• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
get_fifosize_arm(struct amba_device * dev)93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
get_fifosize_st(struct amba_device * dev)171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
get_fifosize_zte(struct amba_device * dev)207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 #ifdef CONFIG_DMA_ENGINE
269 	/* DMA stuff */
270 	bool			using_tx_dma;
271 	bool			using_rx_dma;
272 	struct pl011_dmarx_data dmarx;
273 	struct pl011_dmatx_data	dmatx;
274 	bool			dma_probed;
275 #endif
276 };
277 
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
279 	unsigned int reg)
280 {
281 	return uap->reg_offset[reg];
282 }
283 
pl011_read(const struct uart_amba_port * uap,unsigned int reg)284 static unsigned int pl011_read(const struct uart_amba_port *uap,
285 	unsigned int reg)
286 {
287 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
288 
289 	return (uap->port.iotype == UPIO_MEM32) ?
290 		readl_relaxed(addr) : readw_relaxed(addr);
291 }
292 
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)293 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
294 	unsigned int reg)
295 {
296 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
297 
298 	if (uap->port.iotype == UPIO_MEM32)
299 		writel_relaxed(val, addr);
300 	else
301 		writew_relaxed(val, addr);
302 }
303 
304 /*
305  * Reads up to 256 characters from the FIFO or until it's empty and
306  * inserts them into the TTY layer. Returns the number of characters
307  * read from the FIFO.
308  */
pl011_fifo_to_tty(struct uart_amba_port * uap)309 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
310 {
311 	unsigned int ch, flag, fifotaken;
312 	int sysrq;
313 	u16 status;
314 
315 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
316 		status = pl011_read(uap, REG_FR);
317 		if (status & UART01x_FR_RXFE)
318 			break;
319 
320 		/* Take chars from the FIFO and update status */
321 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 		flag = TTY_NORMAL;
323 		uap->port.icount.rx++;
324 
325 		if (unlikely(ch & UART_DR_ERROR)) {
326 			if (ch & UART011_DR_BE) {
327 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
328 				uap->port.icount.brk++;
329 				if (uart_handle_break(&uap->port))
330 					continue;
331 			} else if (ch & UART011_DR_PE)
332 				uap->port.icount.parity++;
333 			else if (ch & UART011_DR_FE)
334 				uap->port.icount.frame++;
335 			if (ch & UART011_DR_OE)
336 				uap->port.icount.overrun++;
337 
338 			ch &= uap->port.read_status_mask;
339 
340 			if (ch & UART011_DR_BE)
341 				flag = TTY_BREAK;
342 			else if (ch & UART011_DR_PE)
343 				flag = TTY_PARITY;
344 			else if (ch & UART011_DR_FE)
345 				flag = TTY_FRAME;
346 		}
347 
348 		spin_unlock(&uap->port.lock);
349 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
350 		spin_lock(&uap->port.lock);
351 
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 
360 /*
361  * All the DMA operation mode stuff goes inside this ifdef.
362  * This assumes that you have a generic DMA device interface,
363  * no custom DMA interfaces are supported.
364  */
365 #ifdef CONFIG_DMA_ENGINE
366 
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 
pl011_sgbuf_init(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 	enum dma_data_direction dir)
371 {
372 	dma_addr_t dma_addr;
373 
374 	sg->buf = dma_alloc_coherent(chan->device->dev,
375 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 	if (!sg->buf)
377 		return -ENOMEM;
378 
379 	sg_init_table(&sg->sg, 1);
380 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 	sg_dma_address(&sg->sg) = dma_addr;
383 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384 
385 	return 0;
386 }
387 
pl011_sgbuf_free(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 	enum dma_data_direction dir)
390 {
391 	if (sg->buf) {
392 		dma_free_coherent(chan->device->dev,
393 			PL011_DMA_BUFFER_SIZE, sg->buf,
394 			sg_dma_address(&sg->sg));
395 	}
396 }
397 
pl011_dma_probe(struct uart_amba_port * uap)398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_chan(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_info(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 						plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_slave_channel(dev, "rx");
448 
449 	if (!chan && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (chan) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (0 == dma_get_slave_caps(chan, &caps)) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					"RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate = of_property_read_bool(
509 						dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (0 == of_property_read_u32(dev->of_node,
514 						"poll-rate-ms", &x))
515 					uap->dmarx.poll_rate = x;
516 				else
517 					uap->dmarx.poll_rate = 100;
518 				if (0 == of_property_read_u32(dev->of_node,
519 						"poll-timeout-ms", &x))
520 					uap->dmarx.poll_timeout = x;
521 				else
522 					uap->dmarx.poll_timeout = 3000;
523 			}
524 		}
525 		dev_info(uap->port.dev, "DMA channel RX %s\n",
526 			 dma_chan_name(uap->dmarx.chan));
527 	}
528 }
529 
pl011_dma_remove(struct uart_amba_port * uap)530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 	if (uap->dmatx.chan)
533 		dma_release_channel(uap->dmatx.chan);
534 	if (uap->dmarx.chan)
535 		dma_release_channel(uap->dmarx.chan);
536 }
537 
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541 
542 /*
543  * The current DMA TX buffer has been sent.
544  * Try to queue up another DMA buffer.
545  */
pl011_dma_tx_callback(void * data)546 static void pl011_dma_tx_callback(void *data)
547 {
548 	struct uart_amba_port *uap = data;
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	unsigned long flags;
551 	u16 dmacr;
552 
553 	spin_lock_irqsave(&uap->port.lock, flags);
554 	if (uap->dmatx.queued)
555 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 			     DMA_TO_DEVICE);
557 
558 	dmacr = uap->dmacr;
559 	uap->dmacr = dmacr & ~UART011_TXDMAE;
560 	pl011_write(uap->dmacr, uap, REG_DMACR);
561 
562 	/*
563 	 * If TX DMA was disabled, it means that we've stopped the DMA for
564 	 * some reason (eg, XOFF received, or we want to send an X-char.)
565 	 *
566 	 * Note: we need to be careful here of a potential race between DMA
567 	 * and the rest of the driver - if the driver disables TX DMA while
568 	 * a TX buffer completing, we must update the tx queued status to
569 	 * get further refills (hence we check dmacr).
570 	 */
571 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 	    uart_circ_empty(&uap->port.state->xmit)) {
573 		uap->dmatx.queued = false;
574 		spin_unlock_irqrestore(&uap->port.lock, flags);
575 		return;
576 	}
577 
578 	if (pl011_dma_tx_refill(uap) <= 0)
579 		/*
580 		 * We didn't queue a DMA buffer for some reason, but we
581 		 * have data pending to be sent.  Re-enable the TX IRQ.
582 		 */
583 		pl011_start_tx_pio(uap);
584 
585 	spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587 
588 /*
589  * Try to refill the TX DMA buffer.
590  * Locking: called with port lock held and IRQs disabled.
591  * Returns:
592  *   1 if we queued up a TX DMA buffer.
593  *   0 if we didn't want to handle this by DMA
594  *  <0 on error
595  */
pl011_dma_tx_refill(struct uart_amba_port * uap)596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 	struct dma_chan *chan = dmatx->chan;
600 	struct dma_device *dma_dev = chan->device;
601 	struct dma_async_tx_descriptor *desc;
602 	struct circ_buf *xmit = &uap->port.state->xmit;
603 	unsigned int count;
604 
605 	/*
606 	 * Try to avoid the overhead involved in using DMA if the
607 	 * transaction fits in the first half of the FIFO, by using
608 	 * the standard interrupt handling.  This ensures that we
609 	 * issue a uart_write_wakeup() at the appropriate time.
610 	 */
611 	count = uart_circ_chars_pending(xmit);
612 	if (count < (uap->fifosize >> 1)) {
613 		uap->dmatx.queued = false;
614 		return 0;
615 	}
616 
617 	/*
618 	 * Bodge: don't send the last character by DMA, as this
619 	 * will prevent XON from notifying us to restart DMA.
620 	 */
621 	count -= 1;
622 
623 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 	if (count > PL011_DMA_BUFFER_SIZE)
625 		count = PL011_DMA_BUFFER_SIZE;
626 
627 	if (xmit->tail < xmit->head)
628 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 	else {
630 		size_t first = UART_XMIT_SIZE - xmit->tail;
631 		size_t second;
632 
633 		if (first > count)
634 			first = count;
635 		second = count - first;
636 
637 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 		if (second)
639 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 	}
641 
642 	dmatx->sg.length = count;
643 
644 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 		uap->dmatx.queued = false;
646 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 		return -EBUSY;
648 	}
649 
650 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 	if (!desc) {
653 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 		uap->dmatx.queued = false;
655 		/*
656 		 * If DMA cannot be used right now, we complete this
657 		 * transaction via IRQ and let the TTY layer retry.
658 		 */
659 		dev_dbg(uap->port.dev, "TX DMA busy\n");
660 		return -EBUSY;
661 	}
662 
663 	/* Some data to go along to the callback */
664 	desc->callback = pl011_dma_tx_callback;
665 	desc->callback_param = uap;
666 
667 	/* All errors should happen at prepare time */
668 	dmaengine_submit(desc);
669 
670 	/* Fire the DMA transaction */
671 	dma_dev->device_issue_pending(chan);
672 
673 	uap->dmacr |= UART011_TXDMAE;
674 	pl011_write(uap->dmacr, uap, REG_DMACR);
675 	uap->dmatx.queued = true;
676 
677 	/*
678 	 * Now we know that DMA will fire, so advance the ring buffer
679 	 * with the stuff we just dispatched.
680 	 */
681 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
682 	uap->port.icount.tx += count;
683 
684 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
685 		uart_write_wakeup(&uap->port);
686 
687 	return 1;
688 }
689 
690 /*
691  * We received a transmit interrupt without a pending X-char but with
692  * pending characters.
693  * Locking: called with port lock held and IRQs disabled.
694  * Returns:
695  *   false if we want to use PIO to transmit
696  *   true if we queued a DMA buffer
697  */
pl011_dma_tx_irq(struct uart_amba_port * uap)698 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
699 {
700 	if (!uap->using_tx_dma)
701 		return false;
702 
703 	/*
704 	 * If we already have a TX buffer queued, but received a
705 	 * TX interrupt, it will be because we've just sent an X-char.
