1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
__f2fs_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54 unsigned int nr_iovecs)
55 {
56 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool noio)59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61 if (noio) {
62 /* No failure on bio allocation */
63 return __f2fs_bio_alloc(GFP_NOIO, npages);
64 }
65
66 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68 return NULL;
69 }
70
71 return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73
__is_cp_guaranteed(struct page * page)74 static bool __is_cp_guaranteed(struct page *page)
75 {
76 struct address_space *mapping = page->mapping;
77 struct inode *inode;
78 struct f2fs_sb_info *sbi;
79
80 if (!mapping)
81 return false;
82
83 if (f2fs_is_compressed_page(page))
84 return false;
85
86 inode = mapping->host;
87 sbi = F2FS_I_SB(inode);
88
89 if (inode->i_ino == F2FS_META_INO(sbi) ||
90 inode->i_ino == F2FS_NODE_INO(sbi) ||
91 S_ISDIR(inode->i_mode) ||
92 (S_ISREG(inode->i_mode) &&
93 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94 is_cold_data(page))
95 return true;
96 return false;
97 }
98
__read_io_type(struct page * page)99 static enum count_type __read_io_type(struct page *page)
100 {
101 struct address_space *mapping = page_file_mapping(page);
102
103 if (mapping) {
104 struct inode *inode = mapping->host;
105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107 if (inode->i_ino == F2FS_META_INO(sbi))
108 return F2FS_RD_META;
109
110 if (inode->i_ino == F2FS_NODE_INO(sbi))
111 return F2FS_RD_NODE;
112 }
113 return F2FS_RD_DATA;
114 }
115
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118 STEP_DECRYPT,
119 STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */
120 STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */
121 STEP_VERITY,
122 };
123
124 struct bio_post_read_ctx {
125 struct bio *bio;
126 struct f2fs_sb_info *sbi;
127 struct work_struct work;
128 unsigned int enabled_steps;
129 };
130
__read_end_io(struct bio * bio,bool compr,bool verity)131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133 struct page *page;
134 struct bio_vec *bv;
135 struct bvec_iter_all iter_all;
136
137 bio_for_each_segment_all(bv, bio, iter_all) {
138 page = bv->bv_page;
139
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141 if (compr && f2fs_is_compressed_page(page)) {
142 f2fs_decompress_pages(bio, page, verity);
143 continue;
144 }
145 if (verity)
146 continue;
147 #endif
148
149 /* PG_error was set if any post_read step failed */
150 if (bio->bi_status || PageError(page)) {
151 ClearPageUptodate(page);
152 /* will re-read again later */
153 ClearPageError(page);
154 } else {
155 SetPageUptodate(page);
156 }
157 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158 unlock_page(page);
159 }
160 }
161
162 static void f2fs_release_read_bio(struct bio *bio);
__f2fs_read_end_io(struct bio * bio,bool compr,bool verity)163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165 if (!compr)
166 __read_end_io(bio, false, verity);
167 f2fs_release_read_bio(bio);
168 }
169
f2fs_decompress_bio(struct bio * bio,bool verity)170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172 __read_end_io(bio, true, verity);
173 }
174
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
f2fs_decrypt_work(struct bio_post_read_ctx * ctx)177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179 fscrypt_decrypt_bio(ctx->bio);
180 }
181
f2fs_decompress_work(struct bio_post_read_ctx * ctx)182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_verify_pages(struct page ** rpages,unsigned int cluster_size)188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190 f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192
f2fs_verify_bio(struct bio * bio)193 static void f2fs_verify_bio(struct bio *bio)
194 {
195 struct bio_vec *bv;
196 struct bvec_iter_all iter_all;
197
198 bio_for_each_segment_all(bv, bio, iter_all) {
199 struct page *page = bv->bv_page;
200 struct decompress_io_ctx *dic;
201
202 dic = (struct decompress_io_ctx *)page_private(page);
203
204 if (dic) {
205 if (atomic_dec_return(&dic->verity_pages))
206 continue;
207 f2fs_verify_pages(dic->rpages,
208 dic->cluster_size);
209 f2fs_free_dic(dic);
210 continue;
211 }
212
213 if (bio->bi_status || PageError(page))
214 goto clear_uptodate;
215
216 if (fsverity_verify_page(page)) {
217 SetPageUptodate(page);
218 goto unlock;
219 }
220 clear_uptodate:
221 ClearPageUptodate(page);
222 ClearPageError(page);
223 unlock:
224 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225 unlock_page(page);
226 }
227 }
228 #endif
229
f2fs_verity_work(struct work_struct * work)230 static void f2fs_verity_work(struct work_struct *work)
231 {
232 struct bio_post_read_ctx *ctx =
233 container_of(work, struct bio_post_read_ctx, work);
234 struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236 unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238
239 /*
240 * fsverity_verify_bio() may call readpages() again, and while verity
241 * will be disabled for this, decryption may still be needed, resulting
242 * in another bio_post_read_ctx being allocated. So to prevent
243 * deadlocks we need to release the current ctx to the mempool first.
