• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /*
168  * Check if @flags are a supported and valid set of FS_*_FL flags and that
169  * the old and new flags are not conflicting
170  */
check_fsflags(unsigned int old_flags,unsigned int flags)171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	/* COMPR and NOCOMP on new/old are valid */
181 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 		return -EINVAL;
183 
184 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 		return -EINVAL;
186 
187 	/* NOCOW and compression options are mutually exclusive */
188 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 		return -EINVAL;
190 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
btrfs_ioctl_setflags(struct file * file,void __user * arg)196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 	struct inode *inode = file_inode(file);
199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 	struct btrfs_inode *binode = BTRFS_I(inode);
201 	struct btrfs_root *root = binode->root;
202 	struct btrfs_trans_handle *trans;
203 	unsigned int fsflags, old_fsflags;
204 	int ret;
205 	const char *comp = NULL;
206 	u32 binode_flags;
207 
208 	if (!inode_owner_or_capable(inode))
209 		return -EPERM;
210 
211 	if (btrfs_root_readonly(root))
212 		return -EROFS;
213 
214 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 		return -EFAULT;
216 
217 	ret = mnt_want_write_file(file);
218 	if (ret)
219 		return ret;
220 
221 	inode_lock(inode);
222 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224 
225 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 	if (ret)
227 		goto out_unlock;
228 
229 	ret = check_fsflags(old_fsflags, fsflags);
230 	if (ret)
231 		goto out_unlock;
232 
233 	binode_flags = binode->flags;
234 	if (fsflags & FS_SYNC_FL)
235 		binode_flags |= BTRFS_INODE_SYNC;
236 	else
237 		binode_flags &= ~BTRFS_INODE_SYNC;
238 	if (fsflags & FS_IMMUTABLE_FL)
239 		binode_flags |= BTRFS_INODE_IMMUTABLE;
240 	else
241 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 	if (fsflags & FS_APPEND_FL)
243 		binode_flags |= BTRFS_INODE_APPEND;
244 	else
245 		binode_flags &= ~BTRFS_INODE_APPEND;
246 	if (fsflags & FS_NODUMP_FL)
247 		binode_flags |= BTRFS_INODE_NODUMP;
248 	else
249 		binode_flags &= ~BTRFS_INODE_NODUMP;
250 	if (fsflags & FS_NOATIME_FL)
251 		binode_flags |= BTRFS_INODE_NOATIME;
252 	else
253 		binode_flags &= ~BTRFS_INODE_NOATIME;
254 	if (fsflags & FS_DIRSYNC_FL)
255 		binode_flags |= BTRFS_INODE_DIRSYNC;
256 	else
257 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 	if (fsflags & FS_NOCOW_FL) {
259 		if (S_ISREG(inode->i_mode)) {
260 			/*
261 			 * It's safe to turn csums off here, no extents exist.
262 			 * Otherwise we want the flag to reflect the real COW
263 			 * status of the file and will not set it.
264 			 */
265 			if (inode->i_size == 0)
266 				binode_flags |= BTRFS_INODE_NODATACOW |
267 						BTRFS_INODE_NODATASUM;
268 		} else {
269 			binode_flags |= BTRFS_INODE_NODATACOW;
270 		}
271 	} else {
272 		/*
273 		 * Revert back under same assumptions as above
274 		 */
275 		if (S_ISREG(inode->i_mode)) {
276 			if (inode->i_size == 0)
277 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 						  BTRFS_INODE_NODATASUM);
279 		} else {
280 			binode_flags &= ~BTRFS_INODE_NODATACOW;
281 		}
282 	}
283 
284 	/*
285 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 	 * flag may be changed automatically if compression code won't make
287 	 * things smaller.
288 	 */
289 	if (fsflags & FS_NOCOMP_FL) {
290 		binode_flags &= ~BTRFS_INODE_COMPRESS;
291 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 	} else if (fsflags & FS_COMPR_FL) {
293 
294 		if (IS_SWAPFILE(inode)) {
295 			ret = -ETXTBSY;
296 			goto out_unlock;
297 		}
298 
299 		binode_flags |= BTRFS_INODE_COMPRESS;
300 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301 
302 		comp = btrfs_compress_type2str(fs_info->compress_type);
303 		if (!comp || comp[0] == 0)
304 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 	} else {
306 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 	}
308 
309 	/*
310 	 * 1 for inode item
311 	 * 2 for properties
312 	 */
313 	trans = btrfs_start_transaction(root, 3);
314 	if (IS_ERR(trans)) {
315 		ret = PTR_ERR(trans);
316 		goto out_unlock;
317 	}
318 
319 	if (comp) {
320 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 				     strlen(comp), 0);
322 		if (ret) {
323 			btrfs_abort_transaction(trans, ret);
324 			goto out_end_trans;
325 		}
326 	} else {
327 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 				     0, 0);
329 		if (ret && ret != -ENODATA) {
330 			btrfs_abort_transaction(trans, ret);
331 			goto out_end_trans;
332 		}
333 	}
334 
335 	binode->flags = binode_flags;
336 	btrfs_sync_inode_flags_to_i_flags(inode);
337 	inode_inc_iversion(inode);
338 	inode->i_ctime = current_time(inode);
339 	ret = btrfs_update_inode(trans, root, inode);
340 
341  out_end_trans:
342 	btrfs_end_transaction(trans);
343  out_unlock:
344 	inode_unlock(inode);
345 	mnt_drop_write_file(file);
346 	return ret;
347 }
348 
349 /*
350  * Translate btrfs internal inode flags to xflags as expected by the
351  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352  * silently dropped.
353  */
btrfs_inode_flags_to_xflags(unsigned int flags)354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 	unsigned int xflags = 0;
357 
358 	if (flags & BTRFS_INODE_APPEND)
359 		xflags |= FS_XFLAG_APPEND;
360 	if (flags & BTRFS_INODE_IMMUTABLE)
361 		xflags |= FS_XFLAG_IMMUTABLE;
362 	if (flags & BTRFS_INODE_NOATIME)
363 		xflags |= FS_XFLAG_NOATIME;
364 	if (flags & BTRFS_INODE_NODUMP)
365 		xflags |= FS_XFLAG_NODUMP;
366 	if (flags & BTRFS_INODE_SYNC)
367 		xflags |= FS_XFLAG_SYNC;
368 
369 	return xflags;
370 }
371 
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)373 static int check_xflags(unsigned int flags)
374 {
375 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 		return -EOPNOTSUPP;
378 	return 0;
379 }
380 
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 			enum btrfs_exclusive_operation type)
383 {
384 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386 
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392 
393 /*
394  * Set the xflags from the internal inode flags. The remaining items of fsxattr
395  * are zeroed.
396  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 	struct fsxattr fa;
401 
402 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 	if (copy_to_user(arg, &fa, sizeof(fa)))
404 		return -EFAULT;
405 
406 	return 0;
407 }
408 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 	struct inode *inode = file_inode(file);
412 	struct btrfs_inode *binode = BTRFS_I(inode);
413 	struct btrfs_root *root = binode->root;
414 	struct btrfs_trans_handle *trans;
415 	struct fsxattr fa, old_fa;
416 	unsigned old_flags;
417 	unsigned old_i_flags;
418 	int ret = 0;
419 
420 	if (!inode_owner_or_capable(inode))
421 		return -EPERM;
422 
423 	if (btrfs_root_readonly(root))
424 		return -EROFS;
425 
426 	if (copy_from_user(&fa, arg, sizeof(fa)))
427 		return -EFAULT;
428 
429 	ret = check_xflags(fa.fsx_xflags);
430 	if (ret)
431 		return ret;
432 
433 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 		return -EOPNOTSUPP;
435 
436 	ret = mnt_want_write_file(file);
437 	if (ret)
438 		return ret;
439 
440 	inode_lock(inode);
441 
442 	old_flags = binode->flags;
443 	old_i_flags = inode->i_flags;
444 
445 	simple_fill_fsxattr(&old_fa,
446 			    btrfs_inode_flags_to_xflags(binode->flags));
447 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 	if (ret)
449 		goto out_unlock;
450 
451 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 		binode->flags |= BTRFS_INODE_SYNC;
453 	else
454 		binode->flags &= ~BTRFS_INODE_SYNC;
455 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 		binode->flags |= BTRFS_INODE_IMMUTABLE;
457 	else
458 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 		binode->flags |= BTRFS_INODE_APPEND;
461 	else
462 		binode->flags &= ~BTRFS_INODE_APPEND;
463 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 		binode->flags |= BTRFS_INODE_NODUMP;
465 	else
466 		binode->flags &= ~BTRFS_INODE_NODUMP;
467 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 		binode->flags |= BTRFS_INODE_NOATIME;
469 	else
470 		binode->flags &= ~BTRFS_INODE_NOATIME;
471 
472 	/* 1 item for the inode */
473 	trans = btrfs_start_transaction(root, 1);
474 	if (IS_ERR(trans)) {
475 		ret = PTR_ERR(trans);
476 		goto out_unlock;
477 	}
478 
479 	btrfs_sync_inode_flags_to_i_flags(inode);
480 	inode_inc_iversion(inode);
481 	inode->i_ctime = current_time(inode);
482 	ret = btrfs_update_inode(trans, root, inode);
483 
484 	btrfs_end_transaction(trans);
485 
486 out_unlock:
487 	if (ret) {
488 		binode->flags = old_flags;
489 		inode->i_flags = old_i_flags;
490 	}
491 
492 	inode_unlock(inode);
493 	mnt_drop_write_file(file);
494 
495 	return ret;
496 }
497 
btrfs_ioctl_getversion(struct file * file,int __user * arg)498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 	struct inode *inode = file_inode(file);
501 
502 	return put_user(inode->i_generation, arg);
503 }
504 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 					void __user *arg)
507 {
508 	struct btrfs_device *device;
509 	struct request_queue *q;
510 	struct fstrim_range range;
511 	u64 minlen = ULLONG_MAX;
512 	u64 num_devices = 0;
513 	int ret;
514 
515 	if (!capable(CAP_SYS_ADMIN))
516 		return -EPERM;
517 
518 	/*
519 	 * If the fs is mounted with nologreplay, which requires it to be
520 	 * mounted in RO mode as well, we can not allow discard on free space
521 	 * inside block groups, because log trees refer to extents that are not
522 	 * pinned in a block group's free space cache (pinning the extents is
523 	 * precisely the first phase of replaying a log tree).
524 	 */
525 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 		return -EROFS;
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 				dev_list) {
531 		if (!device->bdev)
532 			continue;
533 		q = bdev_get_queue(device->bdev);
534 		if (blk_queue_discard(q)) {
535 			num_devices++;
536 			minlen = min_t(u64, q->limits.discard_granularity,
537 				     minlen);
538 		}
539 	}
540 	rcu_read_unlock();
541 
542 	if (!num_devices)
543 		return -EOPNOTSUPP;
544 	if (copy_from_user(&range, arg, sizeof(range)))
545 		return -EFAULT;
546 
547 	/*
548 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
549 	 * block group is in the logical address space, which can be any
550 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
551 	 */
552 	if (range.len < fs_info->sb->s_blocksize)
553 		return -EINVAL;
554 
555 	range.minlen = max(range.minlen, minlen);
556 	ret = btrfs_trim_fs(fs_info, &range);
557 	if (ret < 0)
558 		return ret;
559 
560 	if (copy_to_user(arg, &range, sizeof(range)))
561 		return -EFAULT;
562 
563 	return 0;
564 }
565 
btrfs_is_empty_uuid(u8 * uuid)566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 	int i;
569 
570 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 		if (uuid[i])
572 			return 0;
573 	}
574 	return 1;
575 }
576 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)577 static noinline int create_subvol(struct inode *dir,
578 				  struct dentry *dentry,
579 				  const char *name, int namelen,
580 				  struct btrfs_qgroup_inherit *inherit)
581 {
582 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 	struct btrfs_trans_handle *trans;
584 	struct btrfs_key key;
585 	struct btrfs_root_item *root_item;
586 	struct btrfs_inode_item *inode_item;
587 	struct extent_buffer *leaf;
588 	struct btrfs_root *root = BTRFS_I(dir)->root;
589 	struct btrfs_root *new_root;
590 	struct btrfs_block_rsv block_rsv;
591 	struct timespec64 cur_time = current_time(dir);
592 	struct inode *inode;
593 	int ret;
594 	int err;
595 	dev_t anon_dev = 0;
596 	u64 objectid;
597 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 	u64 index = 0;
599 
600 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 	if (!root_item)
602 		return -ENOMEM;
603 
604 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 	if (ret)
606 		goto fail_free;
607 
608 	ret = get_anon_bdev(&anon_dev);
609 	if (ret < 0)
610 		goto fail_free;
611 
612 	/*
613 	 * Don't create subvolume whose level is not zero. Or qgroup will be
614 	 * screwed up since it assumes subvolume qgroup's level to be 0.
615 	 */
616 	if (btrfs_qgroup_level(objectid)) {
617 		ret = -ENOSPC;
618 		goto fail_free;
619 	}
620 
621 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 	/*
623 	 * The same as the snapshot creation, please see the comment
624 	 * of create_snapshot().
625 	 */
626 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 	if (ret)
628 		goto fail_free;
629 
630 	trans = btrfs_start_transaction(root, 0);
631 	if (IS_ERR(trans)) {
632 		ret = PTR_ERR(trans);
633 		btrfs_subvolume_release_metadata(root, &block_rsv);
634 		goto fail_free;
635 	}
636 	trans->block_rsv = &block_rsv;
637 	trans->bytes_reserved = block_rsv.size;
638 
639 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 	if (ret)
641 		goto fail;
642 
643 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 				      BTRFS_NESTING_NORMAL);
645 	if (IS_ERR(leaf)) {
646 		ret = PTR_ERR(leaf);
647 		goto fail;
648 	}
649 
650 	btrfs_mark_buffer_dirty(leaf);
651 
652 	inode_item = &root_item->inode;
653 	btrfs_set_stack_inode_generation(inode_item, 1);
654 	btrfs_set_stack_inode_size(inode_item, 3);
655 	btrfs_set_stack_inode_nlink(inode_item, 1);
656 	btrfs_set_stack_inode_nbytes(inode_item,
657 				     fs_info->nodesize);
658 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659 
660 	btrfs_set_root_flags(root_item, 0);
661 	btrfs_set_root_limit(root_item, 0);
662 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663 
664 	btrfs_set_root_bytenr(root_item, leaf->start);
665 	btrfs_set_root_generation(root_item, trans->transid);
666 	btrfs_set_root_level(root_item, 0);
667 	btrfs_set_root_refs(root_item, 1);
668 	btrfs_set_root_used(root_item, leaf->len);
669 	btrfs_set_root_last_snapshot(root_item, 0);
670 
671 	btrfs_set_root_generation_v2(root_item,
672 			btrfs_root_generation(root_item));
673 	generate_random_guid(root_item->uuid);
674 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 	root_item->ctime = root_item->otime;
677 	btrfs_set_root_ctransid(root_item, trans->transid);
678 	btrfs_set_root_otransid(root_item, trans->transid);
679 
680 	btrfs_tree_unlock(leaf);
681 
682 	btrfs_set_root_dirid(root_item, new_dirid);
683 
684 	key.objectid = objectid;
685 	key.offset = 0;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
688 				root_item);
689 	if (ret) {
690 		/*
691 		 * Since we don't abort the transaction in this case, free the
692 		 * tree block so that we don't leak space and leave the
693 		 * filesystem in an inconsistent state (an extent item in the
694 		 * extent tree without backreferences). Also no need to have
695 		 * the tree block locked since it is not in any tree at this
696 		 * point, so no other task can find it and use it.
697 		 */
698 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
699 		free_extent_buffer(leaf);
700 		goto fail;
701 	}
702 
703 	free_extent_buffer(leaf);
704 	leaf = NULL;
705 
706 	key.offset = (u64)-1;
707 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 	if (IS_ERR(new_root)) {
709 		free_anon_bdev(anon_dev);
710 		ret = PTR_ERR(new_root);
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 	/* Freeing will be done in btrfs_put_root() of new_root */
715 	anon_dev = 0;
716 
717 	btrfs_record_root_in_trans(trans, new_root);
718 
719 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 	btrfs_put_root(new_root);
721 	if (ret) {
722 		/* We potentially lose an unused inode item here */
723 		btrfs_abort_transaction(trans, ret);
724 		goto fail;
725 	}
726 
727 	mutex_lock(&new_root->objectid_mutex);
728 	new_root->highest_objectid = new_dirid;
729 	mutex_unlock(&new_root->objectid_mutex);
730 
731 	/*
732 	 * insert the directory item
733 	 */
734 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 	if (ret) {
736 		btrfs_abort_transaction(trans, ret);
737 		goto fail;
738 	}
739 
740 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 				    BTRFS_FT_DIR, index);
742 	if (ret) {
743 		btrfs_abort_transaction(trans, ret);
744 		goto fail;
745 	}
746 
747 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 	ret = btrfs_update_inode(trans, root, dir);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto fail;
752 	}
753 
754 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 	if (ret) {
757 		btrfs_abort_transaction(trans, ret);
758 		goto fail;
759 	}
760 
761 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 				  BTRFS_UUID_KEY_SUBVOL, objectid);
763 	if (ret)
764 		btrfs_abort_transaction(trans, ret);
765 
766 fail:
767 	kfree(root_item);
768 	trans->block_rsv = NULL;
769 	trans->bytes_reserved = 0;
770 	btrfs_subvolume_release_metadata(root, &block_rsv);
771 
772 	err = btrfs_commit_transaction(trans);
773 	if (err && !ret)
774 		ret = err;
775 
776 	if (!ret) {
777 		inode = btrfs_lookup_dentry(dir, dentry);
778 		if (IS_ERR(inode))
779 			return PTR_ERR(inode);
780 		d_instantiate(dentry, inode);
781 	}
782 	return ret;
783 
784 fail_free:
785 	if (anon_dev)
786 		free_anon_bdev(anon_dev);
787 	kfree(root_item);
788 	return ret;
789 }
790 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 			   struct dentry *dentry, bool readonly,
793 			   struct btrfs_qgroup_inherit *inherit)
794 {
795 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 	struct inode *inode;
797 	struct btrfs_pending_snapshot *pending_snapshot;
798 	struct btrfs_trans_handle *trans;
799 	int ret;
800 
801 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
802 		return -EINVAL;
803 
804 	if (atomic_read(&root->nr_swapfiles)) {
805 		btrfs_warn(fs_info,
806 			   "cannot snapshot subvolume with active swapfile");
807 		return -ETXTBSY;
808 	}
809 
810 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
811 	if (!pending_snapshot)
812 		return -ENOMEM;
813 
814 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
815 	if (ret < 0)
816 		goto free_pending;
817 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
818 			GFP_KERNEL);
819 	pending_snapshot->path = btrfs_alloc_path();
820 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
821 		ret = -ENOMEM;
822 		goto free_pending;
823 	}
824 
825 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
826 			     BTRFS_BLOCK_RSV_TEMP);
827 	/*
828 	 * 1 - parent dir inode
829 	 * 2 - dir entries
830 	 * 1 - root item
831 	 * 2 - root ref/backref
832 	 * 1 - root of snapshot
833 	 * 1 - UUID item
834 	 */
835 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
836 					&pending_snapshot->block_rsv, 8,
837 					false);
838 	if (ret)
839 		goto free_pending;
840 
841 	pending_snapshot->dentry = dentry;
842 	pending_snapshot->root = root;
843 	pending_snapshot->readonly = readonly;
844 	pending_snapshot->dir = dir;
845 	pending_snapshot->inherit = inherit;
846 
847 	trans = btrfs_start_transaction(root, 0);
848 	if (IS_ERR(trans)) {
849 		ret = PTR_ERR(trans);
850 		goto fail;
851 	}
852 
853 	spin_lock(&fs_info->trans_lock);
854 	list_add(&pending_snapshot->list,
855 		 &trans->transaction->pending_snapshots);
856 	spin_unlock(&fs_info->trans_lock);
857 
858 	ret = btrfs_commit_transaction(trans);
859 	if (ret)
860 		goto fail;
861 
862 	ret = pending_snapshot->error;
863 	if (ret)
864 		goto fail;
865 
866 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
867 	if (ret)
868 		goto fail;
869 
870 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
871 	if (IS_ERR(inode)) {
872 		ret = PTR_ERR(inode);
873 		goto fail;
874 	}
875 
876 	d_instantiate(dentry, inode);
877 	ret = 0;
878 	pending_snapshot->anon_dev = 0;
879 fail:
880 	/* Prevent double freeing of anon_dev */
881 	if (ret && pending_snapshot->snap)
882 		pending_snapshot->snap->anon_dev = 0;
883 	btrfs_put_root(pending_snapshot->snap);
884 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
885 free_pending:
886 	if (pending_snapshot->anon_dev)
887 		free_anon_bdev(pending_snapshot->anon_dev);
888 	kfree(pending_snapshot->root_item);
889 	btrfs_free_path(pending_snapshot->path);
890 	kfree(pending_snapshot);
891 
892 	return ret;
893 }
894 
895 /*  copy of may_delete in fs/namei.c()
896  *	Check whether we can remove a link victim from directory dir, check
897  *  whether the type of victim is right.