706 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
707 	 */
708 	if (uap->dmatx.queued) {
709 		uap->dmacr |= UART011_TXDMAE;
710 		pl011_write(uap->dmacr, uap, REG_DMACR);
711 		uap->im &= ~UART011_TXIM;
712 		pl011_write(uap->im, uap, REG_IMSC);
713 		return true;
714 	}
715 
716 	/*
717 	 * We don't have a TX buffer queued, so try to queue one.
718 	 * If we successfully queued a buffer, mask the TX IRQ.
719 	 */
720 	if (pl011_dma_tx_refill(uap) > 0) {
721 		uap->im &= ~UART011_TXIM;
722 		pl011_write(uap->im, uap, REG_IMSC);
723 		return true;
724 	}
725 	return false;
726 }
727 
728 /*
729  * Stop the DMA transmit (eg, due to received XOFF).
730  * Locking: called with port lock held and IRQs disabled.
731  */
pl011_dma_tx_stop(struct uart_amba_port * uap)732 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
733 {
734 	if (uap->dmatx.queued) {
735 		uap->dmacr &= ~UART011_TXDMAE;
736 		pl011_write(uap->dmacr, uap, REG_DMACR);
737 	}
738 }
739 
740 /*
741  * Try to start a DMA transmit, or in the case of an XON/OFF
742  * character queued for send, try to get that character out ASAP.
743  * Locking: called with port lock held and IRQs disabled.
744  * Returns:
745  *   false if we want the TX IRQ to be enabled
746  *   true if we have a buffer queued
747  */
pl011_dma_tx_start(struct uart_amba_port * uap)748 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
749 {
750 	u16 dmacr;
751 
752 	if (!uap->using_tx_dma)
753 		return false;
754 
755 	if (!uap->port.x_char) {
756 		/* no X-char, try to push chars out in DMA mode */
757 		bool ret = true;
758 
759 		if (!uap->dmatx.queued) {
760 			if (pl011_dma_tx_refill(uap) > 0) {
761 				uap->im &= ~UART011_TXIM;
762 				pl011_write(uap->im, uap, REG_IMSC);
763 			} else
764 				ret = false;
765 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
766 			uap->dmacr |= UART011_TXDMAE;
767 			pl011_write(uap->dmacr, uap, REG_DMACR);
768 		}
769 		return ret;
770 	}
771 
772 	/*
773 	 * We have an X-char to send.  Disable DMA to prevent it loading
774 	 * the TX fifo, and then see if we can stuff it into the FIFO.
775 	 */
776 	dmacr = uap->dmacr;
777 	uap->dmacr &= ~UART011_TXDMAE;
778 	pl011_write(uap->dmacr, uap, REG_DMACR);
779 
780 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
781 		/*
782 		 * No space in the FIFO, so enable the transmit interrupt
783 		 * so we know when there is space.  Note that once we've
784 		 * loaded the character, we should just re-enable DMA.
785 		 */
786 		return false;
787 	}
788 
789 	pl011_write(uap->port.x_char, uap, REG_DR);
790 	uap->port.icount.tx++;
791 	uap->port.x_char = 0;
792 
793 	/* Success - restore the DMA state */
794 	uap->dmacr = dmacr;
795 	pl011_write(dmacr, uap, REG_DMACR);
796 
797 	return true;
798 }
799 
800 /*
801  * Flush the transmit buffer.
802  * Locking: called with port lock held and IRQs disabled.
803  */
pl011_dma_flush_buffer(struct uart_port * port)804 static void pl011_dma_flush_buffer(struct uart_port *port)
805 __releases(&uap->port.lock)
806 __acquires(&uap->port.lock)
807 {
808 	struct uart_amba_port *uap =
809 	    container_of(port, struct uart_amba_port, port);
810 
811 	if (!uap->using_tx_dma)
812 		return;
813 
814 	dmaengine_terminate_async(uap->dmatx.chan);
815 
816 	if (uap->dmatx.queued) {
817 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
818 			     DMA_TO_DEVICE);
819 		uap->dmatx.queued = false;
820 		uap->dmacr &= ~UART011_TXDMAE;
821 		pl011_write(uap->dmacr, uap, REG_DMACR);
822 	}
823 }
824 
825 static void pl011_dma_rx_callback(void *data);
826 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)827 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
828 {
829 	struct dma_chan *rxchan = uap->dmarx.chan;
830 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
831 	struct dma_async_tx_descriptor *desc;
832 	struct pl011_sgbuf *sgbuf;
833 
834 	if (!rxchan)
835 		return -EIO;
836 
837 	/* Start the RX DMA job */
838 	sgbuf = uap->dmarx.use_buf_b ?
839 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
840 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
841 					DMA_DEV_TO_MEM,
842 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
843 	/*
844 	 * If the DMA engine is busy and cannot prepare a
845 	 * channel, no big deal, the driver will fall back
846 	 * to interrupt mode as a result of this error code.
847 	 */
848 	if (!desc) {
849 		uap->dmarx.running = false;
850 		dmaengine_terminate_all(rxchan);
851 		return -EBUSY;
852 	}
853 
854 	/* Some data to go along to the callback */
855 	desc->callback = pl011_dma_rx_callback;
856 	desc->callback_param = uap;
857 	dmarx->cookie = dmaengine_submit(desc);
858 	dma_async_issue_pending(rxchan);
859 
860 	uap->dmacr |= UART011_RXDMAE;
861 	pl011_write(uap->dmacr, uap, REG_DMACR);
862 	uap->dmarx.running = true;
863 
864 	uap->im &= ~UART011_RXIM;
865 	pl011_write(uap->im, uap, REG_IMSC);
866 
867 	return 0;
868 }
869 
870 /*
871  * This is called when either the DMA job is complete, or
872  * the FIFO timeout interrupt occurred. This must be called
873  * with the port spinlock uap->port.lock held.
874  */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)875 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
876 			       u32 pending, bool use_buf_b,
877 			       bool readfifo)
878 {
879 	struct tty_port *port = &uap->port.state->port;
880 	struct pl011_sgbuf *sgbuf = use_buf_b ?
881 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
882 	int dma_count = 0;
883 	u32 fifotaken = 0; /* only used for vdbg() */
884 
885 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
886 	int dmataken = 0;
887 
888 	if (uap->dmarx.poll_rate) {
889 		/* The data can be taken by polling */
890 		dmataken = sgbuf->sg.length - dmarx->last_residue;
891 		/* Recalculate the pending size */
892 		if (pending >= dmataken)
893 			pending -= dmataken;
894 	}
895 
896 	/* Pick the remain data from the DMA */
897 	if (pending) {
898 
899 		/*
900 		 * First take all chars in the DMA pipe, then look in the FIFO.
901 		 * Note that tty_insert_flip_buf() tries to take as many chars
902 		 * as it can.
903 		 */
904 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
905 				pending);
906 
907 		uap->port.icount.rx += dma_count;
908 		if (dma_count < pending)
909 			dev_warn(uap->port.dev,
910 				 "couldn't insert all characters (TTY is full?)\n");
911 	}
912 
913 	/* Reset the last_residue for Rx DMA poll */
914 	if (uap->dmarx.poll_rate)
915 		dmarx->last_residue = sgbuf->sg.length;
916 
917 	/*
918 	 * Only continue with trying to read the FIFO if all DMA chars have
919 	 * been taken first.
920 	 */
921 	if (dma_count == pending && readfifo) {
922 		/* Clear any error flags */
923 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
924 			    UART011_FEIS, uap, REG_ICR);
925 
926 		/*
927 		 * If we read all the DMA'd characters, and we had an
928 		 * incomplete buffer, that could be due to an rx error, or
929 		 * maybe we just timed out. Read any pending chars and check
930 		 * the error status.
931 		 *
932 		 * Error conditions will only occur in the FIFO, these will
933 		 * trigger an immediate interrupt and stop the DMA job, so we
934 		 * will always find the error in the FIFO, never in the DMA
935 		 * buffer.
936 		 */
937 		fifotaken = pl011_fifo_to_tty(uap);
938 	}
939 
940 	spin_unlock(&uap->port.lock);
941 	dev_vdbg(uap->port.dev,
942 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
943 		 dma_count, fifotaken);
944 	tty_flip_buffer_push(port);
945 	spin_lock(&uap->port.lock);
946 }
947 
pl011_dma_rx_irq(struct uart_amba_port * uap)948 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
949 {
950 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
951 	struct dma_chan *rxchan = dmarx->chan;
952 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
953 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
954 	size_t pending;
955 	struct dma_tx_state state;
956 	enum dma_status dmastat;
957 
958 	/*
959 	 * Pause the transfer so we can trust the current counter,
960 	 * do this before we pause the PL011 block, else we may
961 	 * overflow the FIFO.
962 	 */
963 	if (dmaengine_pause(rxchan))
964 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
965 	dmastat = rxchan->device->device_tx_status(rxchan,
966 						   dmarx->cookie, &state);
967 	if (dmastat != DMA_PAUSED)
968 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
969 
970 	/* Disable RX DMA - incoming data will wait in the FIFO */
971 	uap->dmacr &= ~UART011_RXDMAE;
972 	pl011_write(uap->dmacr, uap, REG_DMACR);
973 	uap->dmarx.running = false;
974 
975 	pending = sgbuf->sg.length - state.residue;
976 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
977 	/* Then we terminate the transfer - we now know our residue */
978 	dmaengine_terminate_all(rxchan);
979 
980 	/*
981 	 * This will take the chars we have so far and insert
982 	 * into the framework.
983 	 */
984 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
985 
986 	/* Switch buffer & re-trigger DMA job */
987 	dmarx->use_buf_b = !dmarx->use_buf_b;
988 	if (pl011_dma_rx_trigger_dma(uap)) {
989 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
990 			"fall back to interrupt mode\n");
991 		uap->im |= UART011_RXIM;
992 		pl011_write(uap->im, uap, REG_IMSC);
993 	}
994 }
995 
pl011_dma_rx_callback(void * data)996 static void pl011_dma_rx_callback(void *data)
997 {
998 	struct uart_amba_port *uap = data;
999 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1000 	struct dma_chan *rxchan = dmarx->chan;
1001 	bool lastbuf = dmarx->use_buf_b;
1002 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1003 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1004 	size_t pending;
1005 	struct dma_tx_state state;
1006 	int ret;
1007 
1008 	/*
1009 	 * This completion interrupt occurs typically when the
1010 	 * RX buffer is totally stuffed but no timeout has yet
1011 	 * occurred. When that happens, we just want the RX
1012 	 * routine to flush out the secondary DMA buffer while
1013 	 * we immediately trigger the next DMA job.