244 * This assumes that verity is the last post-read step.
245 */
246 mempool_free(ctx, bio_post_read_ctx_pool);
247 bio->bi_private = NULL;
248
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250 /* previous step is decompression */
251 if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252 f2fs_verify_bio(bio);
253 f2fs_release_read_bio(bio);
254 return;
255 }
256 #endif
257
258 fsverity_verify_bio(bio);
259 __f2fs_read_end_io(bio, false, false);
260 }
261
f2fs_post_read_work(struct work_struct * work)262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 struct bio_post_read_ctx *ctx =
265 container_of(work, struct bio_post_read_ctx, work);
266
267 if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268 f2fs_decrypt_work(ctx);
269
270 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271 f2fs_decompress_work(ctx);
272
273 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274 INIT_WORK(&ctx->work, f2fs_verity_work);
275 fsverity_enqueue_verify_work(&ctx->work);
276 return;
277 }
278
279 __f2fs_read_end_io(ctx->bio,
280 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282
f2fs_enqueue_post_read_work(struct f2fs_sb_info * sbi,struct work_struct * work)283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284 struct work_struct *work)
285 {
286 queue_work(sbi->post_read_wq, work);
287 }
288
bio_post_read_processing(struct bio_post_read_ctx * ctx)289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291 /*
292 * We use different work queues for decryption and for verity because
293 * verity may require reading metadata pages that need decryption, and
294 * we shouldn't recurse to the same workqueue.
295 */
296
297 if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299 INIT_WORK(&ctx->work, f2fs_post_read_work);
300 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301 return;
302 }
303
304 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305 INIT_WORK(&ctx->work, f2fs_verity_work);
306 fsverity_enqueue_verify_work(&ctx->work);
307 return;
308 }
309
310 __f2fs_read_end_io(ctx->bio, false, false);
311 }
312
f2fs_bio_post_read_required(struct bio * bio)313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315 return bio->bi_private;
316 }
317
f2fs_read_end_io(struct bio * bio)318 static void f2fs_read_end_io(struct bio *bio)
319 {
320 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322 if (time_to_inject(sbi, FAULT_READ_IO)) {
323 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324 bio->bi_status = BLK_STS_IOERR;
325 }
326
327 if (f2fs_bio_post_read_required(bio)) {
328 struct bio_post_read_ctx *ctx = bio->bi_private;
329
330 bio_post_read_processing(ctx);
331 return;
332 }
333
334 __f2fs_read_end_io(bio, false, false);
335 }
336
f2fs_write_end_io(struct bio * bio)337 static void f2fs_write_end_io(struct bio *bio)
338 {
339 struct f2fs_sb_info *sbi = bio->bi_private;
340 struct bio_vec *bvec;
341 struct bvec_iter_all iter_all;
342
343 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345 bio->bi_status = BLK_STS_IOERR;
346 }
347
348 bio_for_each_segment_all(bvec, bio, iter_all) {
349 struct page *page = bvec->bv_page;
350 enum count_type type = WB_DATA_TYPE(page);
351
352 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353 set_page_private(page, (unsigned long)NULL);
354 ClearPagePrivate(page);
355 unlock_page(page);
356 mempool_free(page, sbi->write_io_dummy);
357
358 if (unlikely(bio->bi_status))
359 f2fs_stop_checkpoint(sbi, true);
360 continue;
361 }
362
363 fscrypt_finalize_bounce_page(&page);
364
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366 if (f2fs_is_compressed_page(page)) {
367 f2fs_compress_write_end_io(bio, page);
368 continue;
369 }
370 #endif
371
372 if (unlikely(bio->bi_status)) {
373 mapping_set_error(page->mapping, -EIO);
374 if (type == F2FS_WB_CP_DATA)
