• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************/
3 /*
4  *  linux/fs/binfmt_flat.c
5  *
6  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
7  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
8  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
9  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
10  *  based heavily on:
11  *
12  *  linux/fs/binfmt_aout.c:
13  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
14  *  linux/fs/binfmt_flat.c for 2.0 kernel
15  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
16  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
17  */
18 
19 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/errno.h>
27 #include <linux/signal.h>
28 #include <linux/string.h>
29 #include <linux/fs.h>
30 #include <linux/file.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/slab.h>
34 #include <linux/binfmts.h>
35 #include <linux/personality.h>
36 #include <linux/init.h>
37 #include <linux/flat.h>
38 #include <linux/uaccess.h>
39 #include <linux/vmalloc.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 #include <asm/flat.h>
46 
47 #ifndef flat_get_relocate_addr
48 #define flat_get_relocate_addr(rel)	(rel)
49 #endif
50 
51 /****************************************************************************/
52 
53 /*
54  * User data (data section and bss) needs to be aligned.
55  * We pick 0x20 here because it is the max value elf2flt has always
56  * used in producing FLAT files, and because it seems to be large
57  * enough to make all the gcc alignment related tests happy.
58  */
59 #define FLAT_DATA_ALIGN	(0x20)
60 
61 /*
62  * User data (stack) also needs to be aligned.
63  * Here we can be a bit looser than the data sections since this
64  * needs to only meet arch ABI requirements.
65  */
66 #define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
67 
68 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
69 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
70 
71 #ifdef CONFIG_BINFMT_SHARED_FLAT
72 #define	MAX_SHARED_LIBS			(4)
73 #else
74 #define	MAX_SHARED_LIBS			(1)
75 #endif
76 
77 struct lib_info {
78 	struct {
79 		unsigned long start_code;		/* Start of text segment */
80 		unsigned long start_data;		/* Start of data segment */
81 		unsigned long start_brk;		/* End of data segment */
82 		unsigned long text_len;			/* Length of text segment */
83 		unsigned long entry;			/* Start address for this module */
84 		unsigned long build_date;		/* When this one was compiled */
85 		bool loaded;				/* Has this library been loaded? */
86 	} lib_list[MAX_SHARED_LIBS];
87 };
88 
89 #ifdef CONFIG_BINFMT_SHARED_FLAT
90 static int load_flat_shared_library(int id, struct lib_info *p);
91 #endif
92 
93 static int load_flat_binary(struct linux_binprm *);
94 static int flat_core_dump(struct coredump_params *cprm);
95 
96 static struct linux_binfmt flat_format = {
97 	.module		= THIS_MODULE,
98 	.load_binary	= load_flat_binary,
99 	.core_dump	= flat_core_dump,
100 	.min_coredump	= PAGE_SIZE
101 };
102 
103 /****************************************************************************/
104 /*
105  * Routine writes a core dump image in the current directory.
106  * Currently only a stub-function.
107  */
108 
flat_core_dump(struct coredump_params * cprm)109 static int flat_core_dump(struct coredump_params *cprm)
110 {
111 	pr_warn("Process %s:%d received signr %d and should have core dumped\n",
112 		current->comm, current->pid, cprm->siginfo->si_signo);
113 	return 1;
114 }
115 
116 /****************************************************************************/
117 /*
118  * create_flat_tables() parses the env- and arg-strings in new user
119  * memory and creates the pointer tables from them, and puts their
120  * addresses on the "stack", recording the new stack pointer value.
