1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111 struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123 };
124
125 /*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 # error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172 };
173
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186 }
187
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190 {
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229 }
230
231 /*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240 {
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279 out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285 }
286
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
294 return true;
295 default:
296 return false;
297 }
298 }
299
300 /*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306 {
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
313
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
324
325 return 0;
326 }
327
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
330 {
331 struct btrfs_fs_info *fs_info = eb->fs_info;
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
340 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373 if (ret) {
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
376 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
383 return ret;
384 }
385
386 /*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397 {
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442 return ret;
443 }
444
445 /*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 u64 start = page_offset(page);
453 u64 found_start;
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
457 int ret;
458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
476
477 csum_tree_block(eb, result);
478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
485 btrfs_print_tree(eb, 0);
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
495 }
496
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
502 u8 *metadata_uuid;
503
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
524 }
525
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
529 {
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
535 int ret = 0;
536 u8 result[BTRFS_CSUM_SIZE];
537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
549 atomic_inc(&eb->refs);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
585 csum_tree_block(eb, result);
586
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
597 ret = -EUCLEAN;
598 goto err;
599 }
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
611 if (found_level > 0 && btrfs_check_node(eb))
612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
620 err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
655 else
656 wq = fs_info->endio_write_workers;
657 } else {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
662 else
663 wq = fs_info->endio_workers;
664 }
665
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672 {
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689 }
690
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701 }
702
703 /*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 struct async_submit_bio *async;
714 struct inode *inode;
715 blk_status_t ret;
716
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
738 }
739
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746 }
747
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752 {
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776 }
777
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
782 int ret = 0;
783 struct bvec_iter_all iter_all;
784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794 }
795
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798 {
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804 }
805
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
808 {
809 if (atomic_read(&bi->sync_writers))
810 return 0;
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 return 0;
813 return 1;
814 }
815
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
818 {
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851 out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861 {
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882 {
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900 }
901
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908 }
909
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912 {
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
922 }
923 }
924
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936 #endif
937 return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946 #endif
947 .set_page_dirty = btree_set_page_dirty,
948 };
949
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 struct extent_buffer *buf = NULL;
953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
957 return;
958
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
964 }
965
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969 {
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986 {
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 level, first_key);
996 if (ret) {
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002 }
1003
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020 }
1021
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024 {
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1076 if (!dummy) {
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
1082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1101 {
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
1104 __setup_root(root, fs_info, objectid);
1105 return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1123
1124 return root;
1125 }
1126 #endif
1127
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 u64 objectid)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1137 int ret = 0;
1138
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193 fail:
1194 if (leaf)
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1197
1198 return ERR_PTR(ret);
1199 }
1200
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203 {
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
1216 * DON'T set SHAREABLE bit for log trees.
1217 *
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 if (IS_ERR(leaf)) {
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237 }
1238
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241 {
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250 }
1251
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282 }
1283
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1287 {
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 u64 generation;
1291 int ret;
1292 int level;
1293
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
1297
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
1303 goto fail;
1304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1313 root->node = NULL;
1314 goto fail;
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
1317 goto fail;
1318 }
1319 root->commit_root = btrfs_root_node(root);
1320 return root;
1321 fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1324 }
1325
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328 {
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
1339 }
1340
1341 /*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 int ret;
1349 unsigned int nofs_flag;
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
1367 goto fail;
1368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
1392 }
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407 fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410 }
1411
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
1414 {
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1420 if (root)
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424 }
1425
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428 {
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449 }
1450
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453 {
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
1464 if (ret == 0) {
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 }
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472 }
1473
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(&root->root_key, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491 #endif
1492 }
1493
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
1553 again:
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1555 if (root) {
1556 /*
1557 * Some other caller may have read out the newly inserted
1558 * subvolume already (for things like backref walk etc). Not
1559 * that common but still possible. In that case, we just need
1560 * to free the anon_dev.
1561 */
1562 if (unlikely(anon_dev)) {
1563 free_anon_bdev(anon_dev);
1564 anon_dev = 0;
1565 }
1566
1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 btrfs_put_root(root);
1569 return ERR_PTR(-ENOENT);
1570 }
1571 return root;
1572 }
1573
1574 key.objectid = objectid;
1575 key.type = BTRFS_ROOT_ITEM_KEY;
1576 key.offset = (u64)-1;
1577 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 if (IS_ERR(root))
1579 return root;
1580
1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 ret = -ENOENT;
1583 goto fail;
1584 }
1585
1586 ret = btrfs_init_fs_root(root, anon_dev);
1587 if (ret)
1588 goto fail;
1589
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 btrfs_free_path(path);
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606 ret = btrfs_insert_fs_root(fs_info, root);
1607 if (ret) {
1608 if (ret == -EEXIST) {
1609 btrfs_put_root(root);
1610 goto again;
1611 }
1612 goto fail;
1613 }
1614 return root;
1615 fail:
1616 /*
1617 * If our caller provided us an anonymous device, then it's his
1618 * responsability to free it in case we fail. So we have to set our
1619 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1620 * and once again by our caller.
1621 */
1622 if (anon_dev)
1623 root->anon_dev = 0;
1624 btrfs_put_root(root);
1625 return ERR_PTR(ret);
1626 }
1627
1628 /*
1629 * Get in-memory reference of a root structure
1630 *
1631 * @objectid: tree objectid
1632 * @check_ref: if set, verify that the tree exists and the item has at least
1633 * one reference
1634 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1635 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636 u64 objectid, bool check_ref)
1637 {
1638 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1639 }
1640
1641 /*
1642 * Get in-memory reference of a root structure, created as new, optionally pass
1643 * the anonymous block device id
1644 *
1645 * @objectid: tree objectid
1646 * @anon_dev: if zero, allocate a new anonymous block device or use the
1647 * parameter value
1648 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1649 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1650 u64 objectid, dev_t anon_dev)
1651 {
1652 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1653 }
1654
1655 /*
1656 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1657 * @fs_info: the fs_info
1658 * @objectid: the objectid we need to lookup
1659 *
1660 * This is exclusively used for backref walking, and exists specifically because
1661 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1662 * creation time, which means we may have to read the tree_root in order to look
1663 * up a fs root that is not in memory. If the root is not in memory we will
1664 * read the tree root commit root and look up the fs root from there. This is a
1665 * temporary root, it will not be inserted into the radix tree as it doesn't
1666 * have the most uptodate information, it'll simply be discarded once the
1667 * backref code is finished using the root.
1668 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1669 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1670 struct btrfs_path *path,
1671 u64 objectid)
1672 {
1673 struct btrfs_root *root;
1674 struct btrfs_key key;
1675
1676 ASSERT(path->search_commit_root && path->skip_locking);
1677
1678 /*
1679 * This can return -ENOENT if we ask for a root that doesn't exist, but
1680 * since this is called via the backref walking code we won't be looking
1681 * up a root that doesn't exist, unless there's corruption. So if root
1682 * != NULL just return it.
1683 */
1684 root = btrfs_get_global_root(fs_info, objectid);
1685 if (root)
1686 return root;
1687
1688 root = btrfs_lookup_fs_root(fs_info, objectid);
1689 if (root)
1690 return root;
1691
1692 key.objectid = objectid;
1693 key.type = BTRFS_ROOT_ITEM_KEY;
1694 key.offset = (u64)-1;
1695 root = read_tree_root_path(fs_info->tree_root, path, &key);
1696 btrfs_release_path(path);
1697
1698 return root;
1699 }
1700
1701 /*
1702 * called by the kthread helper functions to finally call the bio end_io
1703 * functions. This is where read checksum verification actually happens
1704 */
end_workqueue_fn(struct btrfs_work * work)1705 static void end_workqueue_fn(struct btrfs_work *work)
1706 {
1707 struct bio *bio;
1708 struct btrfs_end_io_wq *end_io_wq;
1709
1710 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1711 bio = end_io_wq->bio;
1712
1713 bio->bi_status = end_io_wq->status;
1714 bio->bi_private = end_io_wq->private;
1715 bio->bi_end_io = end_io_wq->end_io;
1716 bio_endio(bio);
1717 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1718 }
1719
cleaner_kthread(void * arg)1720 static int cleaner_kthread(void *arg)
1721 {
1722 struct btrfs_root *root = arg;
1723 struct btrfs_fs_info *fs_info = root->fs_info;
1724 int again;
1725
1726 while (1) {
1727 again = 0;
1728
1729 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730
1731 /* Make the cleaner go to sleep early. */
1732 if (btrfs_need_cleaner_sleep(fs_info))
1733 goto sleep;
1734
1735 /*
1736 * Do not do anything if we might cause open_ctree() to block
1737 * before we have finished mounting the filesystem.
1738 */
1739 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1740 goto sleep;
1741
1742 if (!mutex_trylock(&fs_info->cleaner_mutex))
1743 goto sleep;
1744
1745 /*
1746 * Avoid the problem that we change the status of the fs
1747 * during the above check and trylock.
1748 */
1749 if (btrfs_need_cleaner_sleep(fs_info)) {
1750 mutex_unlock(&fs_info->cleaner_mutex);
1751 goto sleep;
1752 }
1753
1754 btrfs_run_delayed_iputs(fs_info);
1755
1756 again = btrfs_clean_one_deleted_snapshot(root);
1757 mutex_unlock(&fs_info->cleaner_mutex);
1758
1759 /*
1760 * The defragger has dealt with the R/O remount and umount,
1761 * needn't do anything special here.
1762 */
1763 btrfs_run_defrag_inodes(fs_info);
1764
1765 /*
1766 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767 * with relocation (btrfs_relocate_chunk) and relocation
1768 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771 * unused block groups.
1772 */
1773 btrfs_delete_unused_bgs(fs_info);
1774 sleep:
1775 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1776 if (kthread_should_park())
1777 kthread_parkme();
1778 if (kthread_should_stop())
1779 return 0;
1780 if (!again) {
1781 set_current_state(TASK_INTERRUPTIBLE);
1782 schedule();
1783 __set_current_state(TASK_RUNNING);
1784 }
1785 }
1786 }
1787
transaction_kthread(void * arg)1788 static int transaction_kthread(void *arg)
1789 {
1790 struct btrfs_root *root = arg;
1791 struct btrfs_fs_info *fs_info = root->fs_info;
1792 struct btrfs_trans_handle *trans;
1793 struct btrfs_transaction *cur;
1794 u64 transid;
1795 time64_t now;
1796 unsigned long delay;
1797 bool cannot_commit;
1798
1799 do {
1800 cannot_commit = false;
1801 delay = HZ * fs_info->commit_interval;
1802 mutex_lock(&fs_info->transaction_kthread_mutex);
1803
1804 spin_lock(&fs_info->trans_lock);
1805 cur = fs_info->running_transaction;
1806 if (!cur) {
1807 spin_unlock(&fs_info->trans_lock);
1808 goto sleep;
1809 }
1810
1811 now = ktime_get_seconds();
1812 if (cur->state < TRANS_STATE_COMMIT_START &&
1813 (now < cur->start_time ||
1814 now - cur->start_time < fs_info->commit_interval)) {
1815 spin_unlock(&fs_info->trans_lock);
1816 delay = HZ * 5;
1817 goto sleep;
1818 }
1819 transid = cur->transid;
1820 spin_unlock(&fs_info->trans_lock);
1821
1822 /* If the file system is aborted, this will always fail. */
1823 trans = btrfs_attach_transaction(root);
1824 if (IS_ERR(trans)) {
1825 if (PTR_ERR(trans) != -ENOENT)
1826 cannot_commit = true;
1827 goto sleep;
1828 }
1829 if (transid == trans->transid) {
1830 btrfs_commit_transaction(trans);
1831 } else {
1832 btrfs_end_transaction(trans);
1833 }
1834 sleep:
1835 wake_up_process(fs_info->cleaner_kthread);
1836 mutex_unlock(&fs_info->transaction_kthread_mutex);
1837
1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839 &fs_info->fs_state)))
1840 btrfs_cleanup_transaction(fs_info);
1841 if (!kthread_should_stop() &&
1842 (!btrfs_transaction_blocked(fs_info) ||
1843 cannot_commit))
1844 schedule_timeout_interruptible(delay);
1845 } while (!kthread_should_stop());
1846 return 0;
1847 }
1848
1849 /*
1850 * This will find the highest generation in the array of root backups. The
1851 * index of the highest array is returned, or -EINVAL if we can't find
1852 * anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1857 */
find_newest_super_backup(struct btrfs_fs_info * info)1858 static int find_newest_super_backup(struct btrfs_fs_info *info)
1859 {
1860 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1861 u64 cur;
1862 struct btrfs_root_backup *root_backup;
1863 int i;
1864
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
1869 return i;
1870 }
1871
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * copy all the root pointers into the super backup array.
