 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576 reply = le32_to_cpu(
1577 rpf->AddressReply.ReplyFrameAddress);
1578 if (reply > ioc->reply_dma_max_address ||
1579 reply < ioc->reply_dma_min_address)
1580 reply = 0;
1581 if (smid) {
1582 cb_idx = _base_get_cb_idx(ioc, smid);
1583 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584 (likely(mpt_callbacks[cb_idx] != NULL))) {
1585 rc = mpt_callbacks[cb_idx](ioc, smid,
1586 msix_index, reply);
1587 if (reply)
1588 _base_display_reply_info(ioc,
1589 smid, msix_index, reply);
1590 if (rc)
1591 mpt3sas_base_free_smid(ioc,
1592 smid);
1593 }
1594 } else {
1595 _base_async_event(ioc, msix_index, reply);
1596 }
1597
1598 /* reply free queue handling */
1599 if (reply) {
1600 ioc->reply_free_host_index =
1601 (ioc->reply_free_host_index ==
1602 (ioc->reply_free_queue_depth - 1)) ?
1603 0 : ioc->reply_free_host_index + 1;
1604 ioc->reply_free[ioc->reply_free_host_index] =
1605 cpu_to_le32(reply);
1606 if (ioc->is_mcpu_endpoint)
1607 _base_clone_reply_to_sys_mem(ioc,
1608 reply,
1609 ioc->reply_free_host_index);
1610 writel(ioc->reply_free_host_index,
1611 &ioc->chip->ReplyFreeHostIndex);
1612 }
1613 }
1614
1615 rpf->Words = cpu_to_le64(ULLONG_MAX);
1616 reply_q->reply_post_host_index =
1617 (reply_q->reply_post_host_index ==
1618 (ioc->reply_post_queue_depth - 1)) ? 0 :
1619 reply_q->reply_post_host_index + 1;
1620 request_descript_type =
1621 reply_q->reply_post_free[reply_q->reply_post_host_index].
1622 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623 completed_cmds++;
1624 /* Update the reply post host index after continuously
1625 * processing the threshold number of Reply Descriptors.
1626 * So that FW can find enough entries to post the Reply
1627 * Descriptors in the reply descriptor post queue.
1628 */
1629 if (completed_cmds >= ioc->thresh_hold) {
1630 if (ioc->combined_reply_queue) {
1631 writel(reply_q->reply_post_host_index |
1632 ((msix_index & 7) <<
1633 MPI2_RPHI_MSIX_INDEX_SHIFT),
1634 ioc->replyPostRegisterIndex[msix_index/8]);
1635 } else {
1636 writel(reply_q->reply_post_host_index |
1637 (msix_index <<
1638 MPI2_RPHI_MSIX_INDEX_SHIFT),
1639 &ioc->chip->ReplyPostHostIndex);
1640 }
1641 if (!reply_q->irq_poll_scheduled) {
1642 reply_q->irq_poll_scheduled = true;
1643 irq_poll_sched(&reply_q->irqpoll);
1644 }
1645 atomic_dec(&reply_q->busy);
1646 return completed_cmds;
1647 }
1648 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649 goto out;
1650 if (!reply_q->reply_post_host_index)
1651 rpf = reply_q->reply_post_free;
1652 else
1653 rpf++;
1654 } while (1);
1655
1656 out:
1657
1658 if (!completed_cmds) {
1659 atomic_dec(&reply_q->busy);
1660 return completed_cmds;
1661 }
1662
1663 if (ioc->is_warpdrive) {
1664 writel(reply_q->reply_post_host_index,
1665 ioc->reply_post_host_index[msix_index]);
1666 atomic_dec(&reply_q->busy);
1667 return completed_cmds;
1668 }
1669
1670 /* Update Reply Post Host Index.
1671 * For those HBA's which support combined reply queue feature
1672 * 1. Get the correct Supplemental Reply Post Host Index Register.
1673 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674 * Index Register address bank i.e replyPostRegisterIndex[],
1675 * 2. Then update this register with new reply host index value
1676 * in ReplyPostIndex field and the MSIxIndex field with
1677 * msix_index value reduced to a value between 0 and 7,
1678 * using a modulo 8 operation. Since each Supplemental Reply Post
1679 * Host Index Register supports 8 MSI-X vectors.
1680 *
1681 * For other HBA's just update the Reply Post Host Index register with
1682 * new reply host index value in ReplyPostIndex Field and msix_index
1683 * value in MSIxIndex field.
1684 */
1685 if (ioc->combined_reply_queue)
1686 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1687 MPI2_RPHI_MSIX_INDEX_SHIFT),
1688 ioc->replyPostRegisterIndex[msix_index/8]);
1689 else
1690 writel(reply_q->reply_post_host_index | (msix_index <<
1691 MPI2_RPHI_MSIX_INDEX_SHIFT),
1692 &ioc->chip->ReplyPostHostIndex);
1693 atomic_dec(&reply_q->busy);
1694 return completed_cmds;
1695 }
1696
1697 /**
1698 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699 * @irq: irq number (not used)
1700 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701 *
1702 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703 */
1704 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707 struct adapter_reply_queue *reply_q = bus_id;
1708 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709
1710 if (ioc->mask_interrupts)
1711 return IRQ_NONE;
1712 if (reply_q->irq_poll_scheduled)
1713 return IRQ_HANDLED;
1714 return ((_base_process_reply_queue(reply_q) > 0) ?
1715 IRQ_HANDLED : IRQ_NONE);
1716 }
1717
1718 /**
1719 * _base_irqpoll - IRQ poll callback handler
1720 * @irqpoll: irq_poll object
1721 * @budget: irq poll weight
1722 *
1723 * returns number of reply descriptors processed
1724 */
1725 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728 struct adapter_reply_queue *reply_q;
1729 int num_entries = 0;
1730
1731 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732 irqpoll);
1733 if (reply_q->irq_line_enable) {
1734 disable_irq_nosync(reply_q->os_irq);
1735 reply_q->irq_line_enable = false;
1736 }
1737 num_entries = _base_process_reply_queue(reply_q);
1738 if (num_entries < budget) {
1739 irq_poll_complete(irqpoll);
1740 reply_q->irq_poll_scheduled = false;
1741 reply_q->irq_line_enable = true;
1742 enable_irq(reply_q->os_irq);
1743 /*
1744 * Go for one more round of processing the
1745 * reply descriptor post queue incase if HBA
1746 * Firmware has posted some reply descriptors
1747 * while reenabling the IRQ.
1748 */
1749 _base_process_reply_queue(reply_q);
1750 }
1751
1752 return num_entries;
1753 }
1754
1755 /**
1756 * _base_init_irqpolls - initliaze IRQ polls
1757 * @ioc: per adapter object
1758 *
1759 * returns nothing
1760 */
1761 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1763 {
1764 struct adapter_reply_queue *reply_q, *next;
1765
1766 if (list_empty(&ioc->reply_queue_list))
1767 return;
1768
1769 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1770 irq_poll_init(&reply_q->irqpoll,
1771 ioc->hba_queue_depth/4, _base_irqpoll);
1772 reply_q->irq_poll_scheduled = false;
1773 reply_q->irq_line_enable = true;
1774 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1775 reply_q->msix_index);
1776 }
1777 }
1778
1779 /**
1780 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1781 * @ioc: per adapter object
1782 *
1783 * Return: Whether or not MSI/X is enabled.
1784 */
1785 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1787 {
1788 return (ioc->facts.IOCCapabilities &
1789 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1790 }
1791
1792 /**
1793 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1794 * @ioc: per adapter object
1795 * @poll: poll over reply descriptor pools incase interrupt for
1796 * timed-out SCSI command got delayed
1797 * Context: non ISR conext
1798 *
1799 * Called when a Task Management request has completed.
1800 */
1801 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1803 {
1804 struct adapter_reply_queue *reply_q;
1805
1806 /* If MSIX capability is turned off
1807 * then multi-queues are not enabled
1808 */
1809 if (!_base_is_controller_msix_enabled(ioc))
1810 return;
1811
1812 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1813 if (ioc->shost_recovery || ioc->remove_host ||
1814 ioc->pci_error_recovery)
1815 return;
1816 /* TMs are on msix_index == 0 */
1817 if (reply_q->msix_index == 0)
1818 continue;
1819 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1820 if (reply_q->irq_poll_scheduled) {
1821 /* Calling irq_poll_disable will wait for any pending
1822 * callbacks to have completed.
1823 */
1824 irq_poll_disable(&reply_q->irqpoll);
1825 irq_poll_enable(&reply_q->irqpoll);
1826 /* check how the scheduled poll has ended,
1827 * clean up only if necessary
1828 */
1829 if (reply_q->irq_poll_scheduled) {
1830 reply_q->irq_poll_scheduled = false;
1831 reply_q->irq_line_enable = true;
1832 enable_irq(reply_q->os_irq);
1833 }
1834 }
1835
1836 if (poll)
1837 _base_process_reply_queue(reply_q);
1838 }
1839 }
1840
1841 /**
1842 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1843 * @cb_idx: callback index
1844 */
1845 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1846 mpt3sas_base_release_callback_handler(u8 cb_idx)
1847 {
1848 mpt_callbacks[cb_idx] = NULL;
1849 }
1850
1851 /**
1852 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1853 * @cb_func: callback function
1854 *
1855 * Return: Index of @cb_func.
1856 */
1857 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1858 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1859 {
1860 u8 cb_idx;
1861
1862 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1863 if (mpt_callbacks[cb_idx] == NULL)
1864 break;
1865
1866 mpt_callbacks[cb_idx] = cb_func;
1867 return cb_idx;
1868 }
1869
1870 /**
1871 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1872 */
1873 void
mpt3sas_base_initialize_callback_handler(void)1874 mpt3sas_base_initialize_callback_handler(void)
1875 {
1876 u8 cb_idx;
1877
1878 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1879 mpt3sas_base_release_callback_handler(cb_idx);
1880 }
1881
1882
1883 /**
1884 * _base_build_zero_len_sge - build zero length sg entry
1885 * @ioc: per adapter object
1886 * @paddr: virtual address for SGE
1887 *
1888 * Create a zero length scatter gather entry to insure the IOCs hardware has
1889 * something to use if the target device goes brain dead and tries
1890 * to send data even when none is asked for.
1891 */
1892 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1893 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1894 {
1895 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1896 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1897 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1898 MPI2_SGE_FLAGS_SHIFT);
1899 ioc->base_add_sg_single(paddr, flags_length, -1);
1900 }
1901
1902 /**
1903 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1904 * @paddr: virtual address for SGE
1905 * @flags_length: SGE flags and data transfer length
1906 * @dma_addr: Physical address
1907 */
1908 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1909 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1910 {
1911 Mpi2SGESimple32_t *sgel = paddr;
1912
1913 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1914 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1915 sgel->FlagsLength = cpu_to_le32(flags_length);
1916 sgel->Address = cpu_to_le32(dma_addr);
1917 }
1918
1919
1920 /**
1921 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1922 * @paddr: virtual address for SGE
1923 * @flags_length: SGE flags and data transfer length
1924 * @dma_addr: Physical address
1925 */
1926 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1927 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1928 {
1929 Mpi2SGESimple64_t *sgel = paddr;
1930
1931 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1932 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1933 sgel->FlagsLength = cpu_to_le32(flags_length);
1934 sgel->Address = cpu_to_le64(dma_addr);
1935 }
1936
1937 /**
1938 * _base_get_chain_buffer_tracker - obtain chain tracker
1939 * @ioc: per adapter object
1940 * @scmd: SCSI commands of the IO request
1941 *
1942 * Return: chain tracker from chain_lookup table using key as
1943 * smid and smid's chain_offset.
1944 */
1945 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)1946 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1947 struct scsi_cmnd *scmd)
1948 {
1949 struct chain_tracker *chain_req;
1950 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1951 u16 smid = st->smid;
1952 u8 chain_offset =
1953 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1954
1955 if (chain_offset == ioc->chains_needed_per_io)
1956 return NULL;
1957
1958 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1959 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1960 return chain_req;
1961 }
1962
1963
1964 /**
1965 * _base_build_sg - build generic sg
1966 * @ioc: per adapter object
1967 * @psge: virtual address for SGE
1968 * @data_out_dma: physical address for WRITES
1969 * @data_out_sz: data xfer size for WRITES
1970 * @data_in_dma: physical address for READS
1971 * @data_in_sz: data xfer size for READS
1972 */
1973 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1974 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1975 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1976 size_t data_in_sz)
1977 {
1978 u32 sgl_flags;
1979
1980 if (!data_out_sz && !data_in_sz) {
1981 _base_build_zero_len_sge(ioc, psge);
1982 return;
1983 }
1984
1985 if (data_out_sz && data_in_sz) {
1986 /* WRITE sgel first */
1987 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1988 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1989 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1990 ioc->base_add_sg_single(psge, sgl_flags |
1991 data_out_sz, data_out_dma);
1992
1993 /* incr sgel */
1994 psge += ioc->sge_size;
1995
1996 /* READ sgel last */
1997 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1998 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1999 MPI2_SGE_FLAGS_END_OF_LIST);
2000 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2001 ioc->base_add_sg_single(psge, sgl_flags |
2002 data_in_sz, data_in_dma);
2003 } else if (data_out_sz) /* WRITE */ {
2004 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2005 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2006 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2007 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2008 ioc->base_add_sg_single(psge, sgl_flags |
2009 data_out_sz, data_out_dma);
2010 } else if (data_in_sz) /* READ */ {
2011 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2012 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2013 MPI2_SGE_FLAGS_END_OF_LIST);
2014 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2015 ioc->base_add_sg_single(psge, sgl_flags |
2016 data_in_sz, data_in_dma);
2017 }
2018 }
2019
2020 /* IEEE format sgls */
2021
2022 /**
2023 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2024 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2025 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2026 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2027 * used to describe a larger data buffer. If the data buffer is too large to
2028 * describe using the two PRP entriess inside the NVMe message, then PRP1
2029 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2030 * list located elsewhere in memory to describe the remaining data memory
2031 * segments. The PRP list will be contiguous.
2032 *
2033 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2034 * consists of a list of PRP entries to describe a number of noncontigous
2035 * physical memory segments as a single memory buffer, just as a SGL does. Note
2036 * however, that this function is only used by the IOCTL call, so the memory
2037 * given will be guaranteed to be contiguous. There is no need to translate
2038 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2039 * contiguous space that is one page size each.
2040 *
2041 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2042 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2043 * contains the second PRP element if the memory being described fits within 2
2044 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2045 *
2046 * A PRP list pointer contains the address of a PRP list, structured as a linear
2047 * array of PRP entries. Each PRP entry in this list describes a segment of
2048 * physical memory.
2049 *
2050 * Each 64-bit PRP entry comprises an address and an offset field. The address
2051 * always points at the beginning of a 4KB physical memory page, and the offset
2052 * describes where within that 4KB page the memory segment begins. Only the
2053 * first element in a PRP list may contain a non-zero offest, implying that all
2054 * memory segments following the first begin at the start of a 4KB page.
2055 *
2056 * Each PRP element normally describes 4KB of physical memory, with exceptions
2057 * for the first and last elements in the list. If the memory being described
2058 * by the list begins at a non-zero offset within the first 4KB page, then the
2059 * first PRP element will contain a non-zero offset indicating where the region
2060 * begins within the 4KB page. The last memory segment may end before the end
2061 * of the 4KB segment, depending upon the overall size of the memory being
2062 * described by the PRP list.
2063 *
2064 * Since PRP entries lack any indication of size, the overall data buffer length
2065 * is used to determine where the end of the data memory buffer is located, and
2066 * how many PRP entries are required to describe it.
2067 *
2068 * @ioc: per adapter object
2069 * @smid: system request message index for getting asscociated SGL
2070 * @nvme_encap_request: the NVMe request msg frame pointer
2071 * @data_out_dma: physical address for WRITES
2072 * @data_out_sz: data xfer size for WRITES
2073 * @data_in_dma: physical address for READS
2074 * @data_in_sz: data xfer size for READS
2075 */
2076 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2077 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2078 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2079 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2080 size_t data_in_sz)
2081 {
2082 int prp_size = NVME_PRP_SIZE;
2083 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2084 __le64 *prp_page;
2085 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2086 u32 offset, entry_len;
2087 u32 page_mask_result, page_mask;
2088 size_t length;
2089 struct mpt3sas_nvme_cmd *nvme_cmd =
2090 (void *)nvme_encap_request->NVMe_Command;
2091
2092 /*
2093 * Not all commands require a data transfer. If no data, just return
2094 * without constructing any PRP.
2095 */
2096 if (!data_in_sz && !data_out_sz)
2097 return;
2098 prp1_entry = &nvme_cmd->prp1;
2099 prp2_entry = &nvme_cmd->prp2;
2100 prp_entry = prp1_entry;
2101 /*
2102 * For the PRP entries, use the specially allocated buffer of
2103 * contiguous memory.
2104 */
2105 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2106 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2107
2108 /*
2109 * Check if we are within 1 entry of a page boundary we don't
2110 * want our first entry to be a PRP List entry.
2111 */
2112 page_mask = ioc->page_size - 1;
2113 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2114 if (!page_mask_result) {
2115 /* Bump up to next page boundary. */
2116 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2117 prp_page_dma = prp_page_dma + prp_size;
2118 }
2119
2120 /*
2121 * Set PRP physical pointer, which initially points to the current PRP
2122 * DMA memory page.
2123 */
2124 prp_entry_dma = prp_page_dma;
2125
2126 /* Get physical address and length of the data buffer. */
2127 if (data_in_sz) {
2128 dma_addr = data_in_dma;
2129 length = data_in_sz;
2130 } else {
2131 dma_addr = data_out_dma;
2132 length = data_out_sz;
2133 }
2134
2135 /* Loop while the length is not zero. */
2136 while (length) {
2137 /*
2138 * Check if we need to put a list pointer here if we are at
2139 * page boundary - prp_size (8 bytes).
2140 */
2141 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2142 if (!page_mask_result) {
2143 /*
2144 * This is the last entry in a PRP List, so we need to
2145 * put a PRP list pointer here. What this does is:
2146 * - bump the current memory pointer to the next
2147 * address, which will be the next full page.
2148 * - set the PRP Entry to point to that page. This
2149 * is now the PRP List pointer.
2150 * - bump the PRP Entry pointer the start of the
2151 * next page. Since all of this PRP memory is
2152 * contiguous, no need to get a new page - it's
2153 * just the next address.
2154 */
2155 prp_entry_dma++;
2156 *prp_entry = cpu_to_le64(prp_entry_dma);
2157 prp_entry++;
2158 }
2159
2160 /* Need to handle if entry will be part of a page. */
2161 offset = dma_addr & page_mask;
2162 entry_len = ioc->page_size - offset;
2163
2164 if (prp_entry == prp1_entry) {
2165 /*
2166 * Must fill in the first PRP pointer (PRP1) before
2167 * moving on.
2168 */
2169 *prp1_entry = cpu_to_le64(dma_addr);
2170
2171 /*
2172 * Now point to the second PRP entry within the
2173 * command (PRP2).
2174 */
2175 prp_entry = prp2_entry;
2176 } else if (prp_entry == prp2_entry) {
2177 /*
2178 * Should the PRP2 entry be a PRP List pointer or just
2179 * a regular PRP pointer? If there is more than one
2180 * more page of data, must use a PRP List pointer.
2181 */
2182 if (length > ioc->page_size) {
2183 /*
2184 * PRP2 will contain a PRP List pointer because
2185 * more PRP's are needed with this command. The
2186 * list will start at the beginning of the
2187 * contiguous buffer.
2188 */
2189 *prp2_entry = cpu_to_le64(prp_entry_dma);
2190
2191 /*
2192 * The next PRP Entry will be the start of the
2193 * first PRP List.
2194 */
2195 prp_entry = prp_page;
2196 } else {
2197 /*
2198 * After this, the PRP Entries are complete.
2199 * This command uses 2 PRP's and no PRP list.
2200 */
2201 *prp2_entry = cpu_to_le64(dma_addr);
2202 }
2203 } else {
2204 /*
2205 * Put entry in list and bump the addresses.
2206 *
2207 * After PRP1 and PRP2 are filled in, this will fill in
2208 * all remaining PRP entries in a PRP List, one per
2209 * each time through the loop.
2210 */
2211 *prp_entry = cpu_to_le64(dma_addr);
2212 prp_entry++;
2213 prp_entry_dma++;
2214 }
2215
2216 /*
2217 * Bump the phys address of the command's data buffer by the
2218 * entry_len.
2219 */
2220 dma_addr += entry_len;
2221
2222 /* Decrement length accounting for last partial page. */
2223 if (entry_len > length)
2224 length = 0;
2225 else
2226 length -= entry_len;
2227 }
2228 }
2229
2230 /**
2231 * base_make_prp_nvme -
2232 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2233 *
2234 * @ioc: per adapter object
2235 * @scmd: SCSI command from the mid-layer
2236 * @mpi_request: mpi request
2237 * @smid: msg Index
2238 * @sge_count: scatter gather element count.
2239 *
2240 * Return: true: PRPs are built
2241 * false: IEEE SGLs needs to be built
2242 */
2243 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2244 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2245 struct scsi_cmnd *scmd,
2246 Mpi25SCSIIORequest_t *mpi_request,
2247 u16 smid, int sge_count)
2248 {
2249 int sge_len, num_prp_in_chain = 0;
2250 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2251 __le64 *curr_buff;
2252 dma_addr_t msg_dma, sge_addr, offset;
2253 u32 page_mask, page_mask_result;
2254 struct scatterlist *sg_scmd;
2255 u32 first_prp_len;
2256 int data_len = scsi_bufflen(scmd);
2257 u32 nvme_pg_size;
2258
2259 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2260 /*
2261 * Nvme has a very convoluted prp format. One prp is required
2262 * for each page or partial page. Driver need to split up OS sg_list
2263 * entries if it is longer than one page or cross a page
2264 * boundary. Driver also have to insert a PRP list pointer entry as
2265 * the last entry in each physical page of the PRP list.
2266 *
2267 * NOTE: The first PRP "entry" is actually placed in the first
2268 * SGL entry in the main message as IEEE 64 format. The 2nd
2269 * entry in the main message is the chain element, and the rest
2270 * of the PRP entries are built in the contiguous pcie buffer.
