• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	u64 gen;
222 
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 	/* used to track busy poll napi_id */
225 	unsigned int napi_id;
226 #endif
227 
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 	/* tracks wakeup nests for lockdep validation */
230 	u8 nests;
231 #endif
232 };
233 
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 	/* List header used to link this structure to the "struct epitem" */
237 	struct list_head llink;
238 
239 	/* The "base" pointer is set to the container "struct epitem" */
240 	struct epitem *base;
241 
242 	/*
243 	 * Wait queue item that will be linked to the target file wait
244 	 * queue head.
245 	 */
246 	wait_queue_entry_t wait;
247 
248 	/* The wait queue head that linked the "wait" wait queue item */
249 	wait_queue_head_t *whead;
250 };
251 
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 	poll_table pt;
255 	struct epitem *epi;
256 };
257 
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 	int maxevents;
261 	struct epoll_event __user *events;
262 	int res;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 static u64 loop_check_gen = 0;
277 
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280 
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283 
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286 
287 /*
288  * List of files with newly added links, where we may need to limit the number
289  * of emanating paths. Protected by the epmutex.
290  */
291 static LIST_HEAD(tfile_check_list);
292 
293 #ifdef CONFIG_SYSCTL
294 
295 #include <linux/sysctl.h>
296 
297 static long long_zero;
298 static long long_max = LONG_MAX;
299 
300 struct ctl_table epoll_table[] = {
301 	{
302 		.procname	= "max_user_watches",
303 		.data		= &max_user_watches,
304 		.maxlen		= sizeof(max_user_watches),
305 		.mode		= 0644,
306 		.proc_handler	= proc_doulongvec_minmax,
307 		.extra1		= &long_zero,
308 		.extra2		= &long_max,
309 	},
310 	{ }
311 };
312 #endif /* CONFIG_SYSCTL */
313 
314 static const struct file_operations eventpoll_fops;
315 
is_file_epoll(struct file * f)316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 	return !list_empty(&epi->rdllink);
341 }
342 
ep_pwq_from_wait(wait_queue_entry_t * p)343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 	return container_of(p, struct eppoll_entry, wait);
346 }
347 
348 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 	return container_of(p, struct eppoll_entry, wait)->base;
352 }
353 
354 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 	return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359 
360 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 	spin_lock_init(&ncalls->lock);
365 }
366 
367 /**
368  * ep_events_available - Checks if ready events might be available.
369  *
370  * @ep: Pointer to the eventpoll context.
371  *
372  * Returns: Returns a value different than zero if ready events are available,
373  *          or zero otherwise.
374  */
ep_events_available(struct eventpoll * ep)375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 	return !list_empty_careful(&ep->rdllist) ||
378 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380 
381 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 	struct eventpoll *ep = p;
385 
386 	return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388 
389 /*
390  * Busy poll if globally on and supporting sockets found && no events,
391  * busy loop will return if need_resched or ep_events_available.
392  *
393  * we must do our busy polling with irqs enabled
394  */
ep_busy_loop(struct eventpoll * ep,int nonblock)395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 	unsigned int napi_id = READ_ONCE(ep->napi_id);
398 
399 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
401 }
402 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
404 {
405 	if (ep->napi_id)
406 		ep->napi_id = 0;
407 }
408 
409 /*
410  * Set epoll busy poll NAPI ID from sk.
411  */
ep_set_busy_poll_napi_id(struct epitem * epi)412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
413 {
414 	struct eventpoll *ep;
415 	unsigned int napi_id;
416 	struct socket *sock;
417 	struct sock *sk;
418 	int err;
419 
420 	if (!net_busy_loop_on())
421 		return;
422 
423 	sock = sock_from_file(epi->ffd.file, &err);
424 	if (!sock)
425 		return;
426 
427 	sk = sock->sk;
428 	if (!sk)
429 		return;
430 
431 	napi_id = READ_ONCE(sk->sk_napi_id);
432 	ep = epi->ep;
433 
434 	/* Non-NAPI IDs can be rejected
435 	 *	or
436 	 * Nothing to do if we already have this ID
437 	 */
438 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
439 		return;
440 
441 	/* record NAPI ID for use in next busy poll */
442 	ep->napi_id = napi_id;
443 }
444 
445 #else
446 
ep_busy_loop(struct eventpoll * ep,int nonblock)447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448 {
449 }
450 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452 {
453 }
454 
ep_set_busy_poll_napi_id(struct epitem * epi)455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456 {
457 }
458 
459 #endif /* CONFIG_NET_RX_BUSY_POLL */
460 
461 /**
462  * ep_call_nested - Perform a bound (possibly) nested call, by checking
463  *                  that the recursion limit is not exceeded, and that
464  *                  the same nested call (by the meaning of same cookie) is
465  *                  no re-entered.
466  *
467  * @ncalls: Pointer to the nested_calls structure to be used for this call.
468  * @nproc: Nested call core function pointer.
469  * @priv: Opaque data to be passed to the @nproc callback.
470  * @cookie: Cookie to be used to identify this nested call.
471  * @ctx: This instance context.
472  *
473  * Returns: Returns the code returned by the @nproc callback, or -1 if
474  *          the maximum recursion limit has been exceeded.
475  */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)476 static int ep_call_nested(struct nested_calls *ncalls,
477 			  int (*nproc)(void *, void *, int), void *priv,
478 			  void *cookie, void *ctx)
479 {
480 	int error, call_nests = 0;
481 	unsigned long flags;
482 	struct list_head *lsthead = &ncalls->tasks_call_list;
483 	struct nested_call_node *tncur;
484 	struct nested_call_node tnode;
485 
486 	spin_lock_irqsave(&ncalls->lock, flags);
487 
488 	/*
489 	 * Try to see if the current task is already inside this wakeup call.
490 	 * We use a list here, since the population inside this set is always
491 	 * very much limited.
492 	 */
493 	list_for_each_entry(tncur, lsthead, llink) {
494 		if (tncur->ctx == ctx &&
495 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
496 			/*
497 			 * Ops ... loop detected or maximum nest level reached.
498 			 * We abort this wake by breaking the cycle itself.
499 			 */
500 			error = -1;
501 			goto out_unlock;
502 		}
503 	}
504 
505 	/* Add the current task and cookie to the list */
506 	tnode.ctx = ctx;
507 	tnode.cookie = cookie;
508 	list_add(&tnode.llink, lsthead);
509 
510 	spin_unlock_irqrestore(&ncalls->lock, flags);
511 
512 	/* Call the nested function */
513 	error = (*nproc)(priv, cookie, call_nests);
514 
515 	/* Remove the current task from the list */
516 	spin_lock_irqsave(&ncalls->lock, flags);
517 	list_del(&tnode.llink);
518 out_unlock:
519 	spin_unlock_irqrestore(&ncalls->lock, flags);
520 
521 	return error;
522 }
523 
524 /*
525  * As described in commit 0ccf831cb lockdep: annotate epoll
526  * the use of wait queues used by epoll is done in a very controlled
527  * manner. Wake ups can nest inside each other, but are never done
528  * with the same locking. For example:
529  *
530  *   dfd = socket(...);
531  *   efd1 = epoll_create();
532  *   efd2 = epoll_create();
533  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535  *
536  * When a packet arrives to the device underneath "dfd", the net code will
537  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538  * callback wakeup entry on that queue, and the wake_up() performed by the
539  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540  * (efd1) notices that it may have some event ready, so it needs to wake up
541  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542  * that ends up in another wake_up(), after having checked about the
543  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544  * avoid stack blasting.
545  *
546  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547  * this special case of epoll.
548  */
549 #ifdef CONFIG_DEBUG_LOCK_ALLOC
550 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
552 			     unsigned pollflags)
553 {
554 	struct eventpoll *ep_src;
555 	unsigned long flags;
556 	u8 nests = 0;
557 
558 	/*
559 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
560 	 * it might be natural to create a per-cpu nest count. However, since
561 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
562 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
563 	 * protected. Thus, we are introducing a per eventpoll nest field.
564 	 * If we are not being call from ep_poll_callback(), epi is NULL and
565 	 * we are at the first level of nesting, 0. Otherwise, we are being
566 	 * called from ep_poll_callback() and if a previous wakeup source is
567 	 * not an epoll file itself, we are at depth 1 since the wakeup source
568 	 * is depth 0. If the wakeup source is a previous epoll file in the
569 	 * wakeup chain then we use its nests value and record ours as
570 	 * nests + 1. The previous epoll file nests value is stable since its
571 	 * already holding its own poll_wait.lock.