1877 * this will bump the backup pointer by one when it is
1878 * done
1879 */
backup_super_roots(struct btrfs_fs_info * info)1880 static void backup_super_roots(struct btrfs_fs_info *info)
1881 {
1882 const int next_backup = info->backup_root_index;
1883 struct btrfs_root_backup *root_backup;
1884
1885 root_backup = info->super_for_commit->super_roots + next_backup;
1886
1887 /*
1888 * make sure all of our padding and empty slots get zero filled
1889 * regardless of which ones we use today
1890 */
1891 memset(root_backup, 0, sizeof(*root_backup));
1892
1893 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894
1895 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896 btrfs_set_backup_tree_root_gen(root_backup,
1897 btrfs_header_generation(info->tree_root->node));
1898
1899 btrfs_set_backup_tree_root_level(root_backup,
1900 btrfs_header_level(info->tree_root->node));
1901
1902 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903 btrfs_set_backup_chunk_root_gen(root_backup,
1904 btrfs_header_generation(info->chunk_root->node));
1905 btrfs_set_backup_chunk_root_level(root_backup,
1906 btrfs_header_level(info->chunk_root->node));
1907
1908 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909 btrfs_set_backup_extent_root_gen(root_backup,
1910 btrfs_header_generation(info->extent_root->node));
1911 btrfs_set_backup_extent_root_level(root_backup,
1912 btrfs_header_level(info->extent_root->node));
1913
1914 /*
1915 * we might commit during log recovery, which happens before we set
1916 * the fs_root. Make sure it is valid before we fill it in.
1917 */
1918 if (info->fs_root && info->fs_root->node) {
1919 btrfs_set_backup_fs_root(root_backup,
1920 info->fs_root->node->start);
1921 btrfs_set_backup_fs_root_gen(root_backup,
1922 btrfs_header_generation(info->fs_root->node));
1923 btrfs_set_backup_fs_root_level(root_backup,
1924 btrfs_header_level(info->fs_root->node));
1925 }
1926
1927 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928 btrfs_set_backup_dev_root_gen(root_backup,
1929 btrfs_header_generation(info->dev_root->node));
1930 btrfs_set_backup_dev_root_level(root_backup,
1931 btrfs_header_level(info->dev_root->node));
1932
1933 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934 btrfs_set_backup_csum_root_gen(root_backup,
1935 btrfs_header_generation(info->csum_root->node));
1936 btrfs_set_backup_csum_root_level(root_backup,
1937 btrfs_header_level(info->csum_root->node));
1938
1939 btrfs_set_backup_total_bytes(root_backup,
1940 btrfs_super_total_bytes(info->super_copy));
1941 btrfs_set_backup_bytes_used(root_backup,
1942 btrfs_super_bytes_used(info->super_copy));
1943 btrfs_set_backup_num_devices(root_backup,
1944 btrfs_super_num_devices(info->super_copy));
1945
1946 /*
1947 * if we don't copy this out to the super_copy, it won't get remembered
1948 * for the next commit
1949 */
1950 memcpy(&info->super_copy->super_roots,
1951 &info->super_for_commit->super_roots,
1952 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953 }
1954
1955 /*
1956 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958 *
1959 * fs_info - filesystem whose backup roots need to be read
1960 * priority - priority of backup root required
1961 *
1962 * Returns backup root index on success and -EINVAL otherwise.
1963 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1964 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965 {
1966 int backup_index = find_newest_super_backup(fs_info);
1967 struct btrfs_super_block *super = fs_info->super_copy;
1968 struct btrfs_root_backup *root_backup;
1969
1970 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971 if (priority == 0)
1972 return backup_index;
1973
1974 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976 } else {
1977 return -EINVAL;
1978 }
1979
1980 root_backup = super->super_roots + backup_index;
1981
1982 btrfs_set_super_generation(super,
1983 btrfs_backup_tree_root_gen(root_backup));
1984 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985 btrfs_set_super_root_level(super,
1986 btrfs_backup_tree_root_level(root_backup));
1987 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989 /*
1990 * Fixme: the total bytes and num_devices need to match or we should
1991 * need a fsck
1992 */
1993 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995
1996 return backup_index;
1997 }
1998
1999 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2000 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001 {
2002 btrfs_destroy_workqueue(fs_info->fixup_workers);
2003 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2004 btrfs_destroy_workqueue(fs_info->workers);
2005 btrfs_destroy_workqueue(fs_info->endio_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2007 btrfs_destroy_workqueue(fs_info->rmw_workers);
2008 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2010 btrfs_destroy_workqueue(fs_info->delayed_workers);
2011 btrfs_destroy_workqueue(fs_info->caching_workers);
2012 btrfs_destroy_workqueue(fs_info->readahead_workers);
2013 btrfs_destroy_workqueue(fs_info->flush_workers);
2014 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2015 if (fs_info->discard_ctl.discard_workers)
2016 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2017 /*
2018 * Now that all other work queues are destroyed, we can safely destroy
2019 * the queues used for metadata I/O, since tasks from those other work
2020 * queues can do metadata I/O operations.
2021 */
2022 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2024 }
2025
free_root_extent_buffers(struct btrfs_root * root)2026 static void free_root_extent_buffers(struct btrfs_root *root)
2027 {
2028 if (root) {
2029 free_extent_buffer(root->node);
2030 free_extent_buffer(root->commit_root);
2031 root->node = NULL;
2032 root->commit_root = NULL;
2033 }
2034 }
2035
2036 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2037 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2038 {
2039 free_root_extent_buffers(info->tree_root);
2040
2041 free_root_extent_buffers(info->dev_root);
2042 free_root_extent_buffers(info->extent_root);
2043 free_root_extent_buffers(info->csum_root);
2044 free_root_extent_buffers(info->quota_root);
2045 free_root_extent_buffers(info->uuid_root);
2046 free_root_extent_buffers(info->fs_root);
2047 free_root_extent_buffers(info->data_reloc_root);
2048 if (free_chunk_root)
2049 free_root_extent_buffers(info->chunk_root);
2050 free_root_extent_buffers(info->free_space_root);
2051 }
2052
btrfs_put_root(struct btrfs_root * root)2053 void btrfs_put_root(struct btrfs_root *root)
2054 {
2055 if (!root)
2056 return;
2057
2058 if (refcount_dec_and_test(&root->refs)) {
2059 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2060 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2061 if (root->anon_dev)
2062 free_anon_bdev(root->anon_dev);
2063 btrfs_drew_lock_destroy(&root->snapshot_lock);
2064 free_root_extent_buffers(root);
2065 kfree(root->free_ino_ctl);
2066 kfree(root->free_ino_pinned);
2067 #ifdef CONFIG_BTRFS_DEBUG
2068 spin_lock(&root->fs_info->fs_roots_radix_lock);
2069 list_del_init(&root->leak_list);
2070 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071 #endif
2072 kfree(root);
2073 }
2074 }
2075
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2076 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077 {
2078 int ret;
2079 struct btrfs_root *gang[8];
2080 int i;
2081
2082 while (!list_empty(&fs_info->dead_roots)) {
2083 gang[0] = list_entry(fs_info->dead_roots.next,
2084 struct btrfs_root, root_list);
2085 list_del(&gang[0]->root_list);
2086
2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089 btrfs_put_root(gang[0]);
2090 }
2091
2092 while (1) {
2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 (void **)gang, 0,
2095 ARRAY_SIZE(gang));
2096 if (!ret)
2097 break;
2098 for (i = 0; i < ret; i++)
2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 }
2101 }
2102
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2103 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104 {
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2112 }
2113
btrfs_init_balance(struct btrfs_fs_info * fs_info)2114 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115 {
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2122 }
2123
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2124 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2125 {
2126 struct inode *inode = fs_info->btree_inode;
2127
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
2130 /*
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2134 */
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
2137
2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_BTREE_INODE_IO, inode);
2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2143
2144 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2145 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2146 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2147 btrfs_insert_inode_hash(inode);
2148 }
2149
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2150 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151 {
2152 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2153 init_rwsem(&fs_info->dev_replace.rwsem);
2154 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2155 }
2156
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2157 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2158 {
2159 spin_lock_init(&fs_info->qgroup_lock);
2160 mutex_init(&fs_info->qgroup_ioctl_lock);
2161 fs_info->qgroup_tree = RB_ROOT;
2162 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163 fs_info->qgroup_seq = 1;
2164 fs_info->qgroup_ulist = NULL;
2165 fs_info->qgroup_rescan_running = false;
2166 mutex_init(&fs_info->qgroup_rescan_lock);
2167 }
2168
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2169 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2170 struct btrfs_fs_devices *fs_devices)
2171 {
2172 u32 max_active = fs_info->thread_pool_size;
2173 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2174
2175 fs_info->workers =
2176 btrfs_alloc_workqueue(fs_info, "worker",
2177 flags | WQ_HIGHPRI, max_active, 16);
2178
2179 fs_info->delalloc_workers =
2180 btrfs_alloc_workqueue(fs_info, "delalloc",
2181 flags, max_active, 2);
2182
2183 fs_info->flush_workers =
2184 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2185 flags, max_active, 0);
2186
2187 fs_info->caching_workers =
2188 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2189
2190 fs_info->fixup_workers =
2191 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2192
2193 /*
2194 * endios are largely parallel and should have a very
2195 * low idle thresh
2196 */
2197 fs_info->endio_workers =
2198 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2199 fs_info->endio_meta_workers =
2200 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2201 max_active, 4);
2202 fs_info->endio_meta_write_workers =
2203 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2204 max_active, 2);
2205 fs_info->endio_raid56_workers =
2206 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2207 max_active, 4);
2208 fs_info->rmw_workers =
2209 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2210 fs_info->endio_write_workers =
2211 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2212 max_active, 2);
2213 fs_info->endio_freespace_worker =
2214 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2215 max_active, 0);
2216 fs_info->delayed_workers =
2217 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2218 max_active, 0);
2219 fs_info->readahead_workers =
2220 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2221 max_active, 2);
2222 fs_info->qgroup_rescan_workers =
2223 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2224 fs_info->discard_ctl.discard_workers =
2225 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2226
2227 if (!(fs_info->workers && fs_info->delalloc_workers &&
2228 fs_info->flush_workers &&
2229 fs_info->endio_workers && fs_info->endio_meta_workers &&
2230 fs_info->endio_meta_write_workers &&
2231 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233 fs_info->caching_workers && fs_info->readahead_workers &&
2234 fs_info->fixup_workers && fs_info->delayed_workers &&
2235 fs_info->qgroup_rescan_workers &&
2236 fs_info->discard_ctl.discard_workers)) {
2237 return -ENOMEM;
2238 }
2239
2240 return 0;
2241 }
2242
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2243 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2244 {
2245 struct crypto_shash *csum_shash;
2246 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2247
2248 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2249
2250 if (IS_ERR(csum_shash)) {
2251 btrfs_err(fs_info, "error allocating %s hash for checksum",
2252 csum_driver);
2253 return PTR_ERR(csum_shash);
2254 }
2255
2256 fs_info->csum_shash = csum_shash;
2257
2258 return 0;
2259 }
2260
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2261 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263 {
2264 int ret;
2265 struct btrfs_root *log_tree_root;
2266 struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 u64 bytenr = btrfs_super_log_root(disk_super);
2268 int level = btrfs_super_log_root_level(disk_super);
2269
2270 if (fs_devices->rw_devices == 0) {
2271 btrfs_warn(fs_info, "log replay required on RO media");
2272 return -EIO;
2273 }
2274
2275 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2276 GFP_KERNEL);
2277 if (!log_tree_root)
2278 return -ENOMEM;
2279
2280 log_tree_root->node = read_tree_block(fs_info, bytenr,
2281 fs_info->generation + 1,
2282 level, NULL);
2283 if (IS_ERR(log_tree_root->node)) {
2284 btrfs_warn(fs_info, "failed to read log tree");
2285 ret = PTR_ERR(log_tree_root->node);
2286 log_tree_root->node = NULL;
2287 btrfs_put_root(log_tree_root);
2288 return ret;
2289 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2290 btrfs_err(fs_info, "failed to read log tree");
2291 btrfs_put_root(log_tree_root);
2292 return -EIO;
2293 }
2294 /* returns with log_tree_root freed on success */
2295 ret = btrfs_recover_log_trees(log_tree_root);
2296 if (ret) {
2297 btrfs_handle_fs_error(fs_info, ret,
2298 "Failed to recover log tree");
2299 btrfs_put_root(log_tree_root);
2300 return ret;
2301 }
2302
2303 if (sb_rdonly(fs_info->sb)) {
2304 ret = btrfs_commit_super(fs_info);
2305 if (ret)
2306 return ret;
2307 }
2308
2309 return 0;
2310 }
2311
btrfs_read_roots(struct btrfs_fs_info * fs_info)2312 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2313 {
2314 struct btrfs_root *tree_root = fs_info->tree_root;
2315 struct btrfs_root *root;
2316 struct btrfs_key location;
2317 int ret;
2318
2319 BUG_ON(!fs_info->tree_root);
2320
2321 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2322 location.type = BTRFS_ROOT_ITEM_KEY;
2323 location.offset = 0;
2324
2325 root = btrfs_read_tree_root(tree_root, &location);
2326 if (IS_ERR(root)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->extent_root = root;
2332
2333 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2334 root = btrfs_read_tree_root(tree_root, &location);
2335 if (IS_ERR(root)) {
2336 ret = PTR_ERR(root);
2337 goto out;
2338 }
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340 fs_info->dev_root = root;
2341 btrfs_init_devices_late(fs_info);
2342
2343 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2344 root = btrfs_read_tree_root(tree_root, &location);
2345 if (IS_ERR(root)) {
2346 ret = PTR_ERR(root);
2347 goto out;
2348 }
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 fs_info->csum_root = root;
2351
2352 /*
2353 * This tree can share blocks with some other fs tree during relocation
2354 * and we need a proper setup by btrfs_get_fs_root
2355 */
2356 root = btrfs_get_fs_root(tree_root->fs_info,
2357 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2358 if (IS_ERR(root)) {
2359 ret = PTR_ERR(root);
2360 goto out;
2361 }
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->data_reloc_root = root;
2364
2365 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (!IS_ERR(root)) {
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2370 fs_info->quota_root = root;
2371 }
2372
2373 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2374 root = btrfs_read_tree_root(tree_root, &location);
2375 if (IS_ERR(root)) {
2376 ret = PTR_ERR(root);
2377 if (ret != -ENOENT)
2378 goto out;
2379 } else {
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->uuid_root = root;
2382 }
2383
2384 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2385 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2386 root = btrfs_read_tree_root(tree_root, &location);
2387 if (IS_ERR(root)) {
2388 ret = PTR_ERR(root);
2389 goto out;
2390 }
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->free_space_root = root;
2393 }
2394
2395 return 0;
2396 out:
2397 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2398 location.objectid, ret);
2399 return ret;
2400 }
2401
2402 /*
2403 * Real super block validation
2404 * NOTE: super csum type and incompat features will not be checked here.