121  */
122 
create_flat_tables(struct linux_binprm * bprm,unsigned long arg_start)123 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
124 {
125 	char __user *p;
126 	unsigned long __user *sp;
127 	long i, len;
128 
129 	p = (char __user *)arg_start;
130 	sp = (unsigned long __user *)current->mm->start_stack;
131 
132 	sp -= bprm->envc + 1;
133 	sp -= bprm->argc + 1;
134 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
135 		sp -= 2; /* argvp + envp */
136 	sp -= 1;  /* &argc */
137 
138 	current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
139 	sp = (unsigned long __user *)current->mm->start_stack;
140 
141 	if (put_user(bprm->argc, sp++))
142 		return -EFAULT;
143 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
144 		unsigned long argv, envp;
145 		argv = (unsigned long)(sp + 2);
146 		envp = (unsigned long)(sp + 2 + bprm->argc + 1);
147 		if (put_user(argv, sp++) || put_user(envp, sp++))
148 			return -EFAULT;
149 	}
150 
151 	current->mm->arg_start = (unsigned long)p;
152 	for (i = bprm->argc; i > 0; i--) {
153 		if (put_user((unsigned long)p, sp++))
154 			return -EFAULT;
155 		len = strnlen_user(p, MAX_ARG_STRLEN);
156 		if (!len || len > MAX_ARG_STRLEN)
157 			return -EINVAL;
158 		p += len;
159 	}
160 	if (put_user(0, sp++))
161 		return -EFAULT;
162 	current->mm->arg_end = (unsigned long)p;
163 
164 	current->mm->env_start = (unsigned long) p;
165 	for (i = bprm->envc; i > 0; i--) {
166 		if (put_user((unsigned long)p, sp++))
167 			return -EFAULT;
168 		len = strnlen_user(p, MAX_ARG_STRLEN);
169 		if (!len || len > MAX_ARG_STRLEN)
170 			return -EINVAL;
171 		p += len;
172 	}
173 	if (put_user(0, sp++))
174 		return -EFAULT;
175 	current->mm->env_end = (unsigned long)p;
176 
177 	return 0;
178 }
179 
180 /****************************************************************************/
181 
182 #ifdef CONFIG_BINFMT_ZFLAT
183 
184 #include <linux/zlib.h>
185 
186 #define LBUFSIZE	4000
187 
188 /* gzip flag byte */
189 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
190 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
191 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
192 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
193 #define COMMENT      0x10 /* bit 4 set: file comment present */
194 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
195 #define RESERVED     0xC0 /* bit 6,7:   reserved */
196 
decompress_exec(struct linux_binprm * bprm,loff_t fpos,char * dst,long len,int fd)197 static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
198 		long len, int fd)
199 {
200 	unsigned char *buf;
201 	z_stream strm;
202 	int ret, retval;
203 
204 	pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
205 
206 	memset(&strm, 0, sizeof(strm));
207 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
208 	if (!strm.workspace)
209 		return -ENOMEM;
210 
211 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
212 	if (!buf) {
213 		retval = -ENOMEM;
214 		goto out_free;
215 	}
216 
217 	/* Read in first chunk of data and parse gzip header. */
218 	ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
219 
220 	strm.next_in = buf;
221 	strm.avail_in = ret;
222 	strm.total_in = 0;
223 
224 	retval = -ENOEXEC;
225 
226 	/* Check minimum size -- gzip header */
227 	if (ret < 10) {
228 		pr_debug("file too small?\n");
229 		goto out_free_buf;
230 	}
231 
232 	/* Check gzip magic number */
233 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
234 		pr_debug("unknown compression magic?\n");
235 		goto out_free_buf;
236 	}
237 
238 	/* Check gzip method */
239 	if (buf[2] != 8) {
240 		pr_debug("unknown compression method?\n");
241 		goto out_free_buf;
242 	}
243 	/* Check gzip flags */
244 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
245 	    (buf[3] & RESERVED)) {
246 		pr_debug("unknown flags?\n");
247 		goto out_free_buf;
248 	}
249 
250 	ret = 10;
251 	if (buf[3] & EXTRA_FIELD) {
252 		ret += 2 + buf[10] + (buf[11] << 8);
253 		if (unlikely(ret >= LBUFSIZE)) {
254 			pr_debug("buffer overflow (EXTRA)?\n");
255 			goto out_free_buf;
256 		}
257 	}
258 	if (buf[3] & ORIG_NAME) {
259 		while (ret < LBUFSIZE && buf[ret++] != 0)
260 			;
261 		if (unlikely(ret == LBUFSIZE)) {
262 			pr_debug("buffer overflow (ORIG_NAME)?\n");
263 			goto out_free_buf;
264 		}
265 	}
266 	if (buf[3] & COMMENT) {
267 		while (ret < LBUFSIZE && buf[ret++] != 0)
268 			;
269 		if (unlikely(ret == LBUFSIZE)) {
270 			pr_debug("buffer overflow (COMMENT)?\n");
271 			goto out_free_buf;
272 		}
273 	}
274 
275 	strm.next_in += ret;
276 	strm.avail_in -= ret;
277 
278 	strm.next_out = dst;