572 	 */
573 	if (epi) {
574 		if ((is_file_epoll(epi->ffd.file))) {
575 			ep_src = epi->ffd.file->private_data;
576 			nests = ep_src->nests;
577 		} else {
578 			nests = 1;
579 		}
580 	}
581 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
582 	ep->nests = nests + 1;
583 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
584 	ep->nests = 0;
585 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
586 }
587 
588 #else
589 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)590 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
591 			     unsigned pollflags)
592 {
593 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
594 }
595 
596 #endif
597 
ep_remove_wait_queue(struct eppoll_entry * pwq)598 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
599 {
600 	wait_queue_head_t *whead;
601 
602 	rcu_read_lock();
603 	/*
604 	 * If it is cleared by POLLFREE, it should be rcu-safe.
605 	 * If we read NULL we need a barrier paired with
606 	 * smp_store_release() in ep_poll_callback(), otherwise
607 	 * we rely on whead->lock.
608 	 */
609 	whead = smp_load_acquire(&pwq->whead);
610 	if (whead)
611 		remove_wait_queue(whead, &pwq->wait);
612 	rcu_read_unlock();
613 }
614 
615 /*
616  * This function unregisters poll callbacks from the associated file
617  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
618  * ep_free).
619  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)620 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
621 {
622 	struct list_head *lsthead = &epi->pwqlist;
623 	struct eppoll_entry *pwq;
624 
625 	while (!list_empty(lsthead)) {
626 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
627 
628 		list_del(&pwq->llink);
629 		ep_remove_wait_queue(pwq);
630 		kmem_cache_free(pwq_cache, pwq);
631 	}
632 }
633 
634 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)635 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
636 {
637 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
638 }
639 
640 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)641 static inline void ep_pm_stay_awake(struct epitem *epi)
642 {
643 	struct wakeup_source *ws = ep_wakeup_source(epi);
644 
645 	if (ws)
646 		__pm_stay_awake(ws);
647 }
648 
ep_has_wakeup_source(struct epitem * epi)649 static inline bool ep_has_wakeup_source(struct epitem *epi)
650 {
651 	return rcu_access_pointer(epi->ws) ? true : false;
652 }
653 
654 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)655 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
656 {
657 	struct wakeup_source *ws;
658 
659 	rcu_read_lock();
660 	ws = rcu_dereference(epi->ws);
661 	if (ws)
662 		__pm_stay_awake(ws);
663 	rcu_read_unlock();
664 }
665 
666 /**
667  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
668  *                      the scan code, to call f_op->poll(). Also allows for
669  *                      O(NumReady) performance.
670  *
671  * @ep: Pointer to the epoll private data structure.
672  * @sproc: Pointer to the scan callback.
673  * @priv: Private opaque data passed to the @sproc callback.
674  * @depth: The current depth of recursive f_op->poll calls.
675  * @ep_locked: caller already holds ep->mtx
676  *
677  * Returns: The same integer error code returned by the @sproc callback.
678  */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)679 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
680 			      __poll_t (*sproc)(struct eventpoll *,
681 					   struct list_head *, void *),
682 			      void *priv, int depth, bool ep_locked)
683 {
684 	__poll_t res;
685 	struct epitem *epi, *nepi;
686 	LIST_HEAD(txlist);
687 
688 	lockdep_assert_irqs_enabled();
689 
690 	/*
691 	 * We need to lock this because we could be hit by
692 	 * eventpoll_release_file() and epoll_ctl().
693 	 */
694 
695 	if (!ep_locked)
696 		mutex_lock_nested(&ep->mtx, depth);
697 
698 	/*
699 	 * Steal the ready list, and re-init the original one to the
700 	 * empty list. Also, set ep->ovflist to NULL so that events
701 	 * happening while looping w/out locks, are not lost. We cannot
702 	 * have the poll callback to queue directly on ep->rdllist,
703 	 * because we want the "sproc" callback to be able to do it
704 	 * in a lockless way.
705 	 */
706 	write_lock_irq(&ep->lock);
707 	list_splice_init(&ep->rdllist, &txlist);
708 	WRITE_ONCE(ep->ovflist, NULL);
709 	write_unlock_irq(&ep->lock);
710 
711 	/*
712 	 * Now call the callback function.
713 	 */
714 	res = (*sproc)(ep, &txlist, priv);
715 
716 	write_lock_irq(&ep->lock);
717 	/*
718 	 * During the time we spent inside the "sproc" callback, some
719 	 * other events might have been queued by the poll callback.
720 	 * We re-insert them inside the main ready-list here.
721 	 */
722 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
723 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
724 		/*
725 		 * We need to check if the item is already in the list.
726 		 * During the "sproc" callback execution time, items are
727 		 * queued into ->ovflist but the "txlist" might already
728 		 * contain them, and the list_splice() below takes care of them.
729 		 */
730 		if (!ep_is_linked(epi)) {
731 			/*
732 			 * ->ovflist is LIFO, so we have to reverse it in order
733 			 * to keep in FIFO.
734 			 */
735 			list_add(&epi->rdllink, &ep->rdllist);
736 			ep_pm_stay_awake(epi);
737 		}
738 	}
739 	/*
740 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
741 	 * releasing the lock, events will be queued in the normal way inside
742 	 * ep->rdllist.
743 	 */
744 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
745 
746 	/*
747 	 * Quickly re-inject items left on "txlist".
748 	 */
749 	list_splice(&txlist, &ep->rdllist);
750 	__pm_relax(ep->ws);
751 
752 	if (!list_empty(&ep->rdllist)) {
753 		if (waitqueue_active(&ep->wq))
754 			wake_up(&ep->wq);
755 	}
756 
757 	write_unlock_irq(&ep->lock);
758 
759 	if (!ep_locked)
760 		mutex_unlock(&ep->mtx);
761 
762 	return res;
763 }
764 
epi_rcu_free(struct rcu_head * head)765 static void epi_rcu_free(struct rcu_head *head)
766 {
767 	struct epitem *epi = container_of(head, struct epitem, rcu);
768 	kmem_cache_free(epi_cache, epi);
769 }
770 
771 /*
772  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
773  * all the associated resources. Must be called with "mtx" held.
774  */
ep_remove(struct eventpoll * ep,struct epitem * epi)775 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
776 {
777 	struct file *file = epi->ffd.file;
778 
779 	lockdep_assert_irqs_enabled();
780 
781 	/*
782 	 * Removes poll wait queue hooks.
783 	 */
784 	ep_unregister_pollwait(ep, epi);
785 
786 	/* Remove the current item from the list of epoll hooks */
787 	spin_lock(&file->f_lock);
788 	list_del_rcu(&epi->fllink);
789 	spin_unlock(&file->f_lock);
790 
791 	rb_erase_cached(&epi->rbn, &ep->rbr);
792 
793 	write_lock_irq(&ep->lock);
794 	if (ep_is_linked(epi))
795 		list_del_init(&epi->rdllink);
796 	write_unlock_irq(&ep->lock);
797 
798 	wakeup_source_unregister(ep_wakeup_source(epi));
799 	/*
800 	 * At this point it is safe to free the eventpoll item. Use the union
801 	 * field epi->rcu, since we are trying to minimize the size of
802 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
803 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
804 	 * use of the rbn field.
805 	 */
806 	call_rcu(&epi->rcu, epi_rcu_free);
807 
808 	atomic_long_dec(&ep->user->epoll_watches);
809 
810 	return 0;
811 }
812 
ep_free(struct eventpoll * ep)813 static void ep_free(struct eventpoll *ep)
814 {
815 	struct rb_node *rbp;
816 	struct epitem *epi;
817 
818 	/* We need to release all tasks waiting for these file */
819 	if (waitqueue_active(&ep->poll_wait))
820 		ep_poll_safewake(ep, NULL, 0);
821 
822 	/*
823 	 * We need to lock this because we could be hit by
824 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
825 	 * We do not need to hold "ep->mtx" here because the epoll file
826 	 * is on the way to be removed and no one has references to it
827 	 * anymore. The only hit might come from eventpoll_release_file() but
828 	 * holding "epmutex" is sufficient here.
829 	 */
830 	mutex_lock(&epmutex);
831 
832 	/*
833 	 * Walks through the whole tree by unregistering poll callbacks.
834 	 */
835 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
836 		epi = rb_entry(rbp, struct epitem, rbn);
837 
838 		ep_unregister_pollwait(ep, epi);
839 		cond_resched();
840 	}
841 
842 	/*
843 	 * Walks through the whole tree by freeing each "struct epitem". At this
844 	 * point we are sure no poll callbacks will be lingering around, and also by
845 	 * holding "epmutex" we can be sure that no file cleanup code will hit
846 	 * us during this operation. So we can avoid the lock on "ep->lock".
847 	 * We do not need to lock ep->mtx, either, we only do it to prevent
848 	 * a lockdep warning.