2405 *
2406 * @sb: super block to check
2407 * @mirror_num: the super block number to check its bytenr:
2408 * 0 the primary (1st) sb
2409 * 1, 2 2nd and 3rd backup copy
2410 * -1 skip bytenr check
2411 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2412 static int validate_super(struct btrfs_fs_info *fs_info,
2413 struct btrfs_super_block *sb, int mirror_num)
2414 {
2415 u64 nodesize = btrfs_super_nodesize(sb);
2416 u64 sectorsize = btrfs_super_sectorsize(sb);
2417 int ret = 0;
2418
2419 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2420 btrfs_err(fs_info, "no valid FS found");
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2424 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2425 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2430 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2435 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2439 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2440 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2441 ret = -EINVAL;
2442 }
2443
2444 /*
2445 * Check sectorsize and nodesize first, other check will need it.
2446 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2447 */
2448 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2449 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2450 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2451 ret = -EINVAL;
2452 }
2453 /* Only PAGE SIZE is supported yet */
2454 if (sectorsize != PAGE_SIZE) {
2455 btrfs_err(fs_info,
2456 "sectorsize %llu not supported yet, only support %lu",
2457 sectorsize, PAGE_SIZE);
2458 ret = -EINVAL;
2459 }
2460 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2461 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2462 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2463 ret = -EINVAL;
2464 }
2465 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2466 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2467 le32_to_cpu(sb->__unused_leafsize), nodesize);
2468 ret = -EINVAL;
2469 }
2470
2471 /* Root alignment check */
2472 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2474 btrfs_super_root(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2479 btrfs_super_chunk_root(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2483 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2484 btrfs_super_log_root(sb));
2485 ret = -EINVAL;
2486 }
2487
2488 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2489 BTRFS_FSID_SIZE)) {
2490 btrfs_err(fs_info,
2491 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2492 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2493 ret = -EINVAL;
2494 }
2495
2496 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2497 memcmp(fs_info->fs_devices->metadata_uuid,
2498 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2499 btrfs_err(fs_info,
2500 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2501 fs_info->super_copy->metadata_uuid,
2502 fs_info->fs_devices->metadata_uuid);
2503 ret = -EINVAL;
2504 }
2505
2506 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2507 BTRFS_FSID_SIZE) != 0) {
2508 btrfs_err(fs_info,
2509 "dev_item UUID does not match metadata fsid: %pU != %pU",
2510 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2511 ret = -EINVAL;
2512 }
2513
2514 /*
2515 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2516 * done later
2517 */
2518 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2519 btrfs_err(fs_info, "bytes_used is too small %llu",
2520 btrfs_super_bytes_used(sb));
2521 ret = -EINVAL;
2522 }
2523 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2524 btrfs_err(fs_info, "invalid stripesize %u",
2525 btrfs_super_stripesize(sb));
2526 ret = -EINVAL;
2527 }
2528 if (btrfs_super_num_devices(sb) > (1UL << 31))
2529 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2530 btrfs_super_num_devices(sb));
2531 if (btrfs_super_num_devices(sb) == 0) {
2532 btrfs_err(fs_info, "number of devices is 0");
2533 ret = -EINVAL;
2534 }
2535
2536 if (mirror_num >= 0 &&
2537 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2538 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2539 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2540 ret = -EINVAL;
2541 }
2542
2543 /*
2544 * Obvious sys_chunk_array corruptions, it must hold at least one key
2545 * and one chunk
2546 */
2547 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2548 btrfs_err(fs_info, "system chunk array too big %u > %u",
2549 btrfs_super_sys_array_size(sb),
2550 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2551 ret = -EINVAL;
2552 }
2553 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2554 + sizeof(struct btrfs_chunk)) {
2555 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2556 btrfs_super_sys_array_size(sb),
2557 sizeof(struct btrfs_disk_key)
2558 + sizeof(struct btrfs_chunk));
2559 ret = -EINVAL;
2560 }
2561
2562 /*
2563 * The generation is a global counter, we'll trust it more than the others
2564 * but it's still possible that it's the one that's wrong.
2565 */
2566 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2567 btrfs_warn(fs_info,
2568 "suspicious: generation < chunk_root_generation: %llu < %llu",
2569 btrfs_super_generation(sb),
2570 btrfs_super_chunk_root_generation(sb));
2571 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2572 && btrfs_super_cache_generation(sb) != (u64)-1)
2573 btrfs_warn(fs_info,
2574 "suspicious: generation < cache_generation: %llu < %llu",
2575 btrfs_super_generation(sb),
2576 btrfs_super_cache_generation(sb));
2577
2578 return ret;
2579 }
2580
2581 /*
2582 * Validation of super block at mount time.
2583 * Some checks already done early at mount time, like csum type and incompat
2584 * flags will be skipped.
2585 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2586 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2587 {
2588 return validate_super(fs_info, fs_info->super_copy, 0);
2589 }
2590
2591 /*
2592 * Validation of super block at write time.
2593 * Some checks like bytenr check will be skipped as their values will be
2594 * overwritten soon.
2595 * Extra checks like csum type and incompat flags will be done here.
2596 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2597 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2598 struct btrfs_super_block *sb)
2599 {
2600 int ret;
2601
2602 ret = validate_super(fs_info, sb, -1);
2603 if (ret < 0)
2604 goto out;
2605 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2606 ret = -EUCLEAN;
2607 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2608 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2609 goto out;
2610 }
2611 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2612 ret = -EUCLEAN;
2613 btrfs_err(fs_info,
2614 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2615 btrfs_super_incompat_flags(sb),
2616 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2617 goto out;
2618 }
2619 out:
2620 if (ret < 0)
2621 btrfs_err(fs_info,
2622 "super block corruption detected before writing it to disk");
2623 return ret;
2624 }
2625
init_tree_roots(struct btrfs_fs_info * fs_info)2626 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627 {
2628 int backup_index = find_newest_super_backup(fs_info);
2629 struct btrfs_super_block *sb = fs_info->super_copy;
2630 struct btrfs_root *tree_root = fs_info->tree_root;
2631 bool handle_error = false;
2632 int ret = 0;
2633 int i;
2634
2635 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636 u64 generation;
2637 int level;
2638
2639 if (handle_error) {
2640 if (!IS_ERR(tree_root->node))
2641 free_extent_buffer(tree_root->node);
2642 tree_root->node = NULL;
2643
2644 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2645 break;
2646
2647 free_root_pointers(fs_info, 0);
2648
2649 /*
2650 * Don't use the log in recovery mode, it won't be
2651 * valid
2652 */
2653 btrfs_set_super_log_root(sb, 0);
2654
2655 /* We can't trust the free space cache either */
2656 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2657
2658 ret = read_backup_root(fs_info, i);
2659 backup_index = ret;
2660 if (ret < 0)
2661 return ret;
2662 }
2663 generation = btrfs_super_generation(sb);
2664 level = btrfs_super_root_level(sb);
2665 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2666 generation, level, NULL);
2667 if (IS_ERR(tree_root->node)) {
2668 handle_error = true;
2669 ret = PTR_ERR(tree_root->node);
2670 tree_root->node = NULL;
2671 btrfs_warn(fs_info, "couldn't read tree root");
2672 continue;
2673
2674 } else if (!extent_buffer_uptodate(tree_root->node)) {
2675 handle_error = true;
2676 ret = -EIO;
2677 btrfs_warn(fs_info, "error while reading tree root");
2678 continue;
2679 }
2680
2681 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2682 tree_root->commit_root = btrfs_root_node(tree_root);
2683 btrfs_set_root_refs(&tree_root->root_item, 1);
2684
2685 /*
2686 * No need to hold btrfs_root::objectid_mutex since the fs
2687 * hasn't been fully initialised and we are the only user
2688 */
2689 ret = btrfs_find_highest_objectid(tree_root,
2690 &tree_root->highest_objectid);
2691 if (ret < 0) {
2692 handle_error = true;
2693 continue;
2694 }
2695
2696 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2697
2698 ret = btrfs_read_roots(fs_info);
2699 if (ret < 0) {
2700 handle_error = true;
2701 continue;
2702 }
2703
2704 /* All successful */
2705 fs_info->generation = generation;
2706 fs_info->last_trans_committed = generation;
2707
2708 /* Always begin writing backup roots after the one being used */
2709 if (backup_index < 0) {
2710 fs_info->backup_root_index = 0;
2711 } else {
2712 fs_info->backup_root_index = backup_index + 1;
2713 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2714 }
2715 break;
2716 }
2717
2718 return ret;
2719 }
2720
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2721 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2722 {
2723 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2724 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2725 INIT_LIST_HEAD(&fs_info->trans_list);
2726 INIT_LIST_HEAD(&fs_info->dead_roots);
2727 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2728 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2729 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2730 spin_lock_init(&fs_info->delalloc_root_lock);
2731 spin_lock_init(&fs_info->trans_lock);
2732 spin_lock_init(&fs_info->fs_roots_radix_lock);
2733 spin_lock_init(&fs_info->delayed_iput_lock);
2734 spin_lock_init(&fs_info->defrag_inodes_lock);
2735 spin_lock_init(&fs_info->super_lock);
2736 spin_lock_init(&fs_info->buffer_lock);
2737 spin_lock_init(&fs_info->unused_bgs_lock);
2738 rwlock_init(&fs_info->tree_mod_log_lock);
2739 mutex_init(&fs_info->unused_bg_unpin_mutex);
2740 mutex_init(&fs_info->delete_unused_bgs_mutex);
2741 mutex_init(&fs_info->reloc_mutex);
2742 mutex_init(&fs_info->delalloc_root_mutex);
2743 seqlock_init(&fs_info->profiles_lock);
2744
2745 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2746 INIT_LIST_HEAD(&fs_info->space_info);
2747 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2748 INIT_LIST_HEAD(&fs_info->unused_bgs);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750 INIT_LIST_HEAD(&fs_info->allocated_roots);
2751 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752 spin_lock_init(&fs_info->eb_leak_lock);
2753 #endif
2754 extent_map_tree_init(&fs_info->mapping_tree);
2755 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2756 BTRFS_BLOCK_RSV_GLOBAL);
2757 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2758 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2759 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2760 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2761 BTRFS_BLOCK_RSV_DELOPS);
2762 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2763 BTRFS_BLOCK_RSV_DELREFS);
2764
2765 atomic_set(&fs_info->async_delalloc_pages, 0);
2766 atomic_set(&fs_info->defrag_running, 0);
2767 atomic_set(&fs_info->reada_works_cnt, 0);
2768 atomic_set(&fs_info->nr_delayed_iputs, 0);
2769 atomic64_set(&fs_info->tree_mod_seq, 0);
2770 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2771 fs_info->metadata_ratio = 0;
2772 fs_info->defrag_inodes = RB_ROOT;
2773 atomic64_set(&fs_info->free_chunk_space, 0);
2774 fs_info->tree_mod_log = RB_ROOT;
2775 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2776 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2777 /* readahead state */
2778 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2779 spin_lock_init(&fs_info->reada_lock);
2780 btrfs_init_ref_verify(fs_info);
2781
2782 fs_info->thread_pool_size = min_t(unsigned long,
2783 num_online_cpus() + 2, 8);
2784
2785 INIT_LIST_HEAD(&fs_info->ordered_roots);
2786 spin_lock_init(&fs_info->ordered_root_lock);
2787
2788 btrfs_init_scrub(fs_info);
2789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2790 fs_info->check_integrity_print_mask = 0;
2791 #endif
2792 btrfs_init_balance(fs_info);
2793 btrfs_init_async_reclaim_work(fs_info);
2794
2795 spin_lock_init(&fs_info->block_group_cache_lock);