898  *  1. We can't do it if dir is read-only (done in permission())
899  *  2. We should have write and exec permissions on dir
900  *  3. We can't remove anything from append-only dir
901  *  4. We can't do anything with immutable dir (done in permission())
902  *  5. If the sticky bit on dir is set we should either
903  *	a. be owner of dir, or
904  *	b. be owner of victim, or
905  *	c. have CAP_FOWNER capability
906  *  6. If the victim is append-only or immutable we can't do anything with
907  *     links pointing to it.
908  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
909  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
910  *  9. We can't remove a root or mountpoint.
911  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
912  *     nfs_async_unlink().
913  */
914 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)915 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
916 {
917 	int error;
918 
919 	if (d_really_is_negative(victim))
920 		return -ENOENT;
921 
922 	BUG_ON(d_inode(victim->d_parent) != dir);
923 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
924 
925 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
926 	if (error)
927 		return error;
928 	if (IS_APPEND(dir))
929 		return -EPERM;
930 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
931 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
932 		return -EPERM;
933 	if (isdir) {
934 		if (!d_is_dir(victim))
935 			return -ENOTDIR;
936 		if (IS_ROOT(victim))
937 			return -EBUSY;
938 	} else if (d_is_dir(victim))
939 		return -EISDIR;
940 	if (IS_DEADDIR(dir))
941 		return -ENOENT;
942 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
943 		return -EBUSY;
944 	return 0;
945 }
946 
947 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)948 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
949 {
950 	if (d_really_is_positive(child))
951 		return -EEXIST;
952 	if (IS_DEADDIR(dir))
953 		return -ENOENT;
954 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
955 }
956 
957 /*
958  * Create a new subvolume below @parent.  This is largely modeled after
959  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
960  * inside this filesystem so it's quite a bit simpler.
961  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)962 static noinline int btrfs_mksubvol(const struct path *parent,
963 				   const char *name, int namelen,
964 				   struct btrfs_root *snap_src,
965 				   bool readonly,
966 				   struct btrfs_qgroup_inherit *inherit)
967 {
968 	struct inode *dir = d_inode(parent->dentry);
969 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
970 	struct dentry *dentry;
971 	int error;
972 
973 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
974 	if (error == -EINTR)
975 		return error;
976 
977 	dentry = lookup_one_len(name, parent->dentry, namelen);
978 	error = PTR_ERR(dentry);
979 	if (IS_ERR(dentry))
980 		goto out_unlock;
981 
982 	error = btrfs_may_create(dir, dentry);
983 	if (error)
984 		goto out_dput;
985 
986 	/*
987 	 * even if this name doesn't exist, we may get hash collisions.
988 	 * check for them now when we can safely fail
989 	 */
990 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
991 					       dir->i_ino, name,
992 					       namelen);
993 	if (error)
994 		goto out_dput;
995 
996 	down_read(&fs_info->subvol_sem);
997 
998 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
999 		goto out_up_read;
1000 
1001 	if (snap_src)
1002 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1003 	else
1004 		error = create_subvol(dir, dentry, name, namelen, inherit);
1005 
1006 	if (!error)
1007 		fsnotify_mkdir(dir, dentry);
1008 out_up_read:
1009 	up_read(&fs_info->subvol_sem);
1010 out_dput:
1011 	dput(dentry);
1012 out_unlock:
1013 	inode_unlock(dir);
1014 	return error;
1015 }
1016 
btrfs_mksnapshot(const struct path * parent,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1017 static noinline int btrfs_mksnapshot(const struct path *parent,
1018 				   const char *name, int namelen,
1019 				   struct btrfs_root *root,
1020 				   bool readonly,
1021 				   struct btrfs_qgroup_inherit *inherit)
1022 {
1023 	int ret;
1024 	bool snapshot_force_cow = false;
1025 
1026 	/*
1027 	 * Force new buffered writes to reserve space even when NOCOW is
1028 	 * possible. This is to avoid later writeback (running dealloc) to
1029 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1030 	 */
1031 	btrfs_drew_read_lock(&root->snapshot_lock);
1032 
1033 	ret = btrfs_start_delalloc_snapshot(root);
1034 	if (ret)
1035 		goto out;
1036 
1037 	/*
1038 	 * All previous writes have started writeback in NOCOW mode, so now
1039 	 * we force future writes to fallback to COW mode during snapshot
1040 	 * creation.
1041 	 */
1042 	atomic_inc(&root->snapshot_force_cow);
1043 	snapshot_force_cow = true;
1044 
1045 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1046 
1047 	ret = btrfs_mksubvol(parent, name, namelen,
1048 			     root, readonly, inherit);
1049 out:
1050 	if (snapshot_force_cow)
1051 		atomic_dec(&root->snapshot_force_cow);
1052 	btrfs_drew_read_unlock(&root->snapshot_lock);
1053 	return ret;
1054 }
1055 
1056 /*
1057  * When we're defragging a range, we don't want to kick it off again
1058  * if it is really just waiting for delalloc to send it down.
1059  * If we find a nice big extent or delalloc range for the bytes in the
1060  * file you want to defrag, we return 0 to let you know to skip this
1061  * part of the file
1062  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1063 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1064 {
1065 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1066 	struct extent_map *em = NULL;
1067 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1068 	u64 end;
1069 
1070 	read_lock(&em_tree->lock);
1071 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1072 	read_unlock(&em_tree->lock);
1073 
1074 	if (em) {
1075 		end = extent_map_end(em);
1076 		free_extent_map(em);
1077 		if (end - offset > thresh)
1078 			return 0;
1079 	}
1080 	/* if we already have a nice delalloc here, just stop */
1081 	thresh /= 2;
1082 	end = count_range_bits(io_tree, &offset, offset + thresh,
1083 			       thresh, EXTENT_DELALLOC, 1);
1084 	if (end >= thresh)
1085 		return 0;
1086 	return 1;
1087 }
1088 
1089 /*
1090  * helper function to walk through a file and find extents
1091  * newer than a specific transid, and smaller than thresh.
1092  *
1093  * This is used by the defragging code to find new and small
1094  * extents
1095  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1096 static int find_new_extents(struct btrfs_root *root,
1097 			    struct inode *inode, u64 newer_than,
1098 			    u64 *off, u32 thresh)
1099 {
1100 	struct btrfs_path *path;
1101 	struct btrfs_key min_key;
1102 	struct extent_buffer *leaf;
1103 	struct btrfs_file_extent_item *extent;
1104 	int type;
1105 	int ret;
1106 	u64 ino = btrfs_ino(BTRFS_I(inode));
1107 
1108 	path = btrfs_alloc_path();
1109 	if (!path)
1110 		return -ENOMEM;
1111 
1112 	min_key.objectid = ino;
1113 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1114 	min_key.offset = *off;
1115 
1116 	while (1) {
1117 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1118 		if (ret != 0)
1119 			goto none;
1120 process_slot:
1121 		if (min_key.objectid != ino)
1122 			goto none;
1123 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1124 			goto none;
1125 
1126 		leaf = path->nodes[0];
1127 		extent = btrfs_item_ptr(leaf, path->slots[0],
1128 					struct btrfs_file_extent_item);
1129 
1130 		type = btrfs_file_extent_type(leaf, extent);
1131 		if (type == BTRFS_FILE_EXTENT_REG &&
1132 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1133 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1134 			*off = min_key.offset;
1135 			btrfs_free_path(path);
1136 			return 0;
1137 		}
1138 
1139 		path->slots[0]++;
1140 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1141 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1142 			goto process_slot;
1143 		}
1144 
1145 		if (min_key.offset == (u64)-1)
1146 			goto none;
1147 
1148 		min_key.offset++;
1149 		btrfs_release_path(path);
1150 	}
1151 none:
1152 	btrfs_free_path(path);
1153 	return -ENOENT;
1154 }
1155 
defrag_lookup_extent(struct inode * inode,u64 start)1156 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1157 {
1158 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1159 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1160 	struct extent_map *em;
1161 	u64 len = PAGE_SIZE;
1162 
1163 	/*
1164 	 * hopefully we have this extent in the tree already, try without
1165 	 * the full extent lock
1166 	 */
1167 	read_lock(&em_tree->lock);
1168 	em = lookup_extent_mapping(em_tree, start, len);
1169 	read_unlock(&em_tree->lock);
1170 
1171 	if (!em) {
1172 		struct extent_state *cached = NULL;
1173 		u64 end = start + len - 1;
1174 
1175 		/* get the big lock and read metadata off disk */
1176 		lock_extent_bits(io_tree, start, end, &cached);
1177 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1178 		unlock_extent_cached(io_tree, start, end, &cached);
1179 
1180 		if (IS_ERR(em))
1181 			return NULL;
1182 	}
1183 
1184 	return em;
1185 }
1186 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1187 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1188 {
1189 	struct extent_map *next;
1190 	bool ret = true;
1191 
1192 	/* this is the last extent */
1193 	if (em->start + em->len >= i_size_read(inode))
1194 		return false;
1195 
1196 	next = defrag_lookup_extent(inode, em->start + em->len);
1197 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1198 		ret = false;
1199 	else if ((em->block_start + em->block_len == next->block_start) &&
1200 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1201 		ret = false;
1202 
1203 	free_extent_map(next);
1204 	return ret;
1205 }
1206 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1207 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1208 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1209 			       int compress)
1210 {
1211 	struct extent_map *em;
1212 	int ret = 1;
1213 	bool next_mergeable = true;
1214 	bool prev_mergeable = true;
1215 
1216 	/*
1217 	 * make sure that once we start defragging an extent, we keep on
1218 	 * defragging it
1219 	 */
1220 	if (start < *defrag_end)
1221 		return 1;
1222 
1223 	*skip = 0;
1224 
1225 	em = defrag_lookup_extent(inode, start);
1226 	if (!em)
1227 		return 0;
1228 
1229 	/* this will cover holes, and inline extents */
1230 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 
1235 	if (!*defrag_end)
1236 		prev_mergeable = false;
1237 
1238 	next_mergeable = defrag_check_next_extent(inode, em);
1239 	/*
1240 	 * we hit a real extent, if it is big or the next extent is not a
1241 	 * real extent, don't bother defragging it
1242 	 */
1243 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1244 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1245 		ret = 0;
1246 out:
1247 	/*
1248 	 * last_len ends up being a counter of how many bytes we've defragged.
1249 	 * every time we choose not to defrag an extent, we reset *last_len
1250 	 * so that the next tiny extent will force a defrag.
1251 	 *
1252 	 * The end result of this is that tiny extents before a single big
1253 	 * extent will force at least part of that big extent to be defragged.
1254 	 */
1255 	if (ret) {
1256 		*defrag_end = extent_map_end(em);
1257 	} else {
1258 		*last_len = 0;
1259 		*skip = extent_map_end(em);
1260 		*defrag_end = 0;
1261 	}
1262 
1263 	free_extent_map(em);
1264 	return ret;
1265 }
1266 
1267 /*
1268  * it doesn't do much good to defrag one or two pages
1269  * at a time.  This pulls in a nice chunk of pages
1270  * to COW and defrag.
1271  *
1272  * It also makes sure the delalloc code has enough
1273  * dirty data to avoid making new small extents as part
1274  * of the defrag
1275  *
1276  * It's a good idea to start RA on this range
1277  * before calling this.
1278  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1279 static int cluster_pages_for_defrag(struct inode *inode,
1280 				    struct page **pages,
1281 				    unsigned long start_index,
1282 				    unsigned long num_pages)
1283 {
1284 	unsigned long file_end;
1285 	u64 isize = i_size_read(inode);
1286 	u64 page_start;
1287 	u64 page_end;
1288 	u64 page_cnt;
1289 	u64 start = (u64)start_index << PAGE_SHIFT;
1290 	u64 search_start;
1291 	int ret;
1292 	int i;
1293 	int i_done;
1294 	struct btrfs_ordered_extent *ordered;
1295 	struct extent_state *cached_state = NULL;
1296 	struct extent_io_tree *tree;
1297 	struct extent_changeset *data_reserved = NULL;
1298 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1299 
1300 	file_end = (isize - 1) >> PAGE_SHIFT;
1301 	if (!isize || start_index > file_end)
1302 		return 0;
1303 
1304 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1305 
1306 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1307 			start, page_cnt << PAGE_SHIFT);
1308 	if (ret)
1309 		return ret;
1310 	i_done = 0;
1311 	tree = &BTRFS_I(inode)->io_tree;
1312 
1313 	/* step one, lock all the pages */
1314 	for (i = 0; i < page_cnt; i++) {
1315 		struct page *page;
1316 again:
1317 		page = find_or_create_page(inode->i_mapping,
1318 					   start_index + i, mask);
1319 		if (!page)
1320 			break;
1321 
1322 		page_start = page_offset(page);
1323 		page_end = page_start + PAGE_SIZE - 1;
1324 		while (1) {
1325 			lock_extent_bits(tree, page_start, page_end,
1326 					 &cached_state);
1327 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1328 							      page_start);
1329 			unlock_extent_cached(tree, page_start, page_end,
1330 					     &cached_state);
1331 			if (!ordered)
1332 				break;
1333 
1334 			unlock_page(page);
1335 			btrfs_start_ordered_extent(ordered, 1);
1336 			btrfs_put_ordered_extent(ordered);
1337 			lock_page(page);
1338 			/*
1339 			 * we unlocked the page above, so we need check if
1340 			 * it was released or not.
1341 			 */
1342 			if (page->mapping != inode->i_mapping) {
1343 				unlock_page(page);
1344 				put_page(page);
1345 				goto again;
1346 			}
1347 		}
1348 
1349 		if (!PageUptodate(page)) {
1350 			btrfs_readpage(NULL, page);
1351 			lock_page(page);
1352 			if (!PageUptodate(page)) {
1353 				unlock_page(page);
1354 				put_page(page);
1355 				ret = -EIO;
1356 				break;
1357 			}
1358 		}
1359 
1360 		if (page->mapping != inode->i_mapping) {
1361 			unlock_page(page);
1362 			put_page(page);
1363 			goto again;
1364 		}
1365 
1366 		pages[i] = page;
1367 		i_done++;
1368 	}
1369 	if (!i_done || ret)
1370 		goto out;
1371 
1372 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1373 		goto out;
1374 
1375 	/*
1376 	 * so now we have a nice long stream of locked
1377 	 * and up to date pages, lets wait on them
1378 	 */
1379 	for (i = 0; i < i_done; i++)
1380 		wait_on_page_writeback(pages[i]);
1381 
1382 	page_start = page_offset(pages[0]);
1383 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1384 
1385 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1386 			 page_start, page_end - 1, &cached_state);
1387 
1388 	/*
1389 	 * When defragmenting we skip ranges that have holes or inline extents,
1390 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1391 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1392 	 * before locking the inode and then, if it should, we trigger a sync
1393 	 * page cache readahead - we lock the inode only after that to avoid
1394 	 * blocking for too long other tasks that possibly want to operate on
1395 	 * other file ranges. But before we were able to get the inode lock,
1396 	 * some other task may have punched a hole in the range, or we may have
1397 	 * now an inline extent, in which case we should not defrag. So check
1398 	 * for that here, where we have the inode and the range locked, and bail
1399 	 * out if that happened.