1014 	 */
1015 	spin_lock_irq(&uap->port.lock);
1016 	/*
1017 	 * Rx data can be taken by the UART interrupts during
1018 	 * the DMA irq handler. So we check the residue here.
1019 	 */
1020 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1021 	pending = sgbuf->sg.length - state.residue;
1022 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1023 	/* Then we terminate the transfer - we now know our residue */
1024 	dmaengine_terminate_all(rxchan);
1025 
1026 	uap->dmarx.running = false;
1027 	dmarx->use_buf_b = !lastbuf;
1028 	ret = pl011_dma_rx_trigger_dma(uap);
1029 
1030 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1031 	spin_unlock_irq(&uap->port.lock);
1032 	/*
1033 	 * Do this check after we picked the DMA chars so we don't
1034 	 * get some IRQ immediately from RX.
1035 	 */
1036 	if (ret) {
1037 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1038 			"fall back to interrupt mode\n");
1039 		uap->im |= UART011_RXIM;
1040 		pl011_write(uap->im, uap, REG_IMSC);
1041 	}
1042 }
1043 
1044 /*
1045  * Stop accepting received characters, when we're shutting down or
1046  * suspending this port.
1047  * Locking: called with port lock held and IRQs disabled.
1048  */
pl011_dma_rx_stop(struct uart_amba_port * uap)1049 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1050 {
1051 	if (!uap->using_rx_dma)
1052 		return;
1053 
1054 	/* FIXME.  Just disable the DMA enable */
1055 	uap->dmacr &= ~UART011_RXDMAE;
1056 	pl011_write(uap->dmacr, uap, REG_DMACR);
1057 }
1058 
1059 /*
1060  * Timer handler for Rx DMA polling.
1061  * Every polling, It checks the residue in the dma buffer and transfer
1062  * data to the tty. Also, last_residue is updated for the next polling.
1063  */
pl011_dma_rx_poll(struct timer_list * t)1064 static void pl011_dma_rx_poll(struct timer_list *t)
1065 {
1066 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1067 	struct tty_port *port = &uap->port.state->port;
1068 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1069 	struct dma_chan *rxchan = uap->dmarx.chan;
1070 	unsigned long flags = 0;
1071 	unsigned int dmataken = 0;
1072 	unsigned int size = 0;
1073 	struct pl011_sgbuf *sgbuf;
1074 	int dma_count;
1075 	struct dma_tx_state state;
1076 
1077 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1078 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1079 	if (likely(state.residue < dmarx->last_residue)) {
1080 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1081 		size = dmarx->last_residue - state.residue;
1082 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1083 				size);
1084 		if (dma_count == size)
1085 			dmarx->last_residue =  state.residue;
1086 		dmarx->last_jiffies = jiffies;
1087 	}
1088 	tty_flip_buffer_push(port);
1089 
1090 	/*
1091 	 * If no data is received in poll_timeout, the driver will fall back
1092 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1093 	 */
1094 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1095 			> uap->dmarx.poll_timeout) {
1096 
1097 		spin_lock_irqsave(&uap->port.lock, flags);
1098 		pl011_dma_rx_stop(uap);
1099 		uap->im |= UART011_RXIM;
1100 		pl011_write(uap->im, uap, REG_IMSC);
1101 		spin_unlock_irqrestore(&uap->port.lock, flags);
1102 
1103 		uap->dmarx.running = false;
1104 		dmaengine_terminate_all(rxchan);
1105 		del_timer(&uap->dmarx.timer);
1106 	} else {
1107 		mod_timer(&uap->dmarx.timer,
1108 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1109 	}
1110 }
1111 
pl011_dma_startup(struct uart_amba_port * uap)1112 static void pl011_dma_startup(struct uart_amba_port *uap)
1113 {
1114 	int ret;
1115 
1116 	if (!uap->dma_probed)
1117 		pl011_dma_probe(uap);
1118 
1119 	if (!uap->dmatx.chan)
1120 		return;
1121 
1122 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1123 	if (!uap->dmatx.buf) {
1124 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1125 		uap->port.fifosize = uap->fifosize;
1126 		return;
1127 	}
1128 
1129 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1130 
1131 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1132 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1133 	uap->using_tx_dma = true;
1134 
1135 	if (!uap->dmarx.chan)
1136 		goto skip_rx;
1137 
1138 	/* Allocate and map DMA RX buffers */
1139 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1140 			       DMA_FROM_DEVICE);
1141 	if (ret) {
1142 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1143 			"RX buffer A", ret);
1144 		goto skip_rx;
1145 	}
1146 
1147 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1148 			       DMA_FROM_DEVICE);
1149 	if (ret) {
1150 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1151 			"RX buffer B", ret);
1152 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1153 				 DMA_FROM_DEVICE);
1154 		goto skip_rx;
1155 	}
1156 
1157 	uap->using_rx_dma = true;
1158 
1159 skip_rx:
1160 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1161 	uap->dmacr |= UART011_DMAONERR;
1162 	pl011_write(uap->dmacr, uap, REG_DMACR);
1163 
1164 	/*
1165 	 * ST Micro variants has some specific dma burst threshold
1166 	 * compensation. Set this to 16 bytes, so burst will only
1167 	 * be issued above/below 16 bytes.
1168 	 */
1169 	if (uap->vendor->dma_threshold)
1170 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1171 			    uap, REG_ST_DMAWM);
1172 
1173 	if (uap->using_rx_dma) {
1174 		if (pl011_dma_rx_trigger_dma(uap))
1175 			dev_dbg(uap->port.dev, "could not trigger initial "
1176 				"RX DMA job, fall back to interrupt mode\n");
1177 		if (uap->dmarx.poll_rate) {
1178 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1179 			mod_timer(&uap->dmarx.timer,
1180 				jiffies +
1181 				msecs_to_jiffies(uap->dmarx.poll_rate));
1182 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1183 			uap->dmarx.last_jiffies = jiffies;
1184 		}
1185 	}
1186 }
1187 
pl011_dma_shutdown(struct uart_amba_port * uap)1188 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1189 {
1190 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1191 		return;
1192 
1193 	/* Disable RX and TX DMA */
1194 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1195 		cpu_relax();
1196 
1197 	spin_lock_irq(&uap->port.lock);
1198 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1199 	pl011_write(uap->dmacr, uap, REG_DMACR);
1200 	spin_unlock_irq(&uap->port.lock);
1201 
1202 	if (uap->using_tx_dma) {
1203 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1204 		dmaengine_terminate_all(uap->dmatx.chan);
1205 		if (uap->dmatx.queued) {
1206 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1207 				     DMA_TO_DEVICE);
1208 			uap->dmatx.queued = false;
1209 		}
1210 
1211 		kfree(uap->dmatx.buf);
1212 		uap->using_tx_dma = false;
1213 	}
1214 
1215 	if (uap->using_rx_dma) {
1216 		dmaengine_terminate_all(uap->dmarx.chan);
1217 		/* Clean up the RX DMA */
1218 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1219 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1220 		if (uap->dmarx.poll_rate)
1221 			del_timer_sync(&uap->dmarx.timer);
1222 		uap->using_rx_dma = false;
1223 	}
1224 }
1225 
pl011_dma_rx_available(struct uart_amba_port * uap)1226 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1227 {
1228 	return uap->using_rx_dma;
1229 }
1230 
pl011_dma_rx_running(struct uart_amba_port * uap)1231 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1232 {
1233 	return uap->using_rx_dma && uap->dmarx.running;
1234 }
1235 
1236 #else
1237 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1238 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1239 {
1240 }
1241 
pl011_dma_startup(struct uart_amba_port * uap)1242 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1243 {
1244 }
1245 
pl011_dma_shutdown(struct uart_amba_port * uap)1246 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1247 {
1248 }
1249 
pl011_dma_tx_irq(struct uart_amba_port * uap)1250 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1251 {
1252 	return false;
1253 }
1254 
pl011_dma_tx_stop(struct uart_amba_port * uap)1255 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1256 {
1257 }
1258 
pl011_dma_tx_start(struct uart_amba_port * uap)1259 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1260 {
1261 	return false;
1262 }
1263 
pl011_dma_rx_irq(struct uart_amba_port * uap)1264 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1265 {
1266 }
1267 
pl011_dma_rx_stop(struct uart_amba_port * uap)1268 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1269 {
1270 }
1271 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1272 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1273 {
1274 	return -EIO;
1275 }
1276 
pl011_dma_rx_available(struct uart_amba_port * uap)1277 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1278 {
1279 	return false;
1280 }
1281 
pl011_dma_rx_running(struct uart_amba_port * uap)1282 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1283 {
1284 	return false;
1285 }
1286 
1287 #define pl011_dma_flush_buffer	NULL
1288 #endif
1289 
pl011_stop_tx(struct uart_port * port)1290 static void pl011_stop_tx(struct uart_port *port)
1291 {
1292 	struct uart_amba_port *uap =
1293 	    container_of(port, struct uart_amba_port, port);
1294 
1295 	uap->im &= ~UART011_TXIM;
1296 	pl011_write(uap->im, uap, REG_IMSC);
1297 	pl011_dma_tx_stop(uap);
1298 }
1299 
1300 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1301 
1302 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1303 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1304 {
1305 	if (pl011_tx_chars(uap, false)) {
1306 		uap->im |= UART011_TXIM;
1307 		pl011_write(uap->im, uap, REG_IMSC);
1308 	}
1309 }
1310 
pl011_start_tx(struct uart_port * port)1311 static void pl011_start_tx(struct uart_port *port)
1312 {
1313 	struct uart_amba_port *uap =
1314 	    container_of(port, struct uart_amba_port, port);
1315 
1316 	if (!pl011_dma_tx_start(uap))
1317 		pl011_start_tx_pio(uap);
1318 }
1319 
pl011_stop_rx(struct uart_port * port)1320 static void pl011_stop_rx(struct uart_port *port)
1321 {
1322 	struct uart_amba_port *uap =
1323 	    container_of(port, struct uart_amba_port, port);
1324 
1325 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1326 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1327 	pl011_write(uap->im, uap, REG_IMSC);
1328 
1329 	pl011_dma_rx_stop(uap);
1330 }
1331 
pl011_throttle_rx(struct uart_port * port)1332 static void pl011_throttle_rx(struct uart_port *port)
1333 {
1334 	unsigned long flags;
1335 
1336 	spin_lock_irqsave(&port->lock, flags);
1337 	pl011_stop_rx(port);
1338 	spin_unlock_irqrestore(&port->lock, flags);
1339 }
1340 
pl011_enable_ms(struct uart_port * port)1341 static void pl011_enable_ms(struct uart_port *port)
1342 {
1343 	struct uart_amba_port *uap =
1344 	    container_of(port, struct uart_amba_port, port);
1345 
1346 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1347 	pl011_write(uap->im, uap, REG_IMSC);
1348 }
1349 
pl011_rx_chars(struct uart_amba_port * uap)1350 static void pl011_rx_chars(struct uart_amba_port *uap)
1351 __releases(&uap->port.lock)
1352 __acquires(&uap->port.lock)
1353 {
1354 	pl011_fifo_to_tty(uap);
1355 
1356 	spin_unlock(&uap->port.lock);
1357 	tty_flip_buffer_push(&uap->port.state->port);
1358 	/*
1359 	 * If we were temporarily out of DMA mode for a while,
1360 	 * attempt to switch back to DMA mode again.