279 	strm.avail_out = len;
280 	strm.total_out = 0;
281 
282 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
283 		pr_debug("zlib init failed?\n");
284 		goto out_free_buf;
285 	}
286 
287 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
288 		ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
289 		if (ret <= 0)
290 			break;
291 		len -= ret;
292 
293 		strm.next_in = buf;
294 		strm.avail_in = ret;
295 		strm.total_in = 0;
296 	}
297 
298 	if (ret < 0) {
299 		pr_debug("decompression failed (%d), %s\n",
300 			ret, strm.msg);
301 		goto out_zlib;
302 	}
303 
304 	retval = 0;
305 out_zlib:
306 	zlib_inflateEnd(&strm);
307 out_free_buf:
308 	kfree(buf);
309 out_free:
310 	kfree(strm.workspace);
311 	return retval;
312 }
313 
314 #endif /* CONFIG_BINFMT_ZFLAT */
315 
316 /****************************************************************************/
317 
318 static unsigned long
calc_reloc(unsigned long r,struct lib_info * p,int curid,int internalp)319 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
320 {
321 	unsigned long addr;
322 	int id;
323 	unsigned long start_brk;
324 	unsigned long start_data;
325 	unsigned long text_len;
326 	unsigned long start_code;
327 
328 #ifdef CONFIG_BINFMT_SHARED_FLAT
329 	if (r == 0)
330 		id = curid;	/* Relocs of 0 are always self referring */
331 	else {
332 		id = (r >> 24) & 0xff;	/* Find ID for this reloc */
333 		r &= 0x00ffffff;	/* Trim ID off here */
334 	}
335 	if (id >= MAX_SHARED_LIBS) {
336 		pr_err("reference 0x%lx to shared library %d", r, id);
337 		goto failed;
338 	}
339 	if (curid != id) {
340 		if (internalp) {
341 			pr_err("reloc address 0x%lx not in same module "
342 			       "(%d != %d)", r, curid, id);
343 			goto failed;
344 		} else if (!p->lib_list[id].loaded &&
345 			   load_flat_shared_library(id, p) < 0) {
346 			pr_err("failed to load library %d", id);
347 			goto failed;
348 		}
349 		/* Check versioning information (i.e. time stamps) */
350 		if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
351 				p->lib_list[curid].build_date < p->lib_list[id].build_date) {
352 			pr_err("library %d is younger than %d", id, curid);
353 			goto failed;
354 		}
355 	}
356 #else
357 	id = 0;
358 #endif
359 
360 	start_brk = p->lib_list[id].start_brk;
361 	start_data = p->lib_list[id].start_data;
362 	start_code = p->lib_list[id].start_code;
363 	text_len = p->lib_list[id].text_len;
364 
365 	if (r > start_brk - start_data + text_len) {
366 		pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
367 		       r, start_brk-start_data+text_len, text_len);
368 		goto failed;
369 	}
370 
371 	if (r < text_len)			/* In text segment */
372 		addr = r + start_code;
373 	else					/* In data segment */
374 		addr = r - text_len + start_data;
375 
376 	/* Range checked already above so doing the range tests is redundant...*/
377 	return addr;
378 
379 failed:
380 	pr_cont(", killing %s!\n", current->comm);
381 	send_sig(SIGSEGV, current, 0);
382 
383 	return RELOC_FAILED;
384 }
385 
386 /****************************************************************************/
387 
388 #ifdef CONFIG_BINFMT_FLAT_OLD
old_reloc(unsigned long rl)389 static void old_reloc(unsigned long rl)
390 {
391 	static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
392 	flat_v2_reloc_t	r;
393 	unsigned long __user *ptr;
394 	unsigned long val;
395 
396 	r.value = rl;
397 #if defined(CONFIG_COLDFIRE)
398 	ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
399 #else
400 	ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
401 #endif
402 	get_user(val, ptr);
403 
404 	pr_debug("Relocation of variable at DATASEG+%x "
405 		 "(address %p, currently %lx) into segment %s\n",
406 		 r.reloc.offset, ptr, val, segment[r.reloc.type]);
407 
408 	switch (r.reloc.type) {
409 	case OLD_FLAT_RELOC_TYPE_TEXT:
410 		val += current->mm->start_code;
411 		break;
412 	case OLD_FLAT_RELOC_TYPE_DATA:
413 		val += current->mm->start_data;
414 		break;
415 	case OLD_FLAT_RELOC_TYPE_BSS:
416 		val += current->mm->end_data;
417 		break;
418 	default:
419 		pr_err("Unknown relocation type=%x\n", r.reloc.type);
420 		break;
421 	}
422 	put_user(val, ptr);
423 
424 	pr_debug("Relocation became %lx\n", val);
425 }
426 #endif /* CONFIG_BINFMT_FLAT_OLD */
427 
428 /****************************************************************************/
429 
skip_got_header(u32 __user * rp)430 static inline u32 __user *skip_got_header(u32 __user *rp)
431 {
432 	if (IS_ENABLED(CONFIG_RISCV)) {
433 		/*
434 		 * RISC-V has a 16 byte GOT PLT header for elf64-riscv
435 		 * and 8 byte GOT PLT header for elf32-riscv.