2796 fs_info->block_group_cache_tree = RB_ROOT;
2797 fs_info->first_logical_byte = (u64)-1;
2798
2799 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2800 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2801 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2802
2803 mutex_init(&fs_info->ordered_operations_mutex);
2804 mutex_init(&fs_info->tree_log_mutex);
2805 mutex_init(&fs_info->chunk_mutex);
2806 mutex_init(&fs_info->transaction_kthread_mutex);
2807 mutex_init(&fs_info->cleaner_mutex);
2808 mutex_init(&fs_info->ro_block_group_mutex);
2809 init_rwsem(&fs_info->commit_root_sem);
2810 init_rwsem(&fs_info->cleanup_work_sem);
2811 init_rwsem(&fs_info->subvol_sem);
2812 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2813
2814 btrfs_init_dev_replace_locks(fs_info);
2815 btrfs_init_qgroup(fs_info);
2816 btrfs_discard_init(fs_info);
2817
2818 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2819 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2820
2821 init_waitqueue_head(&fs_info->transaction_throttle);
2822 init_waitqueue_head(&fs_info->transaction_wait);
2823 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2824 init_waitqueue_head(&fs_info->async_submit_wait);
2825 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2826
2827 /* Usable values until the real ones are cached from the superblock */
2828 fs_info->nodesize = 4096;
2829 fs_info->sectorsize = 4096;
2830 fs_info->stripesize = 4096;
2831
2832 spin_lock_init(&fs_info->swapfile_pins_lock);
2833 fs_info->swapfile_pins = RB_ROOT;
2834
2835 fs_info->send_in_progress = 0;
2836 }
2837
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839 {
2840 int ret;
2841
2842 fs_info->sb = sb;
2843 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2844 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2845
2846 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2847 if (ret)
2848 return ret;
2849
2850 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2851 if (ret)
2852 return ret;
2853
2854 fs_info->dirty_metadata_batch = PAGE_SIZE *
2855 (1 + ilog2(nr_cpu_ids));
2856
2857 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2858 if (ret)
2859 return ret;
2860
2861 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2862 GFP_KERNEL);
2863 if (ret)
2864 return ret;
2865
2866 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2867 GFP_KERNEL);
2868 if (!fs_info->delayed_root)
2869 return -ENOMEM;
2870 btrfs_init_delayed_root(fs_info->delayed_root);
2871
2872 return btrfs_alloc_stripe_hash_table(fs_info);
2873 }
2874
btrfs_uuid_rescan_kthread(void * data)2875 static int btrfs_uuid_rescan_kthread(void *data)
2876 {
2877 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2878 int ret;
2879
2880 /*
2881 * 1st step is to iterate through the existing UUID tree and
2882 * to delete all entries that contain outdated data.
2883 * 2nd step is to add all missing entries to the UUID tree.
2884 */
2885 ret = btrfs_uuid_tree_iterate(fs_info);
2886 if (ret < 0) {
2887 if (ret != -EINTR)
2888 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2889 ret);
2890 up(&fs_info->uuid_tree_rescan_sem);
2891 return ret;
2892 }
2893 return btrfs_uuid_scan_kthread(data);
2894 }
2895
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2896 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2897 {
2898 struct task_struct *task;
2899
2900 down(&fs_info->uuid_tree_rescan_sem);
2901 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2902 if (IS_ERR(task)) {
2903 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2904 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2905 up(&fs_info->uuid_tree_rescan_sem);
2906 return PTR_ERR(task);
2907 }
2908
2909 return 0;
2910 }
2911
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2912 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2913 char *options)
2914 {
2915 u32 sectorsize;
2916 u32 nodesize;
2917 u32 stripesize;
2918 u64 generation;
2919 u64 features;
2920 u16 csum_type;
2921 struct btrfs_super_block *disk_super;
2922 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2923 struct btrfs_root *tree_root;
2924 struct btrfs_root *chunk_root;
2925 int ret;
2926 int err = -EINVAL;
2927 int clear_free_space_tree = 0;
2928 int level;
2929
2930 ret = init_mount_fs_info(fs_info, sb);
2931 if (ret) {
2932 err = ret;
2933 goto fail;
2934 }
2935
2936 /* These need to be init'ed before we start creating inodes and such. */
2937 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2938 GFP_KERNEL);
2939 fs_info->tree_root = tree_root;
2940 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2941 GFP_KERNEL);
2942 fs_info->chunk_root = chunk_root;
2943 if (!tree_root || !chunk_root) {
2944 err = -ENOMEM;
2945 goto fail;
2946 }
2947
2948 fs_info->btree_inode = new_inode(sb);
2949 if (!fs_info->btree_inode) {
2950 err = -ENOMEM;
2951 goto fail;
2952 }
2953 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2954 btrfs_init_btree_inode(fs_info);
2955
2956 invalidate_bdev(fs_devices->latest_bdev);
2957
2958 /*
2959 * Read super block and check the signature bytes only
2960 */
2961 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2962 if (IS_ERR(disk_super)) {
2963 err = PTR_ERR(disk_super);
2964 goto fail_alloc;
2965 }
2966
2967 /*
2968 * Verify the type first, if that or the checksum value are
2969 * corrupted, we'll find out
2970 */
2971 csum_type = btrfs_super_csum_type(disk_super);
2972 if (!btrfs_supported_super_csum(csum_type)) {
2973 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2974 csum_type);
2975 err = -EINVAL;
2976 btrfs_release_disk_super(disk_super);
2977 goto fail_alloc;
2978 }
2979
2980 ret = btrfs_init_csum_hash(fs_info, csum_type);
2981 if (ret) {
2982 err = ret;
2983 btrfs_release_disk_super(disk_super);
2984 goto fail_alloc;
2985 }
2986
2987 /*
2988 * We want to check superblock checksum, the type is stored inside.
2989 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2990 */
2991 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2992 btrfs_err(fs_info, "superblock checksum mismatch");
2993 err = -EINVAL;
2994 btrfs_release_disk_super(disk_super);
2995 goto fail_alloc;
2996 }
2997
2998 /*
2999 * super_copy is zeroed at allocation time and we never touch the
3000 * following bytes up to INFO_SIZE, the checksum is calculated from
3001 * the whole block of INFO_SIZE
3002 */
3003 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3004 btrfs_release_disk_super(disk_super);
3005
3006 disk_super = fs_info->super_copy;
3007
3008
3009 features = btrfs_super_flags(disk_super);
3010 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3011 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3012 btrfs_set_super_flags(disk_super, features);
3013 btrfs_info(fs_info,
3014 "found metadata UUID change in progress flag, clearing");
3015 }
3016
3017 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3018 sizeof(*fs_info->super_for_commit));
3019
3020 ret = btrfs_validate_mount_super(fs_info);
3021 if (ret) {
3022 btrfs_err(fs_info, "superblock contains fatal errors");
3023 err = -EINVAL;
3024 goto fail_alloc;
3025 }
3026
3027 if (!btrfs_super_root(disk_super))
3028 goto fail_alloc;
3029
3030 /* check FS state, whether FS is broken. */
3031 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3032 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3033
3034 /*
3035 * In the long term, we'll store the compression type in the super
3036 * block, and it'll be used for per file compression control.
3037 */
3038 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3039
3040 /*
3041 * Flag our filesystem as having big metadata blocks if they are bigger
3042 * than the page size
3043 */
3044 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3045 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3046 btrfs_info(fs_info,
3047 "flagging fs with big metadata feature");
3048 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3049 }
3050
3051 /* Set up fs_info before parsing mount options */
3052 nodesize = btrfs_super_nodesize(disk_super);
3053 sectorsize = btrfs_super_sectorsize(disk_super);
3054 stripesize = sectorsize;
3055 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3056 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3057
3058 /* Cache block sizes */
3059 fs_info->nodesize = nodesize;
3060 fs_info->sectorsize = sectorsize;
3061 fs_info->stripesize = stripesize;
3062
3063 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3064 if (ret) {
3065 err = ret;
3066 goto fail_alloc;
3067 }
3068
3069 features = btrfs_super_incompat_flags(disk_super) &
3070 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3071 if (features) {
3072 btrfs_err(fs_info,
3073 "cannot mount because of unsupported optional features (0x%llx)",
3074 features);
3075 err = -EINVAL;
3076 goto fail_alloc;
3077 }
3078
3079 features = btrfs_super_incompat_flags(disk_super);
3080 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3081 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3082 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3083 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3084 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3085
3086 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3087 btrfs_info(fs_info, "has skinny extents");
3088
3089 /*
3090 * mixed block groups end up with duplicate but slightly offset
3091 * extent buffers for the same range. It leads to corruptions
3092 */
3093 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3094 (sectorsize != nodesize)) {
3095 btrfs_err(fs_info,
3096 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3097 nodesize, sectorsize);
3098 goto fail_alloc;
3099 }
3100
3101 /*
3102 * Needn't use the lock because there is no other task which will
3103 * update the flag.
3104 */
3105 btrfs_set_super_incompat_flags(disk_super, features);
3106
3107 features = btrfs_super_compat_ro_flags(disk_super) &
3108 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3109 if (!sb_rdonly(sb) && features) {
3110 btrfs_err(fs_info,
3111 "cannot mount read-write because of unsupported optional features (0x%llx)",
3112 features);
3113 err = -EINVAL;
3114 goto fail_alloc;
3115 }
3116 /*
3117 * We have unsupported RO compat features, although RO mounted, we
3118 * should not cause any metadata write, including log replay.
3119 * Or we could screw up whatever the new feature requires.
3120 */
3121 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3122 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3123 btrfs_err(fs_info,
3124 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3125 features);
3126 err = -EINVAL;
3127 goto fail_alloc;
3128 }
3129
3130
3131 ret = btrfs_init_workqueues(fs_info, fs_devices);
3132 if (ret) {
3133 err = ret;
3134 goto fail_sb_buffer;
3135 }
3136
3137 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3138 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3139
3140 sb->s_blocksize = sectorsize;
3141 sb->s_blocksize_bits = blksize_bits(sectorsize);
3142 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3143
3144 mutex_lock(&fs_info->chunk_mutex);
3145 ret = btrfs_read_sys_array(fs_info);
3146 mutex_unlock(&fs_info->chunk_mutex);
3147 if (ret) {
3148 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3149 goto fail_sb_buffer;
3150 }
3151
3152 generation = btrfs_super_chunk_root_generation(disk_super);
3153 level = btrfs_super_chunk_root_level(disk_super);
3154
3155 chunk_root->node = read_tree_block(fs_info,
3156 btrfs_super_chunk_root(disk_super),
3157 generation, level, NULL);
3158 if (IS_ERR(chunk_root->node) ||
3159 !extent_buffer_uptodate(chunk_root->node)) {
3160 btrfs_err(fs_info, "failed to read chunk root");
3161 if (!IS_ERR(chunk_root->node))
3162 free_extent_buffer(chunk_root->node);
3163 chunk_root->node = NULL;
3164 goto fail_tree_roots;
3165 }
3166 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3167 chunk_root->commit_root = btrfs_root_node(chunk_root);
3168
3169 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3170 offsetof(struct btrfs_header, chunk_tree_uuid),
3171 BTRFS_UUID_SIZE);
3172
3173 ret = btrfs_read_chunk_tree(fs_info);
3174 if (ret) {
3175 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3176 goto fail_tree_roots;
3177 }
3178
3179 /*
3180 * Keep the devid that is marked to be the target device for the
3181 * device replace procedure
3182 */
3183 btrfs_free_extra_devids(fs_devices, 0);
3184
3185 if (!fs_devices->latest_bdev) {
3186 btrfs_err(fs_info, "failed to read devices");
3187 goto fail_tree_roots;
3188 }
3189
3190 ret = init_tree_roots(fs_info);
3191 if (ret)
3192 goto fail_tree_roots;
3193
3194 /*
3195 * If we have a uuid root and we're not being told to rescan we need to
3196 * check the generation here so we can set the
3197 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3198 * transaction during a balance or the log replay without updating the
3199 * uuid generation, and then if we crash we would rescan the uuid tree,
3200 * even though it was perfectly fine.