2271 */
2272 page_mask = nvme_pg_size - 1;
2273
2274 /*
2275 * Native SGL is needed.
2276 * Put a chain element in main message frame that points to the first
2277 * chain buffer.
2278 *
2279 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2280 * a native SGL.
2281 */
2282
2283 /* Set main message chain element pointer */
2284 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2285 /*
2286 * For NVMe the chain element needs to be the 2nd SG entry in the main
2287 * message.
2288 */
2289 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2290 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2291
2292 /*
2293 * For the PRP entries, use the specially allocated buffer of
2294 * contiguous memory. Normal chain buffers can't be used
2295 * because each chain buffer would need to be the size of an OS
2296 * page (4k).
2297 */
2298 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2299 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2300
2301 main_chain_element->Address = cpu_to_le64(msg_dma);
2302 main_chain_element->NextChainOffset = 0;
2303 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2304 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2305 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2306
2307 /* Build first prp, sge need not to be page aligned*/
2308 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2309 sg_scmd = scsi_sglist(scmd);
2310 sge_addr = sg_dma_address(sg_scmd);
2311 sge_len = sg_dma_len(sg_scmd);
2312
2313 offset = sge_addr & page_mask;
2314 first_prp_len = nvme_pg_size - offset;
2315
2316 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2317 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2318
2319 data_len -= first_prp_len;
2320
2321 if (sge_len > first_prp_len) {
2322 sge_addr += first_prp_len;
2323 sge_len -= first_prp_len;
2324 } else if (data_len && (sge_len == first_prp_len)) {
2325 sg_scmd = sg_next(sg_scmd);
2326 sge_addr = sg_dma_address(sg_scmd);
2327 sge_len = sg_dma_len(sg_scmd);
2328 }
2329
2330 for (;;) {
2331 offset = sge_addr & page_mask;
2332
2333 /* Put PRP pointer due to page boundary*/
2334 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2335 if (unlikely(!page_mask_result)) {
2336 scmd_printk(KERN_NOTICE,
2337 scmd, "page boundary curr_buff: 0x%p\n",
2338 curr_buff);
2339 msg_dma += 8;
2340 *curr_buff = cpu_to_le64(msg_dma);
2341 curr_buff++;
2342 num_prp_in_chain++;
2343 }
2344
2345 *curr_buff = cpu_to_le64(sge_addr);
2346 curr_buff++;
2347 msg_dma += 8;
2348 num_prp_in_chain++;
2349
2350 sge_addr += nvme_pg_size;
2351 sge_len -= nvme_pg_size;
2352 data_len -= nvme_pg_size;
2353
2354 if (data_len <= 0)
2355 break;
2356
2357 if (sge_len > 0)
2358 continue;
2359
2360 sg_scmd = sg_next(sg_scmd);
2361 sge_addr = sg_dma_address(sg_scmd);
2362 sge_len = sg_dma_len(sg_scmd);
2363 }
2364
2365 main_chain_element->Length =
2366 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2367 return;
2368 }
2369
2370 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2371 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2372 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2373 {
2374 u32 data_length = 0;
2375 bool build_prp = true;
2376
2377 data_length = scsi_bufflen(scmd);
2378 if (pcie_device &&
2379 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2380 build_prp = false;
2381 return build_prp;
2382 }
2383
2384 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2385 * we built IEEE SGL
2386 */
2387 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2388 build_prp = false;
2389
2390 return build_prp;
2391 }
2392
2393 /**
2394 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2395 * determine if the driver needs to build a native SGL. If so, that native
2396 * SGL is built in the special contiguous buffers allocated especially for
2397 * PCIe SGL creation. If the driver will not build a native SGL, return
2398 * TRUE and a normal IEEE SGL will be built. Currently this routine
2399 * supports NVMe.
2400 * @ioc: per adapter object
2401 * @mpi_request: mf request pointer
2402 * @smid: system request message index
2403 * @scmd: scsi command
2404 * @pcie_device: points to the PCIe device's info
2405 *
2406 * Return: 0 if native SGL was built, 1 if no SGL was built
2407 */
2408 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2409 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2410 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2411 struct _pcie_device *pcie_device)
2412 {
2413 int sges_left;
2414
2415 /* Get the SG list pointer and info. */
2416 sges_left = scsi_dma_map(scmd);
2417 if (sges_left < 0) {
2418 sdev_printk(KERN_ERR, scmd->device,
2419 "scsi_dma_map failed: request for %d bytes!\n",
2420 scsi_bufflen(scmd));
2421 return 1;
2422 }
2423
2424 /* Check if we need to build a native SG list. */
2425 if (base_is_prp_possible(ioc, pcie_device,
2426 scmd, sges_left) == 0) {
2427 /* We built a native SG list, just return. */
2428 goto out;
2429 }
2430
2431 /*
2432 * Build native NVMe PRP.
2433 */
2434 base_make_prp_nvme(ioc, scmd, mpi_request,
2435 smid, sges_left);
2436
2437 return 0;
2438 out:
2439 scsi_dma_unmap(scmd);
2440 return 1;
2441 }
2442
2443 /**
2444 * _base_add_sg_single_ieee - add sg element for IEEE format
2445 * @paddr: virtual address for SGE
2446 * @flags: SGE flags
2447 * @chain_offset: number of 128 byte elements from start of segment
2448 * @length: data transfer length
2449 * @dma_addr: Physical address
2450 */
2451 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2452 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2453 dma_addr_t dma_addr)
2454 {
2455 Mpi25IeeeSgeChain64_t *sgel = paddr;
2456
2457 sgel->Flags = flags;
2458 sgel->NextChainOffset = chain_offset;
2459 sgel->Length = cpu_to_le32(length);
2460 sgel->Address = cpu_to_le64(dma_addr);
2461 }
2462
2463 /**
2464 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2465 * @ioc: per adapter object
2466 * @paddr: virtual address for SGE
2467 *
2468 * Create a zero length scatter gather entry to insure the IOCs hardware has
2469 * something to use if the target device goes brain dead and tries
2470 * to send data even when none is asked for.
2471 */
2472 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2473 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2474 {
2475 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2476 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2477 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2478
2479 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2480 }
2481
2482 /**
2483 * _base_build_sg_scmd - main sg creation routine
2484 * pcie_device is unused here!
2485 * @ioc: per adapter object
2486 * @scmd: scsi command
2487 * @smid: system request message index
2488 * @unused: unused pcie_device pointer
2489 * Context: none.
2490 *
2491 * The main routine that builds scatter gather table from a given
2492 * scsi request sent via the .queuecommand main handler.
2493 *
2494 * Return: 0 success, anything else error
2495 */
2496 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2497 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2498 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2499 {
2500 Mpi2SCSIIORequest_t *mpi_request;
2501 dma_addr_t chain_dma;
2502 struct scatterlist *sg_scmd;
2503 void *sg_local, *chain;
2504 u32 chain_offset;
2505 u32 chain_length;
2506 u32 chain_flags;
2507 int sges_left;
2508 u32 sges_in_segment;
2509 u32 sgl_flags;
2510 u32 sgl_flags_last_element;
2511 u32 sgl_flags_end_buffer;
2512 struct chain_tracker *chain_req;
2513
2514 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2515
2516 /* init scatter gather flags */
2517 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2518 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2519 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2520 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2521 << MPI2_SGE_FLAGS_SHIFT;
2522 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2523 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2524 << MPI2_SGE_FLAGS_SHIFT;
2525 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2526
2527 sg_scmd = scsi_sglist(scmd);
2528 sges_left = scsi_dma_map(scmd);
2529 if (sges_left < 0) {
2530 sdev_printk(KERN_ERR, scmd->device,
2531 "scsi_dma_map failed: request for %d bytes!\n",
2532 scsi_bufflen(scmd));
2533 return -ENOMEM;
2534 }
2535
2536 sg_local = &mpi_request->SGL;
2537 sges_in_segment = ioc->max_sges_in_main_message;
2538 if (sges_left <= sges_in_segment)
2539 goto fill_in_last_segment;
2540
2541 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2542 (sges_in_segment * ioc->sge_size))/4;
2543
2544 /* fill in main message segment when there is a chain following */
2545 while (sges_in_segment) {
2546 if (sges_in_segment == 1)
2547 ioc->base_add_sg_single(sg_local,
2548 sgl_flags_last_element | sg_dma_len(sg_scmd),
2549 sg_dma_address(sg_scmd));
2550 else
2551 ioc->base_add_sg_single(sg_local, sgl_flags |
2552 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2553 sg_scmd = sg_next(sg_scmd);
2554 sg_local += ioc->sge_size;
2555 sges_left--;
2556 sges_in_segment--;
2557 }
2558
2559 /* initializing the chain flags and pointers */
2560 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2561 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2562 if (!chain_req)
2563 return -1;
2564 chain = chain_req->chain_buffer;
2565 chain_dma = chain_req->chain_buffer_dma;
2566 do {
2567 sges_in_segment = (sges_left <=
2568 ioc->max_sges_in_chain_message) ? sges_left :
2569 ioc->max_sges_in_chain_message;
2570 chain_offset = (sges_left == sges_in_segment) ?
2571 0 : (sges_in_segment * ioc->sge_size)/4;
2572 chain_length = sges_in_segment * ioc->sge_size;
2573 if (chain_offset) {
2574 chain_offset = chain_offset <<
2575 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2576 chain_length += ioc->sge_size;
2577 }
2578 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2579 chain_length, chain_dma);
2580 sg_local = chain;
2581 if (!chain_offset)
2582 goto fill_in_last_segment;
2583
2584 /* fill in chain segments */
2585 while (sges_in_segment) {
2586 if (sges_in_segment == 1)
2587 ioc->base_add_sg_single(sg_local,
2588 sgl_flags_last_element |
2589 sg_dma_len(sg_scmd),
2590 sg_dma_address(sg_scmd));
2591 else
2592 ioc->base_add_sg_single(sg_local, sgl_flags |
2593 sg_dma_len(sg_scmd),
2594 sg_dma_address(sg_scmd));
2595 sg_scmd = sg_next(sg_scmd);
2596 sg_local += ioc->sge_size;
2597 sges_left--;
2598 sges_in_segment--;
2599 }
2600
2601 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2602 if (!chain_req)
2603 return -1;
2604 chain = chain_req->chain_buffer;
2605 chain_dma = chain_req->chain_buffer_dma;
2606 } while (1);
2607
2608
2609 fill_in_last_segment:
2610
2611 /* fill the last segment */
2612 while (sges_left) {
2613 if (sges_left == 1)
2614 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2615 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2616 else
2617 ioc->base_add_sg_single(sg_local, sgl_flags |
2618 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2619 sg_scmd = sg_next(sg_scmd);
2620 sg_local += ioc->sge_size;
2621 sges_left--;
2622 }
2623
2624 return 0;
2625 }
2626
2627 /**
2628 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2629 * @ioc: per adapter object
2630 * @scmd: scsi command
2631 * @smid: system request message index
2632 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2633 * constructed on need.
2634 * Context: none.
2635 *
2636 * The main routine that builds scatter gather table from a given
2637 * scsi request sent via the .queuecommand main handler.
2638 *
2639 * Return: 0 success, anything else error
2640 */
2641 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2642 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2643 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2644 {
2645 Mpi25SCSIIORequest_t *mpi_request;
2646 dma_addr_t chain_dma;
2647 struct scatterlist *sg_scmd;
2648 void *sg_local, *chain;
2649 u32 chain_offset;
2650 u32 chain_length;
2651 int sges_left;
2652 u32 sges_in_segment;
2653 u8 simple_sgl_flags;
2654 u8 simple_sgl_flags_last;
2655 u8 chain_sgl_flags;
2656 struct chain_tracker *chain_req;
2657
2658 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2659
2660 /* init scatter gather flags */
2661 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2662 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2663 simple_sgl_flags_last = simple_sgl_flags |
2664 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2665 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2667
2668 /* Check if we need to build a native SG list. */
2669 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2670 smid, scmd, pcie_device) == 0)) {
2671 /* We built a native SG list, just return. */
2672 return 0;
2673 }
2674
2675 sg_scmd = scsi_sglist(scmd);
2676 sges_left = scsi_dma_map(scmd);
2677 if (sges_left < 0) {
2678 sdev_printk(KERN_ERR, scmd->device,
2679 "scsi_dma_map failed: request for %d bytes!\n",
2680 scsi_bufflen(scmd));
2681 return -ENOMEM;
2682 }
2683
2684 sg_local = &mpi_request->SGL;
2685 sges_in_segment = (ioc->request_sz -
2686 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2687 if (sges_left <= sges_in_segment)
2688 goto fill_in_last_segment;
2689
2690 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2691 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2692
2693 /* fill in main message segment when there is a chain following */
2694 while (sges_in_segment > 1) {
2695 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2696 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2697 sg_scmd = sg_next(sg_scmd);
2698 sg_local += ioc->sge_size_ieee;
2699 sges_left--;
2700 sges_in_segment--;
2701 }
2702
2703 /* initializing the pointers */
2704 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2705 if (!chain_req)
2706 return -1;
2707 chain = chain_req->chain_buffer;
2708 chain_dma = chain_req->chain_buffer_dma;
2709 do {
2710 sges_in_segment = (sges_left <=
2711 ioc->max_sges_in_chain_message) ? sges_left :
2712 ioc->max_sges_in_chain_message;
2713 chain_offset = (sges_left == sges_in_segment) ?
2714 0 : sges_in_segment;
2715 chain_length = sges_in_segment * ioc->sge_size_ieee;
2716 if (chain_offset)
2717 chain_length += ioc->sge_size_ieee;
2718 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2719 chain_offset, chain_length, chain_dma);
2720
2721 sg_local = chain;
2722 if (!chain_offset)
2723 goto fill_in_last_segment;
2724
2725 /* fill in chain segments */
2726 while (sges_in_segment) {
2727 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2728 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2729 sg_scmd = sg_next(sg_scmd);
2730 sg_local += ioc->sge_size_ieee;
2731 sges_left--;
2732 sges_in_segment--;
2733 }
2734
2735 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2736 if (!chain_req)
2737 return -1;
2738 chain = chain_req->chain_buffer;
2739 chain_dma = chain_req->chain_buffer_dma;
2740 } while (1);
2741
2742
2743 fill_in_last_segment:
2744
2745 /* fill the last segment */
2746 while (sges_left > 0) {
2747 if (sges_left == 1)
2748 _base_add_sg_single_ieee(sg_local,
2749 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2750 sg_dma_address(sg_scmd));
2751 else
2752 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2753 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2754 sg_scmd = sg_next(sg_scmd);
2755 sg_local += ioc->sge_size_ieee;
2756 sges_left--;
2757 }
2758
2759 return 0;
2760 }
2761
2762 /**
2763 * _base_build_sg_ieee - build generic sg for IEEE format
2764 * @ioc: per adapter object
2765 * @psge: virtual address for SGE
2766 * @data_out_dma: physical address for WRITES
2767 * @data_out_sz: data xfer size for WRITES
2768 * @data_in_dma: physical address for READS
2769 * @data_in_sz: data xfer size for READS
2770 */
2771 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2772 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2773 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2774 size_t data_in_sz)
2775 {
2776 u8 sgl_flags;
2777
2778 if (!data_out_sz && !data_in_sz) {
2779 _base_build_zero_len_sge_ieee(ioc, psge);
2780 return;
2781 }
2782
2783 if (data_out_sz && data_in_sz) {
2784 /* WRITE sgel first */
2785 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2786 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2787 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2788 data_out_dma);
2789
2790 /* incr sgel */
2791 psge += ioc->sge_size_ieee;
2792
2793 /* READ sgel last */
2794 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2795 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2796 data_in_dma);
2797 } else if (data_out_sz) /* WRITE */ {
2798 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2799 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2800 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2801 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2802 data_out_dma);
2803 } else if (data_in_sz) /* READ */ {
2804 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2805 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2806 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2807 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2808 data_in_dma);
2809 }
2810 }
2811
2812 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2813
2814 /**
2815 * _base_config_dma_addressing - set dma addressing
2816 * @ioc: per adapter object
2817 * @pdev: PCI device struct
2818 *
2819 * Return: 0 for success, non-zero for failure.
2820 */
2821 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2822 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2823 {
2824 struct sysinfo s;
2825
2826 if (ioc->is_mcpu_endpoint ||
2827 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2828 dma_get_required_mask(&pdev->dev) <= DMA_BIT_MASK(32))
2829 ioc->dma_mask = 32;
2830 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2831 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2832 ioc->dma_mask = 63;
2833 else
2834 ioc->dma_mask = 64;
2835
2836 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
2837 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
2838 return -ENODEV;
2839
2840 if (ioc->dma_mask > 32) {
2841 ioc->base_add_sg_single = &_base_add_sg_single_64;
2842 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2843 } else {
2844 ioc->base_add_sg_single = &_base_add_sg_single_32;
2845 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2846 }
2847
2848 si_meminfo(&s);
2849 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2850 ioc->dma_mask, convert_to_kb(s.totalram));
2851
2852 return 0;
2853 }
2854
2855 /**
2856 * _base_check_enable_msix - checks MSIX capabable.
2857 * @ioc: per adapter object
2858 *
2859 * Check to see if card is capable of MSIX, and set number
2860 * of available msix vectors
2861 */
2862 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)2863 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2864 {
2865 int base;
2866 u16 message_control;
2867
2868 /* Check whether controller SAS2008 B0 controller,
2869 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2870 */
2871 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2872 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2873 return -EINVAL;
2874 }
2875
2876 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2877 if (!base) {
2878 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2879 return -EINVAL;
2880 }
2881
2882 /* get msix vector count */
2883 /* NUMA_IO not supported for older controllers */
2884 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2885 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2886 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2887 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2888 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2889 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2890 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2891 ioc->msix_vector_count = 1;
2892 else {
2893 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2894 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2895 }
2896 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2897 ioc->msix_vector_count));
2898 return 0;
2899 }
2900
2901 /**
2902 * _base_free_irq - free irq
2903 * @ioc: per adapter object
2904 *
2905 * Freeing respective reply_queue from the list.
2906 */
2907 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)2908 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2909 {
2910 struct adapter_reply_queue *reply_q, *next;
2911
2912 if (list_empty(&ioc->reply_queue_list))
2913 return;
2914
2915 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2916 list_del(&reply_q->list);
2917 if (ioc->smp_affinity_enable)
2918 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2919 reply_q->msix_index), NULL);
2920 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2921 reply_q);
2922 kfree(reply_q);
2923 }
2924 }
2925
2926 /**
2927 * _base_request_irq - request irq
2928 * @ioc: per adapter object
2929 * @index: msix index into vector table
2930 *
2931 * Inserting respective reply_queue into the list.
2932 */
2933 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)2934 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2935 {
2936 struct pci_dev *pdev = ioc->pdev;
2937 struct adapter_reply_queue *reply_q;
2938 int r;
2939
2940 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2941 if (!reply_q) {
2942 ioc_err(ioc, "unable to allocate memory %zu!\n",
2943 sizeof(struct adapter_reply_queue));
2944 return -ENOMEM;
2945 }
2946 reply_q->ioc = ioc;
2947 reply_q->msix_index = index;
2948
2949 atomic_set(&reply_q->busy, 0);
2950 if (ioc->msix_enable)
2951 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2952 ioc->driver_name, ioc->id, index);
2953 else
2954 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2955 ioc->driver_name, ioc->id);
2956 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2957 IRQF_SHARED, reply_q->name, reply_q);
2958 if (r) {
2959 pr_err("%s: unable to allocate interrupt %d!\n",
2960 reply_q->name, pci_irq_vector(pdev, index));
2961 kfree(reply_q);
2962 return -EBUSY;
2963 }
2964
2965 INIT_LIST_HEAD(&reply_q->list);
2966 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2967 return 0;
2968 }
2969
2970 /**
2971 * _base_assign_reply_queues - assigning msix index for each cpu
2972 * @ioc: per adapter object
2973 *
2974 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2975 *
2976 * It would nice if we could call irq_set_affinity, however it is not
2977 * an exported symbol
2978 */
2979 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)2980 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2981 {
2982 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2983 struct adapter_reply_queue *reply_q;
2984 int local_numa_node;
2985
2986 if (!_base_is_controller_msix_enabled(ioc))
2987 return;
2988
2989 if (ioc->msix_load_balance)
2990 return;
2991
2992 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2993
2994 nr_cpus = num_online_cpus();
2995 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2996 ioc->facts.MaxMSIxVectors);
2997 if (!nr_msix)
2998 return;
2999
3000 if (ioc->smp_affinity_enable) {
3001
3002 /*
3003 * set irq affinity to local numa node for those irqs
3004 * corresponding to high iops queues.
3005 */
3006 if (ioc->high_iops_queues) {
3007 local_numa_node = dev_to_node(&ioc->pdev->dev);
3008 for (index = 0; index < ioc->high_iops_queues;
3009 index++) {
3010 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3011 index), cpumask_of_node(local_numa_node));
3012 }
3013 }
3014
3015 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3016 const cpumask_t *mask;
3017
3018 if (reply_q->msix_index < ioc->high_iops_queues)
3019 continue;
3020
3021 mask = pci_irq_get_affinity(ioc->pdev,
3022 reply_q->msix_index);
3023 if (!mask) {
3024 ioc_warn(ioc, "no affinity for msi %x\n",
3025 reply_q->msix_index);
3026 goto fall_back;
3027 }
3028
3029 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3030 if (cpu >= ioc->cpu_msix_table_sz)
3031 break;
3032 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3033 }
3034 }
3035 return;
3036 }
3037
3038 fall_back:
3039 cpu = cpumask_first(cpu_online_mask);
3040 nr_msix -= ioc->high_iops_queues;
3041 index = 0;
3042
3043 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3044 unsigned int i, group = nr_cpus / nr_msix;
3045
3046 if (reply_q->msix_index < ioc->high_iops_queues)
3047 continue;
3048
3049 if (cpu >= nr_cpus)
3050 break;
3051
3052 if (index < nr_cpus % nr_msix)
3053 group++;
3054
3055 for (i = 0 ; i < group ; i++) {
3056 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3057 cpu = cpumask_next(cpu, cpu_online_mask);
3058 }
3059 index++;
3060 }
3061 }
3062
3063 /**
3064 * _base_check_and_enable_high_iops_queues - enable high iops mode
3065 * @ioc: per adapter object
3066 * @hba_msix_vector_count: msix vectors supported by HBA
3067 *
3068 * Enable high iops queues only if
3069 * - HBA is a SEA/AERO controller and
3070 * - MSI-Xs vector supported by the HBA is 128 and
3071 * - total CPU count in the system >=16 and
3072 * - loaded driver with default max_msix_vectors module parameter and
3073 * - system booted in non kdump mode
3074 *
3075 * returns nothing.