1400 	 */
1401 	search_start = page_start;
1402 	while (search_start < page_end) {
1403 		struct extent_map *em;
1404 
1405 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1406 				      page_end - search_start);
1407 		if (IS_ERR(em)) {
1408 			ret = PTR_ERR(em);
1409 			goto out_unlock_range;
1410 		}
1411 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1412 			free_extent_map(em);
1413 			/* Ok, 0 means we did not defrag anything */
1414 			ret = 0;
1415 			goto out_unlock_range;
1416 		}
1417 		search_start = extent_map_end(em);
1418 		free_extent_map(em);
1419 	}
1420 
1421 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1422 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1423 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1424 
1425 	if (i_done != page_cnt) {
1426 		spin_lock(&BTRFS_I(inode)->lock);
1427 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1428 		spin_unlock(&BTRFS_I(inode)->lock);
1429 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1430 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1431 	}
1432 
1433 
1434 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1435 			  &cached_state);
1436 
1437 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1438 			     page_start, page_end - 1, &cached_state);
1439 
1440 	for (i = 0; i < i_done; i++) {
1441 		clear_page_dirty_for_io(pages[i]);
1442 		ClearPageChecked(pages[i]);
1443 		set_page_extent_mapped(pages[i]);
1444 		set_page_dirty(pages[i]);
1445 		unlock_page(pages[i]);
1446 		put_page(pages[i]);
1447 	}
1448 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1449 	extent_changeset_free(data_reserved);
1450 	return i_done;
1451 
1452 out_unlock_range:
1453 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1454 			     page_start, page_end - 1, &cached_state);
1455 out:
1456 	for (i = 0; i < i_done; i++) {
1457 		unlock_page(pages[i]);
1458 		put_page(pages[i]);
1459 	}
1460 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1461 			start, page_cnt << PAGE_SHIFT, true);
1462 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1463 	extent_changeset_free(data_reserved);
1464 	return ret;
1465 
1466 }
1467 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1468 int btrfs_defrag_file(struct inode *inode, struct file *file,
1469 		      struct btrfs_ioctl_defrag_range_args *range,
1470 		      u64 newer_than, unsigned long max_to_defrag)
1471 {
1472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1473 	struct btrfs_root *root = BTRFS_I(inode)->root;
1474 	struct file_ra_state *ra = NULL;
1475 	unsigned long last_index;
1476 	u64 isize = i_size_read(inode);
1477 	u64 last_len = 0;
1478 	u64 skip = 0;
1479 	u64 defrag_end = 0;
1480 	u64 newer_off = range->start;
1481 	unsigned long i;
1482 	unsigned long ra_index = 0;
1483 	int ret;
1484 	int defrag_count = 0;
1485 	int compress_type = BTRFS_COMPRESS_ZLIB;
1486 	u32 extent_thresh = range->extent_thresh;
1487 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1488 	unsigned long cluster = max_cluster;
1489 	u64 new_align = ~((u64)SZ_128K - 1);
1490 	struct page **pages = NULL;
1491 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1492 
1493 	if (isize == 0)
1494 		return 0;
1495 
1496 	if (range->start >= isize)
1497 		return -EINVAL;
1498 
1499 	if (do_compress) {
1500 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1501 			return -EINVAL;
1502 		if (range->compress_type)
1503 			compress_type = range->compress_type;
1504 	}
1505 
1506 	if (extent_thresh == 0)
1507 		extent_thresh = SZ_256K;
1508 
1509 	/*
1510 	 * If we were not given a file, allocate a readahead context. As
1511 	 * readahead is just an optimization, defrag will work without it so
1512 	 * we don't error out.
1513 	 */
1514 	if (!file) {
1515 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1516 		if (ra)
1517 			file_ra_state_init(ra, inode->i_mapping);
1518 	} else {
1519 		ra = &file->f_ra;
1520 	}
1521 
1522 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1523 	if (!pages) {
1524 		ret = -ENOMEM;
1525 		goto out_ra;
1526 	}
1527 
1528 	/* find the last page to defrag */
1529 	if (range->start + range->len > range->start) {
1530 		last_index = min_t(u64, isize - 1,
1531 			 range->start + range->len - 1) >> PAGE_SHIFT;
1532 	} else {
1533 		last_index = (isize - 1) >> PAGE_SHIFT;
1534 	}
1535 
1536 	if (newer_than) {
1537 		ret = find_new_extents(root, inode, newer_than,
1538 				       &newer_off, SZ_64K);
1539 		if (!ret) {
1540 			range->start = newer_off;
1541 			/*
1542 			 * we always align our defrag to help keep
1543 			 * the extents in the file evenly spaced
1544 			 */
1545 			i = (newer_off & new_align) >> PAGE_SHIFT;
1546 		} else
1547 			goto out_ra;
1548 	} else {
1549 		i = range->start >> PAGE_SHIFT;
1550 	}
1551 	if (!max_to_defrag)
1552 		max_to_defrag = last_index - i + 1;
1553 
1554 	/*
1555 	 * make writeback starts from i, so the defrag range can be
1556 	 * written sequentially.
1557 	 */
1558 	if (i < inode->i_mapping->writeback_index)
1559 		inode->i_mapping->writeback_index = i;
1560 
1561 	while (i <= last_index && defrag_count < max_to_defrag &&
1562 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1563 		/*
1564 		 * make sure we stop running if someone unmounts
1565 		 * the FS
1566 		 */
1567 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1568 			break;
1569 
1570 		if (btrfs_defrag_cancelled(fs_info)) {
1571 			btrfs_debug(fs_info, "defrag_file cancelled");
1572 			ret = -EAGAIN;
1573 			break;
1574 		}
1575 
1576 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1577 					 extent_thresh, &last_len, &skip,
1578 					 &defrag_end, do_compress)){
1579 			unsigned long next;
1580 			/*
1581 			 * the should_defrag function tells us how much to skip
1582 			 * bump our counter by the suggested amount
1583 			 */
1584 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1585 			i = max(i + 1, next);
1586 			continue;
1587 		}
1588 
1589 		if (!newer_than) {
1590 			cluster = (PAGE_ALIGN(defrag_end) >>
1591 				   PAGE_SHIFT) - i;
1592 			cluster = min(cluster, max_cluster);
1593 		} else {
1594 			cluster = max_cluster;
1595 		}
1596 
1597 		if (i + cluster > ra_index) {
1598 			ra_index = max(i, ra_index);
1599 			if (ra)
1600 				page_cache_sync_readahead(inode->i_mapping, ra,
1601 						file, ra_index, cluster);
1602 			ra_index += cluster;
1603 		}
1604 
1605 		inode_lock(inode);
1606 		if (IS_SWAPFILE(inode)) {
1607 			ret = -ETXTBSY;
1608 		} else {
1609 			if (do_compress)
1610 				BTRFS_I(inode)->defrag_compress = compress_type;
1611 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1612 		}
1613 		if (ret < 0) {
1614 			inode_unlock(inode);
1615 			goto out_ra;
1616 		}
1617 
1618 		defrag_count += ret;
1619 		balance_dirty_pages_ratelimited(inode->i_mapping);
1620 		inode_unlock(inode);
1621 
1622 		if (newer_than) {
1623 			if (newer_off == (u64)-1)
1624 				break;
1625 
1626 			if (ret > 0)
1627 				i += ret;
1628 
1629 			newer_off = max(newer_off + 1,
1630 					(u64)i << PAGE_SHIFT);
1631 
1632 			ret = find_new_extents(root, inode, newer_than,
1633 					       &newer_off, SZ_64K);
1634 			if (!ret) {
1635 				range->start = newer_off;
1636 				i = (newer_off & new_align) >> PAGE_SHIFT;
1637 			} else {
1638 				break;
1639 			}
1640 		} else {
1641 			if (ret > 0) {
1642 				i += ret;
1643 				last_len += ret << PAGE_SHIFT;
1644 			} else {
1645 				i++;
1646 				last_len = 0;
1647 			}
1648 		}
1649 	}
1650 
1651 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1652 		filemap_flush(inode->i_mapping);
1653 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1654 			     &BTRFS_I(inode)->runtime_flags))
1655 			filemap_flush(inode->i_mapping);
1656 	}
1657 
1658 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1659 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1660 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1661 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1662 	}
1663 
1664 	ret = defrag_count;
1665 
1666 out_ra:
1667 	if (do_compress) {
1668 		inode_lock(inode);
1669 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1670 		inode_unlock(inode);
1671 	}
1672 	if (!file)
1673 		kfree(ra);
1674 	kfree(pages);
1675 	return ret;
1676 }
1677 
btrfs_ioctl_resize(struct file * file,void __user * arg)1678 static noinline int btrfs_ioctl_resize(struct file *file,
1679 					void __user *arg)
1680 {
1681 	struct inode *inode = file_inode(file);
1682 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1683 	u64 new_size;
1684 	u64 old_size;
1685 	u64 devid = 1;
1686 	struct btrfs_root *root = BTRFS_I(inode)->root;
1687 	struct btrfs_ioctl_vol_args *vol_args;
1688 	struct btrfs_trans_handle *trans;
1689 	struct btrfs_device *device = NULL;
1690 	char *sizestr;
1691 	char *retptr;
1692 	char *devstr = NULL;
1693 	int ret = 0;
1694 	int mod = 0;
1695 
1696 	if (!capable(CAP_SYS_ADMIN))
1697 		return -EPERM;
1698 
1699 	ret = mnt_want_write_file(file);
1700 	if (ret)
1701 		return ret;
1702 
1703 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1704 		mnt_drop_write_file(file);
1705 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1706 	}
1707 
1708 	vol_args = memdup_user(arg, sizeof(*vol_args));
1709 	if (IS_ERR(vol_args)) {
1710 		ret = PTR_ERR(vol_args);
1711 		goto out;
1712 	}
1713 
1714 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1715 
1716 	sizestr = vol_args->name;
1717 	devstr = strchr(sizestr, ':');
1718 	if (devstr) {
1719 		sizestr = devstr + 1;
1720 		*devstr = '\0';
1721 		devstr = vol_args->name;
1722 		ret = kstrtoull(devstr, 10, &devid);
1723 		if (ret)
1724 			goto out_free;
1725 		if (!devid) {
1726 			ret = -EINVAL;
1727 			goto out_free;
1728 		}
1729 		btrfs_info(fs_info, "resizing devid %llu", devid);
1730 	}
1731 
1732 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1733 	if (!device) {
1734 		btrfs_info(fs_info, "resizer unable to find device %llu",
1735 			   devid);
1736 		ret = -ENODEV;
1737 		goto out_free;
1738 	}
1739 
1740 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1741 		btrfs_info(fs_info,
1742 			   "resizer unable to apply on readonly device %llu",
1743 		       devid);
1744 		ret = -EPERM;
1745 		goto out_free;
1746 	}
1747 
1748 	if (!strcmp(sizestr, "max"))
1749 		new_size = device->bdev->bd_inode->i_size;
1750 	else {
1751 		if (sizestr[0] == '-') {
1752 			mod = -1;
1753 			sizestr++;
1754 		} else if (sizestr[0] == '+') {
1755 			mod = 1;
1756 			sizestr++;
1757 		}
1758 		new_size = memparse(sizestr, &retptr);
1759 		if (*retptr != '\0' || new_size == 0) {
1760 			ret = -EINVAL;
1761 			goto out_free;
1762 		}
1763 	}
1764 
1765 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1766 		ret = -EPERM;
1767 		goto out_free;
1768 	}
1769 
1770 	old_size = btrfs_device_get_total_bytes(device);
1771 
1772 	if (mod < 0) {
1773 		if (new_size > old_size) {
1774 			ret = -EINVAL;
1775 			goto out_free;
1776 		}
1777 		new_size = old_size - new_size;
1778 	} else if (mod > 0) {
1779 		if (new_size > ULLONG_MAX - old_size) {
1780 			ret = -ERANGE;
1781 			goto out_free;
1782 		}
1783 		new_size = old_size + new_size;
1784 	}
1785 
1786 	if (new_size < SZ_256M) {
1787 		ret = -EINVAL;
1788 		goto out_free;
1789 	}
1790 	if (new_size > device->bdev->bd_inode->i_size) {
1791 		ret = -EFBIG;
1792 		goto out_free;
1793 	}
1794 
1795 	new_size = round_down(new_size, fs_info->sectorsize);
1796 
1797 	if (new_size > old_size) {
1798 		trans = btrfs_start_transaction(root, 0);
1799 		if (IS_ERR(trans)) {
1800 			ret = PTR_ERR(trans);
1801 			goto out_free;
1802 		}
1803 		ret = btrfs_grow_device(trans, device, new_size);
1804 		btrfs_commit_transaction(trans);
1805 	} else if (new_size < old_size) {
1806 		ret = btrfs_shrink_device(device, new_size);
1807 	} /* equal, nothing need to do */
1808 
1809 	if (ret == 0 && new_size != old_size)
1810 		btrfs_info_in_rcu(fs_info,
1811 			"resize device %s (devid %llu) from %llu to %llu",
1812 			rcu_str_deref(device->name), device->devid,
1813 			old_size, new_size);
1814 out_free:
1815 	kfree(vol_args);
1816 out:
1817 	btrfs_exclop_finish(fs_info);
1818 	mnt_drop_write_file(file);
1819 	return ret;
1820 }
1821 
__btrfs_ioctl_snap_create(struct file * file,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1822 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1823 				const char *name, unsigned long fd, int subvol,
1824 				bool readonly,
1825 				struct btrfs_qgroup_inherit *inherit)
1826 {
1827 	int namelen;
1828 	int ret = 0;
1829 
1830 	if (!S_ISDIR(file_inode(file)->i_mode))
1831 		return -ENOTDIR;
1832 
1833 	ret = mnt_want_write_file(file);
1834 	if (ret)
1835 		goto out;
1836 
1837 	namelen = strlen(name);
1838 	if (strchr(name, '/')) {
1839 		ret = -EINVAL;
1840 		goto out_drop_write;
1841 	}
1842 
1843 	if (name[0] == '.' &&
1844 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1845 		ret = -EEXIST;
1846 		goto out_drop_write;
1847 	}
1848 
1849 	if (subvol) {
1850 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1851 				     NULL, readonly, inherit);
1852 	} else {
1853 		struct fd src = fdget(fd);
1854 		struct inode *src_inode;
1855 		if (!src.file) {
1856 			ret = -EINVAL;
1857 			goto out_drop_write;
1858 		}
1859 
1860 		src_inode = file_inode(src.file);
1861 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1862 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1863 				   "Snapshot src from another FS");
1864 			ret = -EXDEV;
1865 		} else if (!inode_owner_or_capable(src_inode)) {
1866 			/*
1867 			 * Subvolume creation is not restricted, but snapshots
1868 			 * are limited to own subvolumes only
1869 			 */
1870 			ret = -EPERM;
1871 		} else {
1872 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1873 					     BTRFS_I(src_inode)->root,
1874 					     readonly, inherit);
1875 		}
1876 		fdput(src);
1877 	}
1878 out_drop_write:
1879 	mnt_drop_write_file(file);
1880 out:
1881 	return ret;
1882 }
1883 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1884 static noinline int btrfs_ioctl_snap_create(struct file *file,
1885 					    void __user *arg, int subvol)
1886 {
1887 	struct btrfs_ioctl_vol_args *vol_args;
1888 	int ret;
1889 
1890 	if (!S_ISDIR(file_inode(file)->i_mode))
1891 		return -ENOTDIR;
1892 
1893 	vol_args = memdup_user(arg, sizeof(*vol_args));
1894 	if (IS_ERR(vol_args))
1895 		return PTR_ERR(vol_args);
1896 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1897 
1898 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1899 					subvol, false, NULL);
1900 
1901 	kfree(vol_args);
1902 	return ret;
1903 }
1904 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1905 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1906 					       void __user *arg, int subvol)
1907 {
1908 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1909 	int ret;
1910 	bool readonly = false;
1911 	struct btrfs_qgroup_inherit *inherit = NULL;
1912 
1913 	if (!S_ISDIR(file_inode(file)->i_mode))
1914 		return -ENOTDIR;
1915 
1916 	vol_args = memdup_user(arg, sizeof(*vol_args));
1917 	if (IS_ERR(vol_args))
1918 		return PTR_ERR(vol_args);
1919 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1920 
1921 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1922 		ret = -EOPNOTSUPP;
1923 		goto free_args;
1924 	}
1925 
1926 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1927 		readonly = true;
1928 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1929 		u64 nums;
1930 
1931 		if (vol_args->size < sizeof(*inherit) ||
1932 		    vol_args->size > PAGE_SIZE) {
1933 			ret = -EINVAL;
1934 			goto free_args;
1935 		}
1936 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1937 		if (IS_ERR(inherit)) {
1938 			ret = PTR_ERR(inherit);
1939 			goto free_args;
1940 		}
1941 
1942 		if (inherit->num_qgroups > PAGE_SIZE ||
1943 		    inherit->num_ref_copies > PAGE_SIZE ||
1944 		    inherit->num_excl_copies > PAGE_SIZE) {
1945 			ret = -EINVAL;
1946 			goto free_inherit;
1947 		}
1948 
1949 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1950 		       2 * inherit->num_excl_copies;
1951 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1952 			ret = -EINVAL;
1953 			goto free_inherit;
1954 		}
1955 	}
1956 
1957 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1958 					subvol, readonly, inherit);
1959 	if (ret)
1960 		goto free_inherit;
1961 free_inherit:
1962 	kfree(inherit);
1963 free_args:
1964 	kfree(vol_args);
1965 	return ret;
1966 }
1967 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1968 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1969 						void __user *arg)
1970 {
1971 	struct inode *inode = file_inode(file);
1972 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973 	struct btrfs_root *root = BTRFS_I(inode)->root;
1974 	int ret = 0;
1975 	u64 flags = 0;
1976 
1977 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1978 		return -EINVAL;
1979 
1980 	down_read(&fs_info->subvol_sem);
1981 	if (btrfs_root_readonly(root))
1982 		flags |= BTRFS_SUBVOL_RDONLY;
1983 	up_read(&fs_info->subvol_sem);
1984 
1985 	if (copy_to_user(arg, &flags, sizeof(flags)))
1986 		ret = -EFAULT;
1987 
1988 	return ret;
1989 }
1990 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1991 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1992 					      void __user *arg)
1993 {
1994 	struct inode *inode = file_inode(file);
1995 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1996 	struct btrfs_root *root = BTRFS_I(inode)->root;
1997 	struct btrfs_trans_handle *trans;
1998 	u64 root_flags;
1999 	u64 flags;
2000 	int ret = 0;
2001 
2002 	if (!inode_owner_or_capable(inode))
2003 		return -EPERM;
2004 
2005 	ret = mnt_want_write_file(file);
2006 	if (ret)
2007 		goto out;
2008 
2009 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2010 		ret = -EINVAL;
2011 		goto out_drop_write;
2012 	}
2013 
2014 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2015 		ret = -EFAULT;
2016 		goto out_drop_write;
2017 	}
2018 
2019 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2020 		ret = -EOPNOTSUPP;
2021 		goto out_drop_write;
2022 	}
2023 
2024 	down_write(&fs_info->subvol_sem);
2025 
2026 	/* nothing to do */
2027 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2028 		goto out_drop_sem;
2029 
2030 	root_flags = btrfs_root_flags(&root->root_item);
2031 	if (flags & BTRFS_SUBVOL_RDONLY) {
2032 		btrfs_set_root_flags(&root->root_item,
2033 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2034 	} else {
2035 		/*
2036 		 * Block RO -> RW transition if this subvolume is involved in
2037 		 * send
2038 		 */
2039 		spin_lock(&root->root_item_lock);
2040 		if (root->send_in_progress == 0) {
2041 			btrfs_set_root_flags(&root->root_item,
2042 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2043 			spin_unlock(&root->root_item_lock);
2044 		} else {
2045 			spin_unlock(&root->root_item_lock);
2046 			btrfs_warn(fs_info,
2047 				   "Attempt to set subvolume %llu read-write during send",
2048 				   root->root_key.objectid);
2049 			ret = -EPERM;
2050 			goto out_drop_sem;
2051 		}
2052 	}
2053 
2054 	trans = btrfs_start_transaction(root, 1);
2055 	if (IS_ERR(trans)) {
2056 		ret = PTR_ERR(trans);
2057 		goto out_reset;
2058 	}
2059 
2060 	ret = btrfs_update_root(trans, fs_info->tree_root,
2061 				&root->root_key, &root->root_item);
2062 	if (ret < 0) {
2063 		btrfs_end_transaction(trans);
2064 		goto out_reset;
2065 	}
2066 
2067 	ret = btrfs_commit_transaction(trans);
2068 
2069 out_reset:
2070 	if (ret)
2071 		btrfs_set_root_flags(&root->root_item, root_flags);
2072 out_drop_sem:
2073 	up_write(&fs_info->subvol_sem);
2074 out_drop_write:
2075 	mnt_drop_write_file(file);
2076 out:
2077 	return ret;
2078 }
2079 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2080 static noinline int key_in_sk(struct btrfs_key *key,
2081 			      struct btrfs_ioctl_search_key *sk)
2082 {
2083 	struct btrfs_key test;
2084 	int ret;
2085 
2086 	test.objectid = sk->min_objectid;
2087 	test.type = sk->min_type;
2088 	test.offset = sk->min_offset;
2089 
2090 	ret = btrfs_comp_cpu_keys(key, &test);
2091 	if (ret < 0)
2092 		return 0;
2093 
2094 	test.objectid = sk->max_objectid;
2095 	test.type = sk->max_type;
2096 	test.offset = sk->max_offset;
2097 
2098 	ret = btrfs_comp_cpu_keys(key, &test);
2099 	if (ret > 0)
2100 		return 0;
2101 	return 1;
2102 }
2103 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2104 static noinline int copy_to_sk(struct btrfs_path *path,
2105 			       struct btrfs_key *key,
2106 			       struct btrfs_ioctl_search_key *sk,
2107 			       size_t *buf_size,
2108 			       char __user *ubuf,
2109 			       unsigned long *sk_offset,
2110 			       int *num_found)
2111 {
2112 	u64 found_transid;
2113 	struct extent_buffer *leaf;
2114 	struct btrfs_ioctl_search_header sh;
2115 	struct btrfs_key test;
2116 	unsigned long item_off;
2117 	unsigned long item_len;
2118 	int nritems;
2119 	int i;
2120 	int slot;
2121 	int ret = 0;
2122 
2123 	leaf = path->nodes[0];
2124 	slot = path->slots[0];
2125 	nritems = btrfs_header_nritems(leaf);
2126 
2127 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2128 		i = nritems;
2129 		goto advance_key;
2130 	}
2131 	found_transid = btrfs_header_generation(leaf);
2132 
2133 	for (i = slot; i < nritems; i++) {
2134 		item_off = btrfs_item_ptr_offset(leaf, i);
2135 		item_len = btrfs_item_size_nr(leaf, i);
2136 
2137 		btrfs_item_key_to_cpu(leaf, key, i);
2138 		if (!key_in_sk(key, sk))
2139 			continue;
2140 
2141 		if (sizeof(sh) + item_len > *buf_size) {
2142 			if (*num_found) {
2143 				ret = 1;
2144 				goto out;
2145 			}
2146 
2147 			/*
2148 			 * return one empty item back for v1, which does not
2149 			 * handle -EOVERFLOW
2150 			 */
2151 
2152 			*buf_size = sizeof(sh) + item_len;
2153 			item_len = 0;
2154 			ret = -EOVERFLOW;
2155 		}
2156 
2157 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2158 			ret = 1;
2159 			goto out;
2160 		}
2161 
2162 		sh.objectid = key->objectid;
2163 		sh.offset = key->offset;
2164 		sh.type = key->type;
2165 		sh.len = item_len;
2166 		sh.transid = found_transid;
2167 
2168 		/*
2169 		 * Copy search result header. If we fault then loop again so we
2170 		 * can fault in the pages and -EFAULT there if there's a
2171 		 * problem. Otherwise we'll fault and then copy the buffer in
2172 		 * properly this next time through
2173 		 */
2174 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2175 			ret = 0;
2176 			goto out;
2177 		}
2178 
2179 		*sk_offset += sizeof(sh);
2180 
2181 		if (item_len) {
2182 			char __user *up = ubuf + *sk_offset;
2183 			/*
2184 			 * Copy the item, same behavior as above, but reset the
2185 			 * * sk_offset so we copy the full thing again.