436 		 * Skip the whole GOT PLT header, since it is reserved
437 		 * for the dynamic linker (ld.so).
438 		 */
439 		u32 rp_val0, rp_val1;
440 
441 		if (get_user(rp_val0, rp))
442 			return rp;
443 		if (get_user(rp_val1, rp + 1))
444 			return rp;
445 
446 		if (rp_val0 == 0xffffffff && rp_val1 == 0xffffffff)
447 			rp += 4;
448 		else if (rp_val0 == 0xffffffff)
449 			rp += 2;
450 	}
451 	return rp;
452 }
453 
load_flat_file(struct linux_binprm * bprm,struct lib_info * libinfo,int id,unsigned long * extra_stack)454 static int load_flat_file(struct linux_binprm *bprm,
455 		struct lib_info *libinfo, int id, unsigned long *extra_stack)
456 {
457 	struct flat_hdr *hdr;
458 	unsigned long textpos, datapos, realdatastart;
459 	u32 text_len, data_len, bss_len, stack_len, full_data, flags;
460 	unsigned long len, memp, memp_size, extra, rlim;
461 	__be32 __user *reloc;
462 	u32 __user *rp;
463 	int i, rev, relocs;
464 	loff_t fpos;
465 	unsigned long start_code, end_code;
466 	ssize_t result;
467 	int ret;
468 
469 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
470 
471 	text_len  = ntohl(hdr->data_start);
472 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
473 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
474 	stack_len = ntohl(hdr->stack_size);
475 	if (extra_stack) {
476 		stack_len += *extra_stack;
477 		*extra_stack = stack_len;
478 	}
479 	relocs    = ntohl(hdr->reloc_count);
480 	flags     = ntohl(hdr->flags);
481 	rev       = ntohl(hdr->rev);
482 	full_data = data_len + relocs * sizeof(unsigned long);
483 
484 	if (strncmp(hdr->magic, "bFLT", 4)) {
485 		/*
486 		 * Previously, here was a printk to tell people
487 		 *   "BINFMT_FLAT: bad header magic".
488 		 * But for the kernel which also use ELF FD-PIC format, this
489 		 * error message is confusing.
490 		 * because a lot of people do not manage to produce good
491 		 */
492 		ret = -ENOEXEC;
493 		goto err;
494 	}
495 
496 	if (flags & FLAT_FLAG_KTRACE)
497 		pr_info("Loading file: %s\n", bprm->filename);
498 
499 #ifdef CONFIG_BINFMT_FLAT_OLD
500 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
501 		pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
502 		       rev, FLAT_VERSION, OLD_FLAT_VERSION);
503 		ret = -ENOEXEC;
504 		goto err;
505 	}
506 
507 	/* Don't allow old format executables to use shared libraries */
508 	if (rev == OLD_FLAT_VERSION && id != 0) {
509 		pr_err("shared libraries are not available before rev 0x%lx\n",
510 		       FLAT_VERSION);
511 		ret = -ENOEXEC;
512 		goto err;
513 	}
514 
515 	/*
516 	 * fix up the flags for the older format,  there were all kinds
517 	 * of endian hacks,  this only works for the simple cases
518 	 */
519 	if (rev == OLD_FLAT_VERSION &&
520 	   (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
521 		flags = FLAT_FLAG_RAM;
522 
523 #else /* CONFIG_BINFMT_FLAT_OLD */
524 	if (rev != FLAT_VERSION) {
525 		pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
526 		       rev, FLAT_VERSION);
527 		ret = -ENOEXEC;
528 		goto err;
529 	}
530 #endif /* !CONFIG_BINFMT_FLAT_OLD */
531 
532 	/*
533 	 * Make sure the header params are sane.
534 	 * 28 bits (256 MB) is way more than reasonable in this case.
535 	 * If some top bits are set we have probable binary corruption.
536 	*/
537 	if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
538 		pr_err("bad header\n");
539 		ret = -ENOEXEC;
540 		goto err;
541 	}
542 
543 #ifndef CONFIG_BINFMT_ZFLAT
544 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
545 		pr_err("Support for ZFLAT executables is not enabled.\n");
546 		ret = -ENOEXEC;
547 		goto err;
548 	}
549 #endif
550 
551 	/*
552 	 * Check initial limits. This avoids letting people circumvent
553 	 * size limits imposed on them by creating programs with large
554 	 * arrays in the data or bss.