3076 */
3077 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3078 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3079 int hba_msix_vector_count)
3080 {
3081 u16 lnksta, speed;
3082
3083 if (perf_mode == MPT_PERF_MODE_IOPS ||
3084 perf_mode == MPT_PERF_MODE_LATENCY) {
3085 ioc->high_iops_queues = 0;
3086 return;
3087 }
3088
3089 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3090
3091 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3092 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3093
3094 if (speed < 0x4) {
3095 ioc->high_iops_queues = 0;
3096 return;
3097 }
3098 }
3099
3100 if (!reset_devices && ioc->is_aero_ioc &&
3101 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3102 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3103 max_msix_vectors == -1)
3104 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3105 else
3106 ioc->high_iops_queues = 0;
3107 }
3108
3109 /**
3110 * _base_disable_msix - disables msix
3111 * @ioc: per adapter object
3112 *
3113 */
3114 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3115 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3116 {
3117 if (!ioc->msix_enable)
3118 return;
3119 pci_free_irq_vectors(ioc->pdev);
3120 ioc->msix_enable = 0;
3121 }
3122
3123 /**
3124 * _base_alloc_irq_vectors - allocate msix vectors
3125 * @ioc: per adapter object
3126 *
3127 */
3128 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3129 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3130 {
3131 int i, irq_flags = PCI_IRQ_MSIX;
3132 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3133 struct irq_affinity *descp = &desc;
3134
3135 if (ioc->smp_affinity_enable)
3136 irq_flags |= PCI_IRQ_AFFINITY;
3137 else
3138 descp = NULL;
3139
3140 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3141 ioc->reply_queue_count);
3142
3143 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3144 ioc->high_iops_queues,
3145 ioc->reply_queue_count, irq_flags, descp);
3146
3147 return i;
3148 }
3149
3150 /**
3151 * _base_enable_msix - enables msix, failback to io_apic
3152 * @ioc: per adapter object
3153 *
3154 */
3155 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3156 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3157 {
3158 int r;
3159 int i, local_max_msix_vectors;
3160 u8 try_msix = 0;
3161
3162 ioc->msix_load_balance = false;
3163
3164 if (msix_disable == -1 || msix_disable == 0)
3165 try_msix = 1;
3166
3167 if (!try_msix)
3168 goto try_ioapic;
3169
3170 if (_base_check_enable_msix(ioc) != 0)
3171 goto try_ioapic;
3172
3173 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3174 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3175 ioc->cpu_count, max_msix_vectors);
3176 if (ioc->is_aero_ioc)
3177 _base_check_and_enable_high_iops_queues(ioc,
3178 ioc->msix_vector_count);
3179 ioc->reply_queue_count =
3180 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3181 ioc->msix_vector_count);
3182
3183 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3184 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3185 else
3186 local_max_msix_vectors = max_msix_vectors;
3187
3188 if (local_max_msix_vectors > 0)
3189 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3190 ioc->reply_queue_count);
3191 else if (local_max_msix_vectors == 0)
3192 goto try_ioapic;
3193
3194 /*
3195 * Enable msix_load_balance only if combined reply queue mode is
3196 * disabled on SAS3 & above generation HBA devices.
3197 */
3198 if (!ioc->combined_reply_queue &&
3199 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3200 ioc_info(ioc,
3201 "combined ReplyQueue is off, Enabling msix load balance\n");
3202 ioc->msix_load_balance = true;
3203 }
3204
3205 /*
3206 * smp affinity setting is not need when msix load balance
3207 * is enabled.
3208 */
3209 if (ioc->msix_load_balance)
3210 ioc->smp_affinity_enable = 0;
3211
3212 r = _base_alloc_irq_vectors(ioc);
3213 if (r < 0) {
3214 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3215 goto try_ioapic;
3216 }
3217
3218 ioc->msix_enable = 1;
3219 ioc->reply_queue_count = r;
3220 for (i = 0; i < ioc->reply_queue_count; i++) {
3221 r = _base_request_irq(ioc, i);
3222 if (r) {
3223 _base_free_irq(ioc);
3224 _base_disable_msix(ioc);
3225 goto try_ioapic;
3226 }
3227 }
3228
3229 ioc_info(ioc, "High IOPs queues : %s\n",
3230 ioc->high_iops_queues ? "enabled" : "disabled");
3231
3232 return 0;
3233
3234 /* failback to io_apic interrupt routing */
3235 try_ioapic:
3236 ioc->high_iops_queues = 0;
3237 ioc_info(ioc, "High IOPs queues : disabled\n");
3238 ioc->reply_queue_count = 1;
3239 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3240 if (r < 0) {
3241 dfailprintk(ioc,
3242 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3243 r));
3244 } else
3245 r = _base_request_irq(ioc, 0);
3246
3247 return r;
3248 }
3249
3250 /**
3251 * mpt3sas_base_unmap_resources - free controller resources
3252 * @ioc: per adapter object
3253 */
3254 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3255 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3256 {
3257 struct pci_dev *pdev = ioc->pdev;
3258
3259 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3260
3261 _base_free_irq(ioc);
3262 _base_disable_msix(ioc);
3263
3264 kfree(ioc->replyPostRegisterIndex);
3265 ioc->replyPostRegisterIndex = NULL;
3266
3267
3268 if (ioc->chip_phys) {
3269 iounmap(ioc->chip);
3270 ioc->chip_phys = 0;
3271 }
3272
3273 if (pci_is_enabled(pdev)) {
3274 pci_release_selected_regions(ioc->pdev, ioc->bars);
3275 pci_disable_pcie_error_reporting(pdev);
3276 pci_disable_device(pdev);
3277 }
3278 }
3279
3280 static int
3281 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3282
3283 /**
3284 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3285 * and if it is in fault state then issue diag reset.
3286 * @ioc: per adapter object
3287 *
3288 * Returns: 0 for success, non-zero for failure.
3289 */
3290 static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3291 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3292 {
3293 u32 ioc_state;
3294 int rc = -EFAULT;
3295
3296 dinitprintk(ioc, pr_info("%s\n", __func__));
3297 if (ioc->pci_error_recovery)
3298 return 0;
3299 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3300 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3301
3302 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3303 mpt3sas_print_fault_code(ioc, ioc_state &
3304 MPI2_DOORBELL_DATA_MASK);
3305 rc = _base_diag_reset(ioc);
3306 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3307 MPI2_IOC_STATE_COREDUMP) {
3308 mpt3sas_print_coredump_info(ioc, ioc_state &
3309 MPI2_DOORBELL_DATA_MASK);
3310 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3311 rc = _base_diag_reset(ioc);
3312 }
3313
3314 return rc;
3315 }
3316
3317 /**
3318 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3319 * @ioc: per adapter object
3320 *
3321 * Return: 0 for success, non-zero for failure.
3322 */
3323 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3324 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3325 {
3326 struct pci_dev *pdev = ioc->pdev;
3327 u32 memap_sz;
3328 u32 pio_sz;
3329 int i, r = 0, rc;
3330 u64 pio_chip = 0;
3331 phys_addr_t chip_phys = 0;
3332 struct adapter_reply_queue *reply_q;
3333
3334 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3335
3336 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3337 if (pci_enable_device_mem(pdev)) {
3338 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3339 ioc->bars = 0;
3340 return -ENODEV;
3341 }
3342
3343
3344 if (pci_request_selected_regions(pdev, ioc->bars,
3345 ioc->driver_name)) {
3346 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3347 ioc->bars = 0;
3348 r = -ENODEV;
3349 goto out_fail;
3350 }
3351
3352 /* AER (Advanced Error Reporting) hooks */
3353 pci_enable_pcie_error_reporting(pdev);
3354
3355 pci_set_master(pdev);
3356
3357
3358 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3359 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3360 r = -ENODEV;
3361 goto out_fail;
3362 }
3363
3364 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3365 (!memap_sz || !pio_sz); i++) {
3366 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3367 if (pio_sz)
3368 continue;
3369 pio_chip = (u64)pci_resource_start(pdev, i);
3370 pio_sz = pci_resource_len(pdev, i);
3371 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3372 if (memap_sz)
3373 continue;
3374 ioc->chip_phys = pci_resource_start(pdev, i);
3375 chip_phys = ioc->chip_phys;
3376 memap_sz = pci_resource_len(pdev, i);
3377 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3378 }
3379 }
3380
3381 if (ioc->chip == NULL) {
3382 ioc_err(ioc,
3383 "unable to map adapter memory! or resource not found\n");
3384 r = -EINVAL;
3385 goto out_fail;
3386 }
3387
3388 mpt3sas_base_mask_interrupts(ioc);
3389
3390 r = _base_get_ioc_facts(ioc);
3391 if (r) {
3392 rc = _base_check_for_fault_and_issue_reset(ioc);
3393 if (rc || (_base_get_ioc_facts(ioc)))
3394 goto out_fail;
3395 }
3396
3397 if (!ioc->rdpq_array_enable_assigned) {
3398 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3399 ioc->rdpq_array_enable_assigned = 1;
3400 }
3401
3402 r = _base_enable_msix(ioc);
3403 if (r)
3404 goto out_fail;
3405
3406 if (!ioc->is_driver_loading)
3407 _base_init_irqpolls(ioc);
3408 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3409 * revision HBAs and also only when reply queue count is greater than 8
3410 */
3411 if (ioc->combined_reply_queue) {
3412 /* Determine the Supplemental Reply Post Host Index Registers
3413 * Addresse. Supplemental Reply Post Host Index Registers
3414 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3415 * each register is at offset bytes of
3416 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3417 */
3418 ioc->replyPostRegisterIndex = kcalloc(
3419 ioc->combined_reply_index_count,
3420 sizeof(resource_size_t *), GFP_KERNEL);
3421 if (!ioc->replyPostRegisterIndex) {
3422 ioc_err(ioc,
3423 "allocation for replyPostRegisterIndex failed!\n");
3424 r = -ENOMEM;
3425 goto out_fail;
3426 }
3427
3428 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3429 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3430 ((u8 __force *)&ioc->chip->Doorbell +
3431 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3432 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3433 }
3434 }
3435
3436 if (ioc->is_warpdrive) {
3437 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3438 &ioc->chip->ReplyPostHostIndex;
3439
3440 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3441 ioc->reply_post_host_index[i] =
3442 (resource_size_t __iomem *)
3443 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3444 * 4)));
3445 }
3446
3447 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3448 pr_info("%s: %s enabled: IRQ %d\n",
3449 reply_q->name,
3450 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3451 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3452
3453 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3454 &chip_phys, ioc->chip, memap_sz);
3455 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3456 (unsigned long long)pio_chip, pio_sz);
3457
3458 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3459 pci_save_state(pdev);
3460 return 0;
3461
3462 out_fail:
3463 mpt3sas_base_unmap_resources(ioc);
3464 return r;
3465 }
3466
3467 /**
3468 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3469 * @ioc: per adapter object
3470 * @smid: system request message index(smid zero is invalid)
3471 *
3472 * Return: virt pointer to message frame.
3473 */
3474 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3475 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3476 {
3477 return (void *)(ioc->request + (smid * ioc->request_sz));
3478 }
3479
3480 /**
3481 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3482 * @ioc: per adapter object
3483 * @smid: system request message index
3484 *
3485 * Return: virt pointer to sense buffer.
3486 */
3487 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3488 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3489 {
3490 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3491 }
3492
3493 /**
3494 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3495 * @ioc: per adapter object
3496 * @smid: system request message index
3497 *
3498 * Return: phys pointer to the low 32bit address of the sense buffer.
3499 */
3500 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3501 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3504 SCSI_SENSE_BUFFERSIZE));
3505 }
3506
3507 /**
3508 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3509 * @ioc: per adapter object
3510 * @smid: system request message index
3511 *
3512 * Return: virt pointer to a PCIe SGL.
3513 */
3514 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3515 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3516 {
3517 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3518 }
3519
3520 /**
3521 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3522 * @ioc: per adapter object
3523 * @smid: system request message index
3524 *
3525 * Return: phys pointer to the address of the PCIe buffer.
3526 */
3527 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3528 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3529 {
3530 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3531 }
3532
3533 /**
3534 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3535 * @ioc: per adapter object
3536 * @phys_addr: lower 32 physical addr of the reply
3537 *
3538 * Converts 32bit lower physical addr into a virt address.
3539 */
3540 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3541 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3542 {
3543 if (!phys_addr)
3544 return NULL;
3545 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3546 }
3547
3548 /**
3549 * _base_get_msix_index - get the msix index
3550 * @ioc: per adapter object
3551 * @scmd: scsi_cmnd object
3552 *
3553 * returns msix index of general reply queues,
3554 * i.e. reply queue on which IO request's reply
3555 * should be posted by the HBA firmware.
3556 */
3557 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3558 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3559 struct scsi_cmnd *scmd)
3560 {
3561 /* Enables reply_queue load balancing */
3562 if (ioc->msix_load_balance)
3563 return ioc->reply_queue_count ?
3564 base_mod64(atomic64_add_return(1,
3565 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3566
3567 return ioc->cpu_msix_table[raw_smp_processor_id()];
3568 }
3569
3570 /**
3571 * _base_sdev_nr_inflight_request -get number of inflight requests
3572 * of a request queue.
3573 * @q: request_queue object
3574 *
3575 * returns number of inflight request of a request queue.
3576 */
3577 inline unsigned long
_base_sdev_nr_inflight_request(struct request_queue * q)3578 _base_sdev_nr_inflight_request(struct request_queue *q)
3579 {
3580 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3581
3582 return atomic_read(&hctx->nr_active);
3583 }
3584
3585
3586 /**
3587 * _base_get_high_iops_msix_index - get the msix index of
3588 * high iops queues
3589 * @ioc: per adapter object
3590 * @scmd: scsi_cmnd object
3591 *
3592 * Returns: msix index of high iops reply queues.
3593 * i.e. high iops reply queue on which IO request's
3594 * reply should be posted by the HBA firmware.
3595 */
3596 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3597 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3598 struct scsi_cmnd *scmd)
3599 {
3600 /**
3601 * Round robin the IO interrupts among the high iops
3602 * reply queues in terms of batch count 16 when outstanding
3603 * IOs on the target device is >=8.
3604 */
3605 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3606 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3607 return base_mod64((
3608 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3609 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3610 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3611
3612 return _base_get_msix_index(ioc, scmd);
3613 }
3614
3615 /**
3616 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3617 * @ioc: per adapter object
3618 * @cb_idx: callback index
3619 *
3620 * Return: smid (zero is invalid)
3621 */
3622 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3623 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3624 {
3625 unsigned long flags;
3626 struct request_tracker *request;
3627 u16 smid;
3628
3629 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3630 if (list_empty(&ioc->internal_free_list)) {
3631 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3632 ioc_err(ioc, "%s: smid not available\n", __func__);
3633 return 0;
3634 }
3635
3636 request = list_entry(ioc->internal_free_list.next,
3637 struct request_tracker, tracker_list);
3638 request->cb_idx = cb_idx;
3639 smid = request->smid;
3640 list_del(&request->tracker_list);
3641 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3642 return smid;
3643 }
3644
3645 /**
3646 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3647 * @ioc: per adapter object
3648 * @cb_idx: callback index
3649 * @scmd: pointer to scsi command object
3650 *
3651 * Return: smid (zero is invalid)
3652 */
3653 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3654 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3655 struct scsi_cmnd *scmd)
3656 {
3657 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3658 unsigned int tag = scmd->request->tag;
3659 u16 smid;
3660
3661 smid = tag + 1;
3662 request->cb_idx = cb_idx;
3663 request->smid = smid;
3664 request->scmd = scmd;
3665 INIT_LIST_HEAD(&request->chain_list);
3666 return smid;
3667 }
3668
3669 /**
3670 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3671 * @ioc: per adapter object
3672 * @cb_idx: callback index
3673 *
3674 * Return: smid (zero is invalid)
3675 */
3676 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3677 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3678 {
3679 unsigned long flags;
3680 struct request_tracker *request;
3681 u16 smid;
3682
3683 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3684 if (list_empty(&ioc->hpr_free_list)) {
3685 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3686 return 0;
3687 }
3688
3689 request = list_entry(ioc->hpr_free_list.next,
3690 struct request_tracker, tracker_list);
3691 request->cb_idx = cb_idx;
3692 smid = request->smid;
3693 list_del(&request->tracker_list);
3694 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3695 return smid;
3696 }
3697
3698 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3699 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3700 {
3701 /*
3702 * See _wait_for_commands_to_complete() call with regards to this code.
3703 */
3704 if (ioc->shost_recovery && ioc->pending_io_count) {
3705 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3706 if (ioc->pending_io_count == 0)
3707 wake_up(&ioc->reset_wq);
3708 }
3709 }
3710
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3711 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3712 struct scsiio_tracker *st)
3713 {
3714 if (WARN_ON(st->smid == 0))
3715 return;
3716 st->cb_idx = 0xFF;
3717 st->direct_io = 0;
3718 st->scmd = NULL;
3719 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3720 st->smid = 0;
3721 }
3722
3723 /**
3724 * mpt3sas_base_free_smid - put smid back on free_list
3725 * @ioc: per adapter object
3726 * @smid: system request message index
3727 */
3728 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)3729 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3730 {
3731 unsigned long flags;
3732 int i;
3733
3734 if (smid < ioc->hi_priority_smid) {
3735 struct scsiio_tracker *st;
3736 void *request;
3737
3738 st = _get_st_from_smid(ioc, smid);
3739 if (!st) {
3740 _base_recovery_check(ioc);
3741 return;
3742 }
3743
3744 /* Clear MPI request frame */
3745 request = mpt3sas_base_get_msg_frame(ioc, smid);
3746 memset(request, 0, ioc->request_sz);
3747
3748 mpt3sas_base_clear_st(ioc, st);
3749 _base_recovery_check(ioc);
3750 return;
3751 }
3752
3753 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3754 if (smid < ioc->internal_smid) {
3755 /* hi-priority */
3756 i = smid - ioc->hi_priority_smid;
3757 ioc->hpr_lookup[i].cb_idx = 0xFF;
3758 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3759 } else if (smid <= ioc->hba_queue_depth) {
3760 /* internal queue */
3761 i = smid - ioc->internal_smid;
3762 ioc->internal_lookup[i].cb_idx = 0xFF;
3763 list_add(&ioc->internal_lookup[i].tracker_list,
3764 &ioc->internal_free_list);
3765 }
3766 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3767 }
3768
3769 /**
3770 * _base_mpi_ep_writeq - 32 bit write to MMIO
3771 * @b: data payload
3772 * @addr: address in MMIO space
3773 * @writeq_lock: spin lock
3774 *
3775 * This special handling for MPI EP to take care of 32 bit
3776 * environment where its not quarenteed to send the entire word
3777 * in one transfer.
3778 */
3779 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3780 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3781 spinlock_t *writeq_lock)
3782 {
3783 unsigned long flags;
3784
3785 spin_lock_irqsave(writeq_lock, flags);
3786 __raw_writel((u32)(b), addr);
3787 __raw_writel((u32)(b >> 32), (addr + 4));
3788 spin_unlock_irqrestore(writeq_lock, flags);
3789 }
3790
3791 /**
3792 * _base_writeq - 64 bit write to MMIO
3793 * @b: data payload
3794 * @addr: address in MMIO space
3795 * @writeq_lock: spin lock
3796 *
3797 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3798 * care of 32 bit environment where its not quarenteed to send the entire word
3799 * in one transfer.
3800 */
3801 #if defined(writeq) && defined(CONFIG_64BIT)
3802 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3803 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3804 {
3805 wmb();
3806 __raw_writeq(b, addr);
3807 barrier();
3808 }
3809 #else
3810 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3811 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3812 {
3813 _base_mpi_ep_writeq(b, addr, writeq_lock);
3814 }
3815 #endif
3816
3817 /**
3818 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3819 * variable of scsi tracker
3820 * @ioc: per adapter object
3821 * @smid: system request message index
3822 *
3823 * returns msix index.