375 f2fs_stop_checkpoint(sbi, true);
376 }
377
378 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379 page->index != nid_of_node(page));
380
381 dec_page_count(sbi, type);
382 if (f2fs_in_warm_node_list(sbi, page))
383 f2fs_del_fsync_node_entry(sbi, page);
384 clear_cold_data(page);
385 end_page_writeback(page);
386 }
387 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388 wq_has_sleeper(&sbi->cp_wait))
389 wake_up(&sbi->cp_wait);
390
391 bio_put(bio);
392 }
393
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395 block_t blk_addr, struct bio *bio)
396 {
397 struct block_device *bdev = sbi->sb->s_bdev;
398 int i;
399
400 if (f2fs_is_multi_device(sbi)) {
401 for (i = 0; i < sbi->s_ndevs; i++) {
402 if (FDEV(i).start_blk <= blk_addr &&
403 FDEV(i).end_blk >= blk_addr) {
404 blk_addr -= FDEV(i).start_blk;
405 bdev = FDEV(i).bdev;
406 break;
407 }
408 }
409 }
410 if (bio) {
411 bio_set_dev(bio, bdev);
412 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413 }
414 return bdev;
415 }
416
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419 int i;
420
421 if (!f2fs_is_multi_device(sbi))
422 return 0;
423
424 for (i = 0; i < sbi->s_ndevs; i++)
425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426 return i;
427 return 0;
428 }
429
430 /*
431 * Return true, if pre_bio's bdev is same as its target device.
432 */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434 block_t blk_addr, struct bio *bio)
435 {
436 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439
__bio_alloc(struct f2fs_io_info * fio,int npages)440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442 struct f2fs_sb_info *sbi = fio->sbi;
443 struct bio *bio;
444
445 bio = f2fs_bio_alloc(sbi, npages, true);
446
447 f2fs_target_device(sbi, fio->new_blkaddr, bio);
448 if (is_read_io(fio->op)) {
449 bio->bi_end_io = f2fs_read_end_io;
450 bio->bi_private = NULL;
451 } else {
452 bio->bi_end_io = f2fs_write_end_io;
453 bio->bi_private = sbi;
454 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455 fio->type, fio->temp);
456 }
457 if (fio->io_wbc)
458 wbc_init_bio(fio->io_wbc, bio);
459
460 return bio;
461 }
462
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464 pgoff_t first_idx,
465 const struct f2fs_io_info *fio,
466 gfp_t gfp_mask)
467 {
468 /*
469 * The f2fs garbage collector sets ->encrypted_page when it wants to
470 * read/write raw data without encryption.
471 */
472 if (!fio || !fio->encrypted_page)
473 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477 pgoff_t next_idx,
478 const struct f2fs_io_info *fio)
479 {
480 /*
481 * The f2fs garbage collector sets ->encrypted_page when it wants to
482 * read/write raw data without encryption.
483 */
484 if (fio && fio->encrypted_page)
485 return !bio_has_crypt_ctx(bio);
486
487 return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491 struct bio *bio, enum page_type type)
492 {
493 if (!is_read_io(bio_op(bio))) {
494 unsigned int start;
495
496 if (type != DATA && type != NODE)
497 goto submit_io;
498
499 if (f2fs_lfs_mode(sbi) && current->plug)
500 blk_finish_plug(current->plug);
501
502 if (!F2FS_IO_ALIGNED(sbi))
503 goto submit_io;
504
505 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506 start %= F2FS_IO_SIZE(sbi);
507
508 if (start == 0)
509 goto submit_io;
510
511 /* fill dummy pages */
512 for (; start < F2FS_IO_SIZE(sbi); start++) {
513 struct page *page =
514 mempool_alloc(sbi->write_io_dummy,
515 GFP_NOIO | __GFP_NOFAIL);
516 f2fs_bug_on(sbi, !page);
517
518 zero_user_segment(page, 0, PAGE_SIZE);
519 SetPagePrivate(page);
520 set_page_private(page, DUMMY_WRITTEN_PAGE);
521 lock_page(page);
522 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523 f2fs_bug_on(sbi, 1);
524 }
525 /*
526 * In the NODE case, we lose next block address chain. So, we
527 * need to do checkpoint in f2fs_sync_file.