1361 	 */
1362 	if (pl011_dma_rx_available(uap)) {
1363 		if (pl011_dma_rx_trigger_dma(uap)) {
1364 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1365 				"fall back to interrupt mode again\n");
1366 			uap->im |= UART011_RXIM;
1367 			pl011_write(uap->im, uap, REG_IMSC);
1368 		} else {
1369 #ifdef CONFIG_DMA_ENGINE
1370 			/* Start Rx DMA poll */
1371 			if (uap->dmarx.poll_rate) {
1372 				uap->dmarx.last_jiffies = jiffies;
1373 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1374 				mod_timer(&uap->dmarx.timer,
1375 					jiffies +
1376 					msecs_to_jiffies(uap->dmarx.poll_rate));
1377 			}
1378 #endif
1379 		}
1380 	}
1381 	spin_lock(&uap->port.lock);
1382 }
1383 
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1384 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1385 			  bool from_irq)
1386 {
1387 	if (unlikely(!from_irq) &&
1388 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1389 		return false; /* unable to transmit character */
1390 
1391 	pl011_write(c, uap, REG_DR);
1392 	uap->port.icount.tx++;
1393 
1394 	return true;
1395 }
1396 
1397 /* Returns true if tx interrupts have to be (kept) enabled  */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1398 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1399 {
1400 	struct circ_buf *xmit = &uap->port.state->xmit;
1401 	int count = uap->fifosize >> 1;
1402 
1403 	if (uap->port.x_char) {
1404 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1405 			return true;
1406 		uap->port.x_char = 0;
1407 		--count;
1408 	}
1409 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1410 		pl011_stop_tx(&uap->port);
1411 		return false;
1412 	}
1413 
1414 	/* If we are using DMA mode, try to send some characters. */
1415 	if (pl011_dma_tx_irq(uap))
1416 		return true;
1417 
1418 	do {
1419 		if (likely(from_irq) && count-- == 0)
1420 			break;
1421 
1422 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1423 			break;
1424 
1425 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1426 	} while (!uart_circ_empty(xmit));
1427 
1428 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1429 		uart_write_wakeup(&uap->port);
1430 
1431 	if (uart_circ_empty(xmit)) {
1432 		pl011_stop_tx(&uap->port);
1433 		return false;
1434 	}
1435 	return true;
1436 }
1437 
pl011_modem_status(struct uart_amba_port * uap)1438 static void pl011_modem_status(struct uart_amba_port *uap)
1439 {
1440 	unsigned int status, delta;
1441 
1442 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1443 
1444 	delta = status ^ uap->old_status;
1445 	uap->old_status = status;
1446 
1447 	if (!delta)
1448 		return;
1449 
1450 	if (delta & UART01x_FR_DCD)
1451 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1452 
1453 	if (delta & uap->vendor->fr_dsr)
1454 		uap->port.icount.dsr++;
1455 
1456 	if (delta & uap->vendor->fr_cts)
1457 		uart_handle_cts_change(&uap->port,
1458 				       status & uap->vendor->fr_cts);
1459 
1460 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1461 }
1462 
check_apply_cts_event_workaround(struct uart_amba_port * uap)1463 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1464 {
1465 	if (!uap->vendor->cts_event_workaround)
1466 		return;
1467 
1468 	/* workaround to make sure that all bits are unlocked.. */
1469 	pl011_write(0x00, uap, REG_ICR);
1470 
1471 	/*
1472 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1473 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1474 	 * so add 2 dummy reads
1475 	 */
1476 	pl011_read(uap, REG_ICR);
1477 	pl011_read(uap, REG_ICR);
1478 }
1479 
pl011_int(int irq,void * dev_id)1480 static irqreturn_t pl011_int(int irq, void *dev_id)
1481 {
1482 	struct uart_amba_port *uap = dev_id;
1483 	unsigned long flags;
1484 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1485 	int handled = 0;
1486 
1487 	spin_lock_irqsave(&uap->port.lock, flags);
1488 	status = pl011_read(uap, REG_RIS) & uap->im;
1489 	if (status) {
1490 		do {
1491 			check_apply_cts_event_workaround(uap);
1492 
1493 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1494 					       UART011_RXIS),
1495 				    uap, REG_ICR);
1496 
1497 			if (status & (UART011_RTIS|UART011_RXIS)) {
1498 				if (pl011_dma_rx_running(uap))
1499 					pl011_dma_rx_irq(uap);
1500 				else
1501 					pl011_rx_chars(uap);
1502 			}
1503 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1504 				      UART011_CTSMIS|UART011_RIMIS))
1505 				pl011_modem_status(uap);
1506 			if (status & UART011_TXIS)
1507 				pl011_tx_chars(uap, true);
1508 
1509 			if (pass_counter-- == 0)
1510 				break;
1511 
1512 			status = pl011_read(uap, REG_RIS) & uap->im;
1513 		} while (status != 0);
1514 		handled = 1;
1515 	}
1516 
1517 	spin_unlock_irqrestore(&uap->port.lock, flags);
1518 
1519 	return IRQ_RETVAL(handled);
1520 }
1521 
pl011_tx_empty(struct uart_port * port)1522 static unsigned int pl011_tx_empty(struct uart_port *port)
1523 {
1524 	struct uart_amba_port *uap =
1525 	    container_of(port, struct uart_amba_port, port);
1526 
1527 	/* Allow feature register bits to be inverted to work around errata */
1528 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1529 
1530 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1531 							0 : TIOCSER_TEMT;
1532 }
1533 
pl011_get_mctrl(struct uart_port * port)1534 static unsigned int pl011_get_mctrl(struct uart_port *port)
1535 {
1536 	struct uart_amba_port *uap =
1537 	    container_of(port, struct uart_amba_port, port);
1538 	unsigned int result = 0;
1539 	unsigned int status = pl011_read(uap, REG_FR);
1540 
1541 #define TIOCMBIT(uartbit, tiocmbit)	\
1542 	if (status & uartbit)		\
1543 		result |= tiocmbit
1544 
1545 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1546 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1547 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1548 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1549 #undef TIOCMBIT
1550 	return result;
1551 }
1552 
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1553 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1554 {
1555 	struct uart_amba_port *uap =
1556 	    container_of(port, struct uart_amba_port, port);
1557 	unsigned int cr;
1558 
1559 	cr = pl011_read(uap, REG_CR);
1560 
1561 #define	TIOCMBIT(tiocmbit, uartbit)		\
1562 	if (mctrl & tiocmbit)		\
1563 		cr |= uartbit;		\
1564 	else				\
1565 		cr &= ~uartbit
1566 
1567 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1568 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1569 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1570 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1571 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1572 
1573 	if (port->status & UPSTAT_AUTORTS) {
1574 		/* We need to disable auto-RTS if we want to turn RTS off */
1575 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1576 	}
1577 #undef TIOCMBIT
1578 
1579 	pl011_write(cr, uap, REG_CR);
1580 }
1581 
pl011_break_ctl(struct uart_port * port,int break_state)1582 static void pl011_break_ctl(struct uart_port *port, int break_state)
1583 {
1584 	struct uart_amba_port *uap =
1585 	    container_of(port, struct uart_amba_port, port);
1586 	unsigned long flags;
1587 	unsigned int lcr_h;
1588 
1589 	spin_lock_irqsave(&uap->port.lock, flags);
1590 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1591 	if (break_state == -1)
1592 		lcr_h |= UART01x_LCRH_BRK;
1593 	else
1594 		lcr_h &= ~UART01x_LCRH_BRK;
1595 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1596 	spin_unlock_irqrestore(&uap->port.lock, flags);
1597 }
1598 
1599 #ifdef CONFIG_CONSOLE_POLL
1600 
pl011_quiesce_irqs(struct uart_port * port)1601 static void pl011_quiesce_irqs(struct uart_port *port)
1602 {
1603 	struct uart_amba_port *uap =
1604 	    container_of(port, struct uart_amba_port, port);
1605 
1606 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1607 	/*
1608 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1609 	 * we simply mask it. start_tx() will unmask it.
1610 	 *
1611 	 * Note we can race with start_tx(), and if the race happens, the
1612 	 * polling user might get another interrupt just after we clear it.
1613 	 * But it should be OK and can happen even w/o the race, e.g.
1614 	 * controller immediately got some new data and raised the IRQ.
1615 	 *
1616 	 * And whoever uses polling routines assumes that it manages the device
1617 	 * (including tx queue), so we're also fine with start_tx()'s caller
1618 	 * side.