3824 */
3825 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)3826 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3827 {
3828 struct scsiio_tracker *st = NULL;
3829
3830 if (smid < ioc->hi_priority_smid)
3831 st = _get_st_from_smid(ioc, smid);
3832
3833 if (st == NULL)
3834 return _base_get_msix_index(ioc, NULL);
3835
3836 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3837 return st->msix_io;
3838 }
3839
3840 /**
3841 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3842 * @ioc: per adapter object
3843 * @smid: system request message index
3844 * @handle: device handle
3845 */
3846 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3847 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3848 u16 smid, u16 handle)
3849 {
3850 Mpi2RequestDescriptorUnion_t descriptor;
3851 u64 *request = (u64 *)&descriptor;
3852 void *mpi_req_iomem;
3853 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3854
3855 _clone_sg_entries(ioc, (void *) mfp, smid);
3856 mpi_req_iomem = (void __force *)ioc->chip +
3857 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3858 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3859 ioc->request_sz);
3860 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3861 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3862 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3863 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3864 descriptor.SCSIIO.LMID = 0;
3865 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3866 &ioc->scsi_lookup_lock);
3867 }
3868
3869 /**
3870 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3871 * @ioc: per adapter object
3872 * @smid: system request message index
3873 * @handle: device handle
3874 */
3875 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3876 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3877 {
3878 Mpi2RequestDescriptorUnion_t descriptor;
3879 u64 *request = (u64 *)&descriptor;
3880
3881
3882 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3883 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3884 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3885 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3886 descriptor.SCSIIO.LMID = 0;
3887 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3888 &ioc->scsi_lookup_lock);
3889 }
3890
3891 /**
3892 * _base_put_smid_fast_path - send fast path request to firmware
3893 * @ioc: per adapter object
3894 * @smid: system request message index
3895 * @handle: device handle
3896 */
3897 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3898 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3899 u16 handle)
3900 {
3901 Mpi2RequestDescriptorUnion_t descriptor;
3902 u64 *request = (u64 *)&descriptor;
3903
3904 descriptor.SCSIIO.RequestFlags =
3905 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3906 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3907 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3908 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3909 descriptor.SCSIIO.LMID = 0;
3910 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3911 &ioc->scsi_lookup_lock);
3912 }
3913
3914 /**
3915 * _base_put_smid_hi_priority - send Task Management request to firmware
3916 * @ioc: per adapter object
3917 * @smid: system request message index
3918 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3919 */
3920 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3921 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3922 u16 msix_task)
3923 {
3924 Mpi2RequestDescriptorUnion_t descriptor;
3925 void *mpi_req_iomem;
3926 u64 *request;
3927
3928 if (ioc->is_mcpu_endpoint) {
3929 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3930
3931 /* TBD 256 is offset within sys register. */
3932 mpi_req_iomem = (void __force *)ioc->chip
3933 + MPI_FRAME_START_OFFSET
3934 + (smid * ioc->request_sz);
3935 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3936 ioc->request_sz);
3937 }
3938
3939 request = (u64 *)&descriptor;
3940
3941 descriptor.HighPriority.RequestFlags =
3942 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3943 descriptor.HighPriority.MSIxIndex = msix_task;
3944 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3945 descriptor.HighPriority.LMID = 0;
3946 descriptor.HighPriority.Reserved1 = 0;
3947 if (ioc->is_mcpu_endpoint)
3948 _base_mpi_ep_writeq(*request,
3949 &ioc->chip->RequestDescriptorPostLow,
3950 &ioc->scsi_lookup_lock);
3951 else
3952 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3953 &ioc->scsi_lookup_lock);
3954 }
3955
3956 /**
3957 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3958 * firmware
3959 * @ioc: per adapter object
3960 * @smid: system request message index
3961 */
3962 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)3963 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3964 {
3965 Mpi2RequestDescriptorUnion_t descriptor;
3966 u64 *request = (u64 *)&descriptor;
3967
3968 descriptor.Default.RequestFlags =
3969 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3970 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3971 descriptor.Default.SMID = cpu_to_le16(smid);
3972 descriptor.Default.LMID = 0;
3973 descriptor.Default.DescriptorTypeDependent = 0;
3974 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3975 &ioc->scsi_lookup_lock);
3976 }
3977
3978 /**
3979 * _base_put_smid_default - Default, primarily used for config pages
3980 * @ioc: per adapter object
3981 * @smid: system request message index
3982 */
3983 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)3984 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3985 {
3986 Mpi2RequestDescriptorUnion_t descriptor;
3987 void *mpi_req_iomem;
3988 u64 *request;
3989
3990 if (ioc->is_mcpu_endpoint) {
3991 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3992
3993 _clone_sg_entries(ioc, (void *) mfp, smid);
3994 /* TBD 256 is offset within sys register */
3995 mpi_req_iomem = (void __force *)ioc->chip +
3996 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3997 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3998 ioc->request_sz);
3999 }
4000 request = (u64 *)&descriptor;
4001 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4002 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4003 descriptor.Default.SMID = cpu_to_le16(smid);
4004 descriptor.Default.LMID = 0;
4005 descriptor.Default.DescriptorTypeDependent = 0;
4006 if (ioc->is_mcpu_endpoint)
4007 _base_mpi_ep_writeq(*request,
4008 &ioc->chip->RequestDescriptorPostLow,
4009 &ioc->scsi_lookup_lock);
4010 else
4011 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4012 &ioc->scsi_lookup_lock);
4013 }
4014
4015 /**
4016 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4017 * Atomic Request Descriptor
4018 * @ioc: per adapter object
4019 * @smid: system request message index
4020 * @handle: device handle, unused in this function, for function type match
4021 *
4022 * Return nothing.
4023 */
4024 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4025 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4026 u16 handle)
4027 {
4028 Mpi26AtomicRequestDescriptor_t descriptor;
4029 u32 *request = (u32 *)&descriptor;
4030
4031 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4032 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4033 descriptor.SMID = cpu_to_le16(smid);
4034
4035 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4036 }
4037
4038 /**
4039 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4040 * using Atomic Request Descriptor
4041 * @ioc: per adapter object
4042 * @smid: system request message index
4043 * @handle: device handle, unused in this function, for function type match
4044 * Return nothing
4045 */
4046 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4047 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4048 u16 handle)
4049 {
4050 Mpi26AtomicRequestDescriptor_t descriptor;
4051 u32 *request = (u32 *)&descriptor;
4052
4053 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4054 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4055 descriptor.SMID = cpu_to_le16(smid);
4056
4057 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4058 }
4059
4060 /**
4061 * _base_put_smid_hi_priority_atomic - send Task Management request to
4062 * firmware using Atomic Request Descriptor
4063 * @ioc: per adapter object
4064 * @smid: system request message index
4065 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4066 *
4067 * Return nothing.
4068 */
4069 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4070 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4071 u16 msix_task)
4072 {
4073 Mpi26AtomicRequestDescriptor_t descriptor;
4074 u32 *request = (u32 *)&descriptor;
4075
4076 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4077 descriptor.MSIxIndex = msix_task;
4078 descriptor.SMID = cpu_to_le16(smid);
4079
4080 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4081 }
4082
4083 /**
4084 * _base_put_smid_default - Default, primarily used for config pages
4085 * use Atomic Request Descriptor
4086 * @ioc: per adapter object
4087 * @smid: system request message index
4088 *
4089 * Return nothing.
4090 */
4091 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4092 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4093 {
4094 Mpi26AtomicRequestDescriptor_t descriptor;
4095 u32 *request = (u32 *)&descriptor;
4096
4097 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4098 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4099 descriptor.SMID = cpu_to_le16(smid);
4100
4101 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4102 }
4103
4104 /**
4105 * _base_display_OEMs_branding - Display branding string
4106 * @ioc: per adapter object
4107 */
4108 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4109 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4110 {
4111 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4112 return;
4113
4114 switch (ioc->pdev->subsystem_vendor) {
4115 case PCI_VENDOR_ID_INTEL:
4116 switch (ioc->pdev->device) {
4117 case MPI2_MFGPAGE_DEVID_SAS2008:
4118 switch (ioc->pdev->subsystem_device) {
4119 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4120 ioc_info(ioc, "%s\n",
4121 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4122 break;
4123 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4124 ioc_info(ioc, "%s\n",
4125 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4126 break;
4127 case MPT2SAS_INTEL_SSD910_SSDID:
4128 ioc_info(ioc, "%s\n",
4129 MPT2SAS_INTEL_SSD910_BRANDING);
4130 break;
4131 default:
4132 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4133 ioc->pdev->subsystem_device);
4134 break;
4135 }
4136 break;
4137 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4138 switch (ioc->pdev->subsystem_device) {
4139 case MPT2SAS_INTEL_RS25GB008_SSDID:
4140 ioc_info(ioc, "%s\n",
4141 MPT2SAS_INTEL_RS25GB008_BRANDING);
4142 break;
4143 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4144 ioc_info(ioc, "%s\n",
4145 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4146 break;
4147 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4148 ioc_info(ioc, "%s\n",
4149 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4150 break;
4151 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4152 ioc_info(ioc, "%s\n",
4153 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4154 break;
4155 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4156 ioc_info(ioc, "%s\n",
4157 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4158 break;
4159 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4160 ioc_info(ioc, "%s\n",
4161 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4162 break;
4163 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4164 ioc_info(ioc, "%s\n",
4165 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4166 break;
4167 default:
4168 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4169 ioc->pdev->subsystem_device);
4170 break;
4171 }
4172 break;
4173 case MPI25_MFGPAGE_DEVID_SAS3008:
4174 switch (ioc->pdev->subsystem_device) {
4175 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4176 ioc_info(ioc, "%s\n",
4177 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4178 break;
4179
4180 case MPT3SAS_INTEL_RS3GC008_SSDID:
4181 ioc_info(ioc, "%s\n",
4182 MPT3SAS_INTEL_RS3GC008_BRANDING);
4183 break;
4184 case MPT3SAS_INTEL_RS3FC044_SSDID:
4185 ioc_info(ioc, "%s\n",
4186 MPT3SAS_INTEL_RS3FC044_BRANDING);
4187 break;
4188 case MPT3SAS_INTEL_RS3UC080_SSDID:
4189 ioc_info(ioc, "%s\n",
4190 MPT3SAS_INTEL_RS3UC080_BRANDING);
4191 break;
4192 default:
4193 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4194 ioc->pdev->subsystem_device);
4195 break;
4196 }
4197 break;
4198 default:
4199 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200 ioc->pdev->subsystem_device);
4201 break;
4202 }
4203 break;
4204 case PCI_VENDOR_ID_DELL:
4205 switch (ioc->pdev->device) {
4206 case MPI2_MFGPAGE_DEVID_SAS2008:
4207 switch (ioc->pdev->subsystem_device) {
4208 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4209 ioc_info(ioc, "%s\n",
4210 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4211 break;
4212 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4213 ioc_info(ioc, "%s\n",
4214 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4215 break;
4216 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4217 ioc_info(ioc, "%s\n",
4218 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4219 break;
4220 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4221 ioc_info(ioc, "%s\n",
4222 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4223 break;
4224 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4225 ioc_info(ioc, "%s\n",
4226 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4227 break;
4228 case MPT2SAS_DELL_PERC_H200_SSDID:
4229 ioc_info(ioc, "%s\n",
4230 MPT2SAS_DELL_PERC_H200_BRANDING);
4231 break;
4232 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4233 ioc_info(ioc, "%s\n",
4234 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4235 break;
4236 default:
4237 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4238 ioc->pdev->subsystem_device);
4239 break;
4240 }
4241 break;
4242 case MPI25_MFGPAGE_DEVID_SAS3008:
4243 switch (ioc->pdev->subsystem_device) {
4244 case MPT3SAS_DELL_12G_HBA_SSDID:
4245 ioc_info(ioc, "%s\n",
4246 MPT3SAS_DELL_12G_HBA_BRANDING);
4247 break;
4248 default:
4249 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4250 ioc->pdev->subsystem_device);
4251 break;
4252 }
4253 break;
4254 default:
4255 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4256 ioc->pdev->subsystem_device);
4257 break;
4258 }
4259 break;
4260 case PCI_VENDOR_ID_CISCO:
4261 switch (ioc->pdev->device) {
4262 case MPI25_MFGPAGE_DEVID_SAS3008:
4263 switch (ioc->pdev->subsystem_device) {
4264 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4265 ioc_info(ioc, "%s\n",
4266 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4267 break;
4268 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4269 ioc_info(ioc, "%s\n",
4270 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4271 break;
4272 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4273 ioc_info(ioc, "%s\n",
4274 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4275 break;
4276 default:
4277 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4278 ioc->pdev->subsystem_device);
4279 break;
4280 }
4281 break;
4282 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4283 switch (ioc->pdev->subsystem_device) {
4284 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4285 ioc_info(ioc, "%s\n",
4286 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4287 break;
4288 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4289 ioc_info(ioc, "%s\n",
4290 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4291 break;
4292 default:
4293 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4294 ioc->pdev->subsystem_device);
4295 break;
4296 }
4297 break;
4298 default:
4299 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4300 ioc->pdev->subsystem_device);
4301 break;
4302 }
4303 break;
4304 case MPT2SAS_HP_3PAR_SSVID:
4305 switch (ioc->pdev->device) {
4306 case MPI2_MFGPAGE_DEVID_SAS2004:
4307 switch (ioc->pdev->subsystem_device) {
4308 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4309 ioc_info(ioc, "%s\n",
4310 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4311 break;
4312 default:
4313 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4314 ioc->pdev->subsystem_device);
4315 break;
4316 }
4317 break;
4318 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4319 switch (ioc->pdev->subsystem_device) {
4320 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4321 ioc_info(ioc, "%s\n",
4322 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4323 break;
4324 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4325 ioc_info(ioc, "%s\n",
4326 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4327 break;
4328 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4329 ioc_info(ioc, "%s\n",
4330 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4331 break;
4332 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4333 ioc_info(ioc, "%s\n",
4334 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4335 break;
4336 default:
4337 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4338 ioc->pdev->subsystem_device);
4339 break;
4340 }
4341 break;
4342 default:
4343 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4344 ioc->pdev->subsystem_device);
4345 break;
4346 }
4347 default:
4348 break;
4349 }
4350 }
4351
4352 /**
4353 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4354 * version from FW Image Header.
4355 * @ioc: per adapter object
4356 *
4357 * Return: 0 for success, non-zero for failure.
4358 */
4359 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4360 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4361 {
4362 Mpi2FWImageHeader_t *fw_img_hdr;
4363 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4364 Mpi25FWUploadRequest_t *mpi_request;
4365 Mpi2FWUploadReply_t mpi_reply;
4366 int r = 0;
4367 u32 package_version = 0;
4368 void *fwpkg_data = NULL;
4369 dma_addr_t fwpkg_data_dma;
4370 u16 smid, ioc_status;
4371 size_t data_length;
4372
4373 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4374
4375 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4376 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4377 return -EAGAIN;
4378 }
4379
4380 data_length = sizeof(Mpi2FWImageHeader_t);
4381 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4382 &fwpkg_data_dma, GFP_KERNEL);
4383 if (!fwpkg_data) {
4384 ioc_err(ioc,
4385 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4386 __FILE__, __LINE__, __func__);
4387 return -ENOMEM;
4388 }
4389
4390 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4391 if (!smid) {
4392 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4393 r = -EAGAIN;
4394 goto out;
4395 }
4396
4397 ioc->base_cmds.status = MPT3_CMD_PENDING;
4398 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4399 ioc->base_cmds.smid = smid;
4400 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4401 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4402 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4403 mpi_request->ImageSize = cpu_to_le32(data_length);
4404 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4405 data_length);
4406 init_completion(&ioc->base_cmds.done);
4407 ioc->put_smid_default(ioc, smid);
4408 /* Wait for 15 seconds */
4409 wait_for_completion_timeout(&ioc->base_cmds.done,
4410 FW_IMG_HDR_READ_TIMEOUT*HZ);
4411 ioc_info(ioc, "%s: complete\n", __func__);
4412 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4413 ioc_err(ioc, "%s: timeout\n", __func__);
4414 _debug_dump_mf(mpi_request,
4415 sizeof(Mpi25FWUploadRequest_t)/4);
4416 r = -ETIME;
4417 } else {
4418 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4419 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4420 memcpy(&mpi_reply, ioc->base_cmds.reply,
4421 sizeof(Mpi2FWUploadReply_t));
4422 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4423 MPI2_IOCSTATUS_MASK;
4424 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4425 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4426 if (le32_to_cpu(fw_img_hdr->Signature) ==
4427 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4428 cmp_img_hdr =
4429 (Mpi26ComponentImageHeader_t *)
4430 (fwpkg_data);
4431 package_version =
4432 le32_to_cpu(
4433 cmp_img_hdr->ApplicationSpecific);
4434 } else
4435 package_version =
4436 le32_to_cpu(
4437 fw_img_hdr->PackageVersion.Word);
4438 if (package_version)
4439 ioc_info(ioc,
4440 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4441 ((package_version) & 0xFF000000) >> 24,
4442 ((package_version) & 0x00FF0000) >> 16,
4443 ((package_version) & 0x0000FF00) >> 8,
4444 (package_version) & 0x000000FF);
4445 } else {
4446 _debug_dump_mf(&mpi_reply,
4447 sizeof(Mpi2FWUploadReply_t)/4);
4448 }
4449 }
4450 }
4451 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4452 out:
4453 if (fwpkg_data)
4454 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4455 fwpkg_data_dma);
4456 return r;
4457 }
4458
4459 /**
4460 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4461 * @ioc: per adapter object
4462 */
4463 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4464 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4465 {
4466 int i = 0;
4467 char desc[16];
4468 u32 iounit_pg1_flags;
4469 u32 bios_version;
4470
4471 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4472 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4473 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4474 desc,
4475 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4476 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4477 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4478 ioc->facts.FWVersion.Word & 0x000000FF,
4479 ioc->pdev->revision,
4480 (bios_version & 0xFF000000) >> 24,
4481 (bios_version & 0x00FF0000) >> 16,
4482 (bios_version & 0x0000FF00) >> 8,
4483 bios_version & 0x000000FF);
4484
4485 _base_display_OEMs_branding(ioc);
4486
4487 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4488 pr_info("%sNVMe", i ? "," : "");
4489 i++;
4490 }
4491
4492 ioc_info(ioc, "Protocol=(");
4493
4494 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4495 pr_cont("Initiator");
4496 i++;
4497 }
4498
4499 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4500 pr_cont("%sTarget", i ? "," : "");
4501 i++;
4502 }
4503
4504 i = 0;
4505 pr_cont("), Capabilities=(");
4506
4507 if (!ioc->hide_ir_msg) {
4508 if (ioc->facts.IOCCapabilities &
4509 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4510 pr_cont("Raid");
4511 i++;
4512 }
4513 }
4514
4515 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4516 pr_cont("%sTLR", i ? "," : "");
4517 i++;
4518 }
4519
4520 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4521 pr_cont("%sMulticast", i ? "," : "");
4522 i++;
4523 }
4524
4525 if (ioc->facts.IOCCapabilities &
4526 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4527 pr_cont("%sBIDI Target", i ? "," : "");
4528 i++;
4529 }
4530
4531 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4532 pr_cont("%sEEDP", i ? "," : "");
4533 i++;
4534 }
4535
4536 if (ioc->facts.IOCCapabilities &
4537 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4538 pr_cont("%sSnapshot Buffer", i ? "," : "");
4539 i++;
4540 }
4541
4542 if (ioc->facts.IOCCapabilities &
4543 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4544 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4545 i++;
4546 }
4547
4548 if (ioc->facts.IOCCapabilities &
4549 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4550 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4551 i++;
4552 }
4553
4554 if (ioc->facts.IOCCapabilities &
4555 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4556 pr_cont("%sTask Set Full", i ? "," : "");
4557 i++;
4558 }
4559
4560 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4561 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4562 pr_cont("%sNCQ", i ? "," : "");
4563 i++;
4564 }
4565
4566 pr_cont(")\n");
4567 }
4568
4569 /**
4570 * mpt3sas_base_update_missing_delay - change the missing delay timers
4571 * @ioc: per adapter object
4572 * @device_missing_delay: amount of time till device is reported missing
4573 * @io_missing_delay: interval IO is returned when there is a missing device
4574 *
4575 * Passed on the command line, this function will modify the device missing
4576 * delay, as well as the io missing delay. This should be called at driver
4577 * load time.
4578 */
4579 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4580 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4581 u16 device_missing_delay, u8 io_missing_delay)
4582 {
4583 u16 dmd, dmd_new, dmd_orignal;
4584 u8 io_missing_delay_original;
4585 u16 sz;
4586 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4587 Mpi2ConfigReply_t mpi_reply;
4588 u8 num_phys = 0;
4589 u16 ioc_status;
4590
4591 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4592 if (!num_phys)
4593 return;
4594
4595 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4596 sizeof(Mpi2SasIOUnit1PhyData_t));
4597 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4598 if (!sas_iounit_pg1) {
4599 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600 __FILE__, __LINE__, __func__);
4601 goto out;
4602 }
4603 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4604 sas_iounit_pg1, sz))) {
4605 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 __FILE__, __LINE__, __func__);
4607 goto out;
4608 }
4609 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4610 MPI2_IOCSTATUS_MASK;
4611 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4612 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4613 __FILE__, __LINE__, __func__);
4614 goto out;
4615 }
4616
4617 /* device missing delay */
4618 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4619 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4620 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4621 else
4622 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4623 dmd_orignal = dmd;
4624 if (device_missing_delay > 0x7F) {
4625 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4626 device_missing_delay;
4627 dmd = dmd / 16;
4628 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4629 } else
4630 dmd = device_missing_delay;
4631 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4632
4633 /* io missing delay */
4634 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4635 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4636
4637 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4638 sz)) {
4639 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4640 dmd_new = (dmd &
4641 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4642 else
4643 dmd_new =
4644 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4645 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4646 dmd_orignal, dmd_new);
4647 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4648 io_missing_delay_original,
4649 io_missing_delay);
4650 ioc->device_missing_delay = dmd_new;
4651 ioc->io_missing_delay = io_missing_delay;
4652 }
4653
4654 out:
4655 kfree(sas_iounit_pg1);
4656 }
4657
4658 /**
4659 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4660 * according to performance mode.
4661 * @ioc : per adapter object
4662 *
4663 * Return nothing.
4664 */
4665 static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4666 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4667 {
4668 Mpi2IOCPage1_t ioc_pg1;
4669 Mpi2ConfigReply_t mpi_reply;
4670
4671 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4672 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4673
4674 switch (perf_mode) {
4675 case MPT_PERF_MODE_DEFAULT:
4676 case MPT_PERF_MODE_BALANCED:
4677 if (ioc->high_iops_queues) {
4678 ioc_info(ioc,
4679 "Enable interrupt coalescing only for first\t"
4680 "%d reply queues\n",
4681 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4682 /*
4683 * If 31st bit is zero then interrupt coalescing is
4684 * enabled for all reply descriptor post queues.
4685 * If 31st bit is set to one then user can
4686 * enable/disable interrupt coalescing on per reply
4687 * descriptor post queue group(8) basis. So to enable
4688 * interrupt coalescing only on first reply descriptor
4689 * post queue group 31st bit and zero th bit is enabled.
4690 */
4691 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4692 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4693 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694 ioc_info(ioc, "performance mode: balanced\n");
4695 return;
4696 }
4697 fallthrough;
4698 case MPT_PERF_MODE_LATENCY:
4699 /*
4700 * Enable interrupt coalescing on all reply queues
4701 * with timeout value 0xA
4702 */
4703 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4704 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4705 ioc_pg1.ProductSpecific = 0;
4706 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4707 ioc_info(ioc, "performance mode: latency\n");
4708 break;
4709 case MPT_PERF_MODE_IOPS:
4710 /*
4711 * Enable interrupt coalescing on all reply queues.