528 */
529 if (type == NODE)
530 set_sbi_flag(sbi, SBI_NEED_CP);
531 }
532 submit_io:
533 if (is_read_io(bio_op(bio)))
534 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535 else
536 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537 submit_bio(bio);
538 }
539
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541 struct bio *bio, enum page_type type)
542 {
543 __submit_bio(sbi, bio, type);
544 }
545
__attach_io_flag(struct f2fs_io_info * fio)546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548 struct f2fs_sb_info *sbi = fio->sbi;
549 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550 unsigned int io_flag, fua_flag, meta_flag;
551
552 if (fio->type == DATA)
553 io_flag = sbi->data_io_flag;
554 else if (fio->type == NODE)
555 io_flag = sbi->node_io_flag;
556 else
557 return;
558
559 fua_flag = io_flag & temp_mask;
560 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562 /*
563 * data/node io flag bits per temp:
564 * REQ_META | REQ_FUA |
565 * 5 | 4 | 3 | 2 | 1 | 0 |
566 * Cold | Warm | Hot | Cold | Warm | Hot |
567 */
568 if ((1 << fio->temp) & meta_flag)
569 fio->op_flags |= REQ_META;
570 if ((1 << fio->temp) & fua_flag)
571 fio->op_flags |= REQ_FUA;
572 }
573
__submit_merged_bio(struct f2fs_bio_info * io)574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576 struct f2fs_io_info *fio = &io->fio;
577
578 if (!io->bio)
579 return;
580
581 __attach_io_flag(fio);
582 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584 if (is_read_io(fio->op))
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 else
587 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589 __submit_bio(io->sbi, io->bio, fio->type);
590 io->bio = NULL;
591 }
592
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594 struct page *page, nid_t ino)
595 {
596 struct bio_vec *bvec;
597 struct bvec_iter_all iter_all;
598
599 if (!bio)
600 return false;
601
602 if (!inode && !page && !ino)
603 return true;
604
605 bio_for_each_segment_all(bvec, bio, iter_all) {
606 struct page *target = bvec->bv_page;
607
608 if (fscrypt_is_bounce_page(target)) {
609 target = fscrypt_pagecache_page(target);
610 if (IS_ERR(target))
611 continue;
612 }
613 if (f2fs_is_compressed_page(target)) {
614 target = f2fs_compress_control_page(target);
615 if (IS_ERR(target))
616 continue;
617 }
618
619 if (inode && inode == target->mapping->host)
620 return true;
621 if (page && page == target)
622 return true;
623 if (ino && ino == ino_of_node(target))
624 return true;
625 }
626
627 return false;
628 }
629
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631 enum page_type type, enum temp_type temp)
632 {
633 enum page_type btype = PAGE_TYPE_OF_BIO(type);
634 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636 down_write(&io->io_rwsem);
637
638 /* change META to META_FLUSH in the checkpoint procedure */
639 if (type >= META_FLUSH) {
640 io->fio.type = META_FLUSH;
641 io->fio.op = REQ_OP_WRITE;
642 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643 if (!test_opt(sbi, NOBARRIER))
644 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645 }
646 __submit_merged_bio(io);
647 up_write(&io->io_rwsem);
648 }
649
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 struct inode *inode, struct page *page,
652 nid_t ino, enum page_type type, bool force)
653 {
654 enum temp_type temp;
655 bool ret = true;
656
657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658 if (!force) {
659 enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662 down_read(&io->io_rwsem);
663 ret = __has_merged_page(io->bio, inode, page, ino);
664 up_read(&io->io_rwsem);
665 }
666 if (ret)
667 __f2fs_submit_merged_write(sbi, type, temp);
668
669 /* TODO: use HOT temp only for meta pages now. */
670 if (type >= META)
671 break;
672 }
673 }
674
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 struct inode *inode, struct page *page,
682 nid_t ino, enum page_type type)
683 {
684 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689 f2fs_submit_merged_write(sbi, DATA);
690 f2fs_submit_merged_write(sbi, NODE);
691 f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695 * Fill the locked page with data located in the block address.