555 	 */
556 	rlim = rlimit(RLIMIT_DATA);
557 	if (rlim >= RLIM_INFINITY)
558 		rlim = ~0;
559 	if (data_len + bss_len > rlim) {
560 		ret = -ENOMEM;
561 		goto err;
562 	}
563 
564 	/* Flush all traces of the currently running executable */
565 	if (id == 0) {
566 		ret = begin_new_exec(bprm);
567 		if (ret)
568 			goto err;
569 
570 		/* OK, This is the point of no return */
571 		set_personality(PER_LINUX_32BIT);
572 		setup_new_exec(bprm);
573 	}
574 
575 	/*
576 	 * calculate the extra space we need to map in
577 	 */
578 	extra = max_t(unsigned long, bss_len + stack_len,
579 			relocs * sizeof(unsigned long));
580 
581 	/*
582 	 * there are a couple of cases here,  the separate code/data
583 	 * case,  and then the fully copied to RAM case which lumps
584 	 * it all together.
585 	 */
586 	if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
587 		/*
588 		 * this should give us a ROM ptr,  but if it doesn't we don't
589 		 * really care
590 		 */
591 		pr_debug("ROM mapping of file (we hope)\n");
592 
593 		textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
594 				  MAP_PRIVATE|MAP_EXECUTABLE, 0);
595 		if (!textpos || IS_ERR_VALUE(textpos)) {
596 			ret = textpos;
597 			if (!textpos)
598 				ret = -ENOMEM;
599 			pr_err("Unable to mmap process text, errno %d\n", ret);
600 			goto err;
601 		}
602 
603 		len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
604 		len = PAGE_ALIGN(len);
605 		realdatastart = vm_mmap(NULL, 0, len,
606 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
607 
608 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
609 			ret = realdatastart;
610 			if (!realdatastart)
611 				ret = -ENOMEM;
612 			pr_err("Unable to allocate RAM for process data, "
613 			       "errno %d\n", ret);
614 			vm_munmap(textpos, text_len);
615 			goto err;
616 		}
617 		datapos = ALIGN(realdatastart +
618 				MAX_SHARED_LIBS * sizeof(unsigned long),
619 				FLAT_DATA_ALIGN);
620 
621 		pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
622 			 data_len + bss_len + stack_len, datapos);
623 
624 		fpos = ntohl(hdr->data_start);
625 #ifdef CONFIG_BINFMT_ZFLAT
626 		if (flags & FLAT_FLAG_GZDATA) {
627 			result = decompress_exec(bprm, fpos, (char *)datapos,
628 						 full_data, 0);
629 		} else
630 #endif
631 		{
632 			result = read_code(bprm->file, datapos, fpos,
633 					full_data);
634 		}
635 		if (IS_ERR_VALUE(result)) {
636 			ret = result;
637 			pr_err("Unable to read data+bss, errno %d\n", ret);
638 			vm_munmap(textpos, text_len);
639 			vm_munmap(realdatastart, len);
640 			goto err;
641 		}
642 
643 		reloc = (__be32 __user *)
644 			(datapos + (ntohl(hdr->reloc_start) - text_len));
645 		memp = realdatastart;
646 		memp_size = len;
647 	} else {
648 
649 		len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(u32);
650 		len = PAGE_ALIGN(len);
651 		textpos = vm_mmap(NULL, 0, len,
652 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
653 
654 		if (!textpos || IS_ERR_VALUE(textpos)) {
655 			ret = textpos;
656 			if (!textpos)
657 				ret = -ENOMEM;
658 			pr_err("Unable to allocate RAM for process text/data, "
659 			       "errno %d\n", ret);
660 			goto err;
661 		}
662 
663 		realdatastart = textpos + ntohl(hdr->data_start);
664 		datapos = ALIGN(realdatastart +
665 				MAX_SHARED_LIBS * sizeof(u32),
666 				FLAT_DATA_ALIGN);
667 
668 		reloc = (__be32 __user *)
669 			(datapos + (ntohl(hdr->reloc_start) - text_len));
670 		memp = textpos;
671 		memp_size = len;
672 #ifdef CONFIG_BINFMT_ZFLAT
673 		/*
674 		 * load it all in and treat it like a RAM load from now on
675 		 */
676 		if (flags & FLAT_FLAG_GZIP) {
677 #ifndef CONFIG_MMU
678 			result = decompress_exec(bprm, sizeof(struct flat_hdr),
679 					 (((char *)textpos) + sizeof(struct flat_hdr)),
680 					 (text_len + full_data
681 						  - sizeof(struct flat_hdr)),
682 					 0);
683 			memmove((void *) datapos, (void *) realdatastart,
684 					full_data);
685 #else
686 			/*
687 			 * This is used on MMU systems mainly for testing.
688 			 * Let's use a kernel buffer to simplify things.