1619 	 */
1620 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1621 		    REG_IMSC);
1622 }
1623 
pl011_get_poll_char(struct uart_port * port)1624 static int pl011_get_poll_char(struct uart_port *port)
1625 {
1626 	struct uart_amba_port *uap =
1627 	    container_of(port, struct uart_amba_port, port);
1628 	unsigned int status;
1629 
1630 	/*
1631 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1632 	 * debugger.
1633 	 */
1634 	pl011_quiesce_irqs(port);
1635 
1636 	status = pl011_read(uap, REG_FR);
1637 	if (status & UART01x_FR_RXFE)
1638 		return NO_POLL_CHAR;
1639 
1640 	return pl011_read(uap, REG_DR);
1641 }
1642 
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1643 static void pl011_put_poll_char(struct uart_port *port,
1644 			 unsigned char ch)
1645 {
1646 	struct uart_amba_port *uap =
1647 	    container_of(port, struct uart_amba_port, port);
1648 
1649 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1650 		cpu_relax();
1651 
1652 	pl011_write(ch, uap, REG_DR);
1653 }
1654 
1655 #endif /* CONFIG_CONSOLE_POLL */
1656 
pl011_hwinit(struct uart_port * port)1657 static int pl011_hwinit(struct uart_port *port)
1658 {
1659 	struct uart_amba_port *uap =
1660 	    container_of(port, struct uart_amba_port, port);
1661 	int retval;
1662 
1663 	/* Optionaly enable pins to be muxed in and configured */
1664 	pinctrl_pm_select_default_state(port->dev);
1665 
1666 	/*
1667 	 * Try to enable the clock producer.
1668 	 */
1669 	retval = clk_prepare_enable(uap->clk);
1670 	if (retval)
1671 		return retval;
1672 
1673 	uap->port.uartclk = clk_get_rate(uap->clk);
1674 
1675 	/* Clear pending error and receive interrupts */
1676 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1677 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1678 		    uap, REG_ICR);
1679 
1680 	/*
1681 	 * Save interrupts enable mask, and enable RX interrupts in case if
1682 	 * the interrupt is used for NMI entry.
1683 	 */
1684 	uap->im = pl011_read(uap, REG_IMSC);
1685 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1686 
1687 	if (dev_get_platdata(uap->port.dev)) {
1688 		struct amba_pl011_data *plat;
1689 
1690 		plat = dev_get_platdata(uap->port.dev);
1691 		if (plat->init)
1692 			plat->init();
1693 	}
1694 	return 0;
1695 }
1696 
pl011_split_lcrh(const struct uart_amba_port * uap)1697 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1698 {
1699 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1700 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1701 }
1702 
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1703 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1704 {
1705 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1706 	if (pl011_split_lcrh(uap)) {
1707 		int i;
1708 		/*
1709 		 * Wait 10 PCLKs before writing LCRH_TX register,
1710 		 * to get this delay write read only register 10 times
1711 		 */
1712 		for (i = 0; i < 10; ++i)
1713 			pl011_write(0xff, uap, REG_MIS);
1714 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1715 	}
1716 }
1717 
pl011_allocate_irq(struct uart_amba_port * uap)1718 static int pl011_allocate_irq(struct uart_amba_port *uap)
1719 {
1720 	pl011_write(uap->im, uap, REG_IMSC);
1721 
1722 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1723 }
1724 
1725 /*
1726  * Enable interrupts, only timeouts when using DMA
1727  * if initial RX DMA job failed, start in interrupt mode
1728  * as well.
1729  */
pl011_enable_interrupts(struct uart_amba_port * uap)1730 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1731 {
1732 	unsigned long flags;
1733 	unsigned int i;
1734 
1735 	spin_lock_irqsave(&uap->port.lock, flags);
1736 
1737 	/* Clear out any spuriously appearing RX interrupts */
1738 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1739 
1740 	/*
1741 	 * RXIS is asserted only when the RX FIFO transitions from below
1742 	 * to above the trigger threshold.  If the RX FIFO is already
1743 	 * full to the threshold this can't happen and RXIS will now be
1744 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1745 	 */
1746 	for (i = 0; i < uap->fifosize * 2; ++i) {
1747 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1748 			break;
1749 
1750 		pl011_read(uap, REG_DR);
1751 	}
1752 
1753 	uap->im = UART011_RTIM;
1754 	if (!pl011_dma_rx_running(uap))
1755 		uap->im |= UART011_RXIM;
1756 	pl011_write(uap->im, uap, REG_IMSC);
1757 	spin_unlock_irqrestore(&uap->port.lock, flags);
1758 }
1759 
pl011_unthrottle_rx(struct uart_port * port)1760 static void pl011_unthrottle_rx(struct uart_port *port)
1761 {
1762 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1763 	unsigned long flags;
1764 
1765 	spin_lock_irqsave(&uap->port.lock, flags);
1766 
1767 	uap->im = UART011_RTIM;
1768 	if (!pl011_dma_rx_running(uap))
1769 		uap->im |= UART011_RXIM;
1770 
1771 	pl011_write(uap->im, uap, REG_IMSC);
1772 
1773 	spin_unlock_irqrestore(&uap->port.lock, flags);
1774 }
1775 
pl011_startup(struct uart_port * port)1776 static int pl011_startup(struct uart_port *port)
1777 {
1778 	struct uart_amba_port *uap =
1779 	    container_of(port, struct uart_amba_port, port);
1780 	unsigned int cr;
1781 	int retval;
1782 
1783 	retval = pl011_hwinit(port);
1784 	if (retval)
1785 		goto clk_dis;
1786 
1787 	retval = pl011_allocate_irq(uap);
1788 	if (retval)
1789 		goto clk_dis;
1790 
1791 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1792 
1793 	spin_lock_irq(&uap->port.lock);
1794 
1795 	/* restore RTS and DTR */
1796 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1797 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1798 	pl011_write(cr, uap, REG_CR);
1799 
1800 	spin_unlock_irq(&uap->port.lock);
1801 
1802 	/*
1803 	 * initialise the old status of the modem signals
1804 	 */
1805 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1806 
1807 	/* Startup DMA */
1808 	pl011_dma_startup(uap);
1809 
1810 	pl011_enable_interrupts(uap);
1811 
1812 	return 0;
1813 
1814  clk_dis:
1815 	clk_disable_unprepare(uap->clk);
1816 	return retval;
1817 }
1818 
sbsa_uart_startup(struct uart_port * port)1819 static int sbsa_uart_startup(struct uart_port *port)
1820 {
1821 	struct uart_amba_port *uap =
1822 		container_of(port, struct uart_amba_port, port);
1823 	int retval;
1824 
1825 	retval = pl011_hwinit(port);
1826 	if (retval)
1827 		return retval;
1828 
1829 	retval = pl011_allocate_irq(uap);
1830 	if (retval)
1831 		return retval;
1832 
1833 	/* The SBSA UART does not support any modem status lines. */
1834 	uap->old_status = 0;
1835 
1836 	pl011_enable_interrupts(uap);
1837 
1838 	return 0;
1839 }
1840 
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1841 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1842 					unsigned int lcrh)
1843 {
1844       unsigned long val;
1845 
1846       val = pl011_read(uap, lcrh);
1847       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1848       pl011_write(val, uap, lcrh);
1849 }
1850 
1851 /*
1852  * disable the port. It should not disable RTS and DTR.
1853  * Also RTS and DTR state should be preserved to restore
1854  * it during startup().
1855  */
pl011_disable_uart(struct uart_amba_port * uap)1856 static void pl011_disable_uart(struct uart_amba_port *uap)
1857 {
1858 	unsigned int cr;
1859 
1860 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1861 	spin_lock_irq(&uap->port.lock);
1862 	cr = pl011_read(uap, REG_CR);
1863 	uap->old_cr = cr;
1864 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1865 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1866 	pl011_write(cr, uap, REG_CR);
1867 	spin_unlock_irq(&uap->port.lock);
1868 
1869 	/*
1870 	 * disable break condition and fifos
1871 	 */
1872 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1873 	if (pl011_split_lcrh(uap))
1874 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1875 }
1876 
pl011_disable_interrupts(struct uart_amba_port * uap)1877 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1878 {
1879 	spin_lock_irq(&uap->port.lock);
1880 
1881 	/* mask all interrupts and clear all pending ones */
1882 	uap->im = 0;
1883 	pl011_write(uap->im, uap, REG_IMSC);
1884 	pl011_write(0xffff, uap, REG_ICR);
1885 
1886 	spin_unlock_irq(&uap->port.lock);
1887 }
1888 
pl011_shutdown(struct uart_port * port)1889 static void pl011_shutdown(struct uart_port *port)
1890 {
1891 	struct uart_amba_port *uap =
1892 		container_of(port, struct uart_amba_port, port);
1893 
1894 	pl011_disable_interrupts(uap);
1895 
1896 	pl011_dma_shutdown(uap);
1897 
1898 	free_irq(uap->port.irq, uap);
1899 
1900 	pl011_disable_uart(uap);
1901 
1902 	/*
1903 	 * Shut down the clock producer
1904 	 */
1905 	clk_disable_unprepare(uap->clk);
1906 	/* Optionally let pins go into sleep states */
1907 	pinctrl_pm_select_sleep_state(port->dev);
1908 
1909 	if (dev_get_platdata(uap->port.dev)) {
1910 		struct amba_pl011_data *plat;
1911 
1912 		plat = dev_get_platdata(uap->port.dev);
1913 		if (plat->exit)
1914 			plat->exit();
1915 	}
1916 
1917 	if (uap->port.ops->flush_buffer)
1918 		uap->port.ops->flush_buffer(port);
1919 }
1920 
sbsa_uart_shutdown(struct uart_port * port)1921 static void sbsa_uart_shutdown(struct uart_port *port)
1922 {
1923 	struct uart_amba_port *uap =
1924 		container_of(port, struct uart_amba_port, port);
1925 
1926 	pl011_disable_interrupts(uap);
1927 
1928 	free_irq(uap->port.irq, uap);
1929 
1930 	if (uap->port.ops->flush_buffer)
1931 		uap->port.ops->flush_buffer(port);
1932 }
1933 
1934 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)1935 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1936 {
1937 	port->read_status_mask = UART011_DR_OE | 255;
1938 	if (termios->c_iflag & INPCK)
1939 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1940 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1941 		port->read_status_mask |= UART011_DR_BE;
1942 
1943 	/*
1944 	 * Characters to ignore
1945 	 */
1946 	port->ignore_status_mask = 0;
1947 	if (termios->c_iflag & IGNPAR)
1948 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1949 	if (termios->c_iflag & IGNBRK) {
1950 		port->ignore_status_mask |= UART011_DR_BE;
1951 		/*
1952 		 * If we're ignoring parity and break indicators,
1953 		 * ignore overruns too (for real raw support).