696 * A caller needs to unlock the page on failure.
697 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700 struct bio *bio;
701 struct page *page = fio->encrypted_page ?
702 fio->encrypted_page : fio->page;
703
704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 META_GENERIC : DATA_GENERIC_ENHANCE)))
707 return -EFSCORRUPTED;
708
709 trace_f2fs_submit_page_bio(page, fio);
710 f2fs_trace_ios(fio, 0);
711
712 /* Allocate a new bio */
713 bio = __bio_alloc(fio, 1);
714
715 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716 fio->page->index, fio, GFP_NOIO);
717
718 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719 bio_put(bio);
720 return -EFAULT;
721 }
722
723 if (fio->io_wbc && !is_read_io(fio->op))
724 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
725
726 __attach_io_flag(fio);
727 bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729 inc_page_count(fio->sbi, is_read_io(fio->op) ?
730 __read_io_type(page): WB_DATA_TYPE(fio->page));
731
732 __submit_bio(fio->sbi, bio, fio->type);
733 return 0;
734 }
735
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 block_t last_blkaddr, block_t cur_blkaddr)
738 {
739 if (last_blkaddr + 1 != cur_blkaddr)
740 return false;
741 return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745 struct f2fs_io_info *fio)
746 {
747 if (io->fio.op != fio->op)
748 return false;
749 return io->fio.op_flags == fio->op_flags;
750 }
751
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753 struct f2fs_bio_info *io,
754 struct f2fs_io_info *fio,
755 block_t last_blkaddr,
756 block_t cur_blkaddr)
757 {
758 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759 unsigned int filled_blocks =
760 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761 unsigned int io_size = F2FS_IO_SIZE(sbi);
762 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764 /* IOs in bio is aligned and left space of vectors is not enough */
765 if (!(filled_blocks % io_size) && left_vecs < io_size)
766 return false;
767 }
768 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769 return false;
770 return io_type_is_mergeable(io, fio);
771 }
772
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774 struct page *page, enum temp_type temp)
775 {
776 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777 struct bio_entry *be;
778
779 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780 be->bio = bio;
781 bio_get(bio);
782
783 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784 f2fs_bug_on(sbi, 1);
785
786 down_write(&io->bio_list_lock);
787 list_add_tail(&be->list, &io->bio_list);
788 up_write(&io->bio_list_lock);
789 }
790
del_bio_entry(struct bio_entry * be)791 static void del_bio_entry(struct bio_entry *be)
792 {
793 list_del(&be->list);
794 kmem_cache_free(bio_entry_slab, be);
795 }
796
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798 struct page *page)
799 {
800 struct f2fs_sb_info *sbi = fio->sbi;
801 enum temp_type temp;
802 bool found = false;
803 int ret = -EAGAIN;
804
805 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807 struct list_head *head = &io->bio_list;
808 struct bio_entry *be;
809
810 down_write(&io->bio_list_lock);
811 list_for_each_entry(be, head, list) {
812 if (be->bio != *bio)
813 continue;
814
815 found = true;
816
817 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818 *fio->last_block,
819 fio->new_blkaddr));
820 if (f2fs_crypt_mergeable_bio(*bio,
821 fio->page->mapping->host,
822 fio->page->index, fio) &&
823 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824 PAGE_SIZE) {
825 ret = 0;
826 break;
827 }
828
829 /* page can't be merged into bio; submit the bio */
830 del_bio_entry(be);
831 __submit_bio(sbi, *bio, DATA);
832 break;
833 }
834 up_write(&io->bio_list_lock);
835 }
836
837 if (ret) {
838 bio_put(*bio);
839 *bio = NULL;
840 }
841
842 return ret;
843 }
844
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846 struct bio **bio, struct page *page)
847 {
848 enum temp_type temp;
849 bool found = false;
850 struct bio *target = bio ? *bio : NULL;
851
852 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
853 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
854 struct list_head *head = &io->bio_list;
855 struct bio_entry *be;
856
857 if (list_empty(head))
858 continue;
859