689 			 */
690 			long unz_text_len = text_len - sizeof(struct flat_hdr);
691 			long unz_len = unz_text_len + full_data;
692 			char *unz_data = vmalloc(unz_len);
693 			if (!unz_data) {
694 				result = -ENOMEM;
695 			} else {
696 				result = decompress_exec(bprm, sizeof(struct flat_hdr),
697 							 unz_data, unz_len, 0);
698 				if (result == 0 &&
699 				    (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
700 						  unz_data, unz_text_len) ||
701 				     copy_to_user((void __user *)datapos,
702 						  unz_data + unz_text_len, full_data)))
703 					result = -EFAULT;
704 				vfree(unz_data);
705 			}
706 #endif
707 		} else if (flags & FLAT_FLAG_GZDATA) {
708 			result = read_code(bprm->file, textpos, 0, text_len);
709 			if (!IS_ERR_VALUE(result)) {
710 #ifndef CONFIG_MMU
711 				result = decompress_exec(bprm, text_len, (char *) datapos,
712 						 full_data, 0);
713 #else
714 				char *unz_data = vmalloc(full_data);
715 				if (!unz_data) {
716 					result = -ENOMEM;
717 				} else {
718 					result = decompress_exec(bprm, text_len,
719 						       unz_data, full_data, 0);
720 					if (result == 0 &&
721 					    copy_to_user((void __user *)datapos,
722 							 unz_data, full_data))
723 						result = -EFAULT;
724 					vfree(unz_data);
725 				}
726 #endif
727 			}
728 		} else
729 #endif /* CONFIG_BINFMT_ZFLAT */
730 		{
731 			result = read_code(bprm->file, textpos, 0, text_len);
732 			if (!IS_ERR_VALUE(result))
733 				result = read_code(bprm->file, datapos,
734 						   ntohl(hdr->data_start),
735 						   full_data);
736 		}
737 		if (IS_ERR_VALUE(result)) {
738 			ret = result;
739 			pr_err("Unable to read code+data+bss, errno %d\n", ret);
740 			vm_munmap(textpos, text_len + data_len + extra +
741 				MAX_SHARED_LIBS * sizeof(u32));
742 			goto err;
743 		}
744 	}
745 
746 	start_code = textpos + sizeof(struct flat_hdr);
747 	end_code = textpos + text_len;
748 	text_len -= sizeof(struct flat_hdr); /* the real code len */
749 
750 	/* The main program needs a little extra setup in the task structure */
751 	if (id == 0) {
752 		current->mm->start_code = start_code;
753 		current->mm->end_code = end_code;
754 		current->mm->start_data = datapos;
755 		current->mm->end_data = datapos + data_len;
756 		/*
757 		 * set up the brk stuff, uses any slack left in data/bss/stack
758 		 * allocation.  We put the brk after the bss (between the bss
759 		 * and stack) like other platforms.
760 		 * Userspace code relies on the stack pointer starting out at
761 		 * an address right at the end of a page.
762 		 */
763 		current->mm->start_brk = datapos + data_len + bss_len;
764 		current->mm->brk = (current->mm->start_brk + 3) & ~3;
765 #ifndef CONFIG_MMU
766 		current->mm->context.end_brk = memp + memp_size - stack_len;
767 #endif
768 	}
769 
770 	if (flags & FLAT_FLAG_KTRACE) {
771 		pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
772 			textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
773 		pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
774 			id ? "Lib" : "Load", bprm->filename,
775 			start_code, end_code, datapos, datapos + data_len,
776 			datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
777 	}
778 
779 	/* Store the current module values into the global library structure */
780 	libinfo->lib_list[id].start_code = start_code;
781 	libinfo->lib_list[id].start_data = datapos;
782 	libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
783 	libinfo->lib_list[id].text_len = text_len;
784 	libinfo->lib_list[id].loaded = 1;
785 	libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
786 	libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
787 
788 	/*
789 	 * We just load the allocations into some temporary memory to
790 	 * help simplify all this mumbo jumbo
791 	 *
792 	 * We've got two different sections of relocation entries.
793 	 * The first is the GOT which resides at the beginning of the data segment
794 	 * and is terminated with a -1.  This one can be relocated in place.
795 	 * The second is the extra relocation entries tacked after the image's
796 	 * data segment. These require a little more processing as the entry is
797 	 * really an offset into the image which contains an offset into the
798 	 * image.