4712 */
4713 ioc_info(ioc,
4714 "performance mode: iops with coalescing timeout: 0x%x\n",
4715 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4716 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4717 ioc_pg1.ProductSpecific = 0;
4718 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4719 break;
4720 }
4721 }
4722
4723 /**
4724 * _base_static_config_pages - static start of day config pages
4725 * @ioc: per adapter object
4726 */
4727 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)4728 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4729 {
4730 Mpi2ConfigReply_t mpi_reply;
4731 u32 iounit_pg1_flags;
4732
4733 ioc->nvme_abort_timeout = 30;
4734 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4735 if (ioc->ir_firmware)
4736 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4737 &ioc->manu_pg10);
4738
4739 /*
4740 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4741 * flag unset in NVDATA.
4742 */
4743 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4744 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4745 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4746 ioc->name);
4747 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4748 ioc->manu_pg11.EEDPTagMode |= 0x1;
4749 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4750 &ioc->manu_pg11);
4751 }
4752 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4753 ioc->tm_custom_handling = 1;
4754 else {
4755 ioc->tm_custom_handling = 0;
4756 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4757 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4758 else if (ioc->manu_pg11.NVMeAbortTO >
4759 NVME_TASK_ABORT_MAX_TIMEOUT)
4760 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4761 else
4762 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4763 }
4764
4765 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4766 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4767 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4768 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4769 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4770 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4771 _base_display_ioc_capabilities(ioc);
4772
4773 /*
4774 * Enable task_set_full handling in iounit_pg1 when the
4775 * facts capabilities indicate that its supported.
4776 */
4777 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4778 if ((ioc->facts.IOCCapabilities &
4779 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4780 iounit_pg1_flags &=
4781 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4782 else
4783 iounit_pg1_flags |=
4784 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4785 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4786 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4787
4788 if (ioc->iounit_pg8.NumSensors)
4789 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4790 if (ioc->is_aero_ioc)
4791 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4792 }
4793
4794 /**
4795 * mpt3sas_free_enclosure_list - release memory
4796 * @ioc: per adapter object
4797 *
4798 * Free memory allocated during encloure add.
4799 */
4800 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)4801 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4802 {
4803 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4804
4805 /* Free enclosure list */
4806 list_for_each_entry_safe(enclosure_dev,
4807 enclosure_dev_next, &ioc->enclosure_list, list) {
4808 list_del(&enclosure_dev->list);
4809 kfree(enclosure_dev);
4810 }
4811 }
4812
4813 /**
4814 * _base_release_memory_pools - release memory
4815 * @ioc: per adapter object
4816 *
4817 * Free memory allocated from _base_allocate_memory_pools.
4818 */
4819 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)4820 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4821 {
4822 int i = 0;
4823 int j = 0;
4824 int dma_alloc_count = 0;
4825 struct chain_tracker *ct;
4826 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4827
4828 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4829
4830 if (ioc->request) {
4831 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4832 ioc->request, ioc->request_dma);
4833 dexitprintk(ioc,
4834 ioc_info(ioc, "request_pool(0x%p): free\n",
4835 ioc->request));
4836 ioc->request = NULL;
4837 }
4838
4839 if (ioc->sense) {
4840 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4841 dma_pool_destroy(ioc->sense_dma_pool);
4842 dexitprintk(ioc,
4843 ioc_info(ioc, "sense_pool(0x%p): free\n",
4844 ioc->sense));
4845 ioc->sense = NULL;
4846 }
4847
4848 if (ioc->reply) {
4849 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4850 dma_pool_destroy(ioc->reply_dma_pool);
4851 dexitprintk(ioc,
4852 ioc_info(ioc, "reply_pool(0x%p): free\n",
4853 ioc->reply));
4854 ioc->reply = NULL;
4855 }
4856
4857 if (ioc->reply_free) {
4858 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4859 ioc->reply_free_dma);
4860 dma_pool_destroy(ioc->reply_free_dma_pool);
4861 dexitprintk(ioc,
4862 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4863 ioc->reply_free));
4864 ioc->reply_free = NULL;
4865 }
4866
4867 if (ioc->reply_post) {
4868 dma_alloc_count = DIV_ROUND_UP(count,
4869 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4870 for (i = 0; i < count; i++) {
4871 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4872 && dma_alloc_count) {
4873 if (ioc->reply_post[i].reply_post_free) {
4874 dma_pool_free(
4875 ioc->reply_post_free_dma_pool,
4876 ioc->reply_post[i].reply_post_free,
4877 ioc->reply_post[i].reply_post_free_dma);
4878 dexitprintk(ioc, ioc_info(ioc,
4879 "reply_post_free_pool(0x%p): free\n",
4880 ioc->reply_post[i].reply_post_free));
4881 ioc->reply_post[i].reply_post_free =
4882 NULL;
4883 }
4884 --dma_alloc_count;
4885 }
4886 }
4887 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4888 if (ioc->reply_post_free_array &&
4889 ioc->rdpq_array_enable) {
4890 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4891 ioc->reply_post_free_array,
4892 ioc->reply_post_free_array_dma);
4893 ioc->reply_post_free_array = NULL;
4894 }
4895 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4896 kfree(ioc->reply_post);
4897 }
4898
4899 if (ioc->pcie_sgl_dma_pool) {
4900 for (i = 0; i < ioc->scsiio_depth; i++) {
4901 dma_pool_free(ioc->pcie_sgl_dma_pool,
4902 ioc->pcie_sg_lookup[i].pcie_sgl,
4903 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4904 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
4905 }
4906 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4907 }
4908 if (ioc->config_page) {
4909 dexitprintk(ioc,
4910 ioc_info(ioc, "config_page(0x%p): free\n",
4911 ioc->config_page));
4912 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4913 ioc->config_page, ioc->config_page_dma);
4914 }
4915
4916 kfree(ioc->hpr_lookup);
4917 ioc->hpr_lookup = NULL;
4918 kfree(ioc->internal_lookup);
4919 ioc->internal_lookup = NULL;
4920 if (ioc->chain_lookup) {
4921 for (i = 0; i < ioc->scsiio_depth; i++) {
4922 for (j = ioc->chains_per_prp_buffer;
4923 j < ioc->chains_needed_per_io; j++) {
4924 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4925 if (ct && ct->chain_buffer)
4926 dma_pool_free(ioc->chain_dma_pool,
4927 ct->chain_buffer,
4928 ct->chain_buffer_dma);
4929 }
4930 kfree(ioc->chain_lookup[i].chains_per_smid);
4931 }
4932 dma_pool_destroy(ioc->chain_dma_pool);
4933 kfree(ioc->chain_lookup);
4934 ioc->chain_lookup = NULL;
4935 }
4936 }
4937
4938 /**
4939 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4940 * having same upper 32bits in their base memory address.
4941 * @reply_pool_start_address: Base address of a reply queue set
4942 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4943 *
4944 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4945 * memory address, else 0.
4946 */
4947
4948 static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address,u32 pool_sz)4949 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4950 {
4951 long reply_pool_end_address;
4952
4953 reply_pool_end_address = reply_pool_start_address + pool_sz;
4954
4955 if (upper_32_bits(reply_pool_start_address) ==
4956 upper_32_bits(reply_pool_end_address))
4957 return 1;
4958 else
4959 return 0;
4960 }
4961
4962 /**
4963 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
4964 * @ioc: Adapter object
4965 *
4966 * Return: 0 for success, non-zero for failure.
4967 **/
4968 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)4969 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
4970 {
4971 int reduce_sz = 64;
4972
4973 if ((ioc->hba_queue_depth - reduce_sz) >
4974 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
4975 ioc->hba_queue_depth -= reduce_sz;
4976 return 0;
4977 } else
4978 return -ENOMEM;
4979 }
4980
4981 /**
4982 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
4983 * for pcie sgl pools.
4984 * @ioc: Adapter object
4985 * @sz: DMA Pool size
4986 * @ct: Chain tracker
4987 * Return: 0 for success, non-zero for failure.
4988 */
4989
4990 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)4991 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
4992 {
4993 int i = 0, j = 0;
4994 struct chain_tracker *ct;
4995
4996 ioc->pcie_sgl_dma_pool =
4997 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
4998 ioc->page_size, 0);
4999 if (!ioc->pcie_sgl_dma_pool) {
5000 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5001 return -ENOMEM;
5002 }
5003
5004 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5005 ioc->chains_per_prp_buffer =
5006 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5007 for (i = 0; i < ioc->scsiio_depth; i++) {
5008 ioc->pcie_sg_lookup[i].pcie_sgl =
5009 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5010 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5011 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5012 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5013 return -EAGAIN;
5014 }
5015
5016 if (!mpt3sas_check_same_4gb_region(
5017 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5018 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5019 ioc->pcie_sg_lookup[i].pcie_sgl,
5020 (unsigned long long)
5021 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5022 ioc->use_32bit_dma = true;
5023 return -EAGAIN;
5024 }
5025
5026 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5027 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5028 ct->chain_buffer =
5029 ioc->pcie_sg_lookup[i].pcie_sgl +
5030 (j * ioc->chain_segment_sz);
5031 ct->chain_buffer_dma =
5032 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5033 (j * ioc->chain_segment_sz);
5034 }
5035 }
5036 dinitprintk(ioc, ioc_info(ioc,
5037 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5038 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5039 dinitprintk(ioc, ioc_info(ioc,
5040 "Number of chains can fit in a PRP page(%d)\n",
5041 ioc->chains_per_prp_buffer));
5042 return 0;
5043 }
5044
5045 /**
5046 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5047 * for reply queues.
5048 * @ioc: per adapter object
5049 * @sz: DMA Pool size
5050 * Return: 0 for success, non-zero for failure.
5051 */
5052 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)5053 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5054 {
5055 int i = 0;
5056 u32 dma_alloc_count = 0;
5057 int reply_post_free_sz = ioc->reply_post_queue_depth *
5058 sizeof(Mpi2DefaultReplyDescriptor_t);
5059 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5060
5061 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5062 GFP_KERNEL);
5063 if (!ioc->reply_post)
5064 return -ENOMEM;
5065 /*
5066 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5067 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5068 * be within 4GB boundary i.e reply queues in a set must have same
5069 * upper 32-bits in their memory address. so here driver is allocating
5070 * the DMA'able memory for reply queues according.
5071 * Driver uses limitation of
5072 * VENTURA_SERIES to manage INVADER_SERIES as well.
5073 */
5074 dma_alloc_count = DIV_ROUND_UP(count,
5075 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5076 ioc->reply_post_free_dma_pool =
5077 dma_pool_create("reply_post_free pool",
5078 &ioc->pdev->dev, sz, 16, 0);
5079 if (!ioc->reply_post_free_dma_pool)
5080 return -ENOMEM;
5081 for (i = 0; i < count; i++) {
5082 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5083 ioc->reply_post[i].reply_post_free =
5084 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5085 GFP_KERNEL,
5086 &ioc->reply_post[i].reply_post_free_dma);
5087 if (!ioc->reply_post[i].reply_post_free)
5088 return -ENOMEM;
5089 /*
5090 * Each set of RDPQ pool must satisfy 4gb boundary
5091 * restriction.
5092 * 1) Check if allocated resources for RDPQ pool are in
5093 * the same 4GB range.
5094 * 2) If #1 is true, continue with 64 bit DMA.
5095 * 3) If #1 is false, return 1. which means free all the
5096 * resources and set DMA mask to 32 and allocate.
5097 */
5098 if (!mpt3sas_check_same_4gb_region(
5099 (long)ioc->reply_post[i].reply_post_free, sz)) {
5100 dinitprintk(ioc,
5101 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5102 "reply_post_free_dma = (0x%llx)\n",
5103 ioc->reply_post[i].reply_post_free,
5104 (unsigned long long)
5105 ioc->reply_post[i].reply_post_free_dma));
5106 return -EAGAIN;
5107 }
5108 dma_alloc_count--;
5109
5110 } else {
5111 ioc->reply_post[i].reply_post_free =
5112 (Mpi2ReplyDescriptorsUnion_t *)
5113 ((long)ioc->reply_post[i-1].reply_post_free
5114 + reply_post_free_sz);
5115 ioc->reply_post[i].reply_post_free_dma =
5116 (dma_addr_t)
5117 (ioc->reply_post[i-1].reply_post_free_dma +
5118 reply_post_free_sz);
5119 }
5120 }
5121 return 0;
5122 }
5123
5124 /**
5125 * _base_allocate_memory_pools - allocate start of day memory pools
5126 * @ioc: per adapter object
5127 *
5128 * Return: 0 success, anything else error.
5129 */
5130 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)5131 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5132 {
5133 struct mpt3sas_facts *facts;
5134 u16 max_sge_elements;
5135 u16 chains_needed_per_io;
5136 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5137 u32 retry_sz;
5138 u32 rdpq_sz = 0;
5139 u16 max_request_credit, nvme_blocks_needed;
5140 unsigned short sg_tablesize;
5141 u16 sge_size;
5142 int i, j;
5143 int ret = 0, rc = 0;
5144 struct chain_tracker *ct;
5145
5146 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5147
5148
5149 retry_sz = 0;
5150 facts = &ioc->facts;
5151
5152 /* command line tunables for max sgl entries */
5153 if (max_sgl_entries != -1)
5154 sg_tablesize = max_sgl_entries;
5155 else {
5156 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5157 sg_tablesize = MPT2SAS_SG_DEPTH;
5158 else
5159 sg_tablesize = MPT3SAS_SG_DEPTH;
5160 }
5161
5162 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5163 if (reset_devices)
5164 sg_tablesize = min_t(unsigned short, sg_tablesize,
5165 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5166
5167 if (ioc->is_mcpu_endpoint)
5168 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5169 else {
5170 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5171 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5172 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5173 sg_tablesize = min_t(unsigned short, sg_tablesize,
5174 SG_MAX_SEGMENTS);
5175 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5176 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5177 }
5178 ioc->shost->sg_tablesize = sg_tablesize;
5179 }
5180
5181 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5182 (facts->RequestCredit / 4));
5183 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5184 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5185 INTERNAL_SCSIIO_CMDS_COUNT)) {
5186 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5187 facts->RequestCredit);
5188 return -ENOMEM;
5189 }
5190 ioc->internal_depth = 10;
5191 }
5192
5193 ioc->hi_priority_depth = ioc->internal_depth - (5);
5194 /* command line tunables for max controller queue depth */
5195 if (max_queue_depth != -1 && max_queue_depth != 0) {
5196 max_request_credit = min_t(u16, max_queue_depth +
5197 ioc->internal_depth, facts->RequestCredit);
5198 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5199 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5200 } else if (reset_devices)
5201 max_request_credit = min_t(u16, facts->RequestCredit,
5202 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5203 else
5204 max_request_credit = min_t(u16, facts->RequestCredit,
5205 MAX_HBA_QUEUE_DEPTH);
5206
5207 /* Firmware maintains additional facts->HighPriorityCredit number of
5208 * credits for HiPriprity Request messages, so hba queue depth will be
5209 * sum of max_request_credit and high priority queue depth.
5210 */
5211 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5212
5213 /* request frame size */
5214 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5215
5216 /* reply frame size */
5217 ioc->reply_sz = facts->ReplyFrameSize * 4;
5218
5219 /* chain segment size */
5220 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5221 if (facts->IOCMaxChainSegmentSize)
5222 ioc->chain_segment_sz =
5223 facts->IOCMaxChainSegmentSize *
5224 MAX_CHAIN_ELEMT_SZ;
5225 else
5226 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5227 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5228 MAX_CHAIN_ELEMT_SZ;
5229 } else
5230 ioc->chain_segment_sz = ioc->request_sz;
5231
5232 /* calculate the max scatter element size */
5233 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5234
5235 retry_allocation:
5236 total_sz = 0;
5237 /* calculate number of sg elements left over in the 1st frame */
5238 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5239 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5240 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5241
5242 /* now do the same for a chain buffer */
5243 max_sge_elements = ioc->chain_segment_sz - sge_size;
5244 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5245
5246 /*
5247 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5248 */
5249 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5250 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5251 + 1;
5252 if (chains_needed_per_io > facts->MaxChainDepth) {
5253 chains_needed_per_io = facts->MaxChainDepth;
5254 ioc->shost->sg_tablesize = min_t(u16,
5255 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5256 * chains_needed_per_io), ioc->shost->sg_tablesize);
5257 }
5258 ioc->chains_needed_per_io = chains_needed_per_io;
5259
5260 /* reply free queue sizing - taking into account for 64 FW events */
5261 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5262
5263 /* mCPU manage single counters for simplicity */
5264 if (ioc->is_mcpu_endpoint)
5265 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5266 else {
5267 /* calculate reply descriptor post queue depth */
5268 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5269 ioc->reply_free_queue_depth + 1;
5270 /* align the reply post queue on the next 16 count boundary */
5271 if (ioc->reply_post_queue_depth % 16)
5272 ioc->reply_post_queue_depth += 16 -
5273 (ioc->reply_post_queue_depth % 16);
5274 }
5275
5276 if (ioc->reply_post_queue_depth >
5277 facts->MaxReplyDescriptorPostQueueDepth) {
5278 ioc->reply_post_queue_depth =
5279 facts->MaxReplyDescriptorPostQueueDepth -
5280 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5281 ioc->hba_queue_depth =
5282 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5283 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5284 }
5285
5286 ioc_info(ioc,
5287 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5288 "sge_per_io(%d), chains_per_io(%d)\n",
5289 ioc->max_sges_in_main_message,
5290 ioc->max_sges_in_chain_message,
5291 ioc->shost->sg_tablesize,
5292 ioc->chains_needed_per_io);
5293
5294 /* reply post queue, 16 byte align */
5295 reply_post_free_sz = ioc->reply_post_queue_depth *
5296 sizeof(Mpi2DefaultReplyDescriptor_t);
5297 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5298 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5299 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5300 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5301 if (ret == -EAGAIN) {
5302 /*
5303 * Free allocated bad RDPQ memory pools.
5304 * Change dma coherent mask to 32 bit and reallocate RDPQ
5305 */
5306 _base_release_memory_pools(ioc);
5307 ioc->use_32bit_dma = true;
5308 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5309 ioc_err(ioc,
5310 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5311 return -ENODEV;
5312 }
5313 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5314 return -ENOMEM;
5315 } else if (ret == -ENOMEM)
5316 return -ENOMEM;
5317 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5318 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5319 ioc->scsiio_depth = ioc->hba_queue_depth -
5320 ioc->hi_priority_depth - ioc->internal_depth;
5321
5322 /* set the scsi host can_queue depth
5323 * with some internal commands that could be outstanding
5324 */
5325 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5326 dinitprintk(ioc,
5327 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5328 ioc->shost->can_queue));
5329
5330 /* contiguous pool for request and chains, 16 byte align, one extra "
5331 * "frame for smid=0
5332 */
5333 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5334 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5335
5336 /* hi-priority queue */
5337 sz += (ioc->hi_priority_depth * ioc->request_sz);
5338
5339 /* internal queue */
5340 sz += (ioc->internal_depth * ioc->request_sz);
5341
5342 ioc->request_dma_sz = sz;
5343 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5344 &ioc->request_dma, GFP_KERNEL);
5345 if (!ioc->request) {
5346 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5347 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5348 ioc->request_sz, sz / 1024);
5349 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5350 goto out;
5351 retry_sz = 64;
5352 ioc->hba_queue_depth -= retry_sz;
5353 _base_release_memory_pools(ioc);
5354 goto retry_allocation;
5355 }
5356
5357 if (retry_sz)
5358 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5359 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5360 ioc->request_sz, sz / 1024);
5361
5362 /* hi-priority queue */
5363 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5364 ioc->request_sz);
5365 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5366 ioc->request_sz);
5367
5368 /* internal queue */
5369 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5370 ioc->request_sz);
5371 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5372 ioc->request_sz);
5373
5374 ioc_info(ioc,
5375 "request pool(0x%p) - dma(0x%llx): "
5376 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5377 ioc->request, (unsigned long long) ioc->request_dma,
5378 ioc->hba_queue_depth, ioc->request_sz,
5379 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5380
5381 total_sz += sz;
5382
5383 dinitprintk(ioc,
5384 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5385 ioc->request, ioc->scsiio_depth));
5386
5387 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5388 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5389 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5390 if (!ioc->chain_lookup) {
5391 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5392 goto out;
5393 }
5394
5395 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5396 for (i = 0; i < ioc->scsiio_depth; i++) {
5397 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5398 if (!ioc->chain_lookup[i].chains_per_smid) {
5399 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5400 goto out;
5401 }
5402 }
5403
5404 /* initialize hi-priority queue smid's */
5405 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5406 sizeof(struct request_tracker), GFP_KERNEL);
5407 if (!ioc->hpr_lookup) {
5408 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5409 goto out;
5410 }
5411 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5412 dinitprintk(ioc,
5413 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5414 ioc->hi_priority,
5415 ioc->hi_priority_depth, ioc->hi_priority_smid));
5416
5417 /* initialize internal queue smid's */
5418 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5419 sizeof(struct request_tracker), GFP_KERNEL);
5420 if (!ioc->internal_lookup) {
5421 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5422 goto out;
5423 }
5424 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5425 dinitprintk(ioc,
5426 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5427 ioc->internal,
5428 ioc->internal_depth, ioc->internal_smid));
5429 /*
5430 * The number of NVMe page sized blocks needed is:
5431 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5432 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5433 * that is placed in the main message frame. 8 is the size of each PRP
5434 * entry or PRP list pointer entry. 8 is subtracted from page_size
5435 * because of the PRP list pointer entry at the end of a page, so this
5436 * is not counted as a PRP entry. The 1 added page is a round up.
5437 *
5438 * To avoid allocation failures due to the amount of memory that could
5439 * be required for NVMe PRP's, only each set of NVMe blocks will be
5440 * contiguous, so a new set is allocated for each possible I/O.