3201 */
3202 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3203 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3204 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3205
3206 ret = btrfs_verify_dev_extents(fs_info);
3207 if (ret) {
3208 btrfs_err(fs_info,
3209 "failed to verify dev extents against chunks: %d",
3210 ret);
3211 goto fail_block_groups;
3212 }
3213 ret = btrfs_recover_balance(fs_info);
3214 if (ret) {
3215 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3216 goto fail_block_groups;
3217 }
3218
3219 ret = btrfs_init_dev_stats(fs_info);
3220 if (ret) {
3221 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3222 goto fail_block_groups;
3223 }
3224
3225 ret = btrfs_init_dev_replace(fs_info);
3226 if (ret) {
3227 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3228 goto fail_block_groups;
3229 }
3230
3231 btrfs_free_extra_devids(fs_devices, 1);
3232
3233 ret = btrfs_sysfs_add_fsid(fs_devices);
3234 if (ret) {
3235 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3236 ret);
3237 goto fail_block_groups;
3238 }
3239
3240 ret = btrfs_sysfs_add_mounted(fs_info);
3241 if (ret) {
3242 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3243 goto fail_fsdev_sysfs;
3244 }
3245
3246 ret = btrfs_init_space_info(fs_info);
3247 if (ret) {
3248 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3249 goto fail_sysfs;
3250 }
3251
3252 ret = btrfs_read_block_groups(fs_info);
3253 if (ret) {
3254 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3255 goto fail_sysfs;
3256 }
3257
3258 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3259 !btrfs_check_rw_degradable(fs_info, NULL)) {
3260 btrfs_warn(fs_info,
3261 "writable mount is not allowed due to too many missing devices");
3262 goto fail_sysfs;
3263 }
3264
3265 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3266 "btrfs-cleaner");
3267 if (IS_ERR(fs_info->cleaner_kthread))
3268 goto fail_sysfs;
3269
3270 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3271 tree_root,
3272 "btrfs-transaction");
3273 if (IS_ERR(fs_info->transaction_kthread))
3274 goto fail_cleaner;
3275
3276 if (!btrfs_test_opt(fs_info, NOSSD) &&
3277 !fs_info->fs_devices->rotating) {
3278 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3279 }
3280
3281 /*
3282 * Mount does not set all options immediately, we can do it now and do
3283 * not have to wait for transaction commit
3284 */
3285 btrfs_apply_pending_changes(fs_info);
3286
3287 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3288 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3289 ret = btrfsic_mount(fs_info, fs_devices,
3290 btrfs_test_opt(fs_info,
3291 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3292 1 : 0,
3293 fs_info->check_integrity_print_mask);
3294 if (ret)
3295 btrfs_warn(fs_info,
3296 "failed to initialize integrity check module: %d",
3297 ret);
3298 }
3299 #endif
3300 ret = btrfs_read_qgroup_config(fs_info);
3301 if (ret)
3302 goto fail_trans_kthread;
3303
3304 if (btrfs_build_ref_tree(fs_info))
3305 btrfs_err(fs_info, "couldn't build ref tree");
3306
3307 /* do not make disk changes in broken FS or nologreplay is given */
3308 if (btrfs_super_log_root(disk_super) != 0 &&
3309 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3310 btrfs_info(fs_info, "start tree-log replay");
3311 ret = btrfs_replay_log(fs_info, fs_devices);
3312 if (ret) {
3313 err = ret;
3314 goto fail_qgroup;
3315 }
3316 }
3317
3318 ret = btrfs_find_orphan_roots(fs_info);
3319 if (ret)
3320 goto fail_qgroup;
3321
3322 if (!sb_rdonly(sb)) {
3323 ret = btrfs_cleanup_fs_roots(fs_info);
3324 if (ret)
3325 goto fail_qgroup;
3326
3327 mutex_lock(&fs_info->cleaner_mutex);
3328 ret = btrfs_recover_relocation(tree_root);
3329 mutex_unlock(&fs_info->cleaner_mutex);
3330 if (ret < 0) {
3331 btrfs_warn(fs_info, "failed to recover relocation: %d",
3332 ret);
3333 err = -EINVAL;
3334 goto fail_qgroup;
3335 }
3336 }
3337
3338 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3339 if (IS_ERR(fs_info->fs_root)) {
3340 err = PTR_ERR(fs_info->fs_root);
3341 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3342 fs_info->fs_root = NULL;
3343 goto fail_qgroup;
3344 }
3345
3346 if (sb_rdonly(sb))
3347 return 0;
3348
3349 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3350 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3351 clear_free_space_tree = 1;
3352 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3353 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3354 btrfs_warn(fs_info, "free space tree is invalid");
3355 clear_free_space_tree = 1;
3356 }
3357
3358 if (clear_free_space_tree) {
3359 btrfs_info(fs_info, "clearing free space tree");
3360 ret = btrfs_clear_free_space_tree(fs_info);
3361 if (ret) {
3362 btrfs_warn(fs_info,
3363 "failed to clear free space tree: %d", ret);
3364 close_ctree(fs_info);
3365 return ret;
3366 }
3367 }
3368
3369 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3370 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3371 btrfs_info(fs_info, "creating free space tree");
3372 ret = btrfs_create_free_space_tree(fs_info);
3373 if (ret) {
3374 btrfs_warn(fs_info,
3375 "failed to create free space tree: %d", ret);
3376 close_ctree(fs_info);
3377 return ret;
3378 }
3379 }
3380
3381 down_read(&fs_info->cleanup_work_sem);
3382 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3383 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3384 up_read(&fs_info->cleanup_work_sem);
3385 close_ctree(fs_info);
3386 return ret;
3387 }
3388 up_read(&fs_info->cleanup_work_sem);
3389
3390 ret = btrfs_resume_balance_async(fs_info);
3391 if (ret) {
3392 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3393 close_ctree(fs_info);
3394 return ret;
3395 }
3396
3397 ret = btrfs_resume_dev_replace_async(fs_info);
3398 if (ret) {
3399 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3400 close_ctree(fs_info);
3401 return ret;
3402 }
3403
3404 btrfs_qgroup_rescan_resume(fs_info);
3405 btrfs_discard_resume(fs_info);
3406
3407 if (!fs_info->uuid_root) {
3408 btrfs_info(fs_info, "creating UUID tree");
3409 ret = btrfs_create_uuid_tree(fs_info);
3410 if (ret) {
3411 btrfs_warn(fs_info,
3412 "failed to create the UUID tree: %d", ret);
3413 close_ctree(fs_info);
3414 return ret;
3415 }
3416 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3417 fs_info->generation !=
3418 btrfs_super_uuid_tree_generation(disk_super)) {
3419 btrfs_info(fs_info, "checking UUID tree");
3420 ret = btrfs_check_uuid_tree(fs_info);
3421 if (ret) {
3422 btrfs_warn(fs_info,
3423 "failed to check the UUID tree: %d", ret);
3424 close_ctree(fs_info);
3425 return ret;
3426 }
3427 }
3428 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3429
3430 /*
3431 * backuproot only affect mount behavior, and if open_ctree succeeded,
3432 * no need to keep the flag
3433 */
3434 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3435
3436 return 0;
3437
3438 fail_qgroup:
3439 btrfs_free_qgroup_config(fs_info);
3440 fail_trans_kthread:
3441 kthread_stop(fs_info->transaction_kthread);
3442 btrfs_cleanup_transaction(fs_info);
3443 btrfs_free_fs_roots(fs_info);
3444 fail_cleaner:
3445 kthread_stop(fs_info->cleaner_kthread);
3446
3447 /*
3448 * make sure we're done with the btree inode before we stop our
3449 * kthreads
3450 */
3451 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3452
3453 fail_sysfs:
3454 btrfs_sysfs_remove_mounted(fs_info);
3455
3456 fail_fsdev_sysfs:
3457 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3458
3459 fail_block_groups:
3460 btrfs_put_block_group_cache(fs_info);
3461
3462 fail_tree_roots:
3463 if (fs_info->data_reloc_root)
3464 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3465 free_root_pointers(fs_info, true);
3466 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3467
3468 fail_sb_buffer:
3469 btrfs_stop_all_workers(fs_info);
3470 btrfs_free_block_groups(fs_info);
3471 fail_alloc:
3472 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3473
3474 iput(fs_info->btree_inode);
3475 fail:
3476 btrfs_close_devices(fs_info->fs_devices);
3477 return err;
3478 }
3479 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3480
btrfs_end_super_write(struct bio * bio)3481 static void btrfs_end_super_write(struct bio *bio)
3482 {
3483 struct btrfs_device *device = bio->bi_private;
3484 struct bio_vec *bvec;
3485 struct bvec_iter_all iter_all;
3486 struct page *page;
3487
3488 bio_for_each_segment_all(bvec, bio, iter_all) {
3489 page = bvec->bv_page;
3490
3491 if (bio->bi_status) {
3492 btrfs_warn_rl_in_rcu(device->fs_info,
3493 "lost page write due to IO error on %s (%d)",
3494 rcu_str_deref(device->name),
3495 blk_status_to_errno(bio->bi_status));
3496 ClearPageUptodate(page);
3497 SetPageError(page);
3498 btrfs_dev_stat_inc_and_print(device,
3499 BTRFS_DEV_STAT_WRITE_ERRS);
3500 } else {
3501 SetPageUptodate(page);
3502 }
3503
3504 put_page(page);
3505 unlock_page(page);
3506 }
3507
3508 bio_put(bio);
3509 }
3510
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3511 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3512 int copy_num)
3513 {
3514 struct btrfs_super_block *super;
3515 struct page *page;
3516 u64 bytenr;
3517 struct address_space *mapping = bdev->bd_inode->i_mapping;
3518
3519 bytenr = btrfs_sb_offset(copy_num);
3520 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3521 return ERR_PTR(-EINVAL);
3522
3523 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3524 if (IS_ERR(page))
3525 return ERR_CAST(page);
3526
3527 super = page_address(page);
3528 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3529 btrfs_release_disk_super(super);
3530 return ERR_PTR(-ENODATA);
3531 }
3532
3533 if (btrfs_super_bytenr(super) != bytenr) {
3534 btrfs_release_disk_super(super);
3535 return ERR_PTR(-EINVAL);
3536 }
3537
3538 return super;
3539 }
3540
3541
btrfs_read_dev_super(struct block_device * bdev)3542 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3543 {
3544 struct btrfs_super_block *super, *latest = NULL;
3545 int i;
3546 u64 transid = 0;
3547
3548 /* we would like to check all the supers, but that would make
3549 * a btrfs mount succeed after a mkfs from a different FS.
3550 * So, we need to add a special mount option to scan for
3551 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3552 */
3553 for (i = 0; i < 1; i++) {
3554 super = btrfs_read_dev_one_super(bdev, i);
3555 if (IS_ERR(super))
3556 continue;
3557
3558 if (!latest || btrfs_super_generation(super) > transid) {
3559 if (latest)
3560 btrfs_release_disk_super(super);
3561
3562 latest = super;
3563 transid = btrfs_super_generation(super);
3564 }
3565 }
3566
3567 return super;
3568 }
3569
3570 /*
3571 * Write superblock @sb to the @device. Do not wait for completion, all the
3572 * pages we use for writing are locked.
3573 *
3574 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3575 * the expected device size at commit time. Note that max_mirrors must be
3576 * same for write and wait phases.
3577 *
3578 * Return number of errors when page is not found or submission fails.