849 	 */
850 	mutex_lock(&ep->mtx);
851 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
852 		epi = rb_entry(rbp, struct epitem, rbn);
853 		ep_remove(ep, epi);
854 		cond_resched();
855 	}
856 	mutex_unlock(&ep->mtx);
857 
858 	mutex_unlock(&epmutex);
859 	mutex_destroy(&ep->mtx);
860 	free_uid(ep->user);
861 	wakeup_source_unregister(ep->ws);
862 	kfree(ep);
863 }
864 
ep_eventpoll_release(struct inode * inode,struct file * file)865 static int ep_eventpoll_release(struct inode *inode, struct file *file)
866 {
867 	struct eventpoll *ep = file->private_data;
868 
869 	if (ep)
870 		ep_free(ep);
871 
872 	return 0;
873 }
874 
875 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
876 			       void *priv);
877 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
878 				 poll_table *pt);
879 
880 /*
881  * Differs from ep_eventpoll_poll() in that internal callers already have
882  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
883  * is correctly annotated.
884  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)885 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
886 				 int depth)
887 {
888 	struct eventpoll *ep;
889 	bool locked;
890 
891 	pt->_key = epi->event.events;
892 	if (!is_file_epoll(epi->ffd.file))
893 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
894 
895 	ep = epi->ffd.file->private_data;
896 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
897 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
898 
899 	return ep_scan_ready_list(epi->ffd.file->private_data,
900 				  ep_read_events_proc, &depth, depth,
901 				  locked) & epi->event.events;
902 }
903 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)904 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
905 			       void *priv)
906 {
907 	struct epitem *epi, *tmp;
908 	poll_table pt;
909 	int depth = *(int *)priv;
910 
911 	init_poll_funcptr(&pt, NULL);
912 	depth++;
913 
914 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
915 		if (ep_item_poll(epi, &pt, depth)) {
916 			return EPOLLIN | EPOLLRDNORM;
917 		} else {
918 			/*
919 			 * Item has been dropped into the ready list by the poll
920 			 * callback, but it's not actually ready, as far as
921 			 * caller requested events goes. We can remove it here.
922 			 */
923 			__pm_relax(ep_wakeup_source(epi));
924 			list_del_init(&epi->rdllink);
925 		}
926 	}
927 
928 	return 0;
929 }
930 
ep_eventpoll_poll(struct file * file,poll_table * wait)931 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
932 {
933 	struct eventpoll *ep = file->private_data;
934 	int depth = 0;
935 
936 	/* Insert inside our poll wait queue */
937 	poll_wait(file, &ep->poll_wait, wait);
938 
939 	/*
940 	 * Proceed to find out if wanted events are really available inside
941 	 * the ready list.
942 	 */
943 	return ep_scan_ready_list(ep, ep_read_events_proc,
944 				  &depth, depth, false);
945 }
946 
947 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)948 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
949 {
950 	struct eventpoll *ep = f->private_data;
951 	struct rb_node *rbp;
952 
953 	mutex_lock(&ep->mtx);
954 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
955 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
956 		struct inode *inode = file_inode(epi->ffd.file);
957 
958 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
959 			   " pos:%lli ino:%lx sdev:%x\n",
960 			   epi->ffd.fd, epi->event.events,
961 			   (long long)epi->event.data,
962 			   (long long)epi->ffd.file->f_pos,
963 			   inode->i_ino, inode->i_sb->s_dev);
964 		if (seq_has_overflowed(m))
965 			break;
966 	}
967 	mutex_unlock(&ep->mtx);
968 }
969 #endif
970 
971 /* File callbacks that implement the eventpoll file behaviour */
972 static const struct file_operations eventpoll_fops = {
973 #ifdef CONFIG_PROC_FS
974 	.show_fdinfo	= ep_show_fdinfo,
975 #endif
976 	.release	= ep_eventpoll_release,
977 	.poll		= ep_eventpoll_poll,
978 	.llseek		= noop_llseek,
979 };
980 
981 /*
982  * This is called from eventpoll_release() to unlink files from the eventpoll
983  * interface. We need to have this facility to cleanup correctly files that are
984  * closed without being removed from the eventpoll interface.
985  */
eventpoll_release_file(struct file * file)986 void eventpoll_release_file(struct file *file)
987 {
988 	struct eventpoll *ep;
989 	struct epitem *epi, *next;
990 
991 	/*
992 	 * We don't want to get "file->f_lock" because it is not
993 	 * necessary. It is not necessary because we're in the "struct file"
994 	 * cleanup path, and this means that no one is using this file anymore.
995 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
996 	 * point, the file counter already went to zero and fget() would fail.
997 	 * The only hit might come from ep_free() but by holding the mutex
998 	 * will correctly serialize the operation. We do need to acquire
999 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1000 	 * from anywhere but ep_free().
1001 	 *
1002 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1003 	 */
1004 	mutex_lock(&epmutex);
1005 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1006 		ep = epi->ep;
1007 		mutex_lock_nested(&ep->mtx, 0);
1008 		ep_remove(ep, epi);
1009 		mutex_unlock(&ep->mtx);
1010 	}
1011 	mutex_unlock(&epmutex);
1012 }
1013 
ep_alloc(struct eventpoll ** pep)1014 static int ep_alloc(struct eventpoll **pep)
1015 {
1016 	int error;
1017 	struct user_struct *user;
1018 	struct eventpoll *ep;
1019 
1020 	user = get_current_user();
1021 	error = -ENOMEM;
1022 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1023 	if (unlikely(!ep))
1024 		goto free_uid;
1025 
1026 	mutex_init(&ep->mtx);
1027 	rwlock_init(&ep->lock);
1028 	init_waitqueue_head(&ep->wq);
1029 	init_waitqueue_head(&ep->poll_wait);
1030 	INIT_LIST_HEAD(&ep->rdllist);
1031 	ep->rbr = RB_ROOT_CACHED;
1032 	ep->ovflist = EP_UNACTIVE_PTR;
1033 	ep->user = user;
1034 
1035 	*pep = ep;
1036 
1037 	return 0;
1038 
1039 free_uid:
1040 	free_uid(user);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Search the file inside the eventpoll tree. The RB tree operations
1046  * are protected by the "mtx" mutex, and ep_find() must be called with
1047  * "mtx" held.
1048  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1049 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1050 {
1051 	int kcmp;
1052 	struct rb_node *rbp;
1053 	struct epitem *epi, *epir = NULL;
1054 	struct epoll_filefd ffd;
1055 
1056 	ep_set_ffd(&ffd, file, fd);
1057 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1058 		epi = rb_entry(rbp, struct epitem, rbn);
1059 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1060 		if (kcmp > 0)
1061 			rbp = rbp->rb_right;
1062 		else if (kcmp < 0)
1063 			rbp = rbp->rb_left;
1064 		else {
1065 			epir = epi;
1066 			break;
1067 		}
1068 	}
1069 
1070 	return epir;
1071 }
1072 
1073 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1074 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1075 {
1076 	struct rb_node *rbp;
1077 	struct epitem *epi;
1078 
1079 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1080 		epi = rb_entry(rbp, struct epitem, rbn);
1081 		if (epi->ffd.fd == tfd) {
1082 			if (toff == 0)
1083 				return epi;
1084 			else
1085 				toff--;
1086 		}
1087 		cond_resched();
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1093 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1094 				     unsigned long toff)
1095 {
1096 	struct file *file_raw;
1097 	struct eventpoll *ep;
1098 	struct epitem *epi;
1099 
1100 	if (!is_file_epoll(file))
1101 		return ERR_PTR(-EINVAL);
1102 
1103 	ep = file->private_data;
1104 
1105 	mutex_lock(&ep->mtx);
1106 	epi = ep_find_tfd(ep, tfd, toff);
1107 	if (epi)
1108 		file_raw = epi->ffd.file;
1109 	else
1110 		file_raw = ERR_PTR(-ENOENT);
1111 	mutex_unlock(&ep->mtx);
1112 
1113 	return file_raw;
1114 }
1115 #endif /* CONFIG_KCMP */
1116 
1117 /**
1118  * Adds a new entry to the tail of the list in a lockless way, i.e.
1119  * multiple CPUs are allowed to call this function concurrently.
1120  *
1121  * Beware: it is necessary to prevent any other modifications of the
1122  *         existing list until all changes are completed, in other words
1123  *         concurrent list_add_tail_lockless() calls should be protected
1124  *         with a read lock, where write lock acts as a barrier which
1125  *         makes sure all list_add_tail_lockless() calls are fully
1126  *         completed.
1127  *
1128  *        Also an element can be locklessly added to the list only in one
1129  *        direction i.e. either to the tail either to the head, otherwise
1130  *        concurrent access will corrupt the list.
1131  *
1132  * Returns %false if element has been already added to the list, %true
1133  * otherwise.
1134  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1135 static inline bool list_add_tail_lockless(struct list_head *new,
1136 					  struct list_head *head)
1137 {
1138 	struct list_head *prev;
1139 
1140 	/*
1141 	 * This is simple 'new->next = head' operation, but cmpxchg()
1142 	 * is used in order to detect that same element has been just
1143 	 * added to the list from another CPU: the winner observes
1144 	 * new->next == new.