2186 			 */
2187 			if (read_extent_buffer_to_user_nofault(leaf, up,
2188 						item_off, item_len)) {
2189 				ret = 0;
2190 				*sk_offset -= sizeof(sh);
2191 				goto out;
2192 			}
2193 
2194 			*sk_offset += item_len;
2195 		}
2196 		(*num_found)++;
2197 
2198 		if (ret) /* -EOVERFLOW from above */
2199 			goto out;
2200 
2201 		if (*num_found >= sk->nr_items) {
2202 			ret = 1;
2203 			goto out;
2204 		}
2205 	}
2206 advance_key:
2207 	ret = 0;
2208 	test.objectid = sk->max_objectid;
2209 	test.type = sk->max_type;
2210 	test.offset = sk->max_offset;
2211 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2212 		ret = 1;
2213 	else if (key->offset < (u64)-1)
2214 		key->offset++;
2215 	else if (key->type < (u8)-1) {
2216 		key->offset = 0;
2217 		key->type++;
2218 	} else if (key->objectid < (u64)-1) {
2219 		key->offset = 0;
2220 		key->type = 0;
2221 		key->objectid++;
2222 	} else
2223 		ret = 1;
2224 out:
2225 	/*
2226 	 *  0: all items from this leaf copied, continue with next
2227 	 *  1: * more items can be copied, but unused buffer is too small
2228 	 *     * all items were found
2229 	 *     Either way, it will stops the loop which iterates to the next
2230 	 *     leaf
2231 	 *  -EOVERFLOW: item was to large for buffer
2232 	 *  -EFAULT: could not copy extent buffer back to userspace
2233 	 */
2234 	return ret;
2235 }
2236 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2237 static noinline int search_ioctl(struct inode *inode,
2238 				 struct btrfs_ioctl_search_key *sk,
2239 				 size_t *buf_size,
2240 				 char __user *ubuf)
2241 {
2242 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2243 	struct btrfs_root *root;
2244 	struct btrfs_key key;
2245 	struct btrfs_path *path;
2246 	int ret;
2247 	int num_found = 0;
2248 	unsigned long sk_offset = 0;
2249 
2250 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2251 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2252 		return -EOVERFLOW;
2253 	}
2254 
2255 	path = btrfs_alloc_path();
2256 	if (!path)
2257 		return -ENOMEM;
2258 
2259 	if (sk->tree_id == 0) {
2260 		/* search the root of the inode that was passed */
2261 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2262 	} else {
2263 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2264 		if (IS_ERR(root)) {
2265 			btrfs_free_path(path);
2266 			return PTR_ERR(root);
2267 		}
2268 	}
2269 
2270 	key.objectid = sk->min_objectid;
2271 	key.type = sk->min_type;
2272 	key.offset = sk->min_offset;
2273 
2274 	while (1) {
2275 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2276 					       *buf_size - sk_offset);
2277 		if (ret)
2278 			break;
2279 
2280 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2281 		if (ret != 0) {
2282 			if (ret > 0)
2283 				ret = 0;
2284 			goto err;
2285 		}
2286 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2287 				 &sk_offset, &num_found);
2288 		btrfs_release_path(path);
2289 		if (ret)
2290 			break;
2291 
2292 	}
2293 	if (ret > 0)
2294 		ret = 0;
2295 err:
2296 	sk->nr_items = num_found;
2297 	btrfs_put_root(root);
2298 	btrfs_free_path(path);
2299 	return ret;
2300 }
2301 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2302 static noinline int btrfs_ioctl_tree_search(struct file *file,
2303 					   void __user *argp)
2304 {
2305 	struct btrfs_ioctl_search_args __user *uargs;
2306 	struct btrfs_ioctl_search_key sk;
2307 	struct inode *inode;
2308 	int ret;
2309 	size_t buf_size;
2310 
2311 	if (!capable(CAP_SYS_ADMIN))
2312 		return -EPERM;
2313 
2314 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2315 
2316 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2317 		return -EFAULT;
2318 
2319 	buf_size = sizeof(uargs->buf);
2320 
2321 	inode = file_inode(file);
2322 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2323 
2324 	/*
2325 	 * In the origin implementation an overflow is handled by returning a
2326 	 * search header with a len of zero, so reset ret.
2327 	 */
2328 	if (ret == -EOVERFLOW)
2329 		ret = 0;
2330 
2331 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2332 		ret = -EFAULT;
2333 	return ret;
2334 }
2335 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2336 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2337 					       void __user *argp)
2338 {
2339 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2340 	struct btrfs_ioctl_search_args_v2 args;
2341 	struct inode *inode;
2342 	int ret;
2343 	size_t buf_size;
2344 	const size_t buf_limit = SZ_16M;
2345 
2346 	if (!capable(CAP_SYS_ADMIN))
2347 		return -EPERM;
2348 
2349 	/* copy search header and buffer size */
2350 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2351 	if (copy_from_user(&args, uarg, sizeof(args)))
2352 		return -EFAULT;
2353 
2354 	buf_size = args.buf_size;
2355 
2356 	/* limit result size to 16MB */
2357 	if (buf_size > buf_limit)
2358 		buf_size = buf_limit;
2359 
2360 	inode = file_inode(file);
2361 	ret = search_ioctl(inode, &args.key, &buf_size,
2362 			   (char __user *)(&uarg->buf[0]));
2363 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2364 		ret = -EFAULT;
2365 	else if (ret == -EOVERFLOW &&
2366 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2367 		ret = -EFAULT;
2368 
2369 	return ret;
2370 }
2371 
2372 /*
2373  * Search INODE_REFs to identify path name of 'dirid' directory
2374  * in a 'tree_id' tree. and sets path name to 'name'.
2375  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2376 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2377 				u64 tree_id, u64 dirid, char *name)
2378 {
2379 	struct btrfs_root *root;
2380 	struct btrfs_key key;
2381 	char *ptr;
2382 	int ret = -1;
2383 	int slot;
2384 	int len;
2385 	int total_len = 0;
2386 	struct btrfs_inode_ref *iref;
2387 	struct extent_buffer *l;
2388 	struct btrfs_path *path;
2389 
2390 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2391 		name[0]='\0';
2392 		return 0;
2393 	}
2394 
2395 	path = btrfs_alloc_path();
2396 	if (!path)
2397 		return -ENOMEM;
2398 
2399 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2400 
2401 	root = btrfs_get_fs_root(info, tree_id, true);
2402 	if (IS_ERR(root)) {
2403 		ret = PTR_ERR(root);
2404 		root = NULL;
2405 		goto out;
2406 	}
2407 
2408 	key.objectid = dirid;
2409 	key.type = BTRFS_INODE_REF_KEY;
2410 	key.offset = (u64)-1;
2411 
2412 	while (1) {
2413 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2414 		if (ret < 0)
2415 			goto out;
2416 		else if (ret > 0) {
2417 			ret = btrfs_previous_item(root, path, dirid,
2418 						  BTRFS_INODE_REF_KEY);
2419 			if (ret < 0)
2420 				goto out;
2421 			else if (ret > 0) {
2422 				ret = -ENOENT;
2423 				goto out;
2424 			}
2425 		}
2426 
2427 		l = path->nodes[0];
2428 		slot = path->slots[0];
2429 		btrfs_item_key_to_cpu(l, &key, slot);
2430 
2431 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2432 		len = btrfs_inode_ref_name_len(l, iref);
2433 		ptr -= len + 1;
2434 		total_len += len + 1;
2435 		if (ptr < name) {
2436 			ret = -ENAMETOOLONG;
2437 			goto out;
2438 		}
2439 
2440 		*(ptr + len) = '/';
2441 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2442 
2443 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2444 			break;
2445 
2446 		btrfs_release_path(path);
2447 		key.objectid = key.offset;
2448 		key.offset = (u64)-1;
2449 		dirid = key.objectid;
2450 	}
2451 	memmove(name, ptr, total_len);
2452 	name[total_len] = '\0';
2453 	ret = 0;
2454 out:
2455 	btrfs_put_root(root);
2456 	btrfs_free_path(path);
2457 	return ret;
2458 }
2459 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2460 static int btrfs_search_path_in_tree_user(struct inode *inode,
2461 				struct btrfs_ioctl_ino_lookup_user_args *args)
2462 {
2463 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2464 	struct super_block *sb = inode->i_sb;
2465 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2466 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2467 	u64 dirid = args->dirid;
2468 	unsigned long item_off;
2469 	unsigned long item_len;
2470 	struct btrfs_inode_ref *iref;
2471 	struct btrfs_root_ref *rref;
2472 	struct btrfs_root *root = NULL;
2473 	struct btrfs_path *path;
2474 	struct btrfs_key key, key2;
2475 	struct extent_buffer *leaf;
2476 	struct inode *temp_inode;
2477 	char *ptr;
2478 	int slot;
2479 	int len;
2480 	int total_len = 0;
2481 	int ret;
2482 
2483 	path = btrfs_alloc_path();
2484 	if (!path)
2485 		return -ENOMEM;
2486 
2487 	/*
2488 	 * If the bottom subvolume does not exist directly under upper_limit,
2489 	 * construct the path in from the bottom up.
2490 	 */
2491 	if (dirid != upper_limit.objectid) {
2492 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2493 
2494 		root = btrfs_get_fs_root(fs_info, treeid, true);
2495 		if (IS_ERR(root)) {
2496 			ret = PTR_ERR(root);
2497 			goto out;
2498 		}
2499 
2500 		key.objectid = dirid;
2501 		key.type = BTRFS_INODE_REF_KEY;
2502 		key.offset = (u64)-1;
2503 		while (1) {
2504 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2505 			if (ret < 0) {
2506 				goto out_put;
2507 			} else if (ret > 0) {
2508 				ret = btrfs_previous_item(root, path, dirid,
2509 							  BTRFS_INODE_REF_KEY);
2510 				if (ret < 0) {
2511 					goto out_put;
2512 				} else if (ret > 0) {
2513 					ret = -ENOENT;
2514 					goto out_put;
2515 				}
2516 			}
2517 
2518 			leaf = path->nodes[0];
2519 			slot = path->slots[0];
2520 			btrfs_item_key_to_cpu(leaf, &key, slot);
2521 
2522 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2523 			len = btrfs_inode_ref_name_len(leaf, iref);
2524 			ptr -= len + 1;
2525 			total_len += len + 1;
2526 			if (ptr < args->path) {
2527 				ret = -ENAMETOOLONG;
2528 				goto out_put;
2529 			}
2530 
2531 			*(ptr + len) = '/';
2532 			read_extent_buffer(leaf, ptr,
2533 					(unsigned long)(iref + 1), len);
2534 
2535 			/* Check the read+exec permission of this directory */
2536 			ret = btrfs_previous_item(root, path, dirid,
2537 						  BTRFS_INODE_ITEM_KEY);
2538 			if (ret < 0) {
2539 				goto out_put;
2540 			} else if (ret > 0) {
2541 				ret = -ENOENT;
2542 				goto out_put;
2543 			}
2544 
2545 			leaf = path->nodes[0];
2546 			slot = path->slots[0];
2547 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2548 			if (key2.objectid != dirid) {
2549 				ret = -ENOENT;
2550 				goto out_put;
2551 			}
2552 
2553 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2554 			if (IS_ERR(temp_inode)) {
2555 				ret = PTR_ERR(temp_inode);
2556 				goto out_put;
2557 			}
2558 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2559 			iput(temp_inode);
2560 			if (ret) {
2561 				ret = -EACCES;
2562 				goto out_put;
2563 			}
2564 
2565 			if (key.offset == upper_limit.objectid)
2566 				break;
2567 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2568 				ret = -EACCES;
2569 				goto out_put;
2570 			}
2571 
2572 			btrfs_release_path(path);
2573 			key.objectid = key.offset;
2574 			key.offset = (u64)-1;
2575 			dirid = key.objectid;
2576 		}
2577 
2578 		memmove(args->path, ptr, total_len);
2579 		args->path[total_len] = '\0';
2580 		btrfs_put_root(root);
2581 		root = NULL;
2582 		btrfs_release_path(path);
2583 	}
2584 
2585 	/* Get the bottom subvolume's name from ROOT_REF */
2586 	key.objectid = treeid;
2587 	key.type = BTRFS_ROOT_REF_KEY;
2588 	key.offset = args->treeid;
2589 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2590 	if (ret < 0) {
2591 		goto out;
2592 	} else if (ret > 0) {
2593 		ret = -ENOENT;
2594 		goto out;
2595 	}
2596 
2597 	leaf = path->nodes[0];
2598 	slot = path->slots[0];
2599 	btrfs_item_key_to_cpu(leaf, &key, slot);
2600 
2601 	item_off = btrfs_item_ptr_offset(leaf, slot);
2602 	item_len = btrfs_item_size_nr(leaf, slot);
2603 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2604 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2605 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2606 		ret = -EINVAL;
2607 		goto out;
2608 	}
2609 
2610 	/* Copy subvolume's name */
2611 	item_off += sizeof(struct btrfs_root_ref);
2612 	item_len -= sizeof(struct btrfs_root_ref);
2613 	read_extent_buffer(leaf, args->name, item_off, item_len);
2614 	args->name[item_len] = 0;
2615 
2616 out_put:
2617 	btrfs_put_root(root);
2618 out:
2619 	btrfs_free_path(path);
2620 	return ret;
2621 }
2622 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2623 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2624 					   void __user *argp)
2625 {
2626 	struct btrfs_ioctl_ino_lookup_args *args;
2627 	struct inode *inode;
2628 	int ret = 0;
2629 
2630 	args = memdup_user(argp, sizeof(*args));
2631 	if (IS_ERR(args))
2632 		return PTR_ERR(args);
2633 
2634 	inode = file_inode(file);
2635 
2636 	/*
2637 	 * Unprivileged query to obtain the containing subvolume root id. The
2638 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2639 	 */
2640 	if (args->treeid == 0)
2641 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2642 
2643 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2644 		args->name[0] = 0;
2645 		goto out;
2646 	}
2647 
2648 	if (!capable(CAP_SYS_ADMIN)) {
2649 		ret = -EPERM;
2650 		goto out;
2651 	}
2652 
2653 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2654 					args->treeid, args->objectid,
2655 					args->name);
2656 
2657 out:
2658 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2659 		ret = -EFAULT;
2660 
2661 	kfree(args);
2662 	return ret;
2663 }
2664 
2665 /*
2666  * Version of ino_lookup ioctl (unprivileged)
2667  *
2668  * The main differences from ino_lookup ioctl are:
2669  *
2670  *   1. Read + Exec permission will be checked using inode_permission() during
2671  *      path construction. -EACCES will be returned in case of failure.