1954 		 */
1955 		if (termios->c_iflag & IGNPAR)
1956 			port->ignore_status_mask |= UART011_DR_OE;
1957 	}
1958 
1959 	/*
1960 	 * Ignore all characters if CREAD is not set.
1961 	 */
1962 	if ((termios->c_cflag & CREAD) == 0)
1963 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1964 }
1965 
1966 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)1967 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1968 		     struct ktermios *old)
1969 {
1970 	struct uart_amba_port *uap =
1971 	    container_of(port, struct uart_amba_port, port);
1972 	unsigned int lcr_h, old_cr;
1973 	unsigned long flags;
1974 	unsigned int baud, quot, clkdiv;
1975 
1976 	if (uap->vendor->oversampling)
1977 		clkdiv = 8;
1978 	else
1979 		clkdiv = 16;
1980 
1981 	/*
1982 	 * Ask the core to calculate the divisor for us.
1983 	 */
1984 	baud = uart_get_baud_rate(port, termios, old, 0,
1985 				  port->uartclk / clkdiv);
1986 #ifdef CONFIG_DMA_ENGINE
1987 	/*
1988 	 * Adjust RX DMA polling rate with baud rate if not specified.
1989 	 */
1990 	if (uap->dmarx.auto_poll_rate)
1991 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1992 #endif
1993 
1994 	if (baud > port->uartclk/16)
1995 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1996 	else
1997 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1998 
1999 	switch (termios->c_cflag & CSIZE) {
2000 	case CS5:
2001 		lcr_h = UART01x_LCRH_WLEN_5;
2002 		break;
2003 	case CS6:
2004 		lcr_h = UART01x_LCRH_WLEN_6;
2005 		break;
2006 	case CS7:
2007 		lcr_h = UART01x_LCRH_WLEN_7;
2008 		break;
2009 	default: // CS8
2010 		lcr_h = UART01x_LCRH_WLEN_8;
2011 		break;
2012 	}
2013 	if (termios->c_cflag & CSTOPB)
2014 		lcr_h |= UART01x_LCRH_STP2;
2015 	if (termios->c_cflag & PARENB) {
2016 		lcr_h |= UART01x_LCRH_PEN;
2017 		if (!(termios->c_cflag & PARODD))
2018 			lcr_h |= UART01x_LCRH_EPS;
2019 		if (termios->c_cflag & CMSPAR)
2020 			lcr_h |= UART011_LCRH_SPS;
2021 	}
2022 	if (uap->fifosize > 1)
2023 		lcr_h |= UART01x_LCRH_FEN;
2024 
2025 	spin_lock_irqsave(&port->lock, flags);
2026 
2027 	/*
2028 	 * Update the per-port timeout.
2029 	 */
2030 	uart_update_timeout(port, termios->c_cflag, baud);
2031 
2032 	pl011_setup_status_masks(port, termios);
2033 
2034 	if (UART_ENABLE_MS(port, termios->c_cflag))
2035 		pl011_enable_ms(port);
2036 
2037 	/* first, disable everything */
2038 	old_cr = pl011_read(uap, REG_CR);
2039 	pl011_write(0, uap, REG_CR);
2040 
2041 	if (termios->c_cflag & CRTSCTS) {
2042 		if (old_cr & UART011_CR_RTS)
2043 			old_cr |= UART011_CR_RTSEN;
2044 
2045 		old_cr |= UART011_CR_CTSEN;
2046 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2047 	} else {
2048 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2049 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2050 	}
2051 
2052 	if (uap->vendor->oversampling) {
2053 		if (baud > port->uartclk / 16)
2054 			old_cr |= ST_UART011_CR_OVSFACT;
2055 		else
2056 			old_cr &= ~ST_UART011_CR_OVSFACT;
2057 	}
2058 
2059 	/*
2060 	 * Workaround for the ST Micro oversampling variants to
2061 	 * increase the bitrate slightly, by lowering the divisor,
2062 	 * to avoid delayed sampling of start bit at high speeds,
2063 	 * else we see data corruption.
2064 	 */
2065 	if (uap->vendor->oversampling) {
2066 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2067 			quot -= 1;
2068 		else if ((baud > 3250000) && (quot > 2))
2069 			quot -= 2;
2070 	}
2071 	/* Set baud rate */
2072 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2073 	pl011_write(quot >> 6, uap, REG_IBRD);
2074 
2075 	/*
2076 	 * ----------v----------v----------v----------v-----
2077 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2078 	 * REG_FBRD & REG_IBRD.
2079 	 * ----------^----------^----------^----------^-----
2080 	 */
2081 	pl011_write_lcr_h(uap, lcr_h);
2082 	pl011_write(old_cr, uap, REG_CR);
2083 
2084 	spin_unlock_irqrestore(&port->lock, flags);
2085 }
2086 
2087 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2088 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2089 		      struct ktermios *old)
2090 {
2091 	struct uart_amba_port *uap =
2092 	    container_of(port, struct uart_amba_port, port);
2093 	unsigned long flags;
2094 
2095 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2096 
2097 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2098 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2099 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2100 	termios->c_cflag |= CS8 | CLOCAL;
2101 
2102 	spin_lock_irqsave(&port->lock, flags);
2103 	uart_update_timeout(port, CS8, uap->fixed_baud);
2104 	pl011_setup_status_masks(port, termios);
2105 	spin_unlock_irqrestore(&port->lock, flags);
2106 }
2107 
pl011_type(struct uart_port * port)2108 static const char *pl011_type(struct uart_port *port)
2109 {
2110 	struct uart_amba_port *uap =
2111 	    container_of(port, struct uart_amba_port, port);
2112 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2113 }
2114 
2115 /*
2116  * Configure/autoconfigure the port.
2117  */
pl011_config_port(struct uart_port * port,int flags)2118 static void pl011_config_port(struct uart_port *port, int flags)
2119 {
2120 	if (flags & UART_CONFIG_TYPE)
2121 		port->type = PORT_AMBA;
2122 }
2123 
2124 /*
2125  * verify the new serial_struct (for TIOCSSERIAL).
2126  */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2127 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2128 {
2129 	int ret = 0;
2130 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2131 		ret = -EINVAL;
2132 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2133 		ret = -EINVAL;
2134 	if (ser->baud_base < 9600)
2135 		ret = -EINVAL;
2136 	if (port->mapbase != (unsigned long) ser->iomem_base)
2137 		ret = -EINVAL;
2138 	return ret;
2139 }
2140 
2141 static const struct uart_ops amba_pl011_pops = {
2142 	.tx_empty	= pl011_tx_empty,
2143 	.set_mctrl	= pl011_set_mctrl,
2144 	.get_mctrl	= pl011_get_mctrl,
2145 	.stop_tx	= pl011_stop_tx,
2146 	.start_tx	= pl011_start_tx,
2147 	.stop_rx	= pl011_stop_rx,
2148 	.throttle	= pl011_throttle_rx,
2149 	.unthrottle	= pl011_unthrottle_rx,
2150 	.enable_ms	= pl011_enable_ms,
2151 	.break_ctl	= pl011_break_ctl,
2152 	.startup	= pl011_startup,
2153 	.shutdown	= pl011_shutdown,
2154 	.flush_buffer	= pl011_dma_flush_buffer,
2155 	.set_termios	= pl011_set_termios,
2156 	.type		= pl011_type,
2157 	.config_port	= pl011_config_port,
2158 	.verify_port	= pl011_verify_port,
2159 #ifdef CONFIG_CONSOLE_POLL
2160 	.poll_init     = pl011_hwinit,
2161 	.poll_get_char = pl011_get_poll_char,
2162 	.poll_put_char = pl011_put_poll_char,
2163 #endif
2164 };
2165 
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2166 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2167 {
2168 }
2169 
sbsa_uart_get_mctrl(struct uart_port * port)2170 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2171 {
2172 	return 0;
2173 }
2174 
2175 static const struct uart_ops sbsa_uart_pops = {
2176 	.tx_empty	= pl011_tx_empty,
2177 	.set_mctrl	= sbsa_uart_set_mctrl,
2178 	.get_mctrl	= sbsa_uart_get_mctrl,
2179 	.stop_tx	= pl011_stop_tx,
2180 	.start_tx	= pl011_start_tx,
2181 	.stop_rx	= pl011_stop_rx,
2182 	.startup	= sbsa_uart_startup,
2183 	.shutdown	= sbsa_uart_shutdown,
2184 	.set_termios	= sbsa_uart_set_termios,
2185 	.type		= pl011_type,
2186 	.config_port	= pl011_config_port,
2187 	.verify_port	= pl011_verify_port,
2188 #ifdef CONFIG_CONSOLE_POLL
2189 	.poll_init     = pl011_hwinit,
2190 	.poll_get_char = pl011_get_poll_char,
2191 	.poll_put_char = pl011_put_poll_char,
2192 #endif
2193 };
2194 
2195 static struct uart_amba_port *amba_ports[UART_NR];
2196 
2197 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2198 
pl011_console_putchar(struct uart_port * port,int ch)2199 static void pl011_console_putchar(struct uart_port *port, int ch)
2200 {
2201 	struct uart_amba_port *uap =
2202 	    container_of(port, struct uart_amba_port, port);
2203 
2204 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2205 		cpu_relax();
2206 	pl011_write(ch, uap, REG_DR);
2207 }
2208 
2209 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2210 pl011_console_write(struct console *co, const char *s, unsigned int count)
2211 {
2212 	struct uart_amba_port *uap = amba_ports[co->index];
2213 	unsigned int old_cr = 0, new_cr;
2214 	unsigned long flags;
2215 	int locked = 1;
2216 
2217 	clk_enable(uap->clk);
2218 
2219 	local_irq_save(flags);
2220 	if (uap->port.sysrq)
2221 		locked = 0;
2222 	else if (oops_in_progress)
2223 		locked = spin_trylock(&uap->port.lock);
2224 	else
2225 		spin_lock(&uap->port.lock);
2226 
2227 	/*
2228 	 *	First save the CR then disable the interrupts
2229 	 */
2230 	if (!uap->vendor->always_enabled) {
2231 		old_cr = pl011_read(uap, REG_CR);
2232 		new_cr = old_cr & ~UART011_CR_CTSEN;
2233 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2234 		pl011_write(new_cr, uap, REG_CR);
2235 	}
2236 
2237 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2238 
2239 	/*
2240 	 *	Finally, wait for transmitter to become empty and restore the
2241 	 *	TCR. Allow feature register bits to be inverted to work around
2242 	 *	errata.