1145 	 */
1146 	if (cmpxchg(&new->next, new, head) != new)
1147 		return false;
1148 
1149 	/*
1150 	 * Initially ->next of a new element must be updated with the head
1151 	 * (we are inserting to the tail) and only then pointers are atomically
1152 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1153 	 * updated before pointers are actually swapped and pointers are
1154 	 * swapped before prev->next is updated.
1155 	 */
1156 
1157 	prev = xchg(&head->prev, new);
1158 
1159 	/*
1160 	 * It is safe to modify prev->next and new->prev, because a new element
1161 	 * is added only to the tail and new->next is updated before XCHG.
1162 	 */
1163 
1164 	prev->next = new;
1165 	new->prev = prev;
1166 
1167 	return true;
1168 }
1169 
1170 /**
1171  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1172  * i.e. multiple CPUs are allowed to call this function concurrently.
1173  *
1174  * Returns %false if epi element has been already chained, %true otherwise.
1175  */
chain_epi_lockless(struct epitem * epi)1176 static inline bool chain_epi_lockless(struct epitem *epi)
1177 {
1178 	struct eventpoll *ep = epi->ep;
1179 
1180 	/* Fast preliminary check */
1181 	if (epi->next != EP_UNACTIVE_PTR)
1182 		return false;
1183 
1184 	/* Check that the same epi has not been just chained from another CPU */
1185 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1186 		return false;
1187 
1188 	/* Atomically exchange tail */
1189 	epi->next = xchg(&ep->ovflist, epi);
1190 
1191 	return true;
1192 }
1193 
1194 /*
1195  * This is the callback that is passed to the wait queue wakeup
1196  * mechanism. It is called by the stored file descriptors when they
1197  * have events to report.
1198  *
1199  * This callback takes a read lock in order not to content with concurrent
1200  * events from another file descriptors, thus all modifications to ->rdllist
1201  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1202  * ep_scan_ready_list(), which stops all list modifications and guarantees
1203  * that lists state is seen correctly.
1204  *
1205  * Another thing worth to mention is that ep_poll_callback() can be called
1206  * concurrently for the same @epi from different CPUs if poll table was inited
1207  * with several wait queues entries.  Plural wakeup from different CPUs of a
1208  * single wait queue is serialized by wq.lock, but the case when multiple wait
1209  * queues are used should be detected accordingly.  This is detected using
1210  * cmpxchg() operation.
1211  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1212 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1213 {
1214 	int pwake = 0;
1215 	struct epitem *epi = ep_item_from_wait(wait);
1216 	struct eventpoll *ep = epi->ep;
1217 	__poll_t pollflags = key_to_poll(key);
1218 	unsigned long flags;
1219 	int ewake = 0;
1220 
1221 	read_lock_irqsave(&ep->lock, flags);
1222 
1223 	ep_set_busy_poll_napi_id(epi);
1224 
1225 	/*
1226 	 * If the event mask does not contain any poll(2) event, we consider the
1227 	 * descriptor to be disabled. This condition is likely the effect of the
1228 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1229 	 * until the next EPOLL_CTL_MOD will be issued.
1230 	 */
1231 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1232 		goto out_unlock;
1233 
1234 	/*
1235 	 * Check the events coming with the callback. At this stage, not
1236 	 * every device reports the events in the "key" parameter of the
1237 	 * callback. We need to be able to handle both cases here, hence the
1238 	 * test for "key" != NULL before the event match test.
1239 	 */
1240 	if (pollflags && !(pollflags & epi->event.events))
1241 		goto out_unlock;
1242 
1243 	/*
1244 	 * If we are transferring events to userspace, we can hold no locks
1245 	 * (because we're accessing user memory, and because of linux f_op->poll()
1246 	 * semantics). All the events that happen during that period of time are
1247 	 * chained in ep->ovflist and requeued later on.
1248 	 */
1249 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1250 		if (chain_epi_lockless(epi))
1251 			ep_pm_stay_awake_rcu(epi);
1252 	} else if (!ep_is_linked(epi)) {
1253 		/* In the usual case, add event to ready list. */
1254 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1255 			ep_pm_stay_awake_rcu(epi);
1256 	}
1257 
1258 	/*
1259 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1260 	 * wait list.
1261 	 */
1262 	if (waitqueue_active(&ep->wq)) {
1263 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1264 					!(pollflags & POLLFREE)) {
1265 			switch (pollflags & EPOLLINOUT_BITS) {
1266 			case EPOLLIN:
1267 				if (epi->event.events & EPOLLIN)
1268 					ewake = 1;
1269 				break;
1270 			case EPOLLOUT:
1271 				if (epi->event.events & EPOLLOUT)
1272 					ewake = 1;
1273 				break;
1274 			case 0:
1275 				ewake = 1;
1276 				break;
1277 			}
1278 		}
1279 		wake_up(&ep->wq);
1280 	}
1281 	if (waitqueue_active(&ep->poll_wait))
1282 		pwake++;
1283 
1284 out_unlock:
1285 	read_unlock_irqrestore(&ep->lock, flags);
1286 
1287 	/* We have to call this outside the lock */
1288 	if (pwake)
1289 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1290 
1291 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1292 		ewake = 1;
1293 
1294 	if (pollflags & POLLFREE) {
1295 		/*
1296 		 * If we race with ep_remove_wait_queue() it can miss
1297 		 * ->whead = NULL and do another remove_wait_queue() after
1298 		 * us, so we can't use __remove_wait_queue().
1299 		 */
1300 		list_del_init(&wait->entry);
1301 		/*
1302 		 * ->whead != NULL protects us from the race with ep_free()
1303 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1304 		 * held by the caller. Once we nullify it, nothing protects
1305 		 * ep/epi or even wait.
1306 		 */
1307 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1308 	}
1309 
1310 	return ewake;
1311 }
1312 
1313 /*
1314  * This is the callback that is used to add our wait queue to the
1315  * target file wakeup lists.
1316  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1317 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1318 				 poll_table *pt)
1319 {
1320 	struct epitem *epi = ep_item_from_epqueue(pt);
1321 	struct eppoll_entry *pwq;
1322 
1323 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1324 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1325 		pwq->whead = whead;
1326 		pwq->base = epi;
1327 		if (epi->event.events & EPOLLEXCLUSIVE)
1328 			add_wait_queue_exclusive(whead, &pwq->wait);
1329 		else
1330 			add_wait_queue(whead, &pwq->wait);
1331 		list_add_tail(&pwq->llink, &epi->pwqlist);
1332 		epi->nwait++;
1333 	} else {
1334 		/* We have to signal that an error occurred */
1335 		epi->nwait = -1;
1336 	}
1337 }
1338 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1339 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1340 {
1341 	int kcmp;
1342 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1343 	struct epitem *epic;
1344 	bool leftmost = true;
1345 
1346 	while (*p) {
1347 		parent = *p;
1348 		epic = rb_entry(parent, struct epitem, rbn);
1349 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1350 		if (kcmp > 0) {
1351 			p = &parent->rb_right;
1352 			leftmost = false;
1353 		} else
1354 			p = &parent->rb_left;
1355 	}
1356 	rb_link_node(&epi->rbn, parent, p);
1357 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1358 }
1359 
1360 
1361 
1362 #define PATH_ARR_SIZE 5
1363 /*
1364  * These are the number paths of length 1 to 5, that we are allowing to emanate
1365  * from a single file of interest. For example, we allow 1000 paths of length
1366  * 1, to emanate from each file of interest. This essentially represents the
1367  * potential wakeup paths, which need to be limited in order to avoid massive
1368  * uncontrolled wakeup storms. The common use case should be a single ep which
1369  * is connected to n file sources. In this case each file source has 1 path
1370  * of length 1. Thus, the numbers below should be more than sufficient. These
1371  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1372  * and delete can't add additional paths. Protected by the epmutex.
1373  */
1374 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1375 static int path_count[PATH_ARR_SIZE];
1376 
path_count_inc(int nests)1377 static int path_count_inc(int nests)
1378 {
1379 	/* Allow an arbitrary number of depth 1 paths */
1380 	if (nests == 0)
1381 		return 0;
1382 
1383 	if (++path_count[nests] > path_limits[nests])
1384 		return -1;
1385 	return 0;
1386 }
1387 
path_count_init(void)1388 static void path_count_init(void)
1389 {
1390 	int i;
1391 
1392 	for (i = 0; i < PATH_ARR_SIZE; i++)
1393 		path_count[i] = 0;
1394 }
1395 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1396 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1397 {
1398 	int error = 0;
1399 	struct file *file = priv;
1400 	struct file *child_file;
1401 	struct epitem *epi;
1402 
1403 	/* CTL_DEL can remove links here, but that can't increase our count */
1404 	rcu_read_lock();
1405 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1406 		child_file = epi->ep->file;
1407 		if (is_file_epoll(child_file)) {
1408 			if (list_empty(&child_file->f_ep_links)) {
1409 				if (path_count_inc(call_nests)) {
1410 					error = -1;
1411 					break;
1412 				}
1413 			} else {
1414 				error = ep_call_nested(&poll_loop_ncalls,
1415 							reverse_path_check_proc,
1416 							child_file, child_file,
1417 							current);
1418 			}
1419 			if (error != 0)
1420 				break;
1421 		} else {
1422 			printk(KERN_ERR "reverse_path_check_proc: "
1423 				"file is not an ep!\n");
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 	return error;
1428 }
1429 
1430 /**
1431  * reverse_path_check - The tfile_check_list is list of file *, which have
1432  *                      links that are proposed to be newly added. We need to
1433  *                      make sure that those added links don't add too many
1434  *                      paths such that we will spend all our time waking up
1435  *                      eventpoll objects.