2672  *   2. Path construction will be stopped at the inode number which corresponds
2673  *      to the fd with which this ioctl is called. If constructed path does not
2674  *      exist under fd's inode, -EACCES will be returned.
2675  *   3. The name of bottom subvolume is also searched and filled.
2676  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2677 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2678 {
2679 	struct btrfs_ioctl_ino_lookup_user_args *args;
2680 	struct inode *inode;
2681 	int ret;
2682 
2683 	args = memdup_user(argp, sizeof(*args));
2684 	if (IS_ERR(args))
2685 		return PTR_ERR(args);
2686 
2687 	inode = file_inode(file);
2688 
2689 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2690 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2691 		/*
2692 		 * The subvolume does not exist under fd with which this is
2693 		 * called
2694 		 */
2695 		kfree(args);
2696 		return -EACCES;
2697 	}
2698 
2699 	ret = btrfs_search_path_in_tree_user(inode, args);
2700 
2701 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2702 		ret = -EFAULT;
2703 
2704 	kfree(args);
2705 	return ret;
2706 }
2707 
2708 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2709 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2710 {
2711 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2712 	struct btrfs_fs_info *fs_info;
2713 	struct btrfs_root *root;
2714 	struct btrfs_path *path;
2715 	struct btrfs_key key;
2716 	struct btrfs_root_item *root_item;
2717 	struct btrfs_root_ref *rref;
2718 	struct extent_buffer *leaf;
2719 	unsigned long item_off;
2720 	unsigned long item_len;
2721 	struct inode *inode;
2722 	int slot;
2723 	int ret = 0;
2724 
2725 	path = btrfs_alloc_path();
2726 	if (!path)
2727 		return -ENOMEM;
2728 
2729 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2730 	if (!subvol_info) {
2731 		btrfs_free_path(path);
2732 		return -ENOMEM;
2733 	}
2734 
2735 	inode = file_inode(file);
2736 	fs_info = BTRFS_I(inode)->root->fs_info;
2737 
2738 	/* Get root_item of inode's subvolume */
2739 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2740 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2741 	if (IS_ERR(root)) {
2742 		ret = PTR_ERR(root);
2743 		goto out_free;
2744 	}
2745 	root_item = &root->root_item;
2746 
2747 	subvol_info->treeid = key.objectid;
2748 
2749 	subvol_info->generation = btrfs_root_generation(root_item);
2750 	subvol_info->flags = btrfs_root_flags(root_item);
2751 
2752 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2753 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2754 						    BTRFS_UUID_SIZE);
2755 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2756 						    BTRFS_UUID_SIZE);
2757 
2758 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2759 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2760 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2761 
2762 	subvol_info->otransid = btrfs_root_otransid(root_item);
2763 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2764 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2765 
2766 	subvol_info->stransid = btrfs_root_stransid(root_item);
2767 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2768 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2769 
2770 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2771 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2772 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2773 
2774 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2775 		/* Search root tree for ROOT_BACKREF of this subvolume */
2776 		key.type = BTRFS_ROOT_BACKREF_KEY;
2777 		key.offset = 0;
2778 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2779 		if (ret < 0) {
2780 			goto out;
2781 		} else if (path->slots[0] >=
2782 			   btrfs_header_nritems(path->nodes[0])) {
2783 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2784 			if (ret < 0) {
2785 				goto out;
2786 			} else if (ret > 0) {
2787 				ret = -EUCLEAN;
2788 				goto out;
2789 			}
2790 		}
2791 
2792 		leaf = path->nodes[0];
2793 		slot = path->slots[0];
2794 		btrfs_item_key_to_cpu(leaf, &key, slot);
2795 		if (key.objectid == subvol_info->treeid &&
2796 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2797 			subvol_info->parent_id = key.offset;
2798 
2799 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2800 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2801 
2802 			item_off = btrfs_item_ptr_offset(leaf, slot)
2803 					+ sizeof(struct btrfs_root_ref);
2804 			item_len = btrfs_item_size_nr(leaf, slot)
2805 					- sizeof(struct btrfs_root_ref);
2806 			read_extent_buffer(leaf, subvol_info->name,
2807 					   item_off, item_len);
2808 		} else {
2809 			ret = -ENOENT;
2810 			goto out;
2811 		}
2812 	}
2813 
2814 	btrfs_free_path(path);
2815 	path = NULL;
2816 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2817 		ret = -EFAULT;
2818 
2819 out:
2820 	btrfs_put_root(root);
2821 out_free:
2822 	btrfs_free_path(path);
2823 	kfree(subvol_info);
2824 	return ret;
2825 }
2826 
2827 /*
2828  * Return ROOT_REF information of the subvolume containing this inode
2829  * except the subvolume name.
2830  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2831 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2832 {
2833 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2834 	struct btrfs_root_ref *rref;
2835 	struct btrfs_root *root;
2836 	struct btrfs_path *path;
2837 	struct btrfs_key key;
2838 	struct extent_buffer *leaf;
2839 	struct inode *inode;
2840 	u64 objectid;
2841 	int slot;
2842 	int ret;
2843 	u8 found;
2844 
2845 	path = btrfs_alloc_path();
2846 	if (!path)
2847 		return -ENOMEM;
2848 
2849 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2850 	if (IS_ERR(rootrefs)) {
2851 		btrfs_free_path(path);
2852 		return PTR_ERR(rootrefs);
2853 	}
2854 
2855 	inode = file_inode(file);
2856 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2857 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2858 
2859 	key.objectid = objectid;
2860 	key.type = BTRFS_ROOT_REF_KEY;
2861 	key.offset = rootrefs->min_treeid;
2862 	found = 0;
2863 
2864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2865 	if (ret < 0) {
2866 		goto out;
2867 	} else if (path->slots[0] >=
2868 		   btrfs_header_nritems(path->nodes[0])) {
2869 		ret = btrfs_next_leaf(root, path);
2870 		if (ret < 0) {
2871 			goto out;
2872 		} else if (ret > 0) {
2873 			ret = -EUCLEAN;
2874 			goto out;
2875 		}
2876 	}
2877 	while (1) {
2878 		leaf = path->nodes[0];
2879 		slot = path->slots[0];
2880 
2881 		btrfs_item_key_to_cpu(leaf, &key, slot);
2882 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2883 			ret = 0;
2884 			goto out;
2885 		}
2886 
2887 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2888 			ret = -EOVERFLOW;
2889 			goto out;
2890 		}
2891 
2892 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2893 		rootrefs->rootref[found].treeid = key.offset;
2894 		rootrefs->rootref[found].dirid =
2895 				  btrfs_root_ref_dirid(leaf, rref);
2896 		found++;
2897 
2898 		ret = btrfs_next_item(root, path);
2899 		if (ret < 0) {
2900 			goto out;
2901 		} else if (ret > 0) {
2902 			ret = -EUCLEAN;
2903 			goto out;
2904 		}
2905 	}
2906 
2907 out:
2908 	btrfs_free_path(path);
2909 
2910 	if (!ret || ret == -EOVERFLOW) {
2911 		rootrefs->num_items = found;
2912 		/* update min_treeid for next search */
2913 		if (found)
2914 			rootrefs->min_treeid =
2915 				rootrefs->rootref[found - 1].treeid + 1;
2916 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2917 			ret = -EFAULT;
2918 	}
2919 
2920 	kfree(rootrefs);
2921 
2922 	return ret;
2923 }
2924 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2925 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2926 					     void __user *arg,
2927 					     bool destroy_v2)
2928 {
2929 	struct dentry *parent = file->f_path.dentry;
2930 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2931 	struct dentry *dentry;
2932 	struct inode *dir = d_inode(parent);
2933 	struct inode *inode;
2934 	struct btrfs_root *root = BTRFS_I(dir)->root;
2935 	struct btrfs_root *dest = NULL;
2936 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2937 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2938 	char *subvol_name, *subvol_name_ptr = NULL;
2939 	int subvol_namelen;
2940 	int err = 0;
2941 	bool destroy_parent = false;
2942 
2943 	if (destroy_v2) {
2944 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2945 		if (IS_ERR(vol_args2))
2946 			return PTR_ERR(vol_args2);
2947 
2948 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2949 			err = -EOPNOTSUPP;
2950 			goto out;
2951 		}
2952 
2953 		/*
2954 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2955 		 * name, same as v1 currently does.
2956 		 */
2957 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2958 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2959 			subvol_name = vol_args2->name;
2960 
2961 			err = mnt_want_write_file(file);
2962 			if (err)
2963 				goto out;
2964 		} else {
2965 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2966 				err = -EINVAL;
2967 				goto out;
2968 			}
2969 
2970 			err = mnt_want_write_file(file);
2971 			if (err)
2972 				goto out;
2973 
2974 			dentry = btrfs_get_dentry(fs_info->sb,
2975 					BTRFS_FIRST_FREE_OBJECTID,
2976 					vol_args2->subvolid, 0, 0);
2977 			if (IS_ERR(dentry)) {
2978 				err = PTR_ERR(dentry);
2979 				goto out_drop_write;
2980 			}
2981 
2982 			/*
2983 			 * Change the default parent since the subvolume being
2984 			 * deleted can be outside of the current mount point.
2985 			 */
2986 			parent = btrfs_get_parent(dentry);
2987 
2988 			/*
2989 			 * At this point dentry->d_name can point to '/' if the
2990 			 * subvolume we want to destroy is outsite of the
2991 			 * current mount point, so we need to release the
2992 			 * current dentry and execute the lookup to return a new
2993 			 * one with ->d_name pointing to the
2994 			 * <mount point>/subvol_name.
2995 			 */
2996 			dput(dentry);
2997 			if (IS_ERR(parent)) {
2998 				err = PTR_ERR(parent);
2999 				goto out_drop_write;
3000 			}
3001 			dir = d_inode(parent);
3002 
3003 			/*
3004 			 * If v2 was used with SPEC_BY_ID, a new parent was
3005 			 * allocated since the subvolume can be outside of the
3006 			 * current mount point. Later on we need to release this
3007 			 * new parent dentry.
3008 			 */
3009 			destroy_parent = true;
3010 
3011 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3012 						fs_info, vol_args2->subvolid);
3013 			if (IS_ERR(subvol_name_ptr)) {
3014 				err = PTR_ERR(subvol_name_ptr);
3015 				goto free_parent;
3016 			}
3017 			/* subvol_name_ptr is already NULL termined */
3018 			subvol_name = (char *)kbasename(subvol_name_ptr);
3019 		}
3020 	} else {
3021 		vol_args = memdup_user(arg, sizeof(*vol_args));
3022 		if (IS_ERR(vol_args))
3023 			return PTR_ERR(vol_args);
3024 
3025 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3026 		subvol_name = vol_args->name;
3027 
3028 		err = mnt_want_write_file(file);
3029 		if (err)
3030 			goto out;
3031 	}
3032 
3033 	subvol_namelen = strlen(subvol_name);
3034 
3035 	if (strchr(subvol_name, '/') ||
3036 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3037 		err = -EINVAL;
3038 		goto free_subvol_name;
3039 	}
3040 
3041 	if (!S_ISDIR(dir->i_mode)) {
3042 		err = -ENOTDIR;
3043 		goto free_subvol_name;
3044 	}
3045 
3046 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3047 	if (err == -EINTR)
3048 		goto free_subvol_name;
3049 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3050 	if (IS_ERR(dentry)) {
3051 		err = PTR_ERR(dentry);
3052 		goto out_unlock_dir;
3053 	}
3054 
3055 	if (d_really_is_negative(dentry)) {
3056 		err = -ENOENT;
3057 		goto out_dput;
3058 	}
3059 
3060 	inode = d_inode(dentry);
3061 	dest = BTRFS_I(inode)->root;
3062 	if (!capable(CAP_SYS_ADMIN)) {
3063 		/*
3064 		 * Regular user.  Only allow this with a special mount
3065 		 * option, when the user has write+exec access to the
3066 		 * subvol root, and when rmdir(2) would have been
3067 		 * allowed.
3068 		 *
3069 		 * Note that this is _not_ check that the subvol is
3070 		 * empty or doesn't contain data that we wouldn't
3071 		 * otherwise be able to delete.
3072 		 *
3073 		 * Users who want to delete empty subvols should try
3074 		 * rmdir(2).
3075 		 */
3076 		err = -EPERM;
3077 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3078 			goto out_dput;
3079 
3080 		/*
3081 		 * Do not allow deletion if the parent dir is the same
3082 		 * as the dir to be deleted.  That means the ioctl
3083 		 * must be called on the dentry referencing the root
3084 		 * of the subvol, not a random directory contained
3085 		 * within it.
3086 		 */
3087 		err = -EINVAL;
3088 		if (root == dest)
3089 			goto out_dput;
3090 
3091 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3092 		if (err)
3093 			goto out_dput;
3094 	}
3095 
3096 	/* check if subvolume may be deleted by a user */
3097 	err = btrfs_may_delete(dir, dentry, 1);
3098 	if (err)
3099 		goto out_dput;
3100 
3101 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3102 		err = -EINVAL;
3103 		goto out_dput;
3104 	}
3105 
3106 	inode_lock(inode);
3107 	err = btrfs_delete_subvolume(dir, dentry);
3108 	inode_unlock(inode);
3109 	if (!err)
3110 		d_delete_notify(dir, dentry);
3111 
3112 out_dput:
3113 	dput(dentry);
3114 out_unlock_dir:
3115 	inode_unlock(dir);
3116 free_subvol_name:
3117 	kfree(subvol_name_ptr);
3118 free_parent:
3119 	if (destroy_parent)
3120 		dput(parent);
3121 out_drop_write:
3122 	mnt_drop_write_file(file);
3123 out:
3124 	kfree(vol_args2);
3125 	kfree(vol_args);
3126 	return err;
3127 }
3128 
btrfs_ioctl_defrag(struct file * file,void __user * argp)3129 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3130 {
3131 	struct inode *inode = file_inode(file);
3132 	struct btrfs_root *root = BTRFS_I(inode)->root;
3133 	struct btrfs_ioctl_defrag_range_args *range;
3134 	int ret;
3135 
3136 	ret = mnt_want_write_file(file);
3137 	if (ret)
3138 		return ret;
3139 
3140 	if (btrfs_root_readonly(root)) {
3141 		ret = -EROFS;
3142 		goto out;
3143 	}
3144 
3145 	switch (inode->i_mode & S_IFMT) {
3146 	case S_IFDIR:
3147 		if (!capable(CAP_SYS_ADMIN)) {
3148 			ret = -EPERM;
3149 			goto out;
3150 		}
3151 		ret = btrfs_defrag_root(root);
3152 		break;
3153 	case S_IFREG:
3154 		/*
3155 		 * Note that this does not check the file descriptor for write
3156 		 * access. This prevents defragmenting executables that are
3157 		 * running and allows defrag on files open in read-only mode.