3579 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3580 static int write_dev_supers(struct btrfs_device *device,
3581 struct btrfs_super_block *sb, int max_mirrors)
3582 {
3583 struct btrfs_fs_info *fs_info = device->fs_info;
3584 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3585 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3586 int i;
3587 int errors = 0;
3588 u64 bytenr;
3589
3590 if (max_mirrors == 0)
3591 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3592
3593 shash->tfm = fs_info->csum_shash;
3594
3595 for (i = 0; i < max_mirrors; i++) {
3596 struct page *page;
3597 struct bio *bio;
3598 struct btrfs_super_block *disk_super;
3599
3600 bytenr = btrfs_sb_offset(i);
3601 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3602 device->commit_total_bytes)
3603 break;
3604
3605 btrfs_set_super_bytenr(sb, bytenr);
3606
3607 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3608 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3609 sb->csum);
3610
3611 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3612 GFP_NOFS);
3613 if (!page) {
3614 btrfs_err(device->fs_info,
3615 "couldn't get super block page for bytenr %llu",
3616 bytenr);
3617 errors++;
3618 continue;
3619 }
3620
3621 /* Bump the refcount for wait_dev_supers() */
3622 get_page(page);
3623
3624 disk_super = page_address(page);
3625 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3626
3627 /*
3628 * Directly use bios here instead of relying on the page cache
3629 * to do I/O, so we don't lose the ability to do integrity
3630 * checking.
3631 */
3632 bio = bio_alloc(GFP_NOFS, 1);
3633 bio_set_dev(bio, device->bdev);
3634 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3635 bio->bi_private = device;
3636 bio->bi_end_io = btrfs_end_super_write;
3637 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3638 offset_in_page(bytenr));
3639
3640 /*
3641 * We FUA only the first super block. The others we allow to
3642 * go down lazy and there's a short window where the on-disk
3643 * copies might still contain the older version.
3644 */
3645 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3646 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3647 bio->bi_opf |= REQ_FUA;
3648
3649 btrfsic_submit_bio(bio);
3650 }
3651 return errors < i ? 0 : -1;
3652 }
3653
3654 /*
3655 * Wait for write completion of superblocks done by write_dev_supers,
3656 * @max_mirrors same for write and wait phases.
3657 *
3658 * Return number of errors when page is not found or not marked up to
3659 * date.
3660 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3661 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3662 {
3663 int i;
3664 int errors = 0;
3665 bool primary_failed = false;
3666 u64 bytenr;
3667
3668 if (max_mirrors == 0)
3669 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3670
3671 for (i = 0; i < max_mirrors; i++) {
3672 struct page *page;
3673
3674 bytenr = btrfs_sb_offset(i);
3675 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3676 device->commit_total_bytes)
3677 break;
3678
3679 page = find_get_page(device->bdev->bd_inode->i_mapping,
3680 bytenr >> PAGE_SHIFT);
3681 if (!page) {
3682 errors++;
3683 if (i == 0)
3684 primary_failed = true;
3685 continue;
3686 }
3687 /* Page is submitted locked and unlocked once the IO completes */
3688 wait_on_page_locked(page);
3689 if (PageError(page)) {
3690 errors++;
3691 if (i == 0)
3692 primary_failed = true;
3693 }
3694
3695 /* Drop our reference */
3696 put_page(page);
3697
3698 /* Drop the reference from the writing run */
3699 put_page(page);
3700 }
3701
3702 /* log error, force error return */
3703 if (primary_failed) {
3704 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3705 device->devid);
3706 return -1;
3707 }
3708
3709 return errors < i ? 0 : -1;
3710 }
3711
3712 /*
3713 * endio for the write_dev_flush, this will wake anyone waiting
3714 * for the barrier when it is done
3715 */
btrfs_end_empty_barrier(struct bio * bio)3716 static void btrfs_end_empty_barrier(struct bio *bio)
3717 {
3718 complete(bio->bi_private);
3719 }
3720
3721 /*
3722 * Submit a flush request to the device if it supports it. Error handling is
3723 * done in the waiting counterpart.
3724 */
write_dev_flush(struct btrfs_device * device)3725 static void write_dev_flush(struct btrfs_device *device)
3726 {
3727 struct bio *bio = device->flush_bio;
3728
3729 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3730 /*
3731 * When a disk has write caching disabled, we skip submission of a bio
3732 * with flush and sync requests before writing the superblock, since
3733 * it's not needed. However when the integrity checker is enabled, this
3734 * results in reports that there are metadata blocks referred by a
3735 * superblock that were not properly flushed. So don't skip the bio
3736 * submission only when the integrity checker is enabled for the sake
3737 * of simplicity, since this is a debug tool and not meant for use in
3738 * non-debug builds.
3739 */
3740 struct request_queue *q = bdev_get_queue(device->bdev);
3741 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3742 return;
3743 #endif
3744
3745 bio_reset(bio);
3746 bio->bi_end_io = btrfs_end_empty_barrier;
3747 bio_set_dev(bio, device->bdev);
3748 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3749 init_completion(&device->flush_wait);
3750 bio->bi_private = &device->flush_wait;
3751
3752 btrfsic_submit_bio(bio);
3753 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3754 }
3755
3756 /*
3757 * If the flush bio has been submitted by write_dev_flush, wait for it.
3758 */
wait_dev_flush(struct btrfs_device * device)3759 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3760 {
3761 struct bio *bio = device->flush_bio;
3762
3763 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3764 return BLK_STS_OK;
3765
3766 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3767 wait_for_completion_io(&device->flush_wait);
3768
3769 return bio->bi_status;
3770 }
3771
check_barrier_error(struct btrfs_fs_info * fs_info)3772 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3773 {
3774 if (!btrfs_check_rw_degradable(fs_info, NULL))
3775 return -EIO;
3776 return 0;
3777 }
3778
3779 /*
3780 * send an empty flush down to each device in parallel,
3781 * then wait for them
3782 */
barrier_all_devices(struct btrfs_fs_info * info)3783 static int barrier_all_devices(struct btrfs_fs_info *info)
3784 {
3785 struct list_head *head;
3786 struct btrfs_device *dev;
3787 int errors_wait = 0;
3788 blk_status_t ret;
3789
3790 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3791 /* send down all the barriers */
3792 head = &info->fs_devices->devices;
3793 list_for_each_entry(dev, head, dev_list) {
3794 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3795 continue;
3796 if (!dev->bdev)
3797 continue;
3798 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3799 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3800 continue;
3801
3802 write_dev_flush(dev);
3803 dev->last_flush_error = BLK_STS_OK;
3804 }
3805
3806 /* wait for all the barriers */
3807 list_for_each_entry(dev, head, dev_list) {
3808 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3809 continue;
3810 if (!dev->bdev) {
3811 errors_wait++;
3812 continue;
3813 }
3814 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3815 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3816 continue;
3817
3818 ret = wait_dev_flush(dev);
3819 if (ret) {
3820 dev->last_flush_error = ret;
3821 btrfs_dev_stat_inc_and_print(dev,
3822 BTRFS_DEV_STAT_FLUSH_ERRS);
3823 errors_wait++;
3824 }
3825 }
3826
3827 if (errors_wait) {
3828 /*
3829 * At some point we need the status of all disks
3830 * to arrive at the volume status. So error checking
3831 * is being pushed to a separate loop.
3832 */
3833 return check_barrier_error(info);
3834 }
3835 return 0;
3836 }
3837
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3838 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3839 {
3840 int raid_type;
3841 int min_tolerated = INT_MAX;
3842
3843 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3844 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3845 min_tolerated = min_t(int, min_tolerated,
3846 btrfs_raid_array[BTRFS_RAID_SINGLE].
3847 tolerated_failures);
3848
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (raid_type == BTRFS_RAID_SINGLE)
3851 continue;
3852 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3853 continue;
3854 min_tolerated = min_t(int, min_tolerated,
3855 btrfs_raid_array[raid_type].
3856 tolerated_failures);
3857 }
3858
3859 if (min_tolerated == INT_MAX) {
3860 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3861 min_tolerated = 0;
3862 }
3863
3864 return min_tolerated;
3865 }
3866
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3867 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3868 {
3869 struct list_head *head;
3870 struct btrfs_device *dev;
3871 struct btrfs_super_block *sb;
3872 struct btrfs_dev_item *dev_item;
3873 int ret;
3874 int do_barriers;
3875 int max_errors;
3876 int total_errors = 0;
3877 u64 flags;
3878
3879 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3880
3881 /*
3882 * max_mirrors == 0 indicates we're from commit_transaction,
3883 * not from fsync where the tree roots in fs_info have not
3884 * been consistent on disk.
3885 */
3886 if (max_mirrors == 0)
3887 backup_super_roots(fs_info);
3888
3889 sb = fs_info->super_for_commit;
3890 dev_item = &sb->dev_item;
3891
3892 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3893 head = &fs_info->fs_devices->devices;
3894 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3895
3896 if (do_barriers) {
3897 ret = barrier_all_devices(fs_info);
3898 if (ret) {
3899 mutex_unlock(
3900 &fs_info->fs_devices->device_list_mutex);
3901 btrfs_handle_fs_error(fs_info, ret,
3902 "errors while submitting device barriers.");
3903 return ret;
3904 }
3905 }
3906
3907 list_for_each_entry(dev, head, dev_list) {
3908 if (!dev->bdev) {
3909 total_errors++;
3910 continue;
3911 }
3912 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3913 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3914 continue;
3915
3916 btrfs_set_stack_device_generation(dev_item, 0);
3917 btrfs_set_stack_device_type(dev_item, dev->type);
3918 btrfs_set_stack_device_id(dev_item, dev->devid);
3919 btrfs_set_stack_device_total_bytes(dev_item,
3920 dev->commit_total_bytes);
3921 btrfs_set_stack_device_bytes_used(dev_item,
3922 dev->commit_bytes_used);
3923 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3924 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3925 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3926 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3927 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3928 BTRFS_FSID_SIZE);
3929
3930 flags = btrfs_super_flags(sb);
3931 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3932
3933 ret = btrfs_validate_write_super(fs_info, sb);
3934 if (ret < 0) {
3935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3936 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3937 "unexpected superblock corruption detected");
3938 return -EUCLEAN;
3939 }
3940
3941 ret = write_dev_supers(dev, sb, max_mirrors);
3942 if (ret)
3943 total_errors++;
3944 }
3945 if (total_errors > max_errors) {
3946 btrfs_err(fs_info, "%d errors while writing supers",
3947 total_errors);
3948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3949
3950 /* FUA is masked off if unsupported and can't be the reason */
3951 btrfs_handle_fs_error(fs_info, -EIO,
3952 "%d errors while writing supers",
3953 total_errors);
3954 return -EIO;
3955 }
3956
3957 total_errors = 0;
3958 list_for_each_entry(dev, head, dev_list) {
3959 if (!dev->bdev)
3960 continue;
3961 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3962 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3963 continue;
3964
3965 ret = wait_dev_supers(dev, max_mirrors);
3966 if (ret)
3967 total_errors++;
3968 }
3969 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3970 if (total_errors > max_errors) {
3971 btrfs_handle_fs_error(fs_info, -EIO,
3972 "%d errors while writing supers",
3973 total_errors);
3974 return -EIO;
3975 }
3976 return 0;
3977 }
3978
3979 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3980 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3981 struct btrfs_root *root)
3982 {
3983 bool drop_ref = false;
3984
3985 spin_lock(&fs_info->fs_roots_radix_lock);
3986 radix_tree_delete(&fs_info->fs_roots_radix,
3987 (unsigned long)root->root_key.objectid);
3988 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3989 drop_ref = true;
3990 spin_unlock(&fs_info->fs_roots_radix_lock);
3991
3992 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3993 ASSERT(root->log_root == NULL);
3994 if (root->reloc_root) {
3995 btrfs_put_root(root->reloc_root);
3996 root->reloc_root = NULL;
3997 }
3998 }
3999
4000 if (root->free_ino_pinned)
4001 __btrfs_remove_free_space_cache(root->free_ino_pinned);
4002 if (root->free_ino_ctl)
4003 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4004 if (root->ino_cache_inode) {
4005 iput(root->ino_cache_inode);
4006 root->ino_cache_inode = NULL;
4007 }
4008 if (drop_ref)
4009 btrfs_put_root(root);
4010 }
4011
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4012 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4013 {
4014 u64 root_objectid = 0;
4015 struct btrfs_root *gang[8];
4016 int i = 0;
4017 int err = 0;
4018 unsigned int ret = 0;
4019
4020 while (1) {
4021 spin_lock(&fs_info->fs_roots_radix_lock);
4022 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4023 (void **)gang, root_objectid,
4024 ARRAY_SIZE(gang));
4025 if (!ret) {
4026 spin_unlock(&fs_info->fs_roots_radix_lock);
4027 break;
4028 }
4029 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4030
4031 for (i = 0; i < ret; i++) {
4032 /* Avoid to grab roots in dead_roots */
4033 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4034 gang[i] = NULL;
4035 continue;
4036 }
4037 /* grab all the search result for later use */
4038 gang[i] = btrfs_grab_root(gang[i]);
4039 }
4040 spin_unlock(&fs_info->fs_roots_radix_lock);
4041
4042 for (i = 0; i < ret; i++) {
4043 if (!gang[i])
4044 continue;
4045 root_objectid = gang[i]->root_key.objectid;
4046 err = btrfs_orphan_cleanup(gang[i]);
4047 if (err)
4048 break;
4049 btrfs_put_root(gang[i]);
4050 }
4051 root_objectid++;
4052 }
4053
4054 /* release the uncleaned roots due to error */
4055 for (; i < ret; i++) {
4056 if (gang[i])
4057 btrfs_put_root(gang[i]);
4058 }
4059 return err;
4060 }
4061
btrfs_commit_super(struct btrfs_fs_info * fs_info)4062 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4063 {
4064 struct btrfs_root *root = fs_info->tree_root;
4065 struct btrfs_trans_handle *trans;
4066
4067 mutex_lock(&fs_info->cleaner_mutex);
4068 btrfs_run_delayed_iputs(fs_info);
4069 mutex_unlock(&fs_info->cleaner_mutex);
4070 wake_up_process(fs_info->cleaner_kthread);
4071
4072 /* wait until ongoing cleanup work done */
4073 down_write(&fs_info->cleanup_work_sem);
4074 up_write(&fs_info->cleanup_work_sem);
4075
4076 trans = btrfs_join_transaction(root);
4077 if (IS_ERR(trans))
4078 return PTR_ERR(trans);
4079 return btrfs_commit_transaction(trans);
4080 }
4081
close_ctree(struct btrfs_fs_info * fs_info)4082 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4083 {
4084 int ret;
4085
4086 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4087 /*
4088 * We don't want the cleaner to start new transactions, add more delayed
4089 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4090 * because that frees the task_struct, and the transaction kthread might
4091 * still try to wake up the cleaner.