1436  *
1437  * Returns: Returns zero if the proposed links don't create too many paths,
1438  *	    -1 otherwise.
1439  */
reverse_path_check(void)1440 static int reverse_path_check(void)
1441 {
1442 	int error = 0;
1443 	struct file *current_file;
1444 
1445 	/* let's call this for all tfiles */
1446 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1447 		path_count_init();
1448 		error = ep_call_nested(&poll_loop_ncalls,
1449 					reverse_path_check_proc, current_file,
1450 					current_file, current);
1451 		if (error)
1452 			break;
1453 	}
1454 	return error;
1455 }
1456 
ep_create_wakeup_source(struct epitem * epi)1457 static int ep_create_wakeup_source(struct epitem *epi)
1458 {
1459 	struct name_snapshot n;
1460 	struct wakeup_source *ws;
1461 
1462 	if (!epi->ep->ws) {
1463 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1464 		if (!epi->ep->ws)
1465 			return -ENOMEM;
1466 	}
1467 
1468 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1469 	ws = wakeup_source_register(NULL, n.name.name);
1470 	release_dentry_name_snapshot(&n);
1471 
1472 	if (!ws)
1473 		return -ENOMEM;
1474 	rcu_assign_pointer(epi->ws, ws);
1475 
1476 	return 0;
1477 }
1478 
1479 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1480 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1481 {
1482 	struct wakeup_source *ws = ep_wakeup_source(epi);
1483 
1484 	RCU_INIT_POINTER(epi->ws, NULL);
1485 
1486 	/*
1487 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1488 	 * used internally by wakeup_source_remove, too (called by
1489 	 * wakeup_source_unregister), so we cannot use call_rcu
1490 	 */
1491 	synchronize_rcu();
1492 	wakeup_source_unregister(ws);
1493 }
1494 
1495 /*
1496  * Must be called with "mtx" held.
1497  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1498 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1499 		     struct file *tfile, int fd, int full_check)
1500 {
1501 	int error, pwake = 0;
1502 	__poll_t revents;
1503 	long user_watches;
1504 	struct epitem *epi;
1505 	struct ep_pqueue epq;
1506 
1507 	lockdep_assert_irqs_enabled();
1508 
1509 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1510 	if (unlikely(user_watches >= max_user_watches))
1511 		return -ENOSPC;
1512 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1513 		return -ENOMEM;
1514 
1515 	/* Item initialization follow here ... */
1516 	INIT_LIST_HEAD(&epi->rdllink);
1517 	INIT_LIST_HEAD(&epi->fllink);
1518 	INIT_LIST_HEAD(&epi->pwqlist);
1519 	epi->ep = ep;
1520 	ep_set_ffd(&epi->ffd, tfile, fd);
1521 	epi->event = *event;
1522 	epi->nwait = 0;
1523 	epi->next = EP_UNACTIVE_PTR;
1524 	if (epi->event.events & EPOLLWAKEUP) {
1525 		error = ep_create_wakeup_source(epi);
1526 		if (error)
1527 			goto error_create_wakeup_source;
1528 	} else {
1529 		RCU_INIT_POINTER(epi->ws, NULL);
1530 	}
1531 
1532 	/* Add the current item to the list of active epoll hook for this file */
1533 	spin_lock(&tfile->f_lock);
1534 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1535 	spin_unlock(&tfile->f_lock);
1536 
1537 	/*
1538 	 * Add the current item to the RB tree. All RB tree operations are
1539 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1540 	 */
1541 	ep_rbtree_insert(ep, epi);
1542 
1543 	/* now check if we've created too many backpaths */
1544 	error = -EINVAL;
1545 	if (full_check && reverse_path_check())
1546 		goto error_remove_epi;
1547 
1548 	/* Initialize the poll table using the queue callback */
1549 	epq.epi = epi;
1550 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1551 
1552 	/*
1553 	 * Attach the item to the poll hooks and get current event bits.
1554 	 * We can safely use the file* here because its usage count has
1555 	 * been increased by the caller of this function. Note that after
1556 	 * this operation completes, the poll callback can start hitting
1557 	 * the new item.
1558 	 */
1559 	revents = ep_item_poll(epi, &epq.pt, 1);
1560 
1561 	/*
1562 	 * We have to check if something went wrong during the poll wait queue
1563 	 * install process. Namely an allocation for a wait queue failed due
1564 	 * high memory pressure.
1565 	 */
1566 	error = -ENOMEM;
1567 	if (epi->nwait < 0)
1568 		goto error_unregister;
1569 
1570 	/* We have to drop the new item inside our item list to keep track of it */
1571 	write_lock_irq(&ep->lock);
1572 
1573 	/* record NAPI ID of new item if present */
1574 	ep_set_busy_poll_napi_id(epi);
1575 
1576 	/* If the file is already "ready" we drop it inside the ready list */
1577 	if (revents && !ep_is_linked(epi)) {
1578 		list_add_tail(&epi->rdllink, &ep->rdllist);
1579 		ep_pm_stay_awake(epi);
1580 
1581 		/* Notify waiting tasks that events are available */
1582 		if (waitqueue_active(&ep->wq))
1583 			wake_up(&ep->wq);
1584 		if (waitqueue_active(&ep->poll_wait))
1585 			pwake++;
1586 	}
1587 
1588 	write_unlock_irq(&ep->lock);
1589 
1590 	atomic_long_inc(&ep->user->epoll_watches);
1591 
1592 	/* We have to call this outside the lock */
1593 	if (pwake)
1594 		ep_poll_safewake(ep, NULL, 0);
1595 
1596 	return 0;
1597 
1598 error_unregister:
1599 	ep_unregister_pollwait(ep, epi);
1600 error_remove_epi:
1601 	spin_lock(&tfile->f_lock);
1602 	list_del_rcu(&epi->fllink);
1603 	spin_unlock(&tfile->f_lock);
1604 
1605 	rb_erase_cached(&epi->rbn, &ep->rbr);
1606 
1607 	/*
1608 	 * We need to do this because an event could have been arrived on some
1609 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1610 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1611 	 * And ep_insert() is called with "mtx" held.
1612 	 */
1613 	write_lock_irq(&ep->lock);
1614 	if (ep_is_linked(epi))
1615 		list_del_init(&epi->rdllink);
1616 	write_unlock_irq(&ep->lock);
1617 
1618 	wakeup_source_unregister(ep_wakeup_source(epi));
1619 
1620 error_create_wakeup_source:
1621 	kmem_cache_free(epi_cache, epi);
1622 
1623 	return error;
1624 }
1625 
1626 /*
1627  * Modify the interest event mask by dropping an event if the new mask
1628  * has a match in the current file status. Must be called with "mtx" held.
1629  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1630 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1631 		     const struct epoll_event *event)
1632 {
1633 	int pwake = 0;
1634 	poll_table pt;
1635 
1636 	lockdep_assert_irqs_enabled();
1637 
1638 	init_poll_funcptr(&pt, NULL);
1639 
1640 	/*
1641 	 * Set the new event interest mask before calling f_op->poll();
1642 	 * otherwise we might miss an event that happens between the
1643 	 * f_op->poll() call and the new event set registering.
1644 	 */
1645 	epi->event.events = event->events; /* need barrier below */
1646 	epi->event.data = event->data; /* protected by mtx */
1647 	if (epi->event.events & EPOLLWAKEUP) {
1648 		if (!ep_has_wakeup_source(epi))
1649 			ep_create_wakeup_source(epi);
1650 	} else if (ep_has_wakeup_source(epi)) {
1651 		ep_destroy_wakeup_source(epi);
1652 	}
1653 
1654 	/*
1655 	 * The following barrier has two effects:
1656 	 *
1657 	 * 1) Flush epi changes above to other CPUs.  This ensures
1658 	 *    we do not miss events from ep_poll_callback if an
1659 	 *    event occurs immediately after we call f_op->poll().