3158 		 */
3159 		if (!capable(CAP_SYS_ADMIN) &&
3160 		    inode_permission(inode, MAY_WRITE)) {
3161 			ret = -EPERM;
3162 			goto out;
3163 		}
3164 
3165 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3166 		if (!range) {
3167 			ret = -ENOMEM;
3168 			goto out;
3169 		}
3170 
3171 		if (argp) {
3172 			if (copy_from_user(range, argp,
3173 					   sizeof(*range))) {
3174 				ret = -EFAULT;
3175 				kfree(range);
3176 				goto out;
3177 			}
3178 			/* compression requires us to start the IO */
3179 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3180 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3181 				range->extent_thresh = (u32)-1;
3182 			}
3183 		} else {
3184 			/* the rest are all set to zero by kzalloc */
3185 			range->len = (u64)-1;
3186 		}
3187 		ret = btrfs_defrag_file(file_inode(file), file,
3188 					range, BTRFS_OLDEST_GENERATION, 0);
3189 		if (ret > 0)
3190 			ret = 0;
3191 		kfree(range);
3192 		break;
3193 	default:
3194 		ret = -EINVAL;
3195 	}
3196 out:
3197 	mnt_drop_write_file(file);
3198 	return ret;
3199 }
3200 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3201 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3202 {
3203 	struct btrfs_ioctl_vol_args *vol_args;
3204 	int ret;
3205 
3206 	if (!capable(CAP_SYS_ADMIN))
3207 		return -EPERM;
3208 
3209 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3210 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3211 
3212 	vol_args = memdup_user(arg, sizeof(*vol_args));
3213 	if (IS_ERR(vol_args)) {
3214 		ret = PTR_ERR(vol_args);
3215 		goto out;
3216 	}
3217 
3218 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3219 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3220 
3221 	if (!ret)
3222 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3223 
3224 	kfree(vol_args);
3225 out:
3226 	btrfs_exclop_finish(fs_info);
3227 	return ret;
3228 }
3229 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3230 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3231 {
3232 	struct inode *inode = file_inode(file);
3233 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3234 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3235 	int ret;
3236 
3237 	if (!capable(CAP_SYS_ADMIN))
3238 		return -EPERM;
3239 
3240 	ret = mnt_want_write_file(file);
3241 	if (ret)
3242 		return ret;
3243 
3244 	vol_args = memdup_user(arg, sizeof(*vol_args));
3245 	if (IS_ERR(vol_args)) {
3246 		ret = PTR_ERR(vol_args);
3247 		goto err_drop;
3248 	}
3249 
3250 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3251 		ret = -EOPNOTSUPP;
3252 		goto out;
3253 	}
3254 
3255 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3256 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3257 		goto out;
3258 	}
3259 
3260 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3261 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3262 	} else {
3263 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3264 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3265 	}
3266 	btrfs_exclop_finish(fs_info);
3267 
3268 	if (!ret) {
3269 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3270 			btrfs_info(fs_info, "device deleted: id %llu",
3271 					vol_args->devid);
3272 		else
3273 			btrfs_info(fs_info, "device deleted: %s",
3274 					vol_args->name);
3275 	}
3276 out:
3277 	kfree(vol_args);
3278 err_drop:
3279 	mnt_drop_write_file(file);
3280 	return ret;
3281 }
3282 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3283 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3284 {
3285 	struct inode *inode = file_inode(file);
3286 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287 	struct btrfs_ioctl_vol_args *vol_args;
3288 	int ret;
3289 
3290 	if (!capable(CAP_SYS_ADMIN))
3291 		return -EPERM;
3292 
3293 	ret = mnt_want_write_file(file);
3294 	if (ret)
3295 		return ret;
3296 
3297 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3298 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3299 		goto out_drop_write;
3300 	}
3301 
3302 	vol_args = memdup_user(arg, sizeof(*vol_args));
3303 	if (IS_ERR(vol_args)) {
3304 		ret = PTR_ERR(vol_args);
3305 		goto out;
3306 	}
3307 
3308 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3309 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3310 
3311 	if (!ret)
3312 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3313 	kfree(vol_args);
3314 out:
3315 	btrfs_exclop_finish(fs_info);
3316 out_drop_write:
3317 	mnt_drop_write_file(file);
3318 
3319 	return ret;
3320 }
3321 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3322 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3323 				void __user *arg)
3324 {
3325 	struct btrfs_ioctl_fs_info_args *fi_args;
3326 	struct btrfs_device *device;
3327 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3328 	u64 flags_in;
3329 	int ret = 0;
3330 
3331 	fi_args = memdup_user(arg, sizeof(*fi_args));
3332 	if (IS_ERR(fi_args))
3333 		return PTR_ERR(fi_args);
3334 
3335 	flags_in = fi_args->flags;
3336 	memset(fi_args, 0, sizeof(*fi_args));
3337 
3338 	rcu_read_lock();
3339 	fi_args->num_devices = fs_devices->num_devices;
3340 
3341 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3342 		if (device->devid > fi_args->max_id)
3343 			fi_args->max_id = device->devid;
3344 	}
3345 	rcu_read_unlock();
3346 
3347 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3348 	fi_args->nodesize = fs_info->nodesize;
3349 	fi_args->sectorsize = fs_info->sectorsize;
3350 	fi_args->clone_alignment = fs_info->sectorsize;
3351 
3352 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3353 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3354 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3355 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3356 	}
3357 
3358 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3359 		fi_args->generation = fs_info->generation;
3360 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3361 	}
3362 
3363 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3364 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3365 		       sizeof(fi_args->metadata_uuid));
3366 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3367 	}
3368 
3369 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3370 		ret = -EFAULT;
3371 
3372 	kfree(fi_args);
3373 	return ret;
3374 }
3375 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3376 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3377 				 void __user *arg)
3378 {
3379 	struct btrfs_ioctl_dev_info_args *di_args;
3380 	struct btrfs_device *dev;
3381 	int ret = 0;
3382 	char *s_uuid = NULL;
3383 
3384 	di_args = memdup_user(arg, sizeof(*di_args));
3385 	if (IS_ERR(di_args))
3386 		return PTR_ERR(di_args);
3387 
3388 	if (!btrfs_is_empty_uuid(di_args->uuid))
3389 		s_uuid = di_args->uuid;
3390 
3391 	rcu_read_lock();
3392 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3393 				NULL, true);
3394 
3395 	if (!dev) {
3396 		ret = -ENODEV;
3397 		goto out;
3398 	}
3399 
3400 	di_args->devid = dev->devid;
3401 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3402 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3403 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3404 	if (dev->name)
3405 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3406 	else
3407 		di_args->path[0] = '\0';
3408 
3409 out:
3410 	rcu_read_unlock();
3411 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3412 		ret = -EFAULT;
3413 
3414 	kfree(di_args);
3415 	return ret;
3416 }
3417 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3418 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3419 {
3420 	struct inode *inode = file_inode(file);
3421 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3422 	struct btrfs_root *root = BTRFS_I(inode)->root;
3423 	struct btrfs_root *new_root;
3424 	struct btrfs_dir_item *di;
3425 	struct btrfs_trans_handle *trans;
3426 	struct btrfs_path *path = NULL;
3427 	struct btrfs_disk_key disk_key;
3428 	u64 objectid = 0;
3429 	u64 dir_id;
3430 	int ret;
3431 
3432 	if (!capable(CAP_SYS_ADMIN))
3433 		return -EPERM;
3434 
3435 	ret = mnt_want_write_file(file);
3436 	if (ret)
3437 		return ret;
3438 
3439 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3440 		ret = -EFAULT;
3441 		goto out;
3442 	}
3443 
3444 	if (!objectid)
3445 		objectid = BTRFS_FS_TREE_OBJECTID;
3446 
3447 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3448 	if (IS_ERR(new_root)) {
3449 		ret = PTR_ERR(new_root);
3450 		goto out;
3451 	}
3452 	if (!is_fstree(new_root->root_key.objectid)) {
3453 		ret = -ENOENT;
3454 		goto out_free;
3455 	}
3456 
3457 	path = btrfs_alloc_path();
3458 	if (!path) {
3459 		ret = -ENOMEM;
3460 		goto out_free;
3461 	}
3462 	path->leave_spinning = 1;
3463 
3464 	trans = btrfs_start_transaction(root, 1);
3465 	if (IS_ERR(trans)) {
3466 		ret = PTR_ERR(trans);
3467 		goto out_free;
3468 	}
3469 
3470 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3471 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3472 				   dir_id, "default", 7, 1);
3473 	if (IS_ERR_OR_NULL(di)) {
3474 		btrfs_release_path(path);
3475 		btrfs_end_transaction(trans);
3476 		btrfs_err(fs_info,
3477 			  "Umm, you don't have the default diritem, this isn't going to work");
3478 		ret = -ENOENT;
3479 		goto out_free;
3480 	}
3481 
3482 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3483 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3484 	btrfs_mark_buffer_dirty(path->nodes[0]);
3485 	btrfs_release_path(path);
3486 
3487 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3488 	btrfs_end_transaction(trans);
3489 out_free:
3490 	btrfs_put_root(new_root);
3491 	btrfs_free_path(path);
3492 out:
3493 	mnt_drop_write_file(file);
3494 	return ret;
3495 }
3496 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3497 static void get_block_group_info(struct list_head *groups_list,
3498 				 struct btrfs_ioctl_space_info *space)
3499 {
3500 	struct btrfs_block_group *block_group;
3501 
3502 	space->total_bytes = 0;
3503 	space->used_bytes = 0;
3504 	space->flags = 0;
3505 	list_for_each_entry(block_group, groups_list, list) {
3506 		space->flags = block_group->flags;
3507 		space->total_bytes += block_group->length;
3508 		space->used_bytes += block_group->used;
3509 	}
3510 }
3511 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3512 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3513 				   void __user *arg)
3514 {
3515 	struct btrfs_ioctl_space_args space_args;
3516 	struct btrfs_ioctl_space_info space;
3517 	struct btrfs_ioctl_space_info *dest;
3518 	struct btrfs_ioctl_space_info *dest_orig;
3519 	struct btrfs_ioctl_space_info __user *user_dest;
3520 	struct btrfs_space_info *info;
3521 	static const u64 types[] = {
3522 		BTRFS_BLOCK_GROUP_DATA,
3523 		BTRFS_BLOCK_GROUP_SYSTEM,
3524 		BTRFS_BLOCK_GROUP_METADATA,
3525 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3526 	};
3527 	int num_types = 4;
3528 	int alloc_size;
3529 	int ret = 0;
3530 	u64 slot_count = 0;
3531 	int i, c;
3532 
3533 	if (copy_from_user(&space_args,
3534 			   (struct btrfs_ioctl_space_args __user *)arg,
3535 			   sizeof(space_args)))
3536 		return -EFAULT;
3537 
3538 	for (i = 0; i < num_types; i++) {
3539 		struct btrfs_space_info *tmp;
3540 
3541 		info = NULL;
3542 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3543 			if (tmp->flags == types[i]) {
3544 				info = tmp;
3545 				break;
3546 			}
3547 		}
3548 
3549 		if (!info)
3550 			continue;
3551 
3552 		down_read(&info->groups_sem);
3553 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3554 			if (!list_empty(&info->block_groups[c]))
3555 				slot_count++;
3556 		}
3557 		up_read(&info->groups_sem);
3558 	}
3559 
3560 	/*
3561 	 * Global block reserve, exported as a space_info
3562 	 */
3563 	slot_count++;
3564 
3565 	/* space_slots == 0 means they are asking for a count */
3566 	if (space_args.space_slots == 0) {
3567 		space_args.total_spaces = slot_count;
3568 		goto out;
3569 	}
3570 
3571 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3572 
3573 	alloc_size = sizeof(*dest) * slot_count;
3574 
3575 	/* we generally have at most 6 or so space infos, one for each raid
3576 	 * level.  So, a whole page should be more than enough for everyone
3577 	 */
3578 	if (alloc_size > PAGE_SIZE)
3579 		return -ENOMEM;
3580 
3581 	space_args.total_spaces = 0;
3582 	dest = kmalloc(alloc_size, GFP_KERNEL);
3583 	if (!dest)
3584 		return -ENOMEM;
3585 	dest_orig = dest;
3586 
3587 	/* now we have a buffer to copy into */
3588 	for (i = 0; i < num_types; i++) {
3589 		struct btrfs_space_info *tmp;
3590 
3591 		if (!slot_count)
3592 			break;
3593 
3594 		info = NULL;
3595 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3596 			if (tmp->flags == types[i]) {
3597 				info = tmp;
3598 				break;
3599 			}
3600 		}
3601 
3602 		if (!info)
3603 			continue;
3604 		down_read(&info->groups_sem);
3605 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3606 			if (!list_empty(&info->block_groups[c])) {
3607 				get_block_group_info(&info->block_groups[c],
3608 						     &space);
3609 				memcpy(dest, &space, sizeof(space));
3610 				dest++;
3611 				space_args.total_spaces++;
3612 				slot_count--;
3613 			}
3614 			if (!slot_count)
3615 				break;
3616 		}
3617 		up_read(&info->groups_sem);
3618 	}
3619 
3620 	/*
3621 	 * Add global block reserve
3622 	 */
3623 	if (slot_count) {
3624 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3625 
3626 		spin_lock(&block_rsv->lock);
3627 		space.total_bytes = block_rsv->size;
3628 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3629 		spin_unlock(&block_rsv->lock);
3630 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3631 		memcpy(dest, &space, sizeof(space));
3632 		space_args.total_spaces++;
3633 	}
3634 
3635 	user_dest = (struct btrfs_ioctl_space_info __user *)
3636 		(arg + sizeof(struct btrfs_ioctl_space_args));
3637 
3638 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3639 		ret = -EFAULT;
3640 
3641 	kfree(dest_orig);
3642 out:
3643 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3644 		ret = -EFAULT;
3645 
3646 	return ret;
3647 }
3648 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3649 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3650 					    void __user *argp)
3651 {
3652 	struct btrfs_trans_handle *trans;
3653 	u64 transid;
3654 	int ret;
3655 
3656 	trans = btrfs_attach_transaction_barrier(root);
3657 	if (IS_ERR(trans)) {
3658 		if (PTR_ERR(trans) != -ENOENT)
3659 			return PTR_ERR(trans);
3660 
3661 		/* No running transaction, don't bother */
3662 		transid = root->fs_info->last_trans_committed;
3663 		goto out;
3664 	}
3665 	transid = trans->transid;
3666 	ret = btrfs_commit_transaction_async(trans, 0);
3667 	if (ret) {
3668 		btrfs_end_transaction(trans);
3669 		return ret;
3670 	}
3671 out:
3672 	if (argp)
3673 		if (copy_to_user(argp, &transid, sizeof(transid)))
3674 			return -EFAULT;
3675 	return 0;
3676 }
3677 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3678 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3679 					   void __user *argp)
3680 {
3681 	u64 transid;
3682 
3683 	if (argp) {
3684 		if (copy_from_user(&transid, argp, sizeof(transid)))
3685 			return -EFAULT;
3686 	} else {
3687 		transid = 0;  /* current trans */
3688 	}
3689 	return btrfs_wait_for_commit(fs_info, transid);
3690 }
3691 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3692 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3693 {
3694 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3695 	struct btrfs_ioctl_scrub_args *sa;
3696 	int ret;
3697 
3698 	if (!capable(CAP_SYS_ADMIN))
3699 		return -EPERM;
3700 
3701 	sa = memdup_user(arg, sizeof(*sa));
3702 	if (IS_ERR(sa))
3703 		return PTR_ERR(sa);
3704 
3705 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3706 		ret = mnt_want_write_file(file);
3707 		if (ret)
3708 			goto out;
3709 	}
3710 
3711 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3712 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3713 			      0);
3714 
3715 	/*
3716 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3717 	 * error. This is important as it allows user space to know how much
3718 	 * progress scrub has done. For example, if scrub is canceled we get
3719 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3720 	 * space. Later user space can inspect the progress from the structure
3721 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3722 	 * previously (btrfs-progs does this).
3723 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3724 	 * then return -EFAULT to signal the structure was not copied or it may
3725 	 * be corrupt and unreliable due to a partial copy.
3726 	 */
3727 	if (copy_to_user(arg, sa, sizeof(*sa)))
3728 		ret = -EFAULT;
3729 
3730 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3731 		mnt_drop_write_file(file);
3732 out:
3733 	kfree(sa);
3734 	return ret;
3735 }
3736 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3737 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3738 {
3739 	if (!capable(CAP_SYS_ADMIN))
3740 		return -EPERM;
3741 
3742 	return btrfs_scrub_cancel(fs_info);
3743 }
3744 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3745 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3746 				       void __user *arg)
3747 {
3748 	struct btrfs_ioctl_scrub_args *sa;
3749 	int ret;
3750 
3751 	if (!capable(CAP_SYS_ADMIN))
3752 		return -EPERM;
3753 
3754 	sa = memdup_user(arg, sizeof(*sa));
3755 	if (IS_ERR(sa))
3756 		return PTR_ERR(sa);
3757 
3758 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3759 
3760 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3761 		ret = -EFAULT;
3762 
3763 	kfree(sa);
3764 	return ret;
3765 }
3766 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3767 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3768 				      void __user *arg)
3769 {
3770 	struct btrfs_ioctl_get_dev_stats *sa;
3771 	int ret;
3772 
3773 	sa = memdup_user(arg, sizeof(*sa));
3774 	if (IS_ERR(sa))
3775 		return PTR_ERR(sa);
3776 
3777 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3778 		kfree(sa);
3779 		return -EPERM;
3780 	}
3781 
3782 	ret = btrfs_get_dev_stats(fs_info, sa);
3783 
3784 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3785 		ret = -EFAULT;
3786 
3787 	kfree(sa);
3788 	return ret;
3789 }
3790 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3791 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3792 				    void __user *arg)
3793 {
3794 	struct btrfs_ioctl_dev_replace_args *p;
3795 	int ret;
3796 
3797 	if (!capable(CAP_SYS_ADMIN))
3798 		return -EPERM;
3799 
3800 	p = memdup_user(arg, sizeof(*p));
3801 	if (IS_ERR(p))
3802 		return PTR_ERR(p);
3803 
3804 	switch (p->cmd) {
3805 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3806 		if (sb_rdonly(fs_info->sb)) {
3807 			ret = -EROFS;
3808 			goto out;
3809 		}
3810 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3811 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3812 		} else {
3813 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3814 			btrfs_exclop_finish(fs_info);
3815 		}
3816 		break;
3817 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3818 		btrfs_dev_replace_status(fs_info, p);
3819 		ret = 0;
3820 		break;
3821 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3822 		p->result = btrfs_dev_replace_cancel(fs_info);
3823 		ret = 0;
3824 		break;
3825 	default:
3826 		ret = -EINVAL;
3827 		break;
3828 	}
3829 
3830 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3831 		ret = -EFAULT;
3832 out:
3833 	kfree(p);
3834 	return ret;
3835 }
3836 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3837 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3838 {
3839 	int ret = 0;
3840 	int i;
3841 	u64 rel_ptr;
3842 	int size;
3843 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3844 	struct inode_fs_paths *ipath = NULL;
3845 	struct btrfs_path *path;
3846 
3847 	if (!capable(CAP_DAC_READ_SEARCH))
3848 		return -EPERM;
3849 
3850 	path = btrfs_alloc_path();
3851 	if (!path) {
3852 		ret = -ENOMEM;
3853 		goto out;
3854 	}
3855 
3856 	ipa = memdup_user(arg, sizeof(*ipa));
3857 	if (IS_ERR(ipa)) {
3858 		ret = PTR_ERR(ipa);
3859 		ipa = NULL;
3860 		goto out;
3861 	}
3862 
3863 	size = min_t(u32, ipa->size, 4096);
3864 	ipath = init_ipath(size, root, path);
3865 	if (IS_ERR(ipath)) {
3866 		ret = PTR_ERR(ipath);
3867 		ipath = NULL;
3868 		goto out;
3869 	}
3870 
3871 	ret = paths_from_inode(ipa->inum, ipath);
3872 	if (ret < 0)
3873 		goto out;
3874 
3875 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3876 		rel_ptr = ipath->fspath->val[i] -
3877 			  (u64)(unsigned long)ipath->fspath->val;
3878 		ipath->fspath->val[i] = rel_ptr;
3879 	}
3880 
3881 	btrfs_free_path(path);
3882 	path = NULL;
3883 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3884 			   ipath->fspath, size);
3885 	if (ret) {
3886 		ret = -EFAULT;
3887 		goto out;
3888 	}
3889 
3890 out:
3891 	btrfs_free_path(path);
3892 	free_ipath(ipath);
3893 	kfree(ipa);
3894 
3895 	return ret;
3896 }
3897 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3898 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3899 					void __user *arg, int version)
3900 {
3901 	int ret = 0;
3902 	int size;
3903 	struct btrfs_ioctl_logical_ino_args *loi;
3904 	struct btrfs_data_container *inodes = NULL;
3905 	struct btrfs_path *path = NULL;
3906 	bool ignore_offset;
3907 
3908 	if (!capable(CAP_SYS_ADMIN))
3909 		return -EPERM;
3910 
3911 	loi = memdup_user(arg, sizeof(*loi));
3912 	if (IS_ERR(loi))
3913 		return PTR_ERR(loi);
3914 
3915 	if (version == 1) {
3916 		ignore_offset = false;
3917 		size = min_t(u32, loi->size, SZ_64K);
3918 	} else {
3919 		/* All reserved bits must be 0 for now */
3920 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3921 			ret = -EINVAL;
3922 			goto out_loi;
3923 		}
3924 		/* Only accept flags we have defined so far */
3925 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3926 			ret = -EINVAL;
3927 			goto out_loi;
3928 		}
3929 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3930 		size = min_t(u32, loi->size, SZ_16M);
3931 	}
3932 
3933 	inodes = init_data_container(size);
3934 	if (IS_ERR(inodes)) {
3935 		ret = PTR_ERR(inodes);
3936 		goto out_loi;
3937 	}
3938 
3939 	path = btrfs_alloc_path();
3940 	if (!path) {
3941 		ret = -ENOMEM;
3942 		goto out;
3943 	}
3944 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3945 					  inodes, ignore_offset);
3946 	btrfs_free_path(path);
3947 	if (ret == -EINVAL)
3948 		ret = -ENOENT;
3949 	if (ret < 0)
3950 		goto out;
3951 
3952 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3953 			   size);
3954 	if (ret)
3955 		ret = -EFAULT;
3956 
3957 out:
3958 	kvfree(inodes);
3959 out_loi:
3960 	kfree(loi);
3961 
3962 	return ret;
3963 }
3964 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3965 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3966 			       struct btrfs_ioctl_balance_args *bargs)
3967 {
3968 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3969 
3970 	bargs->flags = bctl->flags;
3971 
3972 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3973 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3974 	if (atomic_read(&fs_info->balance_pause_req))
3975 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3976 	if (atomic_read(&fs_info->balance_cancel_req))
3977 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3978 
3979 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3980 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3981 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3982 
3983 	spin_lock(&fs_info->balance_lock);
3984 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3985 	spin_unlock(&fs_info->balance_lock);
3986 }
3987 
btrfs_ioctl_balance(struct file * file,void __user * arg)3988 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3989 {
3990 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3991 	struct btrfs_fs_info *fs_info = root->fs_info;
3992 	struct btrfs_ioctl_balance_args *bargs;
3993 	struct btrfs_balance_control *bctl;
3994 	bool need_unlock; /* for mut. excl. ops lock */
3995 	int ret;
3996 
3997 	if (!capable(CAP_SYS_ADMIN))
3998 		return -EPERM;
3999 
4000 	ret = mnt_want_write_file(file);
4001 	if (ret)
4002 		return ret;
4003 
4004 again:
4005 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4006 		mutex_lock(&fs_info->balance_mutex);
4007 		need_unlock = true;
4008 		goto locked;
4009 	}
4010 
4011 	/*
4012 	 * mut. excl. ops lock is locked.  Three possibilities:
4013 	 *   (1) some other op is running
4014 	 *   (2) balance is running
4015 	 *   (3) balance is paused -- special case (think resume)
4016 	 */
4017 	mutex_lock(&fs_info->balance_mutex);
4018 	if (fs_info->balance_ctl) {
4019 		/* this is either (2) or (3) */
4020 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4021 			mutex_unlock(&fs_info->balance_mutex);
4022 			/*
4023 			 * Lock released to allow other waiters to continue,
4024 			 * we'll reexamine the status again.