5441 */
5442
5443 ioc->chains_per_prp_buffer = 0;
5444 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5445 nvme_blocks_needed =
5446 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5447 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5448 nvme_blocks_needed++;
5449
5450 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5451 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5452 if (!ioc->pcie_sg_lookup) {
5453 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5454 goto out;
5455 }
5456 sz = nvme_blocks_needed * ioc->page_size;
5457 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
5458 if (rc == -ENOMEM)
5459 return -ENOMEM;
5460 else if (rc == -EAGAIN)
5461 goto try_32bit_dma;
5462 total_sz += sz * ioc->scsiio_depth;
5463 }
5464
5465 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5466 ioc->chain_segment_sz, 16, 0);
5467 if (!ioc->chain_dma_pool) {
5468 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5469 goto out;
5470 }
5471 for (i = 0; i < ioc->scsiio_depth; i++) {
5472 for (j = ioc->chains_per_prp_buffer;
5473 j < ioc->chains_needed_per_io; j++) {
5474 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5475 ct->chain_buffer = dma_pool_alloc(
5476 ioc->chain_dma_pool, GFP_KERNEL,
5477 &ct->chain_buffer_dma);
5478 if (!ct->chain_buffer) {
5479 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5480 goto out;
5481 }
5482 }
5483 total_sz += ioc->chain_segment_sz;
5484 }
5485
5486 dinitprintk(ioc,
5487 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5488 ioc->chain_depth, ioc->chain_segment_sz,
5489 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5490
5491 /* sense buffers, 4 byte align */
5492 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5493 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5494 4, 0);
5495 if (!ioc->sense_dma_pool) {
5496 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5497 goto out;
5498 }
5499 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5500 &ioc->sense_dma);
5501 if (!ioc->sense) {
5502 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5503 goto out;
5504 }
5505 /* sense buffer requires to be in same 4 gb region.
5506 * Below function will check the same.
5507 * In case of failure, new pci pool will be created with updated
5508 * alignment. Older allocation and pool will be destroyed.
5509 * Alignment will be used such a way that next allocation if
5510 * success, will always meet same 4gb region requirement.
5511 * Actual requirement is not alignment, but we need start and end of
5512 * DMA address must have same upper 32 bit address.
5513 */
5514 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5515 //Release Sense pool & Reallocate
5516 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5517 dma_pool_destroy(ioc->sense_dma_pool);
5518 ioc->sense = NULL;
5519
5520 ioc->sense_dma_pool =
5521 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5522 roundup_pow_of_two(sz), 0);
5523 if (!ioc->sense_dma_pool) {
5524 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5525 goto out;
5526 }
5527 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5528 &ioc->sense_dma);
5529 if (!ioc->sense) {
5530 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5531 goto out;
5532 }
5533 }
5534 ioc_info(ioc,
5535 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5536 "element_size(%d), pool_size(%d kB)\n",
5537 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5538 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5539
5540 total_sz += sz;
5541
5542 /* reply pool, 4 byte align */
5543 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5544 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5545 4, 0);
5546 if (!ioc->reply_dma_pool) {
5547 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5548 goto out;
5549 }
5550 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5551 &ioc->reply_dma);
5552 if (!ioc->reply) {
5553 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5554 goto out;
5555 }
5556 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5557 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5558 dinitprintk(ioc,
5559 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5560 ioc->reply, ioc->reply_free_queue_depth,
5561 ioc->reply_sz, sz / 1024));
5562 dinitprintk(ioc,
5563 ioc_info(ioc, "reply_dma(0x%llx)\n",
5564 (unsigned long long)ioc->reply_dma));
5565 total_sz += sz;
5566
5567 /* reply free queue, 16 byte align */
5568 sz = ioc->reply_free_queue_depth * 4;
5569 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5570 &ioc->pdev->dev, sz, 16, 0);
5571 if (!ioc->reply_free_dma_pool) {
5572 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5573 goto out;
5574 }
5575 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5576 &ioc->reply_free_dma);
5577 if (!ioc->reply_free) {
5578 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5579 goto out;
5580 }
5581 dinitprintk(ioc,
5582 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5583 ioc->reply_free, ioc->reply_free_queue_depth,
5584 4, sz / 1024));
5585 dinitprintk(ioc,
5586 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5587 (unsigned long long)ioc->reply_free_dma));
5588 total_sz += sz;
5589
5590 if (ioc->rdpq_array_enable) {
5591 reply_post_free_array_sz = ioc->reply_queue_count *
5592 sizeof(Mpi2IOCInitRDPQArrayEntry);
5593 ioc->reply_post_free_array_dma_pool =
5594 dma_pool_create("reply_post_free_array pool",
5595 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5596 if (!ioc->reply_post_free_array_dma_pool) {
5597 dinitprintk(ioc,
5598 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5599 goto out;
5600 }
5601 ioc->reply_post_free_array =
5602 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5603 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5604 if (!ioc->reply_post_free_array) {
5605 dinitprintk(ioc,
5606 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5607 goto out;
5608 }
5609 }
5610 ioc->config_page_sz = 512;
5611 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5612 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5613 if (!ioc->config_page) {
5614 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5615 goto out;
5616 }
5617
5618 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5619 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5620 ioc->config_page_sz);
5621 total_sz += ioc->config_page_sz;
5622
5623 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5624 total_sz / 1024);
5625 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5626 ioc->shost->can_queue, facts->RequestCredit);
5627 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5628 ioc->shost->sg_tablesize);
5629 return 0;
5630
5631 try_32bit_dma:
5632 _base_release_memory_pools(ioc);
5633 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
5634 /* Change dma coherent mask to 32 bit and reallocate */
5635 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5636 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
5637 pci_name(ioc->pdev));
5638 return -ENODEV;
5639 }
5640 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
5641 return -ENOMEM;
5642 goto retry_allocation;
5643
5644 out:
5645 return -ENOMEM;
5646 }
5647
5648 /**
5649 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5650 * @ioc: Pointer to MPT_ADAPTER structure
5651 * @cooked: Request raw or cooked IOC state
5652 *
5653 * Return: all IOC Doorbell register bits if cooked==0, else just the
5654 * Doorbell bits in MPI_IOC_STATE_MASK.
5655 */
5656 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)5657 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5658 {
5659 u32 s, sc;
5660
5661 s = ioc->base_readl(&ioc->chip->Doorbell);
5662 sc = s & MPI2_IOC_STATE_MASK;
5663 return cooked ? sc : s;
5664 }
5665
5666 /**
5667 * _base_wait_on_iocstate - waiting on a particular ioc state
5668 * @ioc: ?
5669 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5670 * @timeout: timeout in second
5671 *
5672 * Return: 0 for success, non-zero for failure.
5673 */
5674 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)5675 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5676 {
5677 u32 count, cntdn;
5678 u32 current_state;
5679
5680 count = 0;
5681 cntdn = 1000 * timeout;
5682 do {
5683 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5684 if (current_state == ioc_state)
5685 return 0;
5686 if (count && current_state == MPI2_IOC_STATE_FAULT)
5687 break;
5688 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5689 break;
5690
5691 usleep_range(1000, 1500);
5692 count++;
5693 } while (--cntdn);
5694
5695 return current_state;
5696 }
5697
5698 /**
5699 * _base_dump_reg_set - This function will print hexdump of register set.
5700 * @ioc: per adapter object
5701 *
5702 * Returns nothing.
5703 */
5704 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)5705 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5706 {
5707 unsigned int i, sz = 256;
5708 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5709
5710 ioc_info(ioc, "System Register set:\n");
5711 for (i = 0; i < (sz / sizeof(u32)); i++)
5712 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
5713 }
5714
5715 /**
5716 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5717 * a write to the doorbell)
5718 * @ioc: per adapter object
5719 * @timeout: timeout in seconds
5720 *
5721 * Return: 0 for success, non-zero for failure.
5722 *
5723 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5724 */
5725
5726 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5727 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5728 {
5729 u32 cntdn, count;
5730 u32 int_status;
5731
5732 count = 0;
5733 cntdn = 1000 * timeout;
5734 do {
5735 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5736 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5737 dhsprintk(ioc,
5738 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5739 __func__, count, timeout));
5740 return 0;
5741 }
5742
5743 usleep_range(1000, 1500);
5744 count++;
5745 } while (--cntdn);
5746
5747 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5748 __func__, count, int_status);
5749 return -EFAULT;
5750 }
5751
5752 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5753 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5754 {
5755 u32 cntdn, count;
5756 u32 int_status;
5757
5758 count = 0;
5759 cntdn = 2000 * timeout;
5760 do {
5761 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5762 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5763 dhsprintk(ioc,
5764 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5765 __func__, count, timeout));
5766 return 0;
5767 }
5768
5769 udelay(500);
5770 count++;
5771 } while (--cntdn);
5772
5773 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5774 __func__, count, int_status);
5775 return -EFAULT;
5776
5777 }
5778
5779 /**
5780 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5781 * @ioc: per adapter object
5782 * @timeout: timeout in second
5783 *
5784 * Return: 0 for success, non-zero for failure.
5785 *
5786 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5787 * doorbell.
5788 */
5789 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)5790 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5791 {
5792 u32 cntdn, count;
5793 u32 int_status;
5794 u32 doorbell;
5795
5796 count = 0;
5797 cntdn = 1000 * timeout;
5798 do {
5799 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5800 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5801 dhsprintk(ioc,
5802 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5803 __func__, count, timeout));
5804 return 0;
5805 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5806 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5807 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5808 MPI2_IOC_STATE_FAULT) {
5809 mpt3sas_print_fault_code(ioc, doorbell);
5810 return -EFAULT;
5811 }
5812 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5813 MPI2_IOC_STATE_COREDUMP) {
5814 mpt3sas_print_coredump_info(ioc, doorbell);
5815 return -EFAULT;
5816 }
5817 } else if (int_status == 0xFFFFFFFF)
5818 goto out;
5819
5820 usleep_range(1000, 1500);
5821 count++;
5822 } while (--cntdn);
5823
5824 out:
5825 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5826 __func__, count, int_status);
5827 return -EFAULT;
5828 }
5829
5830 /**
5831 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5832 * @ioc: per adapter object
5833 * @timeout: timeout in second
5834 *
5835 * Return: 0 for success, non-zero for failure.
5836 */
5837 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)5838 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5839 {
5840 u32 cntdn, count;
5841 u32 doorbell_reg;
5842
5843 count = 0;
5844 cntdn = 1000 * timeout;
5845 do {
5846 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5847 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5848 dhsprintk(ioc,
5849 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5850 __func__, count, timeout));
5851 return 0;
5852 }
5853
5854 usleep_range(1000, 1500);
5855 count++;
5856 } while (--cntdn);
5857
5858 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5859 __func__, count, doorbell_reg);
5860 return -EFAULT;
5861 }
5862
5863 /**
5864 * _base_send_ioc_reset - send doorbell reset
5865 * @ioc: per adapter object
5866 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5867 * @timeout: timeout in second
5868 *
5869 * Return: 0 for success, non-zero for failure.
5870 */
5871 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)5872 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5873 {
5874 u32 ioc_state;
5875 int r = 0;
5876 unsigned long flags;
5877
5878 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5879 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5880 return -EFAULT;
5881 }
5882
5883 if (!(ioc->facts.IOCCapabilities &
5884 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5885 return -EFAULT;
5886
5887 ioc_info(ioc, "sending message unit reset !!\n");
5888
5889 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5890 &ioc->chip->Doorbell);
5891 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5892 r = -EFAULT;
5893 goto out;
5894 }
5895
5896 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5897 if (ioc_state) {
5898 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5899 __func__, ioc_state);
5900 r = -EFAULT;
5901 goto out;
5902 }
5903 out:
5904 if (r != 0) {
5905 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5906 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5907 /*
5908 * Wait for IOC state CoreDump to clear only during
5909 * HBA initialization & release time.
5910 */
5911 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5912 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5913 ioc->fault_reset_work_q == NULL)) {
5914 spin_unlock_irqrestore(
5915 &ioc->ioc_reset_in_progress_lock, flags);
5916 mpt3sas_print_coredump_info(ioc, ioc_state);
5917 mpt3sas_base_wait_for_coredump_completion(ioc,
5918 __func__);
5919 spin_lock_irqsave(
5920 &ioc->ioc_reset_in_progress_lock, flags);
5921 }
5922 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5923 }
5924 ioc_info(ioc, "message unit reset: %s\n",
5925 r == 0 ? "SUCCESS" : "FAILED");
5926 return r;
5927 }
5928
5929 /**
5930 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5931 * @ioc: per adapter object
5932 * @timeout: timeout in seconds
5933 *
5934 * Return: Waits up to timeout seconds for the IOC to
5935 * become operational. Returns 0 if IOC is present
5936 * and operational; otherwise returns -EFAULT.
5937 */
5938
5939 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)5940 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5941 {
5942 int wait_state_count = 0;
5943 u32 ioc_state;
5944
5945 do {
5946 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5947 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5948 break;
5949 ssleep(1);
5950 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5951 __func__, ++wait_state_count);
5952 } while (--timeout);
5953 if (!timeout) {
5954 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5955 return -EFAULT;
5956 }
5957 if (wait_state_count)
5958 ioc_info(ioc, "ioc is operational\n");
5959 return 0;
5960 }
5961
5962 /**
5963 * _base_handshake_req_reply_wait - send request thru doorbell interface
5964 * @ioc: per adapter object
5965 * @request_bytes: request length
5966 * @request: pointer having request payload
5967 * @reply_bytes: reply length
5968 * @reply: pointer to reply payload
5969 * @timeout: timeout in second
5970 *
5971 * Return: 0 for success, non-zero for failure.
5972 */
5973 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)5974 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5975 u32 *request, int reply_bytes, u16 *reply, int timeout)
5976 {
5977 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5978 int i;
5979 u8 failed;
5980 __le32 *mfp;
5981
5982 /* make sure doorbell is not in use */
5983 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5984 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5985 return -EFAULT;
5986 }
5987
5988 /* clear pending doorbell interrupts from previous state changes */
5989 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5990 MPI2_HIS_IOC2SYS_DB_STATUS)
5991 writel(0, &ioc->chip->HostInterruptStatus);
5992
5993 /* send message to ioc */
5994 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5995 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5996 &ioc->chip->Doorbell);
5997
5998 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5999 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6000 __LINE__);
6001 return -EFAULT;
6002 }
6003 writel(0, &ioc->chip->HostInterruptStatus);
6004
6005 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6006 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6007 __LINE__);
6008 return -EFAULT;
6009 }
6010
6011 /* send message 32-bits at a time */
6012 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6013 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6014 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6015 failed = 1;
6016 }
6017
6018 if (failed) {
6019 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6020 __LINE__);
6021 return -EFAULT;
6022 }
6023
6024 /* now wait for the reply */
6025 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6026 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6027 __LINE__);
6028 return -EFAULT;
6029 }
6030
6031 /* read the first two 16-bits, it gives the total length of the reply */
6032 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6033 & MPI2_DOORBELL_DATA_MASK);
6034 writel(0, &ioc->chip->HostInterruptStatus);
6035 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6036 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6037 __LINE__);
6038 return -EFAULT;
6039 }
6040 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6041 & MPI2_DOORBELL_DATA_MASK);
6042 writel(0, &ioc->chip->HostInterruptStatus);
6043
6044 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6045 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6046 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6047 __LINE__);
6048 return -EFAULT;
6049 }
6050 if (i >= reply_bytes/2) /* overflow case */
6051 ioc->base_readl(&ioc->chip->Doorbell);
6052 else
6053 reply[i] = le16_to_cpu(
6054 ioc->base_readl(&ioc->chip->Doorbell)
6055 & MPI2_DOORBELL_DATA_MASK);
6056 writel(0, &ioc->chip->HostInterruptStatus);
6057 }
6058
6059 _base_wait_for_doorbell_int(ioc, 5);
6060 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6061 dhsprintk(ioc,
6062 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6063 __LINE__));
6064 }
6065 writel(0, &ioc->chip->HostInterruptStatus);
6066
6067 if (ioc->logging_level & MPT_DEBUG_INIT) {
6068 mfp = (__le32 *)reply;
6069 pr_info("\toffset:data\n");
6070 for (i = 0; i < reply_bytes/4; i++)
6071 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6072 le32_to_cpu(mfp[i]));
6073 }
6074 return 0;
6075 }
6076
6077 /**
6078 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6079 * @ioc: per adapter object
6080 * @mpi_reply: the reply payload from FW
6081 * @mpi_request: the request payload sent to FW
6082 *
6083 * The SAS IO Unit Control Request message allows the host to perform low-level
6084 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6085 * to obtain the IOC assigned device handles for a device if it has other
6086 * identifying information about the device, in addition allows the host to
6087 * remove IOC resources associated with the device.
6088 *
6089 * Return: 0 for success, non-zero for failure.
6090 */
6091 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6092 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6093 Mpi2SasIoUnitControlReply_t *mpi_reply,
6094 Mpi2SasIoUnitControlRequest_t *mpi_request)
6095 {
6096 u16 smid;
6097 u8 issue_reset = 0;
6098 int rc;
6099 void *request;
6100
6101 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6102
6103 mutex_lock(&ioc->base_cmds.mutex);
6104
6105 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6106 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6107 rc = -EAGAIN;
6108 goto out;
6109 }
6110
6111 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6112 if (rc)
6113 goto out;
6114
6115 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6116 if (!smid) {
6117 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6118 rc = -EAGAIN;
6119 goto out;
6120 }
6121
6122 rc = 0;
6123 ioc->base_cmds.status = MPT3_CMD_PENDING;
6124 request = mpt3sas_base_get_msg_frame(ioc, smid);
6125 ioc->base_cmds.smid = smid;
6126 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6127 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6128 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6129 ioc->ioc_link_reset_in_progress = 1;
6130 init_completion(&ioc->base_cmds.done);
6131 ioc->put_smid_default(ioc, smid);
6132 wait_for_completion_timeout(&ioc->base_cmds.done,
6133 msecs_to_jiffies(10000));
6134 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6135 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6136 ioc->ioc_link_reset_in_progress)
6137 ioc->ioc_link_reset_in_progress = 0;
6138 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6139 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6140 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6141 issue_reset);
6142 goto issue_host_reset;
6143 }
6144 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6145 memcpy(mpi_reply, ioc->base_cmds.reply,
6146 sizeof(Mpi2SasIoUnitControlReply_t));
6147 else
6148 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6149 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6150 goto out;
6151
6152 issue_host_reset:
6153 if (issue_reset)
6154 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6155 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6156 rc = -EFAULT;
6157 out:
6158 mutex_unlock(&ioc->base_cmds.mutex);
6159 return rc;
6160 }
6161
6162 /**
6163 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6164 * @ioc: per adapter object
6165 * @mpi_reply: the reply payload from FW
6166 * @mpi_request: the request payload sent to FW
6167 *
6168 * The SCSI Enclosure Processor request message causes the IOC to
6169 * communicate with SES devices to control LED status signals.
6170 *
6171 * Return: 0 for success, non-zero for failure.
6172 */
6173 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)6174 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6175 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6176 {
6177 u16 smid;
6178 u8 issue_reset = 0;
6179 int rc;
6180 void *request;
6181
6182 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6183
6184 mutex_lock(&ioc->base_cmds.mutex);
6185
6186 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6187 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6188 rc = -EAGAIN;
6189 goto out;
6190 }
6191
6192 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6193 if (rc)
6194 goto out;
6195
6196 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6197 if (!smid) {
6198 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6199 rc = -EAGAIN;
6200 goto out;
6201 }
6202
6203 rc = 0;
6204 ioc->base_cmds.status = MPT3_CMD_PENDING;
6205 request = mpt3sas_base_get_msg_frame(ioc, smid);
6206 ioc->base_cmds.smid = smid;
6207 memset(request, 0, ioc->request_sz);
6208 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6209 init_completion(&ioc->base_cmds.done);
6210 ioc->put_smid_default(ioc, smid);
6211 wait_for_completion_timeout(&ioc->base_cmds.done,
6212 msecs_to_jiffies(10000));
6213 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6214 mpt3sas_check_cmd_timeout(ioc,
6215 ioc->base_cmds.status, mpi_request,
6216 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6217 goto issue_host_reset;
6218 }
6219 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6220 memcpy(mpi_reply, ioc->base_cmds.reply,
6221 sizeof(Mpi2SepReply_t));
6222 else
6223 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6224 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6225 goto out;
6226
6227 issue_host_reset:
6228 if (issue_reset)
6229 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6230 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6231 rc = -EFAULT;
6232 out:
6233 mutex_unlock(&ioc->base_cmds.mutex);
6234 return rc;
6235 }
6236
6237 /**
6238 * _base_get_port_facts - obtain port facts reply and save in ioc
6239 * @ioc: per adapter object
6240 * @port: ?
6241 *
6242 * Return: 0 for success, non-zero for failure.
6243 */
6244 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)6245 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6246 {
6247 Mpi2PortFactsRequest_t mpi_request;
6248 Mpi2PortFactsReply_t mpi_reply;
6249 struct mpt3sas_port_facts *pfacts;
6250 int mpi_reply_sz, mpi_request_sz, r;
6251
6252 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6253
6254 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6255 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6256 memset(&mpi_request, 0, mpi_request_sz);
6257 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6258 mpi_request.PortNumber = port;
6259 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6260 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6261
6262 if (r != 0) {
6263 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6264 return r;
6265 }
6266
6267 pfacts = &ioc->pfacts[port];
6268 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6269 pfacts->PortNumber = mpi_reply.PortNumber;
6270 pfacts->VP_ID = mpi_reply.VP_ID;
6271 pfacts->VF_ID = mpi_reply.VF_ID;
6272 pfacts->MaxPostedCmdBuffers =
6273 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6274
6275 return 0;
6276 }
6277
6278 /**
6279 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6280 * @ioc: per adapter object
6281 * @timeout:
6282 *
6283 * Return: 0 for success, non-zero for failure.