1660 	 *    We need this because we did not take ep->lock while
1661 	 *    changing epi above (but ep_poll_callback does take
1662 	 *    ep->lock).
1663 	 *
1664 	 * 2) We also need to ensure we do not miss _past_ events
1665 	 *    when calling f_op->poll().  This barrier also
1666 	 *    pairs with the barrier in wq_has_sleeper (see
1667 	 *    comments for wq_has_sleeper).
1668 	 *
1669 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1670 	 * (or both) will notice the readiness of an item.
1671 	 */
1672 	smp_mb();
1673 
1674 	/*
1675 	 * Get current event bits. We can safely use the file* here because
1676 	 * its usage count has been increased by the caller of this function.
1677 	 * If the item is "hot" and it is not registered inside the ready
1678 	 * list, push it inside.
1679 	 */
1680 	if (ep_item_poll(epi, &pt, 1)) {
1681 		write_lock_irq(&ep->lock);
1682 		if (!ep_is_linked(epi)) {
1683 			list_add_tail(&epi->rdllink, &ep->rdllist);
1684 			ep_pm_stay_awake(epi);
1685 
1686 			/* Notify waiting tasks that events are available */
1687 			if (waitqueue_active(&ep->wq))
1688 				wake_up(&ep->wq);
1689 			if (waitqueue_active(&ep->poll_wait))
1690 				pwake++;
1691 		}
1692 		write_unlock_irq(&ep->lock);
1693 	}
1694 
1695 	/* We have to call this outside the lock */
1696 	if (pwake)
1697 		ep_poll_safewake(ep, NULL, 0);
1698 
1699 	return 0;
1700 }
1701 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1702 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1703 			       void *priv)
1704 {
1705 	struct ep_send_events_data *esed = priv;
1706 	__poll_t revents;
1707 	struct epitem *epi, *tmp;
1708 	struct epoll_event __user *uevent = esed->events;
1709 	struct wakeup_source *ws;
1710 	poll_table pt;
1711 
1712 	init_poll_funcptr(&pt, NULL);
1713 	esed->res = 0;
1714 
1715 	/*
1716 	 * We can loop without lock because we are passed a task private list.
1717 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1718 	 * holding "mtx" during this call.
1719 	 */
1720 	lockdep_assert_held(&ep->mtx);
1721 
1722 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1723 		if (esed->res >= esed->maxevents)
1724 			break;
1725 
1726 		/*
1727 		 * Activate ep->ws before deactivating epi->ws to prevent
1728 		 * triggering auto-suspend here (in case we reactive epi->ws
1729 		 * below).
1730 		 *
1731 		 * This could be rearranged to delay the deactivation of epi->ws
1732 		 * instead, but then epi->ws would temporarily be out of sync
1733 		 * with ep_is_linked().
1734 		 */
1735 		ws = ep_wakeup_source(epi);
1736 		if (ws) {
1737 			if (ws->active)
1738 				__pm_stay_awake(ep->ws);
1739 			__pm_relax(ws);
1740 		}
1741 
1742 		list_del_init(&epi->rdllink);
1743 
1744 		/*
1745 		 * If the event mask intersect the caller-requested one,
1746 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1747 		 * is holding ep->mtx, so no operations coming from userspace
1748 		 * can change the item.
1749 		 */
1750 		revents = ep_item_poll(epi, &pt, 1);
1751 		if (!revents)
1752 			continue;
1753 
1754 		if (__put_user(revents, &uevent->events) ||
1755 		    __put_user(epi->event.data, &uevent->data)) {
1756 			list_add(&epi->rdllink, head);
1757 			ep_pm_stay_awake(epi);
1758 			if (!esed->res)
1759 				esed->res = -EFAULT;
1760 			return 0;
1761 		}
1762 		esed->res++;
1763 		uevent++;
1764 		if (epi->event.events & EPOLLONESHOT)
1765 			epi->event.events &= EP_PRIVATE_BITS;
1766 		else if (!(epi->event.events & EPOLLET)) {
1767 			/*
1768 			 * If this file has been added with Level
1769 			 * Trigger mode, we need to insert back inside
1770 			 * the ready list, so that the next call to
1771 			 * epoll_wait() will check again the events
1772 			 * availability. At this point, no one can insert
1773 			 * into ep->rdllist besides us. The epoll_ctl()
1774 			 * callers are locked out by
1775 			 * ep_scan_ready_list() holding "mtx" and the
1776 			 * poll callback will queue them in ep->ovflist.
1777 			 */
1778 			list_add_tail(&epi->rdllink, &ep->rdllist);
1779 			ep_pm_stay_awake(epi);
1780 		}
1781 	}
1782 
1783 	return 0;
1784 }
1785 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1786 static int ep_send_events(struct eventpoll *ep,
1787 			  struct epoll_event __user *events, int maxevents)
1788 {
1789 	struct ep_send_events_data esed;
1790 
1791 	esed.maxevents = maxevents;
1792 	esed.events = events;
1793 
1794 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1795 	return esed.res;
1796 }
1797 
ep_set_mstimeout(long ms)1798 static inline struct timespec64 ep_set_mstimeout(long ms)
1799 {
1800 	struct timespec64 now, ts = {
1801 		.tv_sec = ms / MSEC_PER_SEC,
1802 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1803 	};
1804 
1805 	ktime_get_ts64(&now);
1806 	return timespec64_add_safe(now, ts);
1807 }
1808 
1809 /*
1810  * autoremove_wake_function, but remove even on failure to wake up, because we
1811  * know that default_wake_function/ttwu will only fail if the thread is already
1812  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1813  * try to reuse it.
1814  */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1815 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1816 				       unsigned int mode, int sync, void *key)
1817 {
1818 	int ret = default_wake_function(wq_entry, mode, sync, key);
1819 
1820 	list_del_init(&wq_entry->entry);
1821 	return ret;
1822 }
1823 
1824 /**
1825  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1826  *           event buffer.
1827  *
1828  * @ep: Pointer to the eventpoll context.
1829  * @events: Pointer to the userspace buffer where the ready events should be
1830  *          stored.
1831  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1832  * @timeout: Maximum timeout for the ready events fetch operation, in
1833  *           milliseconds. If the @timeout is zero, the function will not block,
1834  *           while if the @timeout is less than zero, the function will block
1835  *           until at least one event has been retrieved (or an error
1836  *           occurred).
1837  *
1838  * Returns: Returns the number of ready events which have been fetched, or an
1839  *          error code, in case of error.
1840  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1841 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1842 		   int maxevents, long timeout)
1843 {
1844 	int res = 0, eavail, timed_out = 0;
1845 	u64 slack = 0;
1846 	wait_queue_entry_t wait;
1847 	ktime_t expires, *to = NULL;
1848 
1849 	lockdep_assert_irqs_enabled();
1850 
1851 	if (timeout > 0) {
1852 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1853 
1854 		slack = select_estimate_accuracy(&end_time);
1855 		to = &expires;
1856 		*to = timespec64_to_ktime(end_time);
1857 	} else if (timeout == 0) {
1858 		/*
1859 		 * Avoid the unnecessary trip to the wait queue loop, if the
1860 		 * caller specified a non blocking operation. We still need
1861 		 * lock because we could race and not see an epi being added
1862 		 * to the ready list while in irq callback. Thus incorrectly
1863 		 * returning 0 back to userspace.
1864 		 */
1865 		timed_out = 1;
1866 
1867 		write_lock_irq(&ep->lock);
1868 		eavail = ep_events_available(ep);
1869 		write_unlock_irq(&ep->lock);
1870 
1871 		goto send_events;
1872 	}
1873 
1874 fetch_events:
1875 
1876 	if (!ep_events_available(ep))
1877 		ep_busy_loop(ep, timed_out);
1878 
1879 	eavail = ep_events_available(ep);
1880 	if (eavail)
1881 		goto send_events;
1882 
1883 	/*
1884 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1885 	 * it back in when we have moved a socket with a valid NAPI
1886 	 * ID onto the ready list.
1887 	 */
1888 	ep_reset_busy_poll_napi_id(ep);
1889 
1890 	do {
1891 		/*
1892 		 * Internally init_wait() uses autoremove_wake_function(),
1893 		 * thus wait entry is removed from the wait queue on each
1894 		 * wakeup. Why it is important? In case of several waiters
1895 		 * each new wakeup will hit the next waiter, giving it the
1896 		 * chance to harvest new event. Otherwise wakeup can be
1897 		 * lost. This is also good performance-wise, because on
1898 		 * normal wakeup path no need to call __remove_wait_queue()
1899 		 * explicitly, thus ep->lock is not taken, which halts the
1900 		 * event delivery.
1901 		 *
1902 		 * In fact, we now use an even more aggressive function that
1903 		 * unconditionally removes, because we don't reuse the wait
1904 		 * entry between loop iterations. This lets us also avoid the
1905 		 * performance issue if a process is killed, causing all of its
1906 		 * threads to wake up without being removed normally.