860 down_read(&io->bio_list_lock);
861 list_for_each_entry(be, head, list) {
862 if (target)
863 found = (target == be->bio);
864 else
865 found = __has_merged_page(be->bio, NULL,
866 page, 0);
867 if (found)
868 break;
869 }
870 up_read(&io->bio_list_lock);
871
872 if (!found)
873 continue;
874
875 found = false;
876
877 down_write(&io->bio_list_lock);
878 list_for_each_entry(be, head, list) {
879 if (target)
880 found = (target == be->bio);
881 else
882 found = __has_merged_page(be->bio, NULL,
883 page, 0);
884 if (found) {
885 target = be->bio;
886 del_bio_entry(be);
887 break;
888 }
889 }
890 up_write(&io->bio_list_lock);
891 }
892
893 if (found)
894 __submit_bio(sbi, target, DATA);
895 if (bio && *bio) {
896 bio_put(*bio);
897 *bio = NULL;
898 }
899 }
900
f2fs_merge_page_bio(struct f2fs_io_info * fio)901 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
902 {
903 struct bio *bio = *fio->bio;
904 struct page *page = fio->encrypted_page ?
905 fio->encrypted_page : fio->page;
906
907 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
908 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
909 return -EFSCORRUPTED;
910
911 trace_f2fs_submit_page_bio(page, fio);
912 f2fs_trace_ios(fio, 0);
913
914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
915 fio->new_blkaddr))
916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
917 alloc_new:
918 if (!bio) {
919 bio = __bio_alloc(fio, BIO_MAX_PAGES);
920 __attach_io_flag(fio);
921 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
922 fio->page->index, fio, GFP_NOIO);
923 bio_set_op_attrs(bio, fio->op, fio->op_flags);
924
925 add_bio_entry(fio->sbi, bio, page, fio->temp);
926 } else {
927 if (add_ipu_page(fio, &bio, page))
928 goto alloc_new;
929 }
930
931 if (fio->io_wbc)
932 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
933
934 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
935
936 *fio->last_block = fio->new_blkaddr;
937 *fio->bio = bio;
938
939 return 0;
940 }
941
f2fs_submit_page_write(struct f2fs_io_info * fio)942 void f2fs_submit_page_write(struct f2fs_io_info *fio)
943 {
944 struct f2fs_sb_info *sbi = fio->sbi;
945 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
946 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
947 struct page *bio_page;
948
949 f2fs_bug_on(sbi, is_read_io(fio->op));
950
951 down_write(&io->io_rwsem);
952 next:
953 if (fio->in_list) {
954 spin_lock(&io->io_lock);
955 if (list_empty(&io->io_list)) {
956 spin_unlock(&io->io_lock);
957 goto out;
958 }
959 fio = list_first_entry(&io->io_list,
960 struct f2fs_io_info, list);
961 list_del(&fio->list);
962 spin_unlock(&io->io_lock);
963 }
964
965 verify_fio_blkaddr(fio);
966
967 if (fio->encrypted_page)
968 bio_page = fio->encrypted_page;
969 else if (fio->compressed_page)
970 bio_page = fio->compressed_page;
971 else
972 bio_page = fio->page;
973
974 /* set submitted = true as a return value */
975 fio->submitted = true;
976
977 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978
979 if (io->bio &&
980 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
981 fio->new_blkaddr) ||
982 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
983 bio_page->index, fio)))
984 __submit_merged_bio(io);
985 alloc_new:
986 if (io->bio == NULL) {
987 if (F2FS_IO_ALIGNED(sbi) &&
988 (fio->type == DATA || fio->type == NODE) &&
989 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
990 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
991 fio->retry = true;
992 goto skip;
993 }
994 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
995 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
996 bio_page->index, fio, GFP_NOIO);
997 io->fio = *fio;
998 }
999
1000 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1001 __submit_merged_bio(io);
1002 goto alloc_new;
1003 }
1004
1005 if (fio->io_wbc)
1006 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1007
1008 io->last_block_in_bio = fio->new_blkaddr;
1009 f2fs_trace_ios(fio, 0);
1010
1011 trace_f2fs_submit_page_write(fio->page, fio);
1012 skip:
1013 if (fio->in_list)
1014 goto next;
1015 out:
1016 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1017 !f2fs_is_checkpoint_ready(sbi))
1018 __submit_merged_bio(io);
1019 up_write(&io->io_rwsem);
1020 }
1021