799 	 */
800 	if (flags & FLAT_FLAG_GOTPIC) {
801 		rp = skip_got_header((u32 __user *) datapos);
802 		for (; ; rp++) {
803 			u32 addr, rp_val;
804 			if (get_user(rp_val, rp))
805 				return -EFAULT;
806 			if (rp_val == 0xffffffff)
807 				break;
808 			if (rp_val) {
809 				addr = calc_reloc(rp_val, libinfo, id, 0);
810 				if (addr == RELOC_FAILED) {
811 					ret = -ENOEXEC;
812 					goto err;
813 				}
814 				if (put_user(addr, rp))
815 					return -EFAULT;
816 			}
817 		}
818 	}
819 
820 	/*
821 	 * Now run through the relocation entries.
822 	 * We've got to be careful here as C++ produces relocatable zero
823 	 * entries in the constructor and destructor tables which are then
824 	 * tested for being not zero (which will always occur unless we're
825 	 * based from address zero).  This causes an endless loop as __start
826 	 * is at zero.  The solution used is to not relocate zero addresses.
827 	 * This has the negative side effect of not allowing a global data
828 	 * reference to be statically initialised to _stext (I've moved
829 	 * __start to address 4 so that is okay).
830 	 */
831 	if (rev > OLD_FLAT_VERSION) {
832 		for (i = 0; i < relocs; i++) {
833 			u32 addr, relval;
834 			__be32 tmp;
835 
836 			/*
837 			 * Get the address of the pointer to be
838 			 * relocated (of course, the address has to be
839 			 * relocated first).
840 			 */
841 			if (get_user(tmp, reloc + i))
842 				return -EFAULT;
843 			relval = ntohl(tmp);
844 			addr = flat_get_relocate_addr(relval);
845 			rp = (u32 __user *)calc_reloc(addr, libinfo, id, 1);
846 			if (rp == (u32 __user *)RELOC_FAILED) {
847 				ret = -ENOEXEC;
848 				goto err;
849 			}
850 
851 			/* Get the pointer's value.  */
852 			ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
853 			if (unlikely(ret))
854 				goto err;
855 
856 			if (addr != 0) {
857 				/*
858 				 * Do the relocation.  PIC relocs in the data section are
859 				 * already in target order
860 				 */
861 				if ((flags & FLAT_FLAG_GOTPIC) == 0) {
862 					/*
863 					 * Meh, the same value can have a different
864 					 * byte order based on a flag..
865 					 */
866 					addr = ntohl((__force __be32)addr);
867 				}
868 				addr = calc_reloc(addr, libinfo, id, 0);
869 				if (addr == RELOC_FAILED) {
870 					ret = -ENOEXEC;
871 					goto err;
872 				}
873 
874 				/* Write back the relocated pointer.  */
875 				ret = flat_put_addr_at_rp(rp, addr, relval);
876 				if (unlikely(ret))
877 					goto err;
878 			}
879 		}
880 #ifdef CONFIG_BINFMT_FLAT_OLD
881 	} else {
882 		for (i = 0; i < relocs; i++) {
883 			__be32 relval;
884 			if (get_user(relval, reloc + i))
885 				return -EFAULT;
886 			old_reloc(ntohl(relval));
887 		}
888 #endif /* CONFIG_BINFMT_FLAT_OLD */
889 	}
890 
891 	flush_icache_user_range(start_code, end_code);
892 
893 	/* zero the BSS,  BRK and stack areas */
894 	if (clear_user((void __user *)(datapos + data_len), bss_len +
895 		       (memp + memp_size - stack_len -		/* end brk */
896 		       libinfo->lib_list[id].start_brk) +	/* start brk */
897 		       stack_len))
898 		return -EFAULT;
899 
900 	return 0;
901 err:
902 	return ret;
903 }
904 
905 
906 /****************************************************************************/
907 #ifdef CONFIG_BINFMT_SHARED_FLAT
908 
909 /*
910  * Load a shared library into memory.  The library gets its own data
911  * segment (including bss) but not argv/argc/environ.
912  */
913 
load_flat_shared_library(int id,struct lib_info * libs)914 static int load_flat_shared_library(int id, struct lib_info *libs)
915 {
916 	/*
917 	 * This is a fake bprm struct; only the members "buf", "file" and
918 	 * "filename" are actually used.
919 	 */
920 	struct linux_binprm bprm;
921 	int res;
922 	char buf[16];
923 	loff_t pos = 0;
924 
925 	memset(&bprm, 0, sizeof(bprm));
926 
927 	/* Create the file name */
928 	sprintf(buf, "/lib/lib%d.so", id);
929 
930 	/* Open the file up */
931 	bprm.filename = buf;
932 	bprm.file = open_exec(bprm.filename);
933 	res = PTR_ERR(bprm.file);
934 	if (IS_ERR(bprm.file))
935 		return res;
936 
937 	res = kernel_read(bprm.file, bprm.buf, BINPRM_BUF_SIZE, &pos);
938 
939 	if (res >= 0)
940 		res = load_flat_file(&bprm, libs, id, NULL);
941 
942 	allow_write_access(bprm.file);
943 	fput(bprm.file);
944 
945 	return res;
946 }
947 
948 #endif /* CONFIG_BINFMT_SHARED_FLAT */
949 /****************************************************************************/
950 
951 /*
952  * These are the functions used to load flat style executables and shared
953  * libraries.  There is no binary dependent code anywhere else.