1907 		 */
1908 		init_wait(&wait);
1909 		wait.func = ep_autoremove_wake_function;
1910 
1911 		write_lock_irq(&ep->lock);
1912 		/*
1913 		 * Barrierless variant, waitqueue_active() is called under
1914 		 * the same lock on wakeup ep_poll_callback() side, so it
1915 		 * is safe to avoid an explicit barrier.
1916 		 */
1917 		__set_current_state(TASK_INTERRUPTIBLE);
1918 
1919 		/*
1920 		 * Do the final check under the lock. ep_scan_ready_list()
1921 		 * plays with two lists (->rdllist and ->ovflist) and there
1922 		 * is always a race when both lists are empty for short
1923 		 * period of time although events are pending, so lock is
1924 		 * important.
1925 		 */
1926 		eavail = ep_events_available(ep);
1927 		if (!eavail) {
1928 			if (signal_pending(current))
1929 				res = -EINTR;
1930 			else
1931 				__add_wait_queue_exclusive(&ep->wq, &wait);
1932 		}
1933 		write_unlock_irq(&ep->lock);
1934 
1935 		if (!eavail && !res)
1936 			timed_out = !schedule_hrtimeout_range(to, slack,
1937 							      HRTIMER_MODE_ABS);
1938 
1939 		/*
1940 		 * We were woken up, thus go and try to harvest some events.
1941 		 * If timed out and still on the wait queue, recheck eavail
1942 		 * carefully under lock, below.
1943 		 */
1944 		eavail = 1;
1945 	} while (0);
1946 
1947 	__set_current_state(TASK_RUNNING);
1948 
1949 	if (!list_empty_careful(&wait.entry)) {
1950 		write_lock_irq(&ep->lock);
1951 		/*
1952 		 * If the thread timed out and is not on the wait queue, it
1953 		 * means that the thread was woken up after its timeout expired
1954 		 * before it could reacquire the lock. Thus, when wait.entry is
1955 		 * empty, it needs to harvest events.
1956 		 */
1957 		if (timed_out)
1958 			eavail = list_empty(&wait.entry);
1959 		__remove_wait_queue(&ep->wq, &wait);
1960 		write_unlock_irq(&ep->lock);
1961 	}
1962 
1963 send_events:
1964 	if (fatal_signal_pending(current)) {
1965 		/*
1966 		 * Always short-circuit for fatal signals to allow
1967 		 * threads to make a timely exit without the chance of
1968 		 * finding more events available and fetching
1969 		 * repeatedly.
1970 		 */
1971 		res = -EINTR;
1972 	}
1973 	/*
1974 	 * Try to transfer events to user space. In case we get 0 events and
1975 	 * there's still timeout left over, we go trying again in search of
1976 	 * more luck.
1977 	 */
1978 	if (!res && eavail &&
1979 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1980 		goto fetch_events;
1981 
1982 	return res;
1983 }
1984 
1985 /**
1986  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1987  *                      API, to verify that adding an epoll file inside another
1988  *                      epoll structure, does not violate the constraints, in
1989  *                      terms of closed loops, or too deep chains (which can
1990  *                      result in excessive stack usage).
1991  *
1992  * @priv: Pointer to the epoll file to be currently checked.
1993  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1994  *          data structure pointer.
1995  * @call_nests: Current dept of the @ep_call_nested() call stack.
1996  *
1997  * Returns: Returns zero if adding the epoll @file inside current epoll
1998  *          structure @ep does not violate the constraints, or -1 otherwise.
1999  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)2000 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
2001 {
2002 	int error = 0;
2003 	struct file *file = priv;
2004 	struct eventpoll *ep = file->private_data;
2005 	struct eventpoll *ep_tovisit;
2006 	struct rb_node *rbp;
2007 	struct epitem *epi;
2008 
2009 	mutex_lock_nested(&ep->mtx, call_nests + 1);
2010 	ep->gen = loop_check_gen;
2011 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2012 		epi = rb_entry(rbp, struct epitem, rbn);
2013 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2014 			ep_tovisit = epi->ffd.file->private_data;
2015 			if (ep_tovisit->gen == loop_check_gen)
2016 				continue;
2017 			error = ep_call_nested(&poll_loop_ncalls,
2018 					ep_loop_check_proc, epi->ffd.file,
2019 					ep_tovisit, current);
2020 			if (error != 0)
2021 				break;
2022 		} else {
2023 			/*
2024 			 * If we've reached a file that is not associated with
2025 			 * an ep, then we need to check if the newly added
2026 			 * links are going to add too many wakeup paths. We do
2027 			 * this by adding it to the tfile_check_list, if it's
2028 			 * not already there, and calling reverse_path_check()
2029 			 * during ep_insert().
2030 			 */
2031 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2032 				if (get_file_rcu(epi->ffd.file))
2033 					list_add(&epi->ffd.file->f_tfile_llink,
2034 						 &tfile_check_list);
2035 			}
2036 		}
2037 	}
2038 	mutex_unlock(&ep->mtx);
2039 
2040 	return error;
2041 }
2042 
2043 /**
2044  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2045  *                 another epoll file (represented by @ep) does not create
2046  *                 closed loops or too deep chains.
2047  *
2048  * @ep: Pointer to the epoll private data structure.
2049  * @file: Pointer to the epoll file to be checked.
2050  *
2051  * Returns: Returns zero if adding the epoll @file inside current epoll
2052  *          structure @ep does not violate the constraints, or -1 otherwise.
2053  */
ep_loop_check(struct eventpoll * ep,struct file * file)2054 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2055 {
2056 	return ep_call_nested(&poll_loop_ncalls,
2057 			      ep_loop_check_proc, file, ep, current);
2058 }
2059 
clear_tfile_check_list(void)2060 static void clear_tfile_check_list(void)
2061 {
2062 	struct file *file;
2063 
2064 	/* first clear the tfile_check_list */
2065 	while (!list_empty(&tfile_check_list)) {
2066 		file = list_first_entry(&tfile_check_list, struct file,
2067 					f_tfile_llink);
2068 		list_del_init(&file->f_tfile_llink);
2069 		fput(file);
2070 	}
2071 	INIT_LIST_HEAD(&tfile_check_list);
2072 }
2073 
2074 /*
2075  * Open an eventpoll file descriptor.
2076  */
do_epoll_create(int flags)2077 static int do_epoll_create(int flags)
2078 {
2079 	int error, fd;
2080 	struct eventpoll *ep = NULL;
2081 	struct file *file;
2082 
2083 	/* Check the EPOLL_* constant for consistency.  */
2084 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2085 
2086 	if (flags & ~EPOLL_CLOEXEC)
2087 		return -EINVAL;
2088 	/*
2089 	 * Create the internal data structure ("struct eventpoll").
2090 	 */
2091 	error = ep_alloc(&ep);
2092 	if (error < 0)
2093 		return error;
2094 	/*
2095 	 * Creates all the items needed to setup an eventpoll file. That is,
2096 	 * a file structure and a free file descriptor.
2097 	 */
2098 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2099 	if (fd < 0) {
2100 		error = fd;
2101 		goto out_free_ep;
2102 	}
2103 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2104 				 O_RDWR | (flags & O_CLOEXEC));
2105 	if (IS_ERR(file)) {
2106 		error = PTR_ERR(file);
2107 		goto out_free_fd;
2108 	}
2109 	ep->file = file;
2110 	fd_install(fd, file);
2111 	return fd;
2112 
2113 out_free_fd:
2114 	put_unused_fd(fd);
2115 out_free_ep:
2116 	ep_free(ep);
2117 	return error;
2118 }
2119 
SYSCALL_DEFINE1(epoll_create1,int,flags)2120 SYSCALL_DEFINE1(epoll_create1, int, flags)
2121 {
2122 	return do_epoll_create(flags);
2123 }
2124 
SYSCALL_DEFINE1(epoll_create,int,size)2125 SYSCALL_DEFINE1(epoll_create, int, size)
2126 {
2127 	if (size <= 0)
2128 		return -EINVAL;
2129 
2130 	return do_epoll_create(0);
2131 }
2132 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2133 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2134 				   bool nonblock)
2135 {
2136 	if (!nonblock) {
2137 		mutex_lock_nested(mutex, depth);
2138 		return 0;
2139 	}
2140 	if (mutex_trylock(mutex))
2141 		return 0;
2142 	return -EAGAIN;
2143 }
2144 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2145 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2146 		 bool nonblock)
2147 {
2148 	int error;
2149 	int full_check = 0;
2150 	struct fd f, tf;
2151 	struct eventpoll *ep;
2152 	struct epitem *epi;
2153 	struct eventpoll *tep = NULL;
2154 
2155 	error = -EBADF;
2156 	f = fdget(epfd);
2157 	if (!f.file)
2158 		goto error_return;
2159 
2160 	/* Get the "struct file *" for the target file */
2161 	tf = fdget(fd);
2162 	if (!tf.file)
2163 		goto error_fput;
2164 
2165 	/* The target file descriptor must support poll */
2166 	error = -EPERM;
2167 	if (!file_can_poll(tf.file))
2168 		goto error_tgt_fput;
2169 
2170 	/* Check if EPOLLWAKEUP is allowed */
2171 	if (ep_op_has_event(op))
2172 		ep_take_care_of_epollwakeup(epds);
2173 
2174 	/*
2175 	 * We have to check that the file structure underneath the file descriptor
2176 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2177 	 * adding an epoll file descriptor inside itself.