2243 	 */
2244 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2245 						& uap->vendor->fr_busy)
2246 		cpu_relax();
2247 	if (!uap->vendor->always_enabled)
2248 		pl011_write(old_cr, uap, REG_CR);
2249 
2250 	if (locked)
2251 		spin_unlock(&uap->port.lock);
2252 	local_irq_restore(flags);
2253 
2254 	clk_disable(uap->clk);
2255 }
2256 
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2257 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2258 				      int *parity, int *bits)
2259 {
2260 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2261 		unsigned int lcr_h, ibrd, fbrd;
2262 
2263 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2264 
2265 		*parity = 'n';
2266 		if (lcr_h & UART01x_LCRH_PEN) {
2267 			if (lcr_h & UART01x_LCRH_EPS)
2268 				*parity = 'e';
2269 			else
2270 				*parity = 'o';
2271 		}
2272 
2273 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2274 			*bits = 7;
2275 		else
2276 			*bits = 8;
2277 
2278 		ibrd = pl011_read(uap, REG_IBRD);
2279 		fbrd = pl011_read(uap, REG_FBRD);
2280 
2281 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2282 
2283 		if (uap->vendor->oversampling) {
2284 			if (pl011_read(uap, REG_CR)
2285 				  & ST_UART011_CR_OVSFACT)
2286 				*baud *= 2;
2287 		}
2288 	}
2289 }
2290 
pl011_console_setup(struct console * co,char * options)2291 static int pl011_console_setup(struct console *co, char *options)
2292 {
2293 	struct uart_amba_port *uap;
2294 	int baud = 38400;
2295 	int bits = 8;
2296 	int parity = 'n';
2297 	int flow = 'n';
2298 	int ret;
2299 
2300 	/*
2301 	 * Check whether an invalid uart number has been specified, and
2302 	 * if so, search for the first available port that does have
2303 	 * console support.
2304 	 */
2305 	if (co->index >= UART_NR)
2306 		co->index = 0;
2307 	uap = amba_ports[co->index];
2308 	if (!uap)
2309 		return -ENODEV;
2310 
2311 	/* Allow pins to be muxed in and configured */
2312 	pinctrl_pm_select_default_state(uap->port.dev);
2313 
2314 	ret = clk_prepare(uap->clk);
2315 	if (ret)
2316 		return ret;
2317 
2318 	if (dev_get_platdata(uap->port.dev)) {
2319 		struct amba_pl011_data *plat;
2320 
2321 		plat = dev_get_platdata(uap->port.dev);
2322 		if (plat->init)
2323 			plat->init();
2324 	}
2325 
2326 	uap->port.uartclk = clk_get_rate(uap->clk);
2327 
2328 	if (uap->vendor->fixed_options) {
2329 		baud = uap->fixed_baud;
2330 	} else {
2331 		if (options)
2332 			uart_parse_options(options,
2333 					   &baud, &parity, &bits, &flow);
2334 		else
2335 			pl011_console_get_options(uap, &baud, &parity, &bits);
2336 	}
2337 
2338 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2339 }
2340 
2341 /**
2342  *	pl011_console_match - non-standard console matching
2343  *	@co:	  registering console
2344  *	@name:	  name from console command line
2345  *	@idx:	  index from console command line
2346  *	@options: ptr to option string from console command line
2347  *
2348  *	Only attempts to match console command lines of the form:
2349  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2350  *	    console=pl011,0x<addr>[,<options>]
2351  *	This form is used to register an initial earlycon boot console and
2352  *	replace it with the amba_console at pl011 driver init.
2353  *
2354  *	Performs console setup for a match (as required by interface)
2355  *	If no <options> are specified, then assume the h/w is already setup.
2356  *
2357  *	Returns 0 if console matches; otherwise non-zero to use default matching
2358  */
pl011_console_match(struct console * co,char * name,int idx,char * options)2359 static int pl011_console_match(struct console *co, char *name, int idx,
2360 			       char *options)
2361 {
2362 	unsigned char iotype;
2363 	resource_size_t addr;
2364 	int i;
2365 
2366 	/*
2367 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2368 	 * have a distinct console name, so make sure we check for that.
2369 	 * The actual implementation of the erratum occurs in the probe
2370 	 * function.
2371 	 */
2372 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2373 		return -ENODEV;
2374 
2375 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2376 		return -ENODEV;
2377 
2378 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2379 		return -ENODEV;
2380 
2381 	/* try to match the port specified on the command line */
2382 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2383 		struct uart_port *port;
2384 
2385 		if (!amba_ports[i])
2386 			continue;
2387 
2388 		port = &amba_ports[i]->port;
2389 
2390 		if (port->mapbase != addr)
2391 			continue;
2392 
2393 		co->index = i;
2394 		port->cons = co;
2395 		return pl011_console_setup(co, options);
2396 	}
2397 
2398 	return -ENODEV;
2399 }
2400 
2401 static struct uart_driver amba_reg;
2402 static struct console amba_console = {
2403 	.name		= "ttyAMA",
2404 	.write		= pl011_console_write,
2405 	.device		= uart_console_device,
2406 	.setup		= pl011_console_setup,
2407 	.match		= pl011_console_match,
2408 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2409 	.index		= -1,
2410 	.data		= &amba_reg,
2411 };
2412 
2413 #define AMBA_CONSOLE	(&amba_console)
2414 
qdf2400_e44_putc(struct uart_port * port,int c)2415 static void qdf2400_e44_putc(struct uart_port *port, int c)
2416 {
2417 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2418 		cpu_relax();
2419 	writel(c, port->membase + UART01x_DR);
2420 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2421 		cpu_relax();
2422 }
2423 
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2424 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2425 {
2426 	struct earlycon_device *dev = con->data;
2427 
2428 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2429 }
2430 
pl011_putc(struct uart_port * port,int c)2431 static void pl011_putc(struct uart_port *port, int c)
2432 {
2433 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2434 		cpu_relax();
2435 	if (port->iotype == UPIO_MEM32)
2436 		writel(c, port->membase + UART01x_DR);
2437 	else
2438 		writeb(c, port->membase + UART01x_DR);
2439 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2440 		cpu_relax();
2441 }
2442 
pl011_early_write(struct console * con,const char * s,unsigned n)2443 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2444 {
2445 	struct earlycon_device *dev = con->data;
2446 
2447 	uart_console_write(&dev->port, s, n, pl011_putc);
2448 }
2449 
2450 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2451 static int pl011_getc(struct uart_port *port)
2452 {
2453 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2454 		return NO_POLL_CHAR;
2455 
2456 	if (port->iotype == UPIO_MEM32)
2457 		return readl(port->membase + UART01x_DR);
2458 	else
2459 		return readb(port->membase + UART01x_DR);
2460 }
2461 
pl011_early_read(struct console * con,char * s,unsigned int n)2462 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2463 {
2464 	struct earlycon_device *dev = con->data;
2465 	int ch, num_read = 0;
2466 
2467 	while (num_read < n) {
2468 		ch = pl011_getc(&dev->port);
2469 		if (ch == NO_POLL_CHAR)
2470 			break;
2471 
2472 		s[num_read++] = ch;
2473 	}
2474 
2475 	return num_read;
2476 }
2477 #else
2478 #define pl011_early_read NULL
2479 #endif
2480 
2481 /*
2482  * On non-ACPI systems, earlycon is enabled by specifying
2483  * "earlycon=pl011,<address>" on the kernel command line.
2484  *
2485  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2486  * by specifying only "earlycon" on the command line.  Because it requires
2487  * SPCR, the console starts after ACPI is parsed, which is later than a
2488  * traditional early console.
2489  *
2490  * To get the traditional early console that starts before ACPI is parsed,
2491  * specify the full "earlycon=pl011,<address>" option.
2492  */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2493 static int __init pl011_early_console_setup(struct earlycon_device *device,
2494 					    const char *opt)
2495 {
2496 	if (!device->port.membase)
2497 		return -ENODEV;
2498 
2499 	device->con->write = pl011_early_write;
2500 	device->con->read = pl011_early_read;
2501 
2502 	return 0;
2503 }
2504 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2505 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2506 
2507 /*
2508  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2509  * Erratum 44, traditional earlycon can be enabled by specifying
2510  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2511  *
2512  * Alternatively, you can just specify "earlycon", and the early console
2513  * will be enabled with the information from the SPCR table.  In this
2514  * case, the SPCR code will detect the need for the E44 work-around,
2515  * and set the console name to "qdf2400_e44".