4092 */
4093 kthread_park(fs_info->cleaner_kthread);
4094
4095 /* wait for the qgroup rescan worker to stop */
4096 btrfs_qgroup_wait_for_completion(fs_info, false);
4097
4098 /* wait for the uuid_scan task to finish */
4099 down(&fs_info->uuid_tree_rescan_sem);
4100 /* avoid complains from lockdep et al., set sem back to initial state */
4101 up(&fs_info->uuid_tree_rescan_sem);
4102
4103 /* pause restriper - we want to resume on mount */
4104 btrfs_pause_balance(fs_info);
4105
4106 btrfs_dev_replace_suspend_for_unmount(fs_info);
4107
4108 btrfs_scrub_cancel(fs_info);
4109
4110 /* wait for any defraggers to finish */
4111 wait_event(fs_info->transaction_wait,
4112 (atomic_read(&fs_info->defrag_running) == 0));
4113
4114 /* clear out the rbtree of defraggable inodes */
4115 btrfs_cleanup_defrag_inodes(fs_info);
4116
4117 /*
4118 * After we parked the cleaner kthread, ordered extents may have
4119 * completed and created new delayed iputs. If one of the async reclaim
4120 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4121 * can hang forever trying to stop it, because if a delayed iput is
4122 * added after it ran btrfs_run_delayed_iputs() and before it called
4123 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4124 * no one else to run iputs.
4125 *
4126 * So wait for all ongoing ordered extents to complete and then run
4127 * delayed iputs. This works because once we reach this point no one
4128 * can either create new ordered extents nor create delayed iputs
4129 * through some other means.
4130 *
4131 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4132 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4133 * but the delayed iput for the respective inode is made only when doing
4134 * the final btrfs_put_ordered_extent() (which must happen at
4135 * btrfs_finish_ordered_io() when we are unmounting).
4136 */
4137 btrfs_flush_workqueue(fs_info->endio_write_workers);
4138 /* Ordered extents for free space inodes. */
4139 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4140 btrfs_run_delayed_iputs(fs_info);
4141
4142 cancel_work_sync(&fs_info->async_reclaim_work);
4143 cancel_work_sync(&fs_info->async_data_reclaim_work);
4144
4145 /* Cancel or finish ongoing discard work */
4146 btrfs_discard_cleanup(fs_info);
4147
4148 if (!sb_rdonly(fs_info->sb)) {
4149 /*
4150 * The cleaner kthread is stopped, so do one final pass over
4151 * unused block groups.
4152 */
4153 btrfs_delete_unused_bgs(fs_info);
4154
4155 /*
4156 * There might be existing delayed inode workers still running
4157 * and holding an empty delayed inode item. We must wait for
4158 * them to complete first because they can create a transaction.
4159 * This happens when someone calls btrfs_balance_delayed_items()
4160 * and then a transaction commit runs the same delayed nodes
4161 * before any delayed worker has done something with the nodes.
4162 * We must wait for any worker here and not at transaction
4163 * commit time since that could cause a deadlock.
4164 * This is a very rare case.
4165 */
4166 btrfs_flush_workqueue(fs_info->delayed_workers);
4167
4168 ret = btrfs_commit_super(fs_info);
4169 if (ret)
4170 btrfs_err(fs_info, "commit super ret %d", ret);
4171 }
4172
4173 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4174 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4175 btrfs_error_commit_super(fs_info);
4176
4177 kthread_stop(fs_info->transaction_kthread);
4178 kthread_stop(fs_info->cleaner_kthread);
4179
4180 ASSERT(list_empty(&fs_info->delayed_iputs));
4181 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4182
4183 if (btrfs_check_quota_leak(fs_info)) {
4184 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4185 btrfs_err(fs_info, "qgroup reserved space leaked");
4186 }
4187
4188 btrfs_free_qgroup_config(fs_info);
4189 ASSERT(list_empty(&fs_info->delalloc_roots));
4190
4191 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4192 btrfs_info(fs_info, "at unmount delalloc count %lld",
4193 percpu_counter_sum(&fs_info->delalloc_bytes));
4194 }
4195
4196 if (percpu_counter_sum(&fs_info->dio_bytes))
4197 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4198 percpu_counter_sum(&fs_info->dio_bytes));
4199
4200 btrfs_sysfs_remove_mounted(fs_info);
4201 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4202
4203 btrfs_put_block_group_cache(fs_info);
4204
4205 /*
4206 * we must make sure there is not any read request to
4207 * submit after we stopping all workers.
4208 */
4209 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4210 btrfs_stop_all_workers(fs_info);
4211
4212 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4213 free_root_pointers(fs_info, true);
4214 btrfs_free_fs_roots(fs_info);
4215
4216 /*
4217 * We must free the block groups after dropping the fs_roots as we could
4218 * have had an IO error and have left over tree log blocks that aren't
4219 * cleaned up until the fs roots are freed. This makes the block group
4220 * accounting appear to be wrong because there's pending reserved bytes,
4221 * so make sure we do the block group cleanup afterwards.
4222 */
4223 btrfs_free_block_groups(fs_info);
4224
4225 iput(fs_info->btree_inode);
4226
4227 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4228 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4229 btrfsic_unmount(fs_info->fs_devices);
4230 #endif
4231
4232 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4233 btrfs_close_devices(fs_info->fs_devices);
4234 }
4235
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4236 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4237 int atomic)
4238 {
4239 int ret;
4240 struct inode *btree_inode = buf->pages[0]->mapping->host;
4241
4242 ret = extent_buffer_uptodate(buf);
4243 if (!ret)
4244 return ret;
4245
4246 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4247 parent_transid, atomic);
4248 if (ret == -EAGAIN)
4249 return ret;
4250 return !ret;
4251 }
4252
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4253 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4254 {
4255 struct btrfs_fs_info *fs_info;
4256 struct btrfs_root *root;
4257 u64 transid = btrfs_header_generation(buf);
4258 int was_dirty;
4259
4260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4261 /*
4262 * This is a fast path so only do this check if we have sanity tests
4263 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4264 * outside of the sanity tests.
4265 */
4266 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4267 return;
4268 #endif
4269 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4270 fs_info = root->fs_info;
4271 btrfs_assert_tree_locked(buf);
4272 if (transid != fs_info->generation)
4273 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4274 buf->start, transid, fs_info->generation);
4275 was_dirty = set_extent_buffer_dirty(buf);
4276 if (!was_dirty)
4277 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4278 buf->len,
4279 fs_info->dirty_metadata_batch);
4280 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4281 /*
4282 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4283 * but item data not updated.
4284 * So here we should only check item pointers, not item data.
4285 */
4286 if (btrfs_header_level(buf) == 0 &&
4287 btrfs_check_leaf_relaxed(buf)) {
4288 btrfs_print_leaf(buf);
4289 ASSERT(0);
4290 }
4291 #endif
4292 }
4293
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4294 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4295 int flush_delayed)
4296 {
4297 /*
4298 * looks as though older kernels can get into trouble with
4299 * this code, they end up stuck in balance_dirty_pages forever
4300 */
4301 int ret;
4302
4303 if (current->flags & PF_MEMALLOC)
4304 return;
4305
4306 if (flush_delayed)
4307 btrfs_balance_delayed_items(fs_info);
4308
4309 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4310 BTRFS_DIRTY_METADATA_THRESH,
4311 fs_info->dirty_metadata_batch);
4312 if (ret > 0) {
4313 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4314 }
4315 }
4316
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4317 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4318 {
4319 __btrfs_btree_balance_dirty(fs_info, 1);
4320 }
4321
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4322 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4323 {
4324 __btrfs_btree_balance_dirty(fs_info, 0);
4325 }
4326
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4327 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4328 struct btrfs_key *first_key)
4329 {
4330 return btree_read_extent_buffer_pages(buf, parent_transid,
4331 level, first_key);
4332 }
4333
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4334 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4335 {
4336 /* cleanup FS via transaction */
4337 btrfs_cleanup_transaction(fs_info);
4338
4339 mutex_lock(&fs_info->cleaner_mutex);
4340 btrfs_run_delayed_iputs(fs_info);
4341 mutex_unlock(&fs_info->cleaner_mutex);
4342
4343 down_write(&fs_info->cleanup_work_sem);
4344 up_write(&fs_info->cleanup_work_sem);
4345 }
4346
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4347 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4348 {
4349 struct btrfs_root *gang[8];
4350 u64 root_objectid = 0;
4351 int ret;
4352
4353 spin_lock(&fs_info->fs_roots_radix_lock);
4354 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4355 (void **)gang, root_objectid,
4356 ARRAY_SIZE(gang))) != 0) {
4357 int i;
4358
4359 for (i = 0; i < ret; i++)
4360 gang[i] = btrfs_grab_root(gang[i]);
4361 spin_unlock(&fs_info->fs_roots_radix_lock);
4362
4363 for (i = 0; i < ret; i++) {
4364 if (!gang[i])
4365 continue;
4366 root_objectid = gang[i]->root_key.objectid;
4367 btrfs_free_log(NULL, gang[i]);
4368 btrfs_put_root(gang[i]);
4369 }
4370 root_objectid++;
4371 spin_lock(&fs_info->fs_roots_radix_lock);
4372 }
4373 spin_unlock(&fs_info->fs_roots_radix_lock);
4374 btrfs_free_log_root_tree(NULL, fs_info);
4375 }
4376
btrfs_destroy_ordered_extents(struct btrfs_root * root)4377 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4378 {
4379 struct btrfs_ordered_extent *ordered;
4380
4381 spin_lock(&root->ordered_extent_lock);
4382 /*
4383 * This will just short circuit the ordered completion stuff which will
4384 * make sure the ordered extent gets properly cleaned up.
4385 */
4386 list_for_each_entry(ordered, &root->ordered_extents,
4387 root_extent_list)
4388 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4389 spin_unlock(&root->ordered_extent_lock);
4390 }
4391
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4392 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4393 {
4394 struct btrfs_root *root;
4395 struct list_head splice;
4396
4397 INIT_LIST_HEAD(&splice);
4398
4399 spin_lock(&fs_info->ordered_root_lock);
4400 list_splice_init(&fs_info->ordered_roots, &splice);
4401 while (!list_empty(&splice)) {
4402 root = list_first_entry(&splice, struct btrfs_root,
4403 ordered_root);
4404 list_move_tail(&root->ordered_root,
4405 &fs_info->ordered_roots);
4406
4407 spin_unlock(&fs_info->ordered_root_lock);
4408 btrfs_destroy_ordered_extents(root);
4409
4410 cond_resched();
4411 spin_lock(&fs_info->ordered_root_lock);
4412 }
4413 spin_unlock(&fs_info->ordered_root_lock);
4414
4415 /*
4416 * We need this here because if we've been flipped read-only we won't
4417 * get sync() from the umount, so we need to make sure any ordered
4418 * extents that haven't had their dirty pages IO start writeout yet
4419 * actually get run and error out properly.