4025 			 */
4026 			mutex_lock(&fs_info->balance_mutex);
4027 
4028 			if (fs_info->balance_ctl &&
4029 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4030 				/* this is (3) */
4031 				need_unlock = false;
4032 				goto locked;
4033 			}
4034 
4035 			mutex_unlock(&fs_info->balance_mutex);
4036 			goto again;
4037 		} else {
4038 			/* this is (2) */
4039 			mutex_unlock(&fs_info->balance_mutex);
4040 			ret = -EINPROGRESS;
4041 			goto out;
4042 		}
4043 	} else {
4044 		/* this is (1) */
4045 		mutex_unlock(&fs_info->balance_mutex);
4046 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4047 		goto out;
4048 	}
4049 
4050 locked:
4051 
4052 	if (arg) {
4053 		bargs = memdup_user(arg, sizeof(*bargs));
4054 		if (IS_ERR(bargs)) {
4055 			ret = PTR_ERR(bargs);
4056 			goto out_unlock;
4057 		}
4058 
4059 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4060 			if (!fs_info->balance_ctl) {
4061 				ret = -ENOTCONN;
4062 				goto out_bargs;
4063 			}
4064 
4065 			bctl = fs_info->balance_ctl;
4066 			spin_lock(&fs_info->balance_lock);
4067 			bctl->flags |= BTRFS_BALANCE_RESUME;
4068 			spin_unlock(&fs_info->balance_lock);
4069 
4070 			goto do_balance;
4071 		}
4072 	} else {
4073 		bargs = NULL;
4074 	}
4075 
4076 	if (fs_info->balance_ctl) {
4077 		ret = -EINPROGRESS;
4078 		goto out_bargs;
4079 	}
4080 
4081 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4082 	if (!bctl) {
4083 		ret = -ENOMEM;
4084 		goto out_bargs;
4085 	}
4086 
4087 	if (arg) {
4088 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4089 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4090 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4091 
4092 		bctl->flags = bargs->flags;
4093 	} else {
4094 		/* balance everything - no filters */
4095 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4096 	}
4097 
4098 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4099 		ret = -EINVAL;
4100 		goto out_bctl;
4101 	}
4102 
4103 do_balance:
4104 	/*
4105 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4106 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4107 	 * all the way until unmount, in free_fs_info.  The flag should be
4108 	 * cleared after reset_balance_state.
4109 	 */
4110 	need_unlock = false;
4111 
4112 	ret = btrfs_balance(fs_info, bctl, bargs);
4113 	bctl = NULL;
4114 
4115 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4116 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4117 			ret = -EFAULT;
4118 	}
4119 
4120 out_bctl:
4121 	kfree(bctl);
4122 out_bargs:
4123 	kfree(bargs);
4124 out_unlock:
4125 	mutex_unlock(&fs_info->balance_mutex);
4126 	if (need_unlock)
4127 		btrfs_exclop_finish(fs_info);
4128 out:
4129 	mnt_drop_write_file(file);
4130 	return ret;
4131 }
4132 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4133 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4134 {
4135 	if (!capable(CAP_SYS_ADMIN))
4136 		return -EPERM;
4137 
4138 	switch (cmd) {
4139 	case BTRFS_BALANCE_CTL_PAUSE:
4140 		return btrfs_pause_balance(fs_info);
4141 	case BTRFS_BALANCE_CTL_CANCEL:
4142 		return btrfs_cancel_balance(fs_info);
4143 	}
4144 
4145 	return -EINVAL;
4146 }
4147 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4148 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4149 					 void __user *arg)
4150 {
4151 	struct btrfs_ioctl_balance_args *bargs;
4152 	int ret = 0;
4153 
4154 	if (!capable(CAP_SYS_ADMIN))
4155 		return -EPERM;
4156 
4157 	mutex_lock(&fs_info->balance_mutex);
4158 	if (!fs_info->balance_ctl) {
4159 		ret = -ENOTCONN;
4160 		goto out;
4161 	}
4162 
4163 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4164 	if (!bargs) {
4165 		ret = -ENOMEM;
4166 		goto out;
4167 	}
4168 
4169 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4170 
4171 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4172 		ret = -EFAULT;
4173 
4174 	kfree(bargs);
4175 out:
4176 	mutex_unlock(&fs_info->balance_mutex);
4177 	return ret;
4178 }
4179 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4180 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4181 {
4182 	struct inode *inode = file_inode(file);
4183 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4184 	struct btrfs_ioctl_quota_ctl_args *sa;
4185 	int ret;
4186 
4187 	if (!capable(CAP_SYS_ADMIN))
4188 		return -EPERM;
4189 
4190 	ret = mnt_want_write_file(file);
4191 	if (ret)
4192 		return ret;
4193 
4194 	sa = memdup_user(arg, sizeof(*sa));
4195 	if (IS_ERR(sa)) {
4196 		ret = PTR_ERR(sa);
4197 		goto drop_write;
4198 	}
4199 
4200 	down_write(&fs_info->subvol_sem);
4201 
4202 	switch (sa->cmd) {
4203 	case BTRFS_QUOTA_CTL_ENABLE:
4204 		ret = btrfs_quota_enable(fs_info);
4205 		break;
4206 	case BTRFS_QUOTA_CTL_DISABLE:
4207 		ret = btrfs_quota_disable(fs_info);
4208 		break;
4209 	default:
4210 		ret = -EINVAL;
4211 		break;
4212 	}
4213 
4214 	kfree(sa);
4215 	up_write(&fs_info->subvol_sem);
4216 drop_write:
4217 	mnt_drop_write_file(file);
4218 	return ret;
4219 }
4220 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4221 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4222 {
4223 	struct inode *inode = file_inode(file);
4224 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4225 	struct btrfs_root *root = BTRFS_I(inode)->root;
4226 	struct btrfs_ioctl_qgroup_assign_args *sa;
4227 	struct btrfs_trans_handle *trans;
4228 	int ret;
4229 	int err;
4230 
4231 	if (!capable(CAP_SYS_ADMIN))
4232 		return -EPERM;
4233 
4234 	ret = mnt_want_write_file(file);
4235 	if (ret)
4236 		return ret;
4237 
4238 	sa = memdup_user(arg, sizeof(*sa));
4239 	if (IS_ERR(sa)) {
4240 		ret = PTR_ERR(sa);
4241 		goto drop_write;
4242 	}
4243 
4244 	trans = btrfs_join_transaction(root);
4245 	if (IS_ERR(trans)) {
4246 		ret = PTR_ERR(trans);
4247 		goto out;
4248 	}
4249 
4250 	if (sa->assign) {
4251 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4252 	} else {
4253 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4254 	}
4255 
4256 	/* update qgroup status and info */
4257 	mutex_lock(&fs_info->qgroup_ioctl_lock);
4258 	err = btrfs_run_qgroups(trans);
4259 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
4260 	if (err < 0)
4261 		btrfs_handle_fs_error(fs_info, err,
4262 				      "failed to update qgroup status and info");
4263 	err = btrfs_end_transaction(trans);
4264 	if (err && !ret)
4265 		ret = err;
4266 
4267 out:
4268 	kfree(sa);
4269 drop_write:
4270 	mnt_drop_write_file(file);
4271 	return ret;
4272 }
4273 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4274 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4275 {
4276 	struct inode *inode = file_inode(file);
4277 	struct btrfs_root *root = BTRFS_I(inode)->root;
4278 	struct btrfs_ioctl_qgroup_create_args *sa;
4279 	struct btrfs_trans_handle *trans;
4280 	int ret;
4281 	int err;
4282 
4283 	if (!capable(CAP_SYS_ADMIN))
4284 		return -EPERM;
4285 
4286 	ret = mnt_want_write_file(file);
4287 	if (ret)
4288 		return ret;
4289 
4290 	sa = memdup_user(arg, sizeof(*sa));
4291 	if (IS_ERR(sa)) {
4292 		ret = PTR_ERR(sa);
4293 		goto drop_write;
4294 	}
4295 
4296 	if (!sa->qgroupid) {
4297 		ret = -EINVAL;
4298 		goto out;
4299 	}
4300 
4301 	trans = btrfs_join_transaction(root);
4302 	if (IS_ERR(trans)) {
4303 		ret = PTR_ERR(trans);
4304 		goto out;
4305 	}
4306 
4307 	if (sa->create) {
4308 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4309 	} else {
4310 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4311 	}
4312 
4313 	err = btrfs_end_transaction(trans);
4314 	if (err && !ret)
4315 		ret = err;
4316 
4317 out:
4318 	kfree(sa);
4319 drop_write:
4320 	mnt_drop_write_file(file);
4321 	return ret;
4322 }
4323 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4324 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4325 {
4326 	struct inode *inode = file_inode(file);
4327 	struct btrfs_root *root = BTRFS_I(inode)->root;
4328 	struct btrfs_ioctl_qgroup_limit_args *sa;
4329 	struct btrfs_trans_handle *trans;
4330 	int ret;
4331 	int err;
4332 	u64 qgroupid;
4333 
4334 	if (!capable(CAP_SYS_ADMIN))
4335 		return -EPERM;
4336 
4337 	ret = mnt_want_write_file(file);
4338 	if (ret)
4339 		return ret;
4340 
4341 	sa = memdup_user(arg, sizeof(*sa));
4342 	if (IS_ERR(sa)) {
4343 		ret = PTR_ERR(sa);
4344 		goto drop_write;
4345 	}
4346 
4347 	trans = btrfs_join_transaction(root);
4348 	if (IS_ERR(trans)) {
4349 		ret = PTR_ERR(trans);
4350 		goto out;
4351 	}
4352 
4353 	qgroupid = sa->qgroupid;
4354 	if (!qgroupid) {
4355 		/* take the current subvol as qgroup */
4356 		qgroupid = root->root_key.objectid;
4357 	}
4358 
4359 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4360 
4361 	err = btrfs_end_transaction(trans);
4362 	if (err && !ret)
4363 		ret = err;
4364 
4365 out:
4366 	kfree(sa);
4367 drop_write:
4368 	mnt_drop_write_file(file);
4369 	return ret;
4370 }
4371 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4372 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4373 {
4374 	struct inode *inode = file_inode(file);
4375 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4376 	struct btrfs_ioctl_quota_rescan_args *qsa;
4377 	int ret;
4378 
4379 	if (!capable(CAP_SYS_ADMIN))
4380 		return -EPERM;
4381 
4382 	ret = mnt_want_write_file(file);
4383 	if (ret)
4384 		return ret;
4385 
4386 	qsa = memdup_user(arg, sizeof(*qsa));
4387 	if (IS_ERR(qsa)) {
4388 		ret = PTR_ERR(qsa);
4389 		goto drop_write;
4390 	}
4391 
4392 	if (qsa->flags) {
4393 		ret = -EINVAL;
4394 		goto out;
4395 	}
4396 
4397 	ret = btrfs_qgroup_rescan(fs_info);
4398 
4399 out:
4400 	kfree(qsa);
4401 drop_write:
4402 	mnt_drop_write_file(file);
4403 	return ret;
4404 }
4405 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4406 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4407 						void __user *arg)
4408 {
4409 	struct btrfs_ioctl_quota_rescan_args *qsa;
4410 	int ret = 0;
4411 
4412 	if (!capable(CAP_SYS_ADMIN))
4413 		return -EPERM;
4414 
4415 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4416 	if (!qsa)
4417 		return -ENOMEM;
4418 
4419 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4420 		qsa->flags = 1;
4421 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4422 	}
4423 
4424 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4425 		ret = -EFAULT;
4426 
4427 	kfree(qsa);
4428 	return ret;
4429 }
4430 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4431 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4432 						void __user *arg)
4433 {
4434 	if (!capable(CAP_SYS_ADMIN))
4435 		return -EPERM;
4436 
4437 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4438 }
4439 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4440 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4441 					    struct btrfs_ioctl_received_subvol_args *sa)
4442 {
4443 	struct inode *inode = file_inode(file);
4444 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4445 	struct btrfs_root *root = BTRFS_I(inode)->root;
4446 	struct btrfs_root_item *root_item = &root->root_item;
4447 	struct btrfs_trans_handle *trans;
4448 	struct timespec64 ct = current_time(inode);
4449 	int ret = 0;
4450 	int received_uuid_changed;
4451 
4452 	if (!inode_owner_or_capable(inode))
4453 		return -EPERM;
4454 
4455 	ret = mnt_want_write_file(file);
4456 	if (ret < 0)
4457 		return ret;
4458 
4459 	down_write(&fs_info->subvol_sem);
4460 
4461 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4462 		ret = -EINVAL;
4463 		goto out;
4464 	}
4465 
4466 	if (btrfs_root_readonly(root)) {
4467 		ret = -EROFS;
4468 		goto out;
4469 	}
4470 
4471 	/*
4472 	 * 1 - root item
4473 	 * 2 - uuid items (received uuid + subvol uuid)
4474 	 */
4475 	trans = btrfs_start_transaction(root, 3);
4476 	if (IS_ERR(trans)) {
4477 		ret = PTR_ERR(trans);
4478 		trans = NULL;
4479 		goto out;
4480 	}
4481 
4482 	sa->rtransid = trans->transid;
4483 	sa->rtime.sec = ct.tv_sec;
4484 	sa->rtime.nsec = ct.tv_nsec;
4485 
4486 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4487 				       BTRFS_UUID_SIZE);
4488 	if (received_uuid_changed &&
4489 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4490 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4491 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4492 					  root->root_key.objectid);
4493 		if (ret && ret != -ENOENT) {
4494 		        btrfs_abort_transaction(trans, ret);
4495 		        btrfs_end_transaction(trans);
4496 		        goto out;
4497 		}
4498 	}
4499 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4500 	btrfs_set_root_stransid(root_item, sa->stransid);
4501 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4502 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4503 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4504 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4505 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4506 
4507 	ret = btrfs_update_root(trans, fs_info->tree_root,
4508 				&root->root_key, &root->root_item);
4509 	if (ret < 0) {
4510 		btrfs_end_transaction(trans);
4511 		goto out;
4512 	}
4513 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4514 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4515 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4516 					  root->root_key.objectid);
4517 		if (ret < 0 && ret != -EEXIST) {
4518 			btrfs_abort_transaction(trans, ret);
4519 			btrfs_end_transaction(trans);
4520 			goto out;
4521 		}
4522 	}
4523 	ret = btrfs_commit_transaction(trans);
4524 out:
4525 	up_write(&fs_info->subvol_sem);
4526 	mnt_drop_write_file(file);
4527 	return ret;
4528 }
4529 
4530 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4531 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4532 						void __user *arg)
4533 {
4534 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4535 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4536 	int ret = 0;
4537 
4538 	args32 = memdup_user(arg, sizeof(*args32));
4539 	if (IS_ERR(args32))
4540 		return PTR_ERR(args32);
4541 
4542 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4543 	if (!args64) {
4544 		ret = -ENOMEM;
4545 		goto out;
4546 	}
4547 
4548 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4549 	args64->stransid = args32->stransid;
4550 	args64->rtransid = args32->rtransid;
4551 	args64->stime.sec = args32->stime.sec;
4552 	args64->stime.nsec = args32->stime.nsec;
4553 	args64->rtime.sec = args32->rtime.sec;
4554 	args64->rtime.nsec = args32->rtime.nsec;
4555 	args64->flags = args32->flags;
4556 
4557 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4558 	if (ret)
4559 		goto out;
4560 
4561 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4562 	args32->stransid = args64->stransid;
4563 	args32->rtransid = args64->rtransid;
4564 	args32->stime.sec = args64->stime.sec;
4565 	args32->stime.nsec = args64->stime.nsec;
4566 	args32->rtime.sec = args64->rtime.sec;
4567 	args32->rtime.nsec = args64->rtime.nsec;
4568 	args32->flags = args64->flags;
4569 
4570 	ret = copy_to_user(arg, args32, sizeof(*args32));
4571 	if (ret)
4572 		ret = -EFAULT;
4573 
4574 out:
4575 	kfree(args32);
4576 	kfree(args64);
4577 	return ret;
4578 }
4579 #endif
4580 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4581 static long btrfs_ioctl_set_received_subvol(struct file *file,
4582 					    void __user *arg)
4583 {
4584 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4585 	int ret = 0;
4586 
4587 	sa = memdup_user(arg, sizeof(*sa));
4588 	if (IS_ERR(sa))
4589 		return PTR_ERR(sa);
4590 
4591 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4592 
4593 	if (ret)
4594 		goto out;
4595 
4596 	ret = copy_to_user(arg, sa, sizeof(*sa));
4597 	if (ret)
4598 		ret = -EFAULT;
4599 
4600 out:
4601 	kfree(sa);
4602 	return ret;
4603 }