2516  */
2517 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2518 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2519 				const char *opt)
2520 {
2521 	if (!device->port.membase)
2522 		return -ENODEV;
2523 
2524 	device->con->write = qdf2400_e44_early_write;
2525 	return 0;
2526 }
2527 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2528 
2529 #else
2530 #define AMBA_CONSOLE	NULL
2531 #endif
2532 
2533 static struct uart_driver amba_reg = {
2534 	.owner			= THIS_MODULE,
2535 	.driver_name		= "ttyAMA",
2536 	.dev_name		= "ttyAMA",
2537 	.major			= SERIAL_AMBA_MAJOR,
2538 	.minor			= SERIAL_AMBA_MINOR,
2539 	.nr			= UART_NR,
2540 	.cons			= AMBA_CONSOLE,
2541 };
2542 
pl011_probe_dt_alias(int index,struct device * dev)2543 static int pl011_probe_dt_alias(int index, struct device *dev)
2544 {
2545 	struct device_node *np;
2546 	static bool seen_dev_with_alias = false;
2547 	static bool seen_dev_without_alias = false;
2548 	int ret = index;
2549 
2550 	if (!IS_ENABLED(CONFIG_OF))
2551 		return ret;
2552 
2553 	np = dev->of_node;
2554 	if (!np)
2555 		return ret;
2556 
2557 	ret = of_alias_get_id(np, "serial");
2558 	if (ret < 0) {
2559 		seen_dev_without_alias = true;
2560 		ret = index;
2561 	} else {
2562 		seen_dev_with_alias = true;
2563 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2564 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2565 			ret = index;
2566 		}
2567 	}
2568 
2569 	if (seen_dev_with_alias && seen_dev_without_alias)
2570 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2571 
2572 	return ret;
2573 }
2574 
2575 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2576 static void pl011_unregister_port(struct uart_amba_port *uap)
2577 {
2578 	int i;
2579 	bool busy = false;
2580 
2581 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2582 		if (amba_ports[i] == uap)
2583 			amba_ports[i] = NULL;
2584 		else if (amba_ports[i])
2585 			busy = true;
2586 	}
2587 	pl011_dma_remove(uap);
2588 	if (!busy)
2589 		uart_unregister_driver(&amba_reg);
2590 }
2591 
pl011_find_free_port(void)2592 static int pl011_find_free_port(void)
2593 {
2594 	int i;
2595 
2596 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2597 		if (amba_ports[i] == NULL)
2598 			return i;
2599 
2600 	return -EBUSY;
2601 }
2602 
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2603 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2604 			    struct resource *mmiobase, int index)
2605 {
2606 	void __iomem *base;
2607 
2608 	base = devm_ioremap_resource(dev, mmiobase);
2609 	if (IS_ERR(base))
2610 		return PTR_ERR(base);
2611 
2612 	index = pl011_probe_dt_alias(index, dev);
2613 
2614 	uap->old_cr = 0;
2615 	uap->port.dev = dev;
2616 	uap->port.mapbase = mmiobase->start;
2617 	uap->port.membase = base;
2618 	uap->port.fifosize = uap->fifosize;
2619 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2620 	uap->port.flags = UPF_BOOT_AUTOCONF;
2621 	uap->port.line = index;
2622 
2623 	amba_ports[index] = uap;
2624 
2625 	return 0;
2626 }
2627 
pl011_register_port(struct uart_amba_port * uap)2628 static int pl011_register_port(struct uart_amba_port *uap)
2629 {
2630 	int ret, i;
2631 
2632 	/* Ensure interrupts from this UART are masked and cleared */
2633 	pl011_write(0, uap, REG_IMSC);
2634 	pl011_write(0xffff, uap, REG_ICR);
2635 
2636 	if (!amba_reg.state) {
2637 		ret = uart_register_driver(&amba_reg);
2638 		if (ret < 0) {
2639 			dev_err(uap->port.dev,
2640 				"Failed to register AMBA-PL011 driver\n");
2641 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2642 				if (amba_ports[i] == uap)
2643 					amba_ports[i] = NULL;
2644 			return ret;
2645 		}
2646 	}
2647 
2648 	ret = uart_add_one_port(&amba_reg, &uap->port);
2649 	if (ret)
2650 		pl011_unregister_port(uap);
2651 
2652 	return ret;
2653 }
2654 
pl011_probe(struct amba_device * dev,const struct amba_id * id)2655 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2656 {
2657 	struct uart_amba_port *uap;
2658 	struct vendor_data *vendor = id->data;
2659 	int portnr, ret;
2660 
2661 	portnr = pl011_find_free_port();
2662 	if (portnr < 0)
2663 		return portnr;
2664 
2665 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2666 			   GFP_KERNEL);
2667 	if (!uap)
2668 		return -ENOMEM;
2669 
2670 	uap->clk = devm_clk_get(&dev->dev, NULL);
2671 	if (IS_ERR(uap->clk))
2672 		return PTR_ERR(uap->clk);
2673 
2674 	uap->reg_offset = vendor->reg_offset;
2675 	uap->vendor = vendor;
2676 	uap->fifosize = vendor->get_fifosize(dev);
2677 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2678 	uap->port.irq = dev->irq[0];
2679 	uap->port.ops = &amba_pl011_pops;
2680 
2681 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2682 
2683 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2684 	if (ret)
2685 		return ret;
2686 
2687 	amba_set_drvdata(dev, uap);
2688 
2689 	return pl011_register_port(uap);
2690 }
2691 
pl011_remove(struct amba_device * dev)2692 static void pl011_remove(struct amba_device *dev)
2693 {
2694 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2695 
2696 	uart_remove_one_port(&amba_reg, &uap->port);
2697 	pl011_unregister_port(uap);
2698 }
2699 
2700 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2701 static int pl011_suspend(struct device *dev)
2702 {
2703 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2704 
2705 	if (!uap)
2706 		return -EINVAL;
2707 
2708 	return uart_suspend_port(&amba_reg, &uap->port);
2709 }
2710 
pl011_resume(struct device * dev)2711 static int pl011_resume(struct device *dev)
2712 {
2713 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2714 
2715 	if (!uap)
2716 		return -EINVAL;
2717 
2718 	return uart_resume_port(&amba_reg, &uap->port);
2719 }
2720 #endif
2721 
2722 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2723 
sbsa_uart_probe(struct platform_device * pdev)2724 static int sbsa_uart_probe(struct platform_device *pdev)
2725 {
2726 	struct uart_amba_port *uap;
2727 	struct resource *r;
2728 	int portnr, ret;
2729 	int baudrate;
2730 
2731 	/*
2732 	 * Check the mandatory baud rate parameter in the DT node early
2733 	 * so that we can easily exit with the error.
2734 	 */
2735 	if (pdev->dev.of_node) {
2736 		struct device_node *np = pdev->dev.of_node;
2737 
2738 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2739 		if (ret)
2740 			return ret;
2741 	} else {
2742 		baudrate = 115200;
2743 	}
2744 
2745 	portnr = pl011_find_free_port();
2746 	if (portnr < 0)
2747 		return portnr;
2748 
2749 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2750 			   GFP_KERNEL);
2751 	if (!uap)
2752 		return -ENOMEM;
2753 
2754 	ret = platform_get_irq(pdev, 0);
2755 	if (ret < 0)
2756 		return ret;
2757 	uap->port.irq	= ret;
2758 
2759 #ifdef CONFIG_ACPI_SPCR_TABLE
2760 	if (qdf2400_e44_present) {
2761 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2762 		uap->vendor = &vendor_qdt_qdf2400_e44;
2763 	} else
2764 #endif
2765 		uap->vendor = &vendor_sbsa;
2766 
2767 	uap->reg_offset	= uap->vendor->reg_offset;
2768 	uap->fifosize	= 32;
2769 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2770 	uap->port.ops	= &sbsa_uart_pops;
2771 	uap->fixed_baud = baudrate;
2772 
2773 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2774 
2775 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2776 
2777 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2778 	if (ret)
2779 		return ret;
2780 
2781 	platform_set_drvdata(pdev, uap);
2782 
2783 	return pl011_register_port(uap);
2784 }
2785 
sbsa_uart_remove(struct platform_device * pdev)2786 static int sbsa_uart_remove(struct platform_device *pdev)
2787 {
2788 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2789 
2790 	uart_remove_one_port(&amba_reg, &uap->port);
2791 	pl011_unregister_port(uap);
2792 	return 0;
2793 }
2794 
2795 static const struct of_device_id sbsa_uart_of_match[] = {
2796 	{ .compatible = "arm,sbsa-uart", },
2797 	{},
2798 };
2799 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2800 
2801 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2802 	{ "ARMH0011", 0 },
2803 	{ "ARMHB000", 0 },
2804 	{},
2805 };
2806 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2807 
2808 static struct platform_driver arm_sbsa_uart_platform_driver = {
2809 	.probe		= sbsa_uart_probe,
2810 	.remove		= sbsa_uart_remove,
2811 	.driver	= {
2812 		.name	= "sbsa-uart",
2813 		.pm	= &pl011_dev_pm_ops,
2814 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2815 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2816 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2817 	},
2818 };
2819 
2820 static const struct amba_id pl011_ids[] = {
2821 	{
2822 		.id	= 0x00041011,
2823 		.mask	= 0x000fffff,
2824 		.data	= &vendor_arm,
2825 	},
2826 	{
2827 		.id	= 0x00380802,
2828 		.mask	= 0x00ffffff,
2829 		.data	= &vendor_st,
2830 	},
2831 	{
2832 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2833 		.mask	= 0x00ffffff,
2834 		.data	= &vendor_zte,
2835 	},
2836 	{ 0, 0 },
2837 };
2838 
2839 MODULE_DEVICE_TABLE(amba, pl011_ids);
2840 
2841 static struct amba_driver pl011_driver = {
2842 	.drv = {
2843 		.name	= "uart-pl011",
2844 		.pm	= &pl011_dev_pm_ops,
2845 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2846 	},
2847 	.id_table	= pl011_ids,
2848 	.probe		= pl011_probe,
2849 	.remove		= pl011_remove,
2850 };
2851 
pl011_init(void)2852 static int __init pl011_init(void)
2853 {
2854 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2855 
2856 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2857 		pr_warn("could not register SBSA UART platform driver\n");
2858 	return amba_driver_register(&pl011_driver);
2859 }
2860 
pl011_exit(void)2861 static void __exit pl011_exit(void)
2862 {
2863 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2864 	amba_driver_unregister(&pl011_driver);
2865 }
2866 
2867 /*
2868  * While this can be a module, if builtin it's most likely the console
2869  * So let's leave module_exit but move module_init to an earlier place
2870  */
2871 arch_initcall(pl011_init);
2872 module_exit(pl011_exit);
2873 
2874 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2875 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2876 MODULE_LICENSE("GPL");
2877