4420 */
4421 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4422 }
4423
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4424 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4425 struct btrfs_fs_info *fs_info)
4426 {
4427 struct rb_node *node;
4428 struct btrfs_delayed_ref_root *delayed_refs;
4429 struct btrfs_delayed_ref_node *ref;
4430 int ret = 0;
4431
4432 delayed_refs = &trans->delayed_refs;
4433
4434 spin_lock(&delayed_refs->lock);
4435 if (atomic_read(&delayed_refs->num_entries) == 0) {
4436 spin_unlock(&delayed_refs->lock);
4437 btrfs_debug(fs_info, "delayed_refs has NO entry");
4438 return ret;
4439 }
4440
4441 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4442 struct btrfs_delayed_ref_head *head;
4443 struct rb_node *n;
4444 bool pin_bytes = false;
4445
4446 head = rb_entry(node, struct btrfs_delayed_ref_head,
4447 href_node);
4448 if (btrfs_delayed_ref_lock(delayed_refs, head))
4449 continue;
4450
4451 spin_lock(&head->lock);
4452 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4453 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4454 ref_node);
4455 ref->in_tree = 0;
4456 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4457 RB_CLEAR_NODE(&ref->ref_node);
4458 if (!list_empty(&ref->add_list))
4459 list_del(&ref->add_list);
4460 atomic_dec(&delayed_refs->num_entries);
4461 btrfs_put_delayed_ref(ref);
4462 }
4463 if (head->must_insert_reserved)
4464 pin_bytes = true;
4465 btrfs_free_delayed_extent_op(head->extent_op);
4466 btrfs_delete_ref_head(delayed_refs, head);
4467 spin_unlock(&head->lock);
4468 spin_unlock(&delayed_refs->lock);
4469 mutex_unlock(&head->mutex);
4470
4471 if (pin_bytes) {
4472 struct btrfs_block_group *cache;
4473
4474 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4475 BUG_ON(!cache);
4476
4477 spin_lock(&cache->space_info->lock);
4478 spin_lock(&cache->lock);
4479 cache->pinned += head->num_bytes;
4480 btrfs_space_info_update_bytes_pinned(fs_info,
4481 cache->space_info, head->num_bytes);
4482 cache->reserved -= head->num_bytes;
4483 cache->space_info->bytes_reserved -= head->num_bytes;
4484 spin_unlock(&cache->lock);
4485 spin_unlock(&cache->space_info->lock);
4486 percpu_counter_add_batch(
4487 &cache->space_info->total_bytes_pinned,
4488 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4489
4490 btrfs_put_block_group(cache);
4491
4492 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4493 head->bytenr + head->num_bytes - 1);
4494 }
4495 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4496 btrfs_put_delayed_ref_head(head);
4497 cond_resched();
4498 spin_lock(&delayed_refs->lock);
4499 }
4500 btrfs_qgroup_destroy_extent_records(trans);
4501
4502 spin_unlock(&delayed_refs->lock);
4503
4504 return ret;
4505 }
4506
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4507 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4508 {
4509 struct btrfs_inode *btrfs_inode;
4510 struct list_head splice;
4511
4512 INIT_LIST_HEAD(&splice);
4513
4514 spin_lock(&root->delalloc_lock);
4515 list_splice_init(&root->delalloc_inodes, &splice);
4516
4517 while (!list_empty(&splice)) {
4518 struct inode *inode = NULL;
4519 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4520 delalloc_inodes);
4521 __btrfs_del_delalloc_inode(root, btrfs_inode);
4522 spin_unlock(&root->delalloc_lock);
4523
4524 /*
4525 * Make sure we get a live inode and that it'll not disappear
4526 * meanwhile.
4527 */
4528 inode = igrab(&btrfs_inode->vfs_inode);
4529 if (inode) {
4530 invalidate_inode_pages2(inode->i_mapping);
4531 iput(inode);
4532 }
4533 spin_lock(&root->delalloc_lock);
4534 }
4535 spin_unlock(&root->delalloc_lock);
4536 }
4537
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4538 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4539 {
4540 struct btrfs_root *root;
4541 struct list_head splice;
4542
4543 INIT_LIST_HEAD(&splice);
4544
4545 spin_lock(&fs_info->delalloc_root_lock);
4546 list_splice_init(&fs_info->delalloc_roots, &splice);
4547 while (!list_empty(&splice)) {
4548 root = list_first_entry(&splice, struct btrfs_root,
4549 delalloc_root);
4550 root = btrfs_grab_root(root);
4551 BUG_ON(!root);
4552 spin_unlock(&fs_info->delalloc_root_lock);
4553
4554 btrfs_destroy_delalloc_inodes(root);
4555 btrfs_put_root(root);
4556
4557 spin_lock(&fs_info->delalloc_root_lock);
4558 }
4559 spin_unlock(&fs_info->delalloc_root_lock);
4560 }
4561
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4562 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4563 struct extent_io_tree *dirty_pages,
4564 int mark)
4565 {
4566 int ret;
4567 struct extent_buffer *eb;
4568 u64 start = 0;
4569 u64 end;
4570
4571 while (1) {
4572 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4573 mark, NULL);
4574 if (ret)
4575 break;
4576
4577 clear_extent_bits(dirty_pages, start, end, mark);
4578 while (start <= end) {
4579 eb = find_extent_buffer(fs_info, start);
4580 start += fs_info->nodesize;
4581 if (!eb)
4582 continue;
4583 wait_on_extent_buffer_writeback(eb);
4584
4585 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4586 &eb->bflags))
4587 clear_extent_buffer_dirty(eb);
4588 free_extent_buffer_stale(eb);
4589 }
4590 }
4591
4592 return ret;
4593 }
4594
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4595 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4596 struct extent_io_tree *unpin)
4597 {
4598 u64 start;
4599 u64 end;
4600 int ret;
4601
4602 while (1) {
4603 struct extent_state *cached_state = NULL;
4604
4605 /*
4606 * The btrfs_finish_extent_commit() may get the same range as
4607 * ours between find_first_extent_bit and clear_extent_dirty.
4608 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4609 * the same extent range.
4610 */
4611 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4612 ret = find_first_extent_bit(unpin, 0, &start, &end,
4613 EXTENT_DIRTY, &cached_state);
4614 if (ret) {
4615 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4616 break;
4617 }
4618
4619 clear_extent_dirty(unpin, start, end, &cached_state);
4620 free_extent_state(cached_state);
4621 btrfs_error_unpin_extent_range(fs_info, start, end);
4622 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4623 cond_resched();
4624 }
4625
4626 return 0;
4627 }
4628
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4629 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4630 {
4631 struct inode *inode;
4632
4633 inode = cache->io_ctl.inode;
4634 if (inode) {
4635 invalidate_inode_pages2(inode->i_mapping);
4636 BTRFS_I(inode)->generation = 0;
4637 cache->io_ctl.inode = NULL;
4638 iput(inode);
4639 }
4640 ASSERT(cache->io_ctl.pages == NULL);
4641 btrfs_put_block_group(cache);
4642 }
4643
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4644 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4645 struct btrfs_fs_info *fs_info)
4646 {
4647 struct btrfs_block_group *cache;
4648
4649 spin_lock(&cur_trans->dirty_bgs_lock);
4650 while (!list_empty(&cur_trans->dirty_bgs)) {
4651 cache = list_first_entry(&cur_trans->dirty_bgs,
4652 struct btrfs_block_group,
4653 dirty_list);
4654
4655 if (!list_empty(&cache->io_list)) {
4656 spin_unlock(&cur_trans->dirty_bgs_lock);
4657 list_del_init(&cache->io_list);
4658 btrfs_cleanup_bg_io(cache);
4659 spin_lock(&cur_trans->dirty_bgs_lock);
4660 }
4661
4662 list_del_init(&cache->dirty_list);
4663 spin_lock(&cache->lock);
4664 cache->disk_cache_state = BTRFS_DC_ERROR;
4665 spin_unlock(&cache->lock);
4666
4667 spin_unlock(&cur_trans->dirty_bgs_lock);
4668 btrfs_put_block_group(cache);
4669 btrfs_delayed_refs_rsv_release(fs_info, 1);
4670 spin_lock(&cur_trans->dirty_bgs_lock);
4671 }
4672 spin_unlock(&cur_trans->dirty_bgs_lock);
4673
4674 /*
4675 * Refer to the definition of io_bgs member for details why it's safe
4676 * to use it without any locking
4677 */
4678 while (!list_empty(&cur_trans->io_bgs)) {
4679 cache = list_first_entry(&cur_trans->io_bgs,
4680 struct btrfs_block_group,
4681 io_list);
4682
4683 list_del_init(&cache->io_list);
4684 spin_lock(&cache->lock);
4685 cache->disk_cache_state = BTRFS_DC_ERROR;
4686 spin_unlock(&cache->lock);
4687 btrfs_cleanup_bg_io(cache);
4688 }
4689 }
4690
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4691 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4692 struct btrfs_fs_info *fs_info)
4693 {
4694 struct btrfs_device *dev, *tmp;
4695
4696 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4697 ASSERT(list_empty(&cur_trans->dirty_bgs));
4698 ASSERT(list_empty(&cur_trans->io_bgs));
4699
4700 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4701 post_commit_list) {
4702 list_del_init(&dev->post_commit_list);
4703 }
4704
4705 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4706
4707 cur_trans->state = TRANS_STATE_COMMIT_START;
4708 wake_up(&fs_info->transaction_blocked_wait);
4709
4710 cur_trans->state = TRANS_STATE_UNBLOCKED;
4711 wake_up(&fs_info->transaction_wait);
4712
4713 btrfs_destroy_delayed_inodes(fs_info);
4714
4715 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4716 EXTENT_DIRTY);
4717 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4718
4719 cur_trans->state =TRANS_STATE_COMPLETED;
4720 wake_up(&cur_trans->commit_wait);
4721 }
4722
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4723 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4724 {
4725 struct btrfs_transaction *t;
4726
4727 mutex_lock(&fs_info->transaction_kthread_mutex);
4728
4729 spin_lock(&fs_info->trans_lock);
4730 while (!list_empty(&fs_info->trans_list)) {
4731 t = list_first_entry(&fs_info->trans_list,
4732 struct btrfs_transaction, list);
4733 if (t->state >= TRANS_STATE_COMMIT_START) {
4734 refcount_inc(&t->use_count);
4735 spin_unlock(&fs_info->trans_lock);
4736 btrfs_wait_for_commit(fs_info, t->transid);
4737 btrfs_put_transaction(t);
4738 spin_lock(&fs_info->trans_lock);
4739 continue;
4740 }
4741 if (t == fs_info->running_transaction) {
4742 t->state = TRANS_STATE_COMMIT_DOING;
4743 spin_unlock(&fs_info->trans_lock);
4744 /*
4745 * We wait for 0 num_writers since we don't hold a trans
4746 * handle open currently for this transaction.
4747 */
4748 wait_event(t->writer_wait,
4749 atomic_read(&t->num_writers) == 0);
4750 } else {
4751 spin_unlock(&fs_info->trans_lock);
4752 }
4753 btrfs_cleanup_one_transaction(t, fs_info);
4754
4755 spin_lock(&fs_info->trans_lock);
4756 if (t == fs_info->running_transaction)
4757 fs_info->running_transaction = NULL;
4758 list_del_init(&t->list);
4759 spin_unlock(&fs_info->trans_lock);
4760
4761 btrfs_put_transaction(t);
4762 trace_btrfs_transaction_commit(fs_info->tree_root);
4763 spin_lock(&fs_info->trans_lock);
4764 }
4765 spin_unlock(&fs_info->trans_lock);
4766 btrfs_destroy_all_ordered_extents(fs_info);
4767 btrfs_destroy_delayed_inodes(fs_info);
4768 btrfs_assert_delayed_root_empty(fs_info);
4769 btrfs_destroy_all_delalloc_inodes(fs_info);
4770 btrfs_drop_all_logs(fs_info);
4771 mutex_unlock(&fs_info->transaction_kthread_mutex);
4772
4773 return 0;
4774 }
4775