2178 	 */
2179 	error = -EINVAL;
2180 	if (f.file == tf.file || !is_file_epoll(f.file))
2181 		goto error_tgt_fput;
2182 
2183 	/*
2184 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2185 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2186 	 * Also, we do not currently supported nested exclusive wakeups.
2187 	 */
2188 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2189 		if (op == EPOLL_CTL_MOD)
2190 			goto error_tgt_fput;
2191 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2192 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2193 			goto error_tgt_fput;
2194 	}
2195 
2196 	/*
2197 	 * At this point it is safe to assume that the "private_data" contains
2198 	 * our own data structure.
2199 	 */
2200 	ep = f.file->private_data;
2201 
2202 	/*
2203 	 * When we insert an epoll file descriptor, inside another epoll file
2204 	 * descriptor, there is the change of creating closed loops, which are
2205 	 * better be handled here, than in more critical paths. While we are
2206 	 * checking for loops we also determine the list of files reachable
2207 	 * and hang them on the tfile_check_list, so we can check that we
2208 	 * haven't created too many possible wakeup paths.
2209 	 *
2210 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2211 	 * the epoll file descriptor is attaching directly to a wakeup source,
2212 	 * unless the epoll file descriptor is nested. The purpose of taking the
2213 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2214 	 * deep wakeup paths from forming in parallel through multiple
2215 	 * EPOLL_CTL_ADD operations.
2216 	 */
2217 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2218 	if (error)
2219 		goto error_tgt_fput;
2220 	if (op == EPOLL_CTL_ADD) {
2221 		if (!list_empty(&f.file->f_ep_links) ||
2222 				ep->gen == loop_check_gen ||
2223 						is_file_epoll(tf.file)) {
2224 			mutex_unlock(&ep->mtx);
2225 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2226 			if (error)
2227 				goto error_tgt_fput;
2228 			loop_check_gen++;
2229 			full_check = 1;
2230 			if (is_file_epoll(tf.file)) {
2231 				error = -ELOOP;
2232 				if (ep_loop_check(ep, tf.file) != 0)
2233 					goto error_tgt_fput;
2234 			} else {
2235 				get_file(tf.file);
2236 				list_add(&tf.file->f_tfile_llink,
2237 							&tfile_check_list);
2238 			}
2239 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2240 			if (error)
2241 				goto error_tgt_fput;
2242 			if (is_file_epoll(tf.file)) {
2243 				tep = tf.file->private_data;
2244 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2245 				if (error) {
2246 					mutex_unlock(&ep->mtx);
2247 					goto error_tgt_fput;
2248 				}
2249 			}
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2255 	 * above, we can be sure to be able to use the item looked up by
2256 	 * ep_find() till we release the mutex.
2257 	 */
2258 	epi = ep_find(ep, tf.file, fd);
2259 
2260 	error = -EINVAL;
2261 	switch (op) {
2262 	case EPOLL_CTL_ADD:
2263 		if (!epi) {
2264 			epds->events |= EPOLLERR | EPOLLHUP;
2265 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2266 		} else
2267 			error = -EEXIST;
2268 		break;
2269 	case EPOLL_CTL_DEL:
2270 		if (epi)
2271 			error = ep_remove(ep, epi);
2272 		else
2273 			error = -ENOENT;
2274 		break;
2275 	case EPOLL_CTL_MOD:
2276 		if (epi) {
2277 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2278 				epds->events |= EPOLLERR | EPOLLHUP;
2279 				error = ep_modify(ep, epi, epds);
2280 			}
2281 		} else
2282 			error = -ENOENT;
2283 		break;
2284 	}
2285 	if (tep != NULL)
2286 		mutex_unlock(&tep->mtx);
2287 	mutex_unlock(&ep->mtx);
2288 
2289 error_tgt_fput:
2290 	if (full_check) {
2291 		clear_tfile_check_list();
2292 		loop_check_gen++;
2293 		mutex_unlock(&epmutex);
2294 	}
2295 
2296 	fdput(tf);
2297 error_fput:
2298 	fdput(f);
2299 error_return:
2300 
2301 	return error;
2302 }
2303 
2304 /*
2305  * The following function implements the controller interface for
2306  * the eventpoll file that enables the insertion/removal/change of
2307  * file descriptors inside the interest set.
2308  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2309 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2310 		struct epoll_event __user *, event)
2311 {
2312 	struct epoll_event epds;
2313 
2314 	if (ep_op_has_event(op) &&
2315 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2316 		return -EFAULT;
2317 
2318 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2319 }
2320 
2321 /*
2322  * Implement the event wait interface for the eventpoll file. It is the kernel
2323  * part of the user space epoll_wait(2).
2324  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2325 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2326 			 int maxevents, int timeout)
2327 {
2328 	int error;
2329 	struct fd f;
2330 	struct eventpoll *ep;
2331 
2332 	/* The maximum number of event must be greater than zero */
2333 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2334 		return -EINVAL;
2335 
2336 	/* Verify that the area passed by the user is writeable */
2337 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2338 		return -EFAULT;
2339 
2340 	/* Get the "struct file *" for the eventpoll file */
2341 	f = fdget(epfd);
2342 	if (!f.file)
2343 		return -EBADF;
2344 
2345 	/*
2346 	 * We have to check that the file structure underneath the fd
2347 	 * the user passed to us _is_ an eventpoll file.
2348 	 */
2349 	error = -EINVAL;
2350 	if (!is_file_epoll(f.file))
2351 		goto error_fput;
2352 
2353 	/*
2354 	 * At this point it is safe to assume that the "private_data" contains
2355 	 * our own data structure.
2356 	 */
2357 	ep = f.file->private_data;
2358 
2359 	/* Time to fish for events ... */
2360 	error = ep_poll(ep, events, maxevents, timeout);
2361 
2362 error_fput:
2363 	fdput(f);
2364 	return error;
2365 }
2366 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2367 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2368 		int, maxevents, int, timeout)
2369 {
2370 	return do_epoll_wait(epfd, events, maxevents, timeout);
2371 }
2372 
2373 /*
2374  * Implement the event wait interface for the eventpoll file. It is the kernel
2375  * part of the user space epoll_pwait(2).
2376  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2377 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2378 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2379 		size_t, sigsetsize)
2380 {
2381 	int error;
2382 
2383 	/*
2384 	 * If the caller wants a certain signal mask to be set during the wait,
2385 	 * we apply it here.
2386 	 */
2387 	error = set_user_sigmask(sigmask, sigsetsize);
2388 	if (error)
2389 		return error;
2390 
2391 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2392 	restore_saved_sigmask_unless(error == -EINTR);
2393 
2394 	return error;
2395 }
2396 
2397 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2398 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2399 			struct epoll_event __user *, events,
2400 			int, maxevents, int, timeout,
2401 			const compat_sigset_t __user *, sigmask,
2402 			compat_size_t, sigsetsize)
2403 {
2404 	long err;
2405 
2406 	/*
2407 	 * If the caller wants a certain signal mask to be set during the wait,
2408 	 * we apply it here.
2409 	 */
2410 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2411 	if (err)
2412 		return err;
2413 
2414 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2415 	restore_saved_sigmask_unless(err == -EINTR);
2416 
2417 	return err;
2418 }
2419 #endif
2420 
eventpoll_init(void)2421 static int __init eventpoll_init(void)
2422 {
2423 	struct sysinfo si;
2424 
2425 	si_meminfo(&si);
2426 	/*
2427 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2428 	 */
2429 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2430 		EP_ITEM_COST;
2431 	BUG_ON(max_user_watches < 0);
2432 
2433 	/*
2434 	 * Initialize the structure used to perform epoll file descriptor
2435 	 * inclusion loops checks.
2436 	 */
2437 	ep_nested_calls_init(&poll_loop_ncalls);
2438 
2439 	/*
2440 	 * We can have many thousands of epitems, so prevent this from
2441 	 * using an extra cache line on 64-bit (and smaller) CPUs
2442 	 */
2443 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2444 
2445 	/* Allocates slab cache used to allocate "struct epitem" items */
2446 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2447 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2448 
2449 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2450 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2451 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2452 
2453 	return 0;
2454 }
2455 fs_initcall(eventpoll_init);
2456