6284 */
6285 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)6286 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6287 {
6288 u32 ioc_state;
6289 int rc;
6290
6291 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6292
6293 if (ioc->pci_error_recovery) {
6294 dfailprintk(ioc,
6295 ioc_info(ioc, "%s: host in pci error recovery\n",
6296 __func__));
6297 return -EFAULT;
6298 }
6299
6300 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6301 dhsprintk(ioc,
6302 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6303 __func__, ioc_state));
6304
6305 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6306 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6307 return 0;
6308
6309 if (ioc_state & MPI2_DOORBELL_USED) {
6310 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6311 goto issue_diag_reset;
6312 }
6313
6314 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6315 mpt3sas_print_fault_code(ioc, ioc_state &
6316 MPI2_DOORBELL_DATA_MASK);
6317 goto issue_diag_reset;
6318 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6319 MPI2_IOC_STATE_COREDUMP) {
6320 ioc_info(ioc,
6321 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6322 __func__, ioc_state);
6323 return -EFAULT;
6324 }
6325
6326 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6327 if (ioc_state) {
6328 dfailprintk(ioc,
6329 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6330 __func__, ioc_state));
6331 return -EFAULT;
6332 }
6333
6334 issue_diag_reset:
6335 rc = _base_diag_reset(ioc);
6336 return rc;
6337 }
6338
6339 /**
6340 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6341 * @ioc: per adapter object
6342 *
6343 * Return: 0 for success, non-zero for failure.
6344 */
6345 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)6346 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6347 {
6348 Mpi2IOCFactsRequest_t mpi_request;
6349 Mpi2IOCFactsReply_t mpi_reply;
6350 struct mpt3sas_facts *facts;
6351 int mpi_reply_sz, mpi_request_sz, r;
6352
6353 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6354
6355 r = _base_wait_for_iocstate(ioc, 10);
6356 if (r) {
6357 dfailprintk(ioc,
6358 ioc_info(ioc, "%s: failed getting to correct state\n",
6359 __func__));
6360 return r;
6361 }
6362 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6363 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6364 memset(&mpi_request, 0, mpi_request_sz);
6365 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6366 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6367 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6368
6369 if (r != 0) {
6370 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6371 return r;
6372 }
6373
6374 facts = &ioc->facts;
6375 memset(facts, 0, sizeof(struct mpt3sas_facts));
6376 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6377 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6378 facts->VP_ID = mpi_reply.VP_ID;
6379 facts->VF_ID = mpi_reply.VF_ID;
6380 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6381 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6382 facts->WhoInit = mpi_reply.WhoInit;
6383 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6384 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6385 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6386 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6387 ioc->combined_reply_queue = 0;
6388 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6389 facts->MaxReplyDescriptorPostQueueDepth =
6390 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6391 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6392 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6393 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6394 ioc->ir_firmware = 1;
6395 if ((facts->IOCCapabilities &
6396 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6397 ioc->rdpq_array_capable = 1;
6398 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6399 && ioc->is_aero_ioc)
6400 ioc->atomic_desc_capable = 1;
6401 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6402 facts->IOCRequestFrameSize =
6403 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6404 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6405 facts->IOCMaxChainSegmentSize =
6406 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6407 }
6408 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6409 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6410 ioc->shost->max_id = -1;
6411 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6412 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6413 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6414 facts->HighPriorityCredit =
6415 le16_to_cpu(mpi_reply.HighPriorityCredit);
6416 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6417 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6418 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6419
6420 /*
6421 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6422 */
6423 ioc->page_size = 1 << facts->CurrentHostPageSize;
6424 if (ioc->page_size == 1) {
6425 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6426 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6427 }
6428 dinitprintk(ioc,
6429 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6430 facts->CurrentHostPageSize));
6431
6432 dinitprintk(ioc,
6433 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6434 facts->RequestCredit, facts->MaxChainDepth));
6435 dinitprintk(ioc,
6436 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6437 facts->IOCRequestFrameSize * 4,
6438 facts->ReplyFrameSize * 4));
6439 return 0;
6440 }
6441
6442 /**
6443 * _base_send_ioc_init - send ioc_init to firmware
6444 * @ioc: per adapter object
6445 *
6446 * Return: 0 for success, non-zero for failure.
6447 */
6448 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)6449 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6450 {
6451 Mpi2IOCInitRequest_t mpi_request;
6452 Mpi2IOCInitReply_t mpi_reply;
6453 int i, r = 0;
6454 ktime_t current_time;
6455 u16 ioc_status;
6456 u32 reply_post_free_array_sz = 0;
6457
6458 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6459
6460 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6461 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6462 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6463 mpi_request.VF_ID = 0; /* TODO */
6464 mpi_request.VP_ID = 0;
6465 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6466 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6467 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6468
6469 if (_base_is_controller_msix_enabled(ioc))
6470 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6471 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6472 mpi_request.ReplyDescriptorPostQueueDepth =
6473 cpu_to_le16(ioc->reply_post_queue_depth);
6474 mpi_request.ReplyFreeQueueDepth =
6475 cpu_to_le16(ioc->reply_free_queue_depth);
6476
6477 mpi_request.SenseBufferAddressHigh =
6478 cpu_to_le32((u64)ioc->sense_dma >> 32);
6479 mpi_request.SystemReplyAddressHigh =
6480 cpu_to_le32((u64)ioc->reply_dma >> 32);
6481 mpi_request.SystemRequestFrameBaseAddress =
6482 cpu_to_le64((u64)ioc->request_dma);
6483 mpi_request.ReplyFreeQueueAddress =
6484 cpu_to_le64((u64)ioc->reply_free_dma);
6485
6486 if (ioc->rdpq_array_enable) {
6487 reply_post_free_array_sz = ioc->reply_queue_count *
6488 sizeof(Mpi2IOCInitRDPQArrayEntry);
6489 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6490 for (i = 0; i < ioc->reply_queue_count; i++)
6491 ioc->reply_post_free_array[i].RDPQBaseAddress =
6492 cpu_to_le64(
6493 (u64)ioc->reply_post[i].reply_post_free_dma);
6494 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6495 mpi_request.ReplyDescriptorPostQueueAddress =
6496 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6497 } else {
6498 mpi_request.ReplyDescriptorPostQueueAddress =
6499 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6500 }
6501
6502 /*
6503 * Set the flag to enable CoreDump state feature in IOC firmware.
6504 */
6505 mpi_request.ConfigurationFlags |=
6506 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6507
6508 /* This time stamp specifies number of milliseconds
6509 * since epoch ~ midnight January 1, 1970.
6510 */
6511 current_time = ktime_get_real();
6512 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6513
6514 if (ioc->logging_level & MPT_DEBUG_INIT) {
6515 __le32 *mfp;
6516 int i;
6517
6518 mfp = (__le32 *)&mpi_request;
6519 ioc_info(ioc, "\toffset:data\n");
6520 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6521 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6522 le32_to_cpu(mfp[i]));
6523 }
6524
6525 r = _base_handshake_req_reply_wait(ioc,
6526 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6527 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6528
6529 if (r != 0) {
6530 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6531 return r;
6532 }
6533
6534 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6535 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6536 mpi_reply.IOCLogInfo) {
6537 ioc_err(ioc, "%s: failed\n", __func__);
6538 r = -EIO;
6539 }
6540
6541 return r;
6542 }
6543
6544 /**
6545 * mpt3sas_port_enable_done - command completion routine for port enable
6546 * @ioc: per adapter object
6547 * @smid: system request message index
6548 * @msix_index: MSIX table index supplied by the OS
6549 * @reply: reply message frame(lower 32bit addr)
6550 *
6551 * Return: 1 meaning mf should be freed from _base_interrupt
6552 * 0 means the mf is freed from this function.
6553 */
6554 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)6555 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6556 u32 reply)
6557 {
6558 MPI2DefaultReply_t *mpi_reply;
6559 u16 ioc_status;
6560
6561 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6562 return 1;
6563
6564 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6565 if (!mpi_reply)
6566 return 1;
6567
6568 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6569 return 1;
6570
6571 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6572 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6573 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6574 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6575 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6576 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6577 ioc->port_enable_failed = 1;
6578
6579 if (ioc->is_driver_loading) {
6580 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6581 mpt3sas_port_enable_complete(ioc);
6582 return 1;
6583 } else {
6584 ioc->start_scan_failed = ioc_status;
6585 ioc->start_scan = 0;
6586 return 1;
6587 }
6588 }
6589 complete(&ioc->port_enable_cmds.done);
6590 return 1;
6591 }
6592
6593 /**
6594 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6595 * @ioc: per adapter object
6596 *
6597 * Return: 0 for success, non-zero for failure.
6598 */
6599 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)6600 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6601 {
6602 Mpi2PortEnableRequest_t *mpi_request;
6603 Mpi2PortEnableReply_t *mpi_reply;
6604 int r = 0;
6605 u16 smid;
6606 u16 ioc_status;
6607
6608 ioc_info(ioc, "sending port enable !!\n");
6609
6610 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6611 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6612 return -EAGAIN;
6613 }
6614
6615 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6616 if (!smid) {
6617 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6618 return -EAGAIN;
6619 }
6620
6621 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6622 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6623 ioc->port_enable_cmds.smid = smid;
6624 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6625 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6626
6627 init_completion(&ioc->port_enable_cmds.done);
6628 ioc->put_smid_default(ioc, smid);
6629 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6630 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6631 ioc_err(ioc, "%s: timeout\n", __func__);
6632 _debug_dump_mf(mpi_request,
6633 sizeof(Mpi2PortEnableRequest_t)/4);
6634 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6635 r = -EFAULT;
6636 else
6637 r = -ETIME;
6638 goto out;
6639 }
6640
6641 mpi_reply = ioc->port_enable_cmds.reply;
6642 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6643 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6644 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6645 __func__, ioc_status);
6646 r = -EFAULT;
6647 goto out;
6648 }
6649
6650 out:
6651 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6652 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6653 return r;
6654 }
6655
6656 /**
6657 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6658 * @ioc: per adapter object
6659 *
6660 * Return: 0 for success, non-zero for failure.
6661 */
6662 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)6663 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6664 {
6665 Mpi2PortEnableRequest_t *mpi_request;
6666 u16 smid;
6667
6668 ioc_info(ioc, "sending port enable !!\n");
6669
6670 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6671 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6672 return -EAGAIN;
6673 }
6674
6675 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6676 if (!smid) {
6677 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6678 return -EAGAIN;
6679 }
6680
6681 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6682 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6683 ioc->port_enable_cmds.smid = smid;
6684 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6685 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6686
6687 ioc->put_smid_default(ioc, smid);
6688 return 0;
6689 }
6690
6691 /**
6692 * _base_determine_wait_on_discovery - desposition
6693 * @ioc: per adapter object
6694 *
6695 * Decide whether to wait on discovery to complete. Used to either
6696 * locate boot device, or report volumes ahead of physical devices.
6697 *
6698 * Return: 1 for wait, 0 for don't wait.
6699 */
6700 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)6701 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6702 {
6703 /* We wait for discovery to complete if IR firmware is loaded.
6704 * The sas topology events arrive before PD events, so we need time to
6705 * turn on the bit in ioc->pd_handles to indicate PD
6706 * Also, it maybe required to report Volumes ahead of physical
6707 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6708 */
6709 if (ioc->ir_firmware)
6710 return 1;
6711
6712 /* if no Bios, then we don't need to wait */
6713 if (!ioc->bios_pg3.BiosVersion)
6714 return 0;
6715
6716 /* Bios is present, then we drop down here.
6717 *
6718 * If there any entries in the Bios Page 2, then we wait
6719 * for discovery to complete.
6720 */
6721
6722 /* Current Boot Device */
6723 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6724 MPI2_BIOSPAGE2_FORM_MASK) ==
6725 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6726 /* Request Boot Device */
6727 (ioc->bios_pg2.ReqBootDeviceForm &
6728 MPI2_BIOSPAGE2_FORM_MASK) ==
6729 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6730 /* Alternate Request Boot Device */
6731 (ioc->bios_pg2.ReqAltBootDeviceForm &
6732 MPI2_BIOSPAGE2_FORM_MASK) ==
6733 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6734 return 0;
6735
6736 return 1;
6737 }
6738
6739 /**
6740 * _base_unmask_events - turn on notification for this event
6741 * @ioc: per adapter object
6742 * @event: firmware event
6743 *
6744 * The mask is stored in ioc->event_masks.
6745 */
6746 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)6747 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6748 {
6749 u32 desired_event;
6750
6751 if (event >= 128)
6752 return;
6753
6754 desired_event = (1 << (event % 32));
6755
6756 if (event < 32)
6757 ioc->event_masks[0] &= ~desired_event;
6758 else if (event < 64)
6759 ioc->event_masks[1] &= ~desired_event;
6760 else if (event < 96)
6761 ioc->event_masks[2] &= ~desired_event;
6762 else if (event < 128)
6763 ioc->event_masks[3] &= ~desired_event;
6764 }
6765
6766 /**
6767 * _base_event_notification - send event notification
6768 * @ioc: per adapter object
6769 *
6770 * Return: 0 for success, non-zero for failure.
6771 */
6772 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)6773 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6774 {
6775 Mpi2EventNotificationRequest_t *mpi_request;
6776 u16 smid;
6777 int r = 0;
6778 int i;
6779
6780 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6781
6782 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6783 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6784 return -EAGAIN;
6785 }
6786
6787 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6788 if (!smid) {
6789 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6790 return -EAGAIN;
6791 }
6792 ioc->base_cmds.status = MPT3_CMD_PENDING;
6793 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6794 ioc->base_cmds.smid = smid;
6795 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6796 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6797 mpi_request->VF_ID = 0; /* TODO */
6798 mpi_request->VP_ID = 0;
6799 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6800 mpi_request->EventMasks[i] =
6801 cpu_to_le32(ioc->event_masks[i]);
6802 init_completion(&ioc->base_cmds.done);
6803 ioc->put_smid_default(ioc, smid);
6804 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6805 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6806 ioc_err(ioc, "%s: timeout\n", __func__);
6807 _debug_dump_mf(mpi_request,
6808 sizeof(Mpi2EventNotificationRequest_t)/4);
6809 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6810 r = -EFAULT;
6811 else
6812 r = -ETIME;
6813 } else
6814 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6815 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6816 return r;
6817 }
6818
6819 /**
6820 * mpt3sas_base_validate_event_type - validating event types
6821 * @ioc: per adapter object
6822 * @event_type: firmware event
6823 *
6824 * This will turn on firmware event notification when application
6825 * ask for that event. We don't mask events that are already enabled.
6826 */
6827 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)6828 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6829 {
6830 int i, j;
6831 u32 event_mask, desired_event;
6832 u8 send_update_to_fw;
6833
6834 for (i = 0, send_update_to_fw = 0; i <
6835 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6836 event_mask = ~event_type[i];
6837 desired_event = 1;
6838 for (j = 0; j < 32; j++) {
6839 if (!(event_mask & desired_event) &&
6840 (ioc->event_masks[i] & desired_event)) {
6841 ioc->event_masks[i] &= ~desired_event;
6842 send_update_to_fw = 1;
6843 }
6844 desired_event = (desired_event << 1);
6845 }
6846 }
6847
6848 if (!send_update_to_fw)
6849 return;
6850
6851 mutex_lock(&ioc->base_cmds.mutex);
6852 _base_event_notification(ioc);
6853 mutex_unlock(&ioc->base_cmds.mutex);
6854 }
6855
6856 /**
6857 * _base_diag_reset - the "big hammer" start of day reset
6858 * @ioc: per adapter object
6859 *
6860 * Return: 0 for success, non-zero for failure.
6861 */
6862 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)6863 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6864 {
6865 u32 host_diagnostic;
6866 u32 ioc_state;
6867 u32 count;
6868 u32 hcb_size;
6869
6870 ioc_info(ioc, "sending diag reset !!\n");
6871
6872 pci_cfg_access_lock(ioc->pdev);
6873
6874 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6875
6876 count = 0;
6877 do {
6878 /* Write magic sequence to WriteSequence register
6879 * Loop until in diagnostic mode
6880 */
6881 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6882 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6883 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6884 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6885 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6886 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6887 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6888 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6889
6890 /* wait 100 msec */
6891 msleep(100);
6892
6893 if (count++ > 20) {
6894 ioc_info(ioc,
6895 "Stop writing magic sequence after 20 retries\n");
6896 _base_dump_reg_set(ioc);
6897 goto out;
6898 }
6899
6900 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6901 drsprintk(ioc,
6902 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6903 count, host_diagnostic));
6904
6905 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6906
6907 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6908
6909 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6910 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6911 &ioc->chip->HostDiagnostic);
6912
6913 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6914 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6915
6916 /* Approximately 300 second max wait */
6917 for (count = 0; count < (300000000 /
6918 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6919
6920 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6921
6922 if (host_diagnostic == 0xFFFFFFFF) {
6923 ioc_info(ioc,
6924 "Invalid host diagnostic register value\n");
6925 _base_dump_reg_set(ioc);
6926 goto out;
6927 }
6928 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6929 break;
6930
6931 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6932 }
6933
6934 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6935
6936 drsprintk(ioc,
6937 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6938 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6939 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6940 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6941
6942 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6943 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6944 &ioc->chip->HCBSize);
6945 }
6946
6947 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6948 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6949 &ioc->chip->HostDiagnostic);
6950
6951 drsprintk(ioc,
6952 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6953 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6954
6955 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6956 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6957 if (ioc_state) {
6958 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6959 __func__, ioc_state);
6960 _base_dump_reg_set(ioc);
6961 goto out;
6962 }
6963
6964 pci_cfg_access_unlock(ioc->pdev);
6965 ioc_info(ioc, "diag reset: SUCCESS\n");
6966 return 0;
6967
6968 out:
6969 pci_cfg_access_unlock(ioc->pdev);
6970 ioc_err(ioc, "diag reset: FAILED\n");
6971 return -EFAULT;
6972 }
6973
6974 /**
6975 * _base_make_ioc_ready - put controller in READY state
6976 * @ioc: per adapter object
6977 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6978 *
6979 * Return: 0 for success, non-zero for failure.
6980 */
6981 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)6982 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6983 {
6984 u32 ioc_state;
6985 int rc;
6986 int count;
6987
6988 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6989
6990 if (ioc->pci_error_recovery)
6991 return 0;
6992
6993 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6994 dhsprintk(ioc,
6995 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6996 __func__, ioc_state));
6997
6998 /* if in RESET state, it should move to READY state shortly */
6999 count = 0;
7000 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7001 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7002 MPI2_IOC_STATE_READY) {
7003 if (count++ == 10) {
7004 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7005 __func__, ioc_state);
7006 return -EFAULT;
7007 }
7008 ssleep(1);
7009 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7010 }
7011 }
7012
7013 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7014 return 0;
7015
7016 if (ioc_state & MPI2_DOORBELL_USED) {
7017 ioc_info(ioc, "unexpected doorbell active!\n");
7018 goto issue_diag_reset;
7019 }
7020
7021 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7022 mpt3sas_print_fault_code(ioc, ioc_state &
7023 MPI2_DOORBELL_DATA_MASK);
7024 goto issue_diag_reset;
7025 }
7026
7027 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7028 /*
7029 * if host reset is invoked while watch dog thread is waiting
7030 * for IOC state to be changed to Fault state then driver has
7031 * to wait here for CoreDump state to clear otherwise reset
7032 * will be issued to the FW and FW move the IOC state to
7033 * reset state without copying the FW logs to coredump region.
7034 */
7035 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7036 mpt3sas_print_coredump_info(ioc, ioc_state &
7037 MPI2_DOORBELL_DATA_MASK);
7038 mpt3sas_base_wait_for_coredump_completion(ioc,
7039 __func__);
7040 }
7041 goto issue_diag_reset;
7042 }
7043
7044 if (type == FORCE_BIG_HAMMER)
7045 goto issue_diag_reset;
7046
7047 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7048 if (!(_base_send_ioc_reset(ioc,
7049 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7050 return 0;
7051 }
7052
7053 issue_diag_reset:
7054 rc = _base_diag_reset(ioc);
7055 return rc;
7056 }
7057
7058 /**
7059 * _base_make_ioc_operational - put controller in OPERATIONAL state
7060 * @ioc: per adapter object
7061 *
7062 * Return: 0 for success, non-zero for failure.
7063 */
7064 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)7065 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7066 {
7067 int r, i, index, rc;
7068 unsigned long flags;
7069 u32 reply_address;
7070 u16 smid;
7071 struct _tr_list *delayed_tr, *delayed_tr_next;
7072 struct _sc_list *delayed_sc, *delayed_sc_next;
7073 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7074 u8 hide_flag;
7075 struct adapter_reply_queue *reply_q;
7076 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7077
7078 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7079
7080 /* clean the delayed target reset list */
7081 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7082 &ioc->delayed_tr_list, list) {
7083 list_del(&delayed_tr->list);
7084 kfree(delayed_tr);
7085 }
7086
7087
7088 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7089 &ioc->delayed_tr_volume_list, list) {
7090 list_del(&delayed_tr->list);
7091 kfree(delayed_tr);
7092 }
7093
7094 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7095 &ioc->delayed_sc_list, list) {
7096 list_del(&delayed_sc->list);
7097 kfree(delayed_sc);
7098 }
7099
7100 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7101 &ioc->delayed_event_ack_list, list) {
7102 list_del(&delayed_event_ack->list);
7103 kfree(delayed_event_ack);
7104 }
7105
7106 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7107
7108 /* hi-priority queue */
7109 INIT_LIST_HEAD(&ioc->hpr_free_list);
7110 smid = ioc->hi_priority_smid;
7111 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7112 ioc->hpr_lookup[i].cb_idx = 0xFF;
7113 ioc->hpr_lookup[i].smid = smid;
7114 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7115 &ioc->hpr_free_list);
7116 }
7117
7118 /* internal queue */
7119 INIT_LIST_HEAD(&ioc->internal_free_list);
7120 smid = ioc->internal_smid;
7121 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7122 ioc->internal_lookup[i].cb_idx = 0xFF;
7123 ioc->internal_lookup[i].smid = smid;
7124 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7125 &ioc->internal_free_list);
7126 }
7127
7128 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7129
7130 /* initialize Reply Free Queue */
7131 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7132 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7133 ioc->reply_sz) {
7134 ioc->reply_free[i] = cpu_to_le32(reply_address);
7135 if (ioc->is_mcpu_endpoint)
7136 _base_clone_reply_to_sys_mem(ioc,
7137 reply_address, i);
7138 }
7139
7140 /* initialize reply queues */
7141 if (ioc->is_driver_loading)
7142 _base_assign_reply_queues(ioc);
7143
7144 /* initialize Reply Post Free Queue */
7145 index = 0;
7146 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7147 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7148 /*
7149 * If RDPQ is enabled, switch to the next allocation.