4604 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4605 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4606 					void __user *arg)
4607 {
4608 	size_t len;
4609 	int ret;
4610 	char label[BTRFS_LABEL_SIZE];
4611 
4612 	spin_lock(&fs_info->super_lock);
4613 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4614 	spin_unlock(&fs_info->super_lock);
4615 
4616 	len = strnlen(label, BTRFS_LABEL_SIZE);
4617 
4618 	if (len == BTRFS_LABEL_SIZE) {
4619 		btrfs_warn(fs_info,
4620 			   "label is too long, return the first %zu bytes",
4621 			   --len);
4622 	}
4623 
4624 	ret = copy_to_user(arg, label, len);
4625 
4626 	return ret ? -EFAULT : 0;
4627 }
4628 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4629 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4630 {
4631 	struct inode *inode = file_inode(file);
4632 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4633 	struct btrfs_root *root = BTRFS_I(inode)->root;
4634 	struct btrfs_super_block *super_block = fs_info->super_copy;
4635 	struct btrfs_trans_handle *trans;
4636 	char label[BTRFS_LABEL_SIZE];
4637 	int ret;
4638 
4639 	if (!capable(CAP_SYS_ADMIN))
4640 		return -EPERM;
4641 
4642 	if (copy_from_user(label, arg, sizeof(label)))
4643 		return -EFAULT;
4644 
4645 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4646 		btrfs_err(fs_info,
4647 			  "unable to set label with more than %d bytes",
4648 			  BTRFS_LABEL_SIZE - 1);
4649 		return -EINVAL;
4650 	}
4651 
4652 	ret = mnt_want_write_file(file);
4653 	if (ret)
4654 		return ret;
4655 
4656 	trans = btrfs_start_transaction(root, 0);
4657 	if (IS_ERR(trans)) {
4658 		ret = PTR_ERR(trans);
4659 		goto out_unlock;
4660 	}
4661 
4662 	spin_lock(&fs_info->super_lock);
4663 	strcpy(super_block->label, label);
4664 	spin_unlock(&fs_info->super_lock);
4665 	ret = btrfs_commit_transaction(trans);
4666 
4667 out_unlock:
4668 	mnt_drop_write_file(file);
4669 	return ret;
4670 }
4671 
4672 #define INIT_FEATURE_FLAGS(suffix) \
4673 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4674 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4675 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4676 
btrfs_ioctl_get_supported_features(void __user * arg)4677 int btrfs_ioctl_get_supported_features(void __user *arg)
4678 {
4679 	static const struct btrfs_ioctl_feature_flags features[3] = {
4680 		INIT_FEATURE_FLAGS(SUPP),
4681 		INIT_FEATURE_FLAGS(SAFE_SET),
4682 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4683 	};
4684 
4685 	if (copy_to_user(arg, &features, sizeof(features)))
4686 		return -EFAULT;
4687 
4688 	return 0;
4689 }
4690 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4691 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4692 					void __user *arg)
4693 {
4694 	struct btrfs_super_block *super_block = fs_info->super_copy;
4695 	struct btrfs_ioctl_feature_flags features;
4696 
4697 	features.compat_flags = btrfs_super_compat_flags(super_block);
4698 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4699 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4700 
4701 	if (copy_to_user(arg, &features, sizeof(features)))
4702 		return -EFAULT;
4703 
4704 	return 0;
4705 }
4706 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4707 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4708 			      enum btrfs_feature_set set,
4709 			      u64 change_mask, u64 flags, u64 supported_flags,
4710 			      u64 safe_set, u64 safe_clear)
4711 {
4712 	const char *type = btrfs_feature_set_name(set);
4713 	char *names;
4714 	u64 disallowed, unsupported;
4715 	u64 set_mask = flags & change_mask;
4716 	u64 clear_mask = ~flags & change_mask;
4717 
4718 	unsupported = set_mask & ~supported_flags;
4719 	if (unsupported) {
4720 		names = btrfs_printable_features(set, unsupported);
4721 		if (names) {
4722 			btrfs_warn(fs_info,
4723 				   "this kernel does not support the %s feature bit%s",
4724 				   names, strchr(names, ',') ? "s" : "");
4725 			kfree(names);
4726 		} else
4727 			btrfs_warn(fs_info,
4728 				   "this kernel does not support %s bits 0x%llx",
4729 				   type, unsupported);
4730 		return -EOPNOTSUPP;
4731 	}
4732 
4733 	disallowed = set_mask & ~safe_set;
4734 	if (disallowed) {
4735 		names = btrfs_printable_features(set, disallowed);
4736 		if (names) {
4737 			btrfs_warn(fs_info,
4738 				   "can't set the %s feature bit%s while mounted",
4739 				   names, strchr(names, ',') ? "s" : "");
4740 			kfree(names);
4741 		} else
4742 			btrfs_warn(fs_info,
4743 				   "can't set %s bits 0x%llx while mounted",
4744 				   type, disallowed);
4745 		return -EPERM;
4746 	}
4747 
4748 	disallowed = clear_mask & ~safe_clear;
4749 	if (disallowed) {
4750 		names = btrfs_printable_features(set, disallowed);
4751 		if (names) {
4752 			btrfs_warn(fs_info,
4753 				   "can't clear the %s feature bit%s while mounted",
4754 				   names, strchr(names, ',') ? "s" : "");
4755 			kfree(names);
4756 		} else
4757 			btrfs_warn(fs_info,
4758 				   "can't clear %s bits 0x%llx while mounted",
4759 				   type, disallowed);
4760 		return -EPERM;
4761 	}
4762 
4763 	return 0;
4764 }
4765 
4766 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4767 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4768 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4769 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4770 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4771 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4772 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4773 {
4774 	struct inode *inode = file_inode(file);
4775 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4776 	struct btrfs_root *root = BTRFS_I(inode)->root;
4777 	struct btrfs_super_block *super_block = fs_info->super_copy;
4778 	struct btrfs_ioctl_feature_flags flags[2];
4779 	struct btrfs_trans_handle *trans;
4780 	u64 newflags;
4781 	int ret;
4782 
4783 	if (!capable(CAP_SYS_ADMIN))
4784 		return -EPERM;
4785 
4786 	if (copy_from_user(flags, arg, sizeof(flags)))
4787 		return -EFAULT;
4788 
4789 	/* Nothing to do */
4790 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4791 	    !flags[0].incompat_flags)
4792 		return 0;
4793 
4794 	ret = check_feature(fs_info, flags[0].compat_flags,
4795 			    flags[1].compat_flags, COMPAT);
4796 	if (ret)
4797 		return ret;
4798 
4799 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4800 			    flags[1].compat_ro_flags, COMPAT_RO);
4801 	if (ret)
4802 		return ret;
4803 
4804 	ret = check_feature(fs_info, flags[0].incompat_flags,
4805 			    flags[1].incompat_flags, INCOMPAT);
4806 	if (ret)
4807 		return ret;
4808 
4809 	ret = mnt_want_write_file(file);
4810 	if (ret)
4811 		return ret;
4812 
4813 	trans = btrfs_start_transaction(root, 0);
4814 	if (IS_ERR(trans)) {
4815 		ret = PTR_ERR(trans);
4816 		goto out_drop_write;
4817 	}
4818 
4819 	spin_lock(&fs_info->super_lock);
4820 	newflags = btrfs_super_compat_flags(super_block);
4821 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4822 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4823 	btrfs_set_super_compat_flags(super_block, newflags);
4824 
4825 	newflags = btrfs_super_compat_ro_flags(super_block);
4826 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4827 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4828 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4829 
4830 	newflags = btrfs_super_incompat_flags(super_block);
4831 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4832 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4833 	btrfs_set_super_incompat_flags(super_block, newflags);
4834 	spin_unlock(&fs_info->super_lock);
4835 
4836 	ret = btrfs_commit_transaction(trans);
4837 out_drop_write:
4838 	mnt_drop_write_file(file);
4839 
4840 	return ret;
4841 }
4842 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4843 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4844 {
4845 	struct btrfs_ioctl_send_args *arg;
4846 	int ret;
4847 
4848 	if (compat) {
4849 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4850 		struct btrfs_ioctl_send_args_32 args32;
4851 
4852 		ret = copy_from_user(&args32, argp, sizeof(args32));
4853 		if (ret)
4854 			return -EFAULT;
4855 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4856 		if (!arg)
4857 			return -ENOMEM;
4858 		arg->send_fd = args32.send_fd;
4859 		arg->clone_sources_count = args32.clone_sources_count;
4860 		arg->clone_sources = compat_ptr(args32.clone_sources);
4861 		arg->parent_root = args32.parent_root;
4862 		arg->flags = args32.flags;
4863 		memcpy(arg->reserved, args32.reserved,
4864 		       sizeof(args32.reserved));
4865 #else
4866 		return -ENOTTY;
4867 #endif
4868 	} else {
4869 		arg = memdup_user(argp, sizeof(*arg));
4870 		if (IS_ERR(arg))
4871 			return PTR_ERR(arg);
4872 	}
4873 	ret = btrfs_ioctl_send(file, arg);
4874 	kfree(arg);
4875 	return ret;
4876 }
4877 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4878 long btrfs_ioctl(struct file *file, unsigned int
4879 		cmd, unsigned long arg)
4880 {
4881 	struct inode *inode = file_inode(file);
4882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4883 	struct btrfs_root *root = BTRFS_I(inode)->root;
4884 	void __user *argp = (void __user *)arg;
4885 
4886 	switch (cmd) {
4887 	case FS_IOC_GETFLAGS:
4888 		return btrfs_ioctl_getflags(file, argp);
4889 	case FS_IOC_SETFLAGS:
4890 		return btrfs_ioctl_setflags(file, argp);
4891 	case FS_IOC_GETVERSION:
4892 		return btrfs_ioctl_getversion(file, argp);
4893 	case FS_IOC_GETFSLABEL:
4894 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4895 	case FS_IOC_SETFSLABEL:
4896 		return btrfs_ioctl_set_fslabel(file, argp);
4897 	case FITRIM:
4898 		return btrfs_ioctl_fitrim(fs_info, argp);
4899 	case BTRFS_IOC_SNAP_CREATE:
4900 		return btrfs_ioctl_snap_create(file, argp, 0);
4901 	case BTRFS_IOC_SNAP_CREATE_V2:
4902 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4903 	case BTRFS_IOC_SUBVOL_CREATE:
4904 		return btrfs_ioctl_snap_create(file, argp, 1);
4905 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4906 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4907 	case BTRFS_IOC_SNAP_DESTROY:
4908 		return btrfs_ioctl_snap_destroy(file, argp, false);
4909 	case BTRFS_IOC_SNAP_DESTROY_V2:
4910 		return btrfs_ioctl_snap_destroy(file, argp, true);
4911 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4912 		return btrfs_ioctl_subvol_getflags(file, argp);
4913 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4914 		return btrfs_ioctl_subvol_setflags(file, argp);
4915 	case BTRFS_IOC_DEFAULT_SUBVOL:
4916 		return btrfs_ioctl_default_subvol(file, argp);
4917 	case BTRFS_IOC_DEFRAG:
4918 		return btrfs_ioctl_defrag(file, NULL);
4919 	case BTRFS_IOC_DEFRAG_RANGE:
4920 		return btrfs_ioctl_defrag(file, argp);
4921 	case BTRFS_IOC_RESIZE:
4922 		return btrfs_ioctl_resize(file, argp);
4923 	case BTRFS_IOC_ADD_DEV:
4924 		return btrfs_ioctl_add_dev(fs_info, argp);
4925 	case BTRFS_IOC_RM_DEV:
4926 		return btrfs_ioctl_rm_dev(file, argp);
4927 	case BTRFS_IOC_RM_DEV_V2:
4928 		return btrfs_ioctl_rm_dev_v2(file, argp);
4929 	case BTRFS_IOC_FS_INFO:
4930 		return btrfs_ioctl_fs_info(fs_info, argp);
4931 	case BTRFS_IOC_DEV_INFO:
4932 		return btrfs_ioctl_dev_info(fs_info, argp);
4933 	case BTRFS_IOC_BALANCE:
4934 		return btrfs_ioctl_balance(file, NULL);
4935 	case BTRFS_IOC_TREE_SEARCH:
4936 		return btrfs_ioctl_tree_search(file, argp);
4937 	case BTRFS_IOC_TREE_SEARCH_V2:
4938 		return btrfs_ioctl_tree_search_v2(file, argp);
4939 	case BTRFS_IOC_INO_LOOKUP:
4940 		return btrfs_ioctl_ino_lookup(file, argp);
4941 	case BTRFS_IOC_INO_PATHS:
4942 		return btrfs_ioctl_ino_to_path(root, argp);
4943 	case BTRFS_IOC_LOGICAL_INO:
4944 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4945 	case BTRFS_IOC_LOGICAL_INO_V2:
4946 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4947 	case BTRFS_IOC_SPACE_INFO:
4948 		return btrfs_ioctl_space_info(fs_info, argp);
4949 	case BTRFS_IOC_SYNC: {
4950 		int ret;
4951 
4952 		ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4953 		if (ret)
4954 			return ret;
4955 		ret = btrfs_sync_fs(inode->i_sb, 1);
4956 		/*
4957 		 * The transaction thread may want to do more work,
4958 		 * namely it pokes the cleaner kthread that will start
4959 		 * processing uncleaned subvols.
4960 		 */
4961 		wake_up_process(fs_info->transaction_kthread);
4962 		return ret;
4963 	}
4964 	case BTRFS_IOC_START_SYNC:
4965 		return btrfs_ioctl_start_sync(root, argp);
4966 	case BTRFS_IOC_WAIT_SYNC:
4967 		return btrfs_ioctl_wait_sync(fs_info, argp);
4968 	case BTRFS_IOC_SCRUB:
4969 		return btrfs_ioctl_scrub(file, argp);
4970 	case BTRFS_IOC_SCRUB_CANCEL:
4971 		return btrfs_ioctl_scrub_cancel(fs_info);
4972 	case BTRFS_IOC_SCRUB_PROGRESS:
4973 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4974 	case BTRFS_IOC_BALANCE_V2:
4975 		return btrfs_ioctl_balance(file, argp);
4976 	case BTRFS_IOC_BALANCE_CTL:
4977 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4978 	case BTRFS_IOC_BALANCE_PROGRESS:
4979 		return btrfs_ioctl_balance_progress(fs_info, argp);
4980 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4981 		return btrfs_ioctl_set_received_subvol(file, argp);
4982 #ifdef CONFIG_64BIT
4983 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4984 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4985 #endif
4986 	case BTRFS_IOC_SEND:
4987 		return _btrfs_ioctl_send(file, argp, false);
4988 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4989 	case BTRFS_IOC_SEND_32:
4990 		return _btrfs_ioctl_send(file, argp, true);
4991 #endif
4992 	case BTRFS_IOC_GET_DEV_STATS:
4993 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4994 	case BTRFS_IOC_QUOTA_CTL:
4995 		return btrfs_ioctl_quota_ctl(file, argp);
4996 	case BTRFS_IOC_QGROUP_ASSIGN:
4997 		return btrfs_ioctl_qgroup_assign(file, argp);
4998 	case BTRFS_IOC_QGROUP_CREATE:
4999 		return btrfs_ioctl_qgroup_create(file, argp);
5000 	case BTRFS_IOC_QGROUP_LIMIT:
5001 		return btrfs_ioctl_qgroup_limit(file, argp);
5002 	case BTRFS_IOC_QUOTA_RESCAN:
5003 		return btrfs_ioctl_quota_rescan(file, argp);
5004 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5005 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5006 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5007 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5008 	case BTRFS_IOC_DEV_REPLACE:
5009 		return btrfs_ioctl_dev_replace(fs_info, argp);
5010 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5011 		return btrfs_ioctl_get_supported_features(argp);
5012 	case BTRFS_IOC_GET_FEATURES:
5013 		return btrfs_ioctl_get_features(fs_info, argp);
5014 	case BTRFS_IOC_SET_FEATURES:
5015 		return btrfs_ioctl_set_features(file, argp);
5016 	case FS_IOC_FSGETXATTR:
5017 		return btrfs_ioctl_fsgetxattr(file, argp);
5018 	case FS_IOC_FSSETXATTR:
5019 		return btrfs_ioctl_fssetxattr(file, argp);
5020 	case BTRFS_IOC_GET_SUBVOL_INFO:
5021 		return btrfs_ioctl_get_subvol_info(file, argp);
5022 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5023 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5024 	case BTRFS_IOC_INO_LOOKUP_USER:
5025 		return btrfs_ioctl_ino_lookup_user(file, argp);
5026 	}
5027 
5028 	return -ENOTTY;
5029 }
5030 
5031 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5032 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5033 {
5034 	/*
5035 	 * These all access 32-bit values anyway so no further
5036 	 * handling is necessary.
5037 	 */
5038 	switch (cmd) {
5039 	case FS_IOC32_GETFLAGS:
5040 		cmd = FS_IOC_GETFLAGS;
5041 		break;
5042 	case FS_IOC32_SETFLAGS:
5043 		cmd = FS_IOC_SETFLAGS;
5044 		break;
5045 	case FS_IOC32_GETVERSION:
5046 		cmd = FS_IOC_GETVERSION;
5047 		break;
5048 	}
5049 
5050 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5051 }
5052 #endif
5053