954  */
955 
load_flat_binary(struct linux_binprm * bprm)956 static int load_flat_binary(struct linux_binprm *bprm)
957 {
958 	struct lib_info libinfo;
959 	struct pt_regs *regs = current_pt_regs();
960 	unsigned long stack_len = 0;
961 	unsigned long start_addr;
962 	int res;
963 	int i, j;
964 
965 	memset(&libinfo, 0, sizeof(libinfo));
966 
967 	/*
968 	 * We have to add the size of our arguments to our stack size
969 	 * otherwise it's too easy for users to create stack overflows
970 	 * by passing in a huge argument list.  And yes,  we have to be
971 	 * pedantic and include space for the argv/envp array as it may have
972 	 * a lot of entries.
973 	 */
974 #ifndef CONFIG_MMU
975 	stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
976 #endif
977 	stack_len += (bprm->argc + 1) * sizeof(char *);   /* the argv array */
978 	stack_len += (bprm->envc + 1) * sizeof(char *);   /* the envp array */
979 	stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
980 
981 	res = load_flat_file(bprm, &libinfo, 0, &stack_len);
982 	if (res < 0)
983 		return res;
984 
985 	/* Update data segment pointers for all libraries */
986 	for (i = 0; i < MAX_SHARED_LIBS; i++) {
987 		if (!libinfo.lib_list[i].loaded)
988 			continue;
989 		for (j = 0; j < MAX_SHARED_LIBS; j++) {
990 			unsigned long val = libinfo.lib_list[j].loaded ?
991 				libinfo.lib_list[j].start_data : UNLOADED_LIB;
992 			unsigned long __user *p = (unsigned long __user *)
993 				libinfo.lib_list[i].start_data;
994 			p -= j + 1;
995 			if (put_user(val, p))
996 				return -EFAULT;
997 		}
998 	}
999 
1000 	set_binfmt(&flat_format);
1001 
1002 #ifdef CONFIG_MMU
1003 	res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
1004 	if (!res)
1005 		res = create_flat_tables(bprm, bprm->p);
1006 #else
1007 	/* Stash our initial stack pointer into the mm structure */
1008 	current->mm->start_stack =
1009 		((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
1010 	pr_debug("sp=%lx\n", current->mm->start_stack);
1011 
1012 	/* copy the arg pages onto the stack */
1013 	res = transfer_args_to_stack(bprm, &current->mm->start_stack);
1014 	if (!res)
1015 		res = create_flat_tables(bprm, current->mm->start_stack);
1016 #endif
1017 	if (res)
1018 		return res;
1019 
1020 	/* Fake some return addresses to ensure the call chain will
1021 	 * initialise library in order for us.  We are required to call
1022 	 * lib 1 first, then 2, ... and finally the main program (id 0).
1023 	 */
1024 	start_addr = libinfo.lib_list[0].entry;
1025 
1026 #ifdef CONFIG_BINFMT_SHARED_FLAT
1027 	for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
1028 		if (libinfo.lib_list[i].loaded) {
1029 			/* Push previos first to call address */
1030 			unsigned long __user *sp;
1031 			current->mm->start_stack -= sizeof(unsigned long);
1032 			sp = (unsigned long __user *)current->mm->start_stack;
1033 			if (put_user(start_addr, sp))
1034 				return -EFAULT;
1035 			start_addr = libinfo.lib_list[i].entry;
1036 		}
1037 	}
1038 #endif
1039 
1040 #ifdef FLAT_PLAT_INIT
1041 	FLAT_PLAT_INIT(regs);
1042 #endif
1043 
1044 	finalize_exec(bprm);
1045 	pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
1046 		 regs, start_addr, current->mm->start_stack);
1047 	start_thread(regs, start_addr, current->mm->start_stack);
1048 
1049 	return 0;
1050 }
1051 
1052 /****************************************************************************/
1053 
init_flat_binfmt(void)1054 static int __init init_flat_binfmt(void)
1055 {
1056 	register_binfmt(&flat_format);
1057 	return 0;
1058 }
1059 core_initcall(init_flat_binfmt);
1060 
1061 /****************************************************************************/
1062