7150 * Otherwise advance within the contiguous region.
7151 */
7152 if (ioc->rdpq_array_enable) {
7153 reply_q->reply_post_free =
7154 ioc->reply_post[index++].reply_post_free;
7155 } else {
7156 reply_q->reply_post_free = reply_post_free_contig;
7157 reply_post_free_contig += ioc->reply_post_queue_depth;
7158 }
7159
7160 reply_q->reply_post_host_index = 0;
7161 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7162 reply_q->reply_post_free[i].Words =
7163 cpu_to_le64(ULLONG_MAX);
7164 if (!_base_is_controller_msix_enabled(ioc))
7165 goto skip_init_reply_post_free_queue;
7166 }
7167 skip_init_reply_post_free_queue:
7168
7169 r = _base_send_ioc_init(ioc);
7170 if (r) {
7171 /*
7172 * No need to check IOC state for fault state & issue
7173 * diag reset during host reset. This check is need
7174 * only during driver load time.
7175 */
7176 if (!ioc->is_driver_loading)
7177 return r;
7178
7179 rc = _base_check_for_fault_and_issue_reset(ioc);
7180 if (rc || (_base_send_ioc_init(ioc)))
7181 return r;
7182 }
7183
7184 /* initialize reply free host index */
7185 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7186 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7187
7188 /* initialize reply post host index */
7189 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7190 if (ioc->combined_reply_queue)
7191 writel((reply_q->msix_index & 7)<<
7192 MPI2_RPHI_MSIX_INDEX_SHIFT,
7193 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7194 else
7195 writel(reply_q->msix_index <<
7196 MPI2_RPHI_MSIX_INDEX_SHIFT,
7197 &ioc->chip->ReplyPostHostIndex);
7198
7199 if (!_base_is_controller_msix_enabled(ioc))
7200 goto skip_init_reply_post_host_index;
7201 }
7202
7203 skip_init_reply_post_host_index:
7204
7205 mpt3sas_base_unmask_interrupts(ioc);
7206
7207 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7208 r = _base_display_fwpkg_version(ioc);
7209 if (r)
7210 return r;
7211 }
7212
7213 _base_static_config_pages(ioc);
7214 r = _base_event_notification(ioc);
7215 if (r)
7216 return r;
7217
7218 if (ioc->is_driver_loading) {
7219
7220 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7221 == 0x80) {
7222 hide_flag = (u8) (
7223 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7224 MFG_PAGE10_HIDE_SSDS_MASK);
7225 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7226 ioc->mfg_pg10_hide_flag = hide_flag;
7227 }
7228
7229 ioc->wait_for_discovery_to_complete =
7230 _base_determine_wait_on_discovery(ioc);
7231
7232 return r; /* scan_start and scan_finished support */
7233 }
7234
7235 r = _base_send_port_enable(ioc);
7236 if (r)
7237 return r;
7238
7239 return r;
7240 }
7241
7242 /**
7243 * mpt3sas_base_free_resources - free resources controller resources
7244 * @ioc: per adapter object
7245 */
7246 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)7247 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7248 {
7249 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7250
7251 /* synchronizing freeing resource with pci_access_mutex lock */
7252 mutex_lock(&ioc->pci_access_mutex);
7253 if (ioc->chip_phys && ioc->chip) {
7254 mpt3sas_base_mask_interrupts(ioc);
7255 ioc->shost_recovery = 1;
7256 _base_make_ioc_ready(ioc, SOFT_RESET);
7257 ioc->shost_recovery = 0;
7258 }
7259
7260 mpt3sas_base_unmap_resources(ioc);
7261 mutex_unlock(&ioc->pci_access_mutex);
7262 return;
7263 }
7264
7265 /**
7266 * mpt3sas_base_attach - attach controller instance
7267 * @ioc: per adapter object
7268 *
7269 * Return: 0 for success, non-zero for failure.
7270 */
7271 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)7272 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7273 {
7274 int r, i, rc;
7275 int cpu_id, last_cpu_id = 0;
7276
7277 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7278
7279 /* setup cpu_msix_table */
7280 ioc->cpu_count = num_online_cpus();
7281 for_each_online_cpu(cpu_id)
7282 last_cpu_id = cpu_id;
7283 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7284 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7285 ioc->reply_queue_count = 1;
7286 if (!ioc->cpu_msix_table) {
7287 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7288 r = -ENOMEM;
7289 goto out_free_resources;
7290 }
7291
7292 if (ioc->is_warpdrive) {
7293 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7294 sizeof(resource_size_t *), GFP_KERNEL);
7295 if (!ioc->reply_post_host_index) {
7296 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7297 r = -ENOMEM;
7298 goto out_free_resources;
7299 }
7300 }
7301
7302 ioc->smp_affinity_enable = smp_affinity_enable;
7303
7304 ioc->rdpq_array_enable_assigned = 0;
7305 ioc->use_32bit_dma = false;
7306 ioc->dma_mask = 64;
7307 if (ioc->is_aero_ioc)
7308 ioc->base_readl = &_base_readl_aero;
7309 else
7310 ioc->base_readl = &_base_readl;
7311 r = mpt3sas_base_map_resources(ioc);
7312 if (r)
7313 goto out_free_resources;
7314
7315 pci_set_drvdata(ioc->pdev, ioc->shost);
7316 r = _base_get_ioc_facts(ioc);
7317 if (r) {
7318 rc = _base_check_for_fault_and_issue_reset(ioc);
7319 if (rc || (_base_get_ioc_facts(ioc)))
7320 goto out_free_resources;
7321 }
7322
7323 switch (ioc->hba_mpi_version_belonged) {
7324 case MPI2_VERSION:
7325 ioc->build_sg_scmd = &_base_build_sg_scmd;
7326 ioc->build_sg = &_base_build_sg;
7327 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7328 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7329 break;
7330 case MPI25_VERSION:
7331 case MPI26_VERSION:
7332 /*
7333 * In SAS3.0,
7334 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7335 * Target Status - all require the IEEE formated scatter gather
7336 * elements.
7337 */
7338 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7339 ioc->build_sg = &_base_build_sg_ieee;
7340 ioc->build_nvme_prp = &_base_build_nvme_prp;
7341 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7342 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7343 if (ioc->high_iops_queues)
7344 ioc->get_msix_index_for_smlio =
7345 &_base_get_high_iops_msix_index;
7346 else
7347 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7348 break;
7349 }
7350 if (ioc->atomic_desc_capable) {
7351 ioc->put_smid_default = &_base_put_smid_default_atomic;
7352 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7353 ioc->put_smid_fast_path =
7354 &_base_put_smid_fast_path_atomic;
7355 ioc->put_smid_hi_priority =
7356 &_base_put_smid_hi_priority_atomic;
7357 } else {
7358 ioc->put_smid_default = &_base_put_smid_default;
7359 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7360 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7361 if (ioc->is_mcpu_endpoint)
7362 ioc->put_smid_scsi_io =
7363 &_base_put_smid_mpi_ep_scsi_io;
7364 else
7365 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7366 }
7367 /*
7368 * These function pointers for other requests that don't
7369 * the require IEEE scatter gather elements.
7370 *
7371 * For example Configuration Pages and SAS IOUNIT Control don't.
7372 */
7373 ioc->build_sg_mpi = &_base_build_sg;
7374 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7375
7376 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7377 if (r)
7378 goto out_free_resources;
7379
7380 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7381 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7382 if (!ioc->pfacts) {
7383 r = -ENOMEM;
7384 goto out_free_resources;
7385 }
7386
7387 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7388 r = _base_get_port_facts(ioc, i);
7389 if (r) {
7390 rc = _base_check_for_fault_and_issue_reset(ioc);
7391 if (rc || (_base_get_port_facts(ioc, i)))
7392 goto out_free_resources;
7393 }
7394 }
7395
7396 r = _base_allocate_memory_pools(ioc);
7397 if (r)
7398 goto out_free_resources;
7399
7400 if (irqpoll_weight > 0)
7401 ioc->thresh_hold = irqpoll_weight;
7402 else
7403 ioc->thresh_hold = ioc->hba_queue_depth/4;
7404
7405 _base_init_irqpolls(ioc);
7406 init_waitqueue_head(&ioc->reset_wq);
7407
7408 /* allocate memory pd handle bitmask list */
7409 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7410 if (ioc->facts.MaxDevHandle % 8)
7411 ioc->pd_handles_sz++;
7412 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7413 GFP_KERNEL);
7414 if (!ioc->pd_handles) {
7415 r = -ENOMEM;
7416 goto out_free_resources;
7417 }
7418 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7419 GFP_KERNEL);
7420 if (!ioc->blocking_handles) {
7421 r = -ENOMEM;
7422 goto out_free_resources;
7423 }
7424
7425 /* allocate memory for pending OS device add list */
7426 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7427 if (ioc->facts.MaxDevHandle % 8)
7428 ioc->pend_os_device_add_sz++;
7429 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7430 GFP_KERNEL);
7431 if (!ioc->pend_os_device_add) {
7432 r = -ENOMEM;
7433 goto out_free_resources;
7434 }
7435
7436 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7437 ioc->device_remove_in_progress =
7438 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7439 if (!ioc->device_remove_in_progress) {
7440 r = -ENOMEM;
7441 goto out_free_resources;
7442 }
7443
7444 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7445
7446 /* base internal command bits */
7447 mutex_init(&ioc->base_cmds.mutex);
7448 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7449 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7450
7451 /* port_enable command bits */
7452 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7453 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7454
7455 /* transport internal command bits */
7456 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7457 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7458 mutex_init(&ioc->transport_cmds.mutex);
7459
7460 /* scsih internal command bits */
7461 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7462 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7463 mutex_init(&ioc->scsih_cmds.mutex);
7464
7465 /* task management internal command bits */
7466 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7467 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7468 mutex_init(&ioc->tm_cmds.mutex);
7469
7470 /* config page internal command bits */
7471 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7472 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7473 mutex_init(&ioc->config_cmds.mutex);
7474
7475 /* ctl module internal command bits */
7476 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7477 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7478 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7479 mutex_init(&ioc->ctl_cmds.mutex);
7480
7481 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7482 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7483 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7484 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7485 r = -ENOMEM;
7486 goto out_free_resources;
7487 }
7488
7489 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7490 ioc->event_masks[i] = -1;
7491
7492 /* here we enable the events we care about */
7493 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7494 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7495 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7496 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7497 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7498 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7499 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7500 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7501 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7502 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7503 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7504 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7505 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7506 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7507 if (ioc->is_gen35_ioc) {
7508 _base_unmask_events(ioc,
7509 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7510 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7511 _base_unmask_events(ioc,
7512 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7513 }
7514 }
7515 r = _base_make_ioc_operational(ioc);
7516 if (r)
7517 goto out_free_resources;
7518
7519 /*
7520 * Copy current copy of IOCFacts in prev_fw_facts
7521 * and it will be used during online firmware upgrade.
7522 */
7523 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7524 sizeof(struct mpt3sas_facts));
7525
7526 ioc->non_operational_loop = 0;
7527 ioc->ioc_coredump_loop = 0;
7528 ioc->got_task_abort_from_ioctl = 0;
7529 return 0;
7530
7531 out_free_resources:
7532
7533 ioc->remove_host = 1;
7534
7535 mpt3sas_base_free_resources(ioc);
7536 _base_release_memory_pools(ioc);
7537 pci_set_drvdata(ioc->pdev, NULL);
7538 kfree(ioc->cpu_msix_table);
7539 if (ioc->is_warpdrive)
7540 kfree(ioc->reply_post_host_index);
7541 kfree(ioc->pd_handles);
7542 kfree(ioc->blocking_handles);
7543 kfree(ioc->device_remove_in_progress);
7544 kfree(ioc->pend_os_device_add);
7545 kfree(ioc->tm_cmds.reply);
7546 kfree(ioc->transport_cmds.reply);
7547 kfree(ioc->scsih_cmds.reply);
7548 kfree(ioc->config_cmds.reply);
7549 kfree(ioc->base_cmds.reply);
7550 kfree(ioc->port_enable_cmds.reply);
7551 kfree(ioc->ctl_cmds.reply);
7552 kfree(ioc->ctl_cmds.sense);
7553 kfree(ioc->pfacts);
7554 ioc->ctl_cmds.reply = NULL;
7555 ioc->base_cmds.reply = NULL;
7556 ioc->tm_cmds.reply = NULL;
7557 ioc->scsih_cmds.reply = NULL;
7558 ioc->transport_cmds.reply = NULL;
7559 ioc->config_cmds.reply = NULL;
7560 ioc->pfacts = NULL;
7561 return r;
7562 }
7563
7564
7565 /**
7566 * mpt3sas_base_detach - remove controller instance
7567 * @ioc: per adapter object
7568 */
7569 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)7570 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7571 {
7572 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7573
7574 mpt3sas_base_stop_watchdog(ioc);
7575 mpt3sas_base_free_resources(ioc);
7576 _base_release_memory_pools(ioc);
7577 mpt3sas_free_enclosure_list(ioc);
7578 pci_set_drvdata(ioc->pdev, NULL);
7579 kfree(ioc->cpu_msix_table);
7580 if (ioc->is_warpdrive)
7581 kfree(ioc->reply_post_host_index);
7582 kfree(ioc->pd_handles);
7583 kfree(ioc->blocking_handles);
7584 kfree(ioc->device_remove_in_progress);
7585 kfree(ioc->pend_os_device_add);
7586 kfree(ioc->pfacts);
7587 kfree(ioc->ctl_cmds.reply);
7588 kfree(ioc->ctl_cmds.sense);
7589 kfree(ioc->base_cmds.reply);
7590 kfree(ioc->port_enable_cmds.reply);
7591 kfree(ioc->tm_cmds.reply);
7592 kfree(ioc->transport_cmds.reply);
7593 kfree(ioc->scsih_cmds.reply);
7594 kfree(ioc->config_cmds.reply);
7595 }
7596
7597 /**
7598 * _base_pre_reset_handler - pre reset handler
7599 * @ioc: per adapter object
7600 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)7601 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7602 {
7603 mpt3sas_scsih_pre_reset_handler(ioc);
7604 mpt3sas_ctl_pre_reset_handler(ioc);
7605 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7606 }
7607
7608 /**
7609 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7610 * @ioc: per adapter object
7611 */
7612 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)7613 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7614 {
7615 dtmprintk(ioc,
7616 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7617 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7618 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7619 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7620 complete(&ioc->transport_cmds.done);
7621 }
7622 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7623 ioc->base_cmds.status |= MPT3_CMD_RESET;
7624 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7625 complete(&ioc->base_cmds.done);
7626 }
7627 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7628 ioc->port_enable_failed = 1;
7629 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7630 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7631 if (ioc->is_driver_loading) {
7632 ioc->start_scan_failed =
7633 MPI2_IOCSTATUS_INTERNAL_ERROR;
7634 ioc->start_scan = 0;
7635 ioc->port_enable_cmds.status =
7636 MPT3_CMD_NOT_USED;
7637 } else {
7638 complete(&ioc->port_enable_cmds.done);
7639 }
7640 }
7641 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7642 ioc->config_cmds.status |= MPT3_CMD_RESET;
7643 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7644 ioc->config_cmds.smid = USHRT_MAX;
7645 complete(&ioc->config_cmds.done);
7646 }
7647 }
7648
7649 /**
7650 * _base_clear_outstanding_commands - clear all outstanding commands
7651 * @ioc: per adapter object
7652 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)7653 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7654 {
7655 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7656 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7657 _base_clear_outstanding_mpt_commands(ioc);
7658 }
7659
7660 /**
7661 * _base_reset_done_handler - reset done handler
7662 * @ioc: per adapter object
7663 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)7664 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7665 {
7666 mpt3sas_scsih_reset_done_handler(ioc);
7667 mpt3sas_ctl_reset_done_handler(ioc);
7668 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7669 }
7670
7671 /**
7672 * mpt3sas_wait_for_commands_to_complete - reset controller
7673 * @ioc: Pointer to MPT_ADAPTER structure
7674 *
7675 * This function is waiting 10s for all pending commands to complete
7676 * prior to putting controller in reset.
7677 */
7678 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)7679 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7680 {
7681 u32 ioc_state;
7682
7683 ioc->pending_io_count = 0;
7684
7685 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7686 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7687 return;
7688
7689 /* pending command count */
7690 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7691
7692 if (!ioc->pending_io_count)
7693 return;
7694
7695 /* wait for pending commands to complete */
7696 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7697 }
7698
7699 /**
7700 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7701 * attributes during online firmware upgrade and update the corresponding
7702 * IOC variables accordingly.
7703 *
7704 * @ioc: Pointer to MPT_ADAPTER structure
7705 */
7706 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)7707 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7708 {
7709 u16 pd_handles_sz;
7710 void *pd_handles = NULL, *blocking_handles = NULL;
7711 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7712 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7713
7714 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7715 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7716 if (ioc->facts.MaxDevHandle % 8)
7717 pd_handles_sz++;
7718
7719 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7720 GFP_KERNEL);
7721 if (!pd_handles) {
7722 ioc_info(ioc,
7723 "Unable to allocate the memory for pd_handles of sz: %d\n",
7724 pd_handles_sz);
7725 return -ENOMEM;
7726 }
7727 memset(pd_handles + ioc->pd_handles_sz, 0,
7728 (pd_handles_sz - ioc->pd_handles_sz));
7729 ioc->pd_handles = pd_handles;
7730
7731 blocking_handles = krealloc(ioc->blocking_handles,
7732 pd_handles_sz, GFP_KERNEL);
7733 if (!blocking_handles) {
7734 ioc_info(ioc,
7735 "Unable to allocate the memory for "
7736 "blocking_handles of sz: %d\n",
7737 pd_handles_sz);
7738 return -ENOMEM;
7739 }
7740 memset(blocking_handles + ioc->pd_handles_sz, 0,
7741 (pd_handles_sz - ioc->pd_handles_sz));
7742 ioc->blocking_handles = blocking_handles;
7743 ioc->pd_handles_sz = pd_handles_sz;
7744
7745 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7746 pd_handles_sz, GFP_KERNEL);
7747 if (!pend_os_device_add) {
7748 ioc_info(ioc,
7749 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7750 pd_handles_sz);
7751 return -ENOMEM;
7752 }
7753 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7754 (pd_handles_sz - ioc->pend_os_device_add_sz));
7755 ioc->pend_os_device_add = pend_os_device_add;
7756 ioc->pend_os_device_add_sz = pd_handles_sz;
7757
7758 device_remove_in_progress = krealloc(
7759 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7760 if (!device_remove_in_progress) {
7761 ioc_info(ioc,
7762 "Unable to allocate the memory for "
7763 "device_remove_in_progress of sz: %d\n "
7764 , pd_handles_sz);
7765 return -ENOMEM;
7766 }
7767 memset(device_remove_in_progress +
7768 ioc->device_remove_in_progress_sz, 0,
7769 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7770 ioc->device_remove_in_progress = device_remove_in_progress;
7771 ioc->device_remove_in_progress_sz = pd_handles_sz;
7772 }
7773
7774 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7775 return 0;
7776 }
7777
7778 /**
7779 * mpt3sas_base_hard_reset_handler - reset controller
7780 * @ioc: Pointer to MPT_ADAPTER structure
7781 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7782 *
7783 * Return: 0 for success, non-zero for failure.
7784 */
7785 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7786 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7787 enum reset_type type)
7788 {
7789 int r;
7790 unsigned long flags;
7791 u32 ioc_state;
7792 u8 is_fault = 0, is_trigger = 0;
7793
7794 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7795
7796 if (ioc->pci_error_recovery) {
7797 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7798 r = 0;
7799 goto out_unlocked;
7800 }
7801
7802 if (mpt3sas_fwfault_debug)
7803 mpt3sas_halt_firmware(ioc);
7804
7805 /* wait for an active reset in progress to complete */
7806 mutex_lock(&ioc->reset_in_progress_mutex);
7807
7808 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7809 ioc->shost_recovery = 1;
7810 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7811
7812 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7813 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7814 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7815 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7816 is_trigger = 1;
7817 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7818 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7819 (ioc_state & MPI2_IOC_STATE_MASK) ==
7820 MPI2_IOC_STATE_COREDUMP)
7821 is_fault = 1;
7822 }
7823 _base_pre_reset_handler(ioc);
7824 mpt3sas_wait_for_commands_to_complete(ioc);
7825 mpt3sas_base_mask_interrupts(ioc);
7826 r = _base_make_ioc_ready(ioc, type);
7827 if (r)
7828 goto out;
7829 _base_clear_outstanding_commands(ioc);
7830
7831 /* If this hard reset is called while port enable is active, then
7832 * there is no reason to call make_ioc_operational
7833 */
7834 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7835 ioc->remove_host = 1;
7836 r = -EFAULT;
7837 goto out;
7838 }
7839 r = _base_get_ioc_facts(ioc);
7840 if (r)
7841 goto out;
7842
7843 r = _base_check_ioc_facts_changes(ioc);
7844 if (r) {
7845 ioc_info(ioc,
7846 "Some of the parameters got changed in this new firmware"
7847 " image and it requires system reboot\n");
7848 goto out;
7849 }
7850 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7851 panic("%s: Issue occurred with flashing controller firmware."
7852 "Please reboot the system and ensure that the correct"
7853 " firmware version is running\n", ioc->name);
7854
7855 r = _base_make_ioc_operational(ioc);
7856 if (!r)
7857 _base_reset_done_handler(ioc);
7858
7859 out:
7860 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7861
7862 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7863 ioc->shost_recovery = 0;
7864 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7865 ioc->ioc_reset_count++;
7866 mutex_unlock(&ioc->reset_in_progress_mutex);
7867
7868 out_unlocked:
7869 if ((r == 0) && is_trigger) {
7870 if (is_fault)
7871 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7872 else
7873 mpt3sas_trigger_master(ioc,
7874 MASTER_TRIGGER_ADAPTER_RESET);
7875 }
7876 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7877 return r;
7878 }
7879