f2fs_need_verity(const struct inode * inode,pgoff_t idx)1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1023 {
1024 return fsverity_active(inode) &&
1025 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1026 }
1027
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write,bool for_verity)1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1029 unsigned nr_pages, unsigned op_flag,
1030 pgoff_t first_idx, bool for_write,
1031 bool for_verity)
1032 {
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 struct bio *bio;
1035 struct bio_post_read_ctx *ctx;
1036 unsigned int post_read_steps = 0;
1037
1038 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1039 for_write);
1040 if (!bio)
1041 return ERR_PTR(-ENOMEM);
1042
1043 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1044
1045 f2fs_target_device(sbi, blkaddr, bio);
1046 bio->bi_end_io = f2fs_read_end_io;
1047 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1048
1049 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1050 post_read_steps |= 1 << STEP_DECRYPT;
1051 if (f2fs_compressed_file(inode))
1052 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1053 if (for_verity && f2fs_need_verity(inode, first_idx))
1054 post_read_steps |= 1 << STEP_VERITY;
1055
1056 if (post_read_steps) {
1057 /* Due to the mempool, this never fails. */
1058 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1059 ctx->bio = bio;
1060 ctx->sbi = sbi;
1061 ctx->enabled_steps = post_read_steps;
1062 bio->bi_private = ctx;
1063 }
1064
1065 return bio;
1066 }
1067
f2fs_release_read_bio(struct bio * bio)1068 static void f2fs_release_read_bio(struct bio *bio)
1069 {
1070 if (bio->bi_private)
1071 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1072 bio_put(bio);
1073 }
1074
1075 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1076 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1077 block_t blkaddr, int op_flags, bool for_write)
1078 {
1079 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1080 struct bio *bio;
1081
1082 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1083 page->index, for_write, true);
1084 if (IS_ERR(bio))
1085 return PTR_ERR(bio);
1086
1087 /* wait for GCed page writeback via META_MAPPING */
1088 f2fs_wait_on_block_writeback(inode, blkaddr);
1089
1090 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1091 bio_put(bio);
1092 return -EFAULT;
1093 }
1094 ClearPageError(page);
1095 inc_page_count(sbi, F2FS_RD_DATA);
1096 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1097 __submit_bio(sbi, bio, DATA);
1098 return 0;
1099 }
1100
__set_data_blkaddr(struct dnode_of_data * dn)1101 static void __set_data_blkaddr(struct dnode_of_data *dn)
1102 {
1103 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1104 __le32 *addr_array;
1105 int base = 0;
1106
1107 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1108 base = get_extra_isize(dn->inode);
1109
1110 /* Get physical address of data block */
1111 addr_array = blkaddr_in_node(rn);
1112 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1113 }
1114
1115 /*
1116 * Lock ordering for the change of data block address:
1117 * ->data_page
1118 * ->node_page
1119 * update block addresses in the node page
1120 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1121 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1122 {
1123 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1124 __set_data_blkaddr(dn);
1125 if (set_page_dirty(dn->node_page))
1126 dn->node_changed = true;
1127 }
1128
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1129 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1130 {
1131 dn->data_blkaddr = blkaddr;
1132 f2fs_set_data_blkaddr(dn);
1133 f2fs_update_extent_cache(dn);
1134 }
1135
1136 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1137 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1138 {
1139 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1140 int err;
1141
1142 if (!count)
1143 return 0;
1144
1145 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1146 return -EPERM;
1147 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1148 return err;
1149
1150 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1151 dn->ofs_in_node, count);
1152
1153 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1154
1155 for (; count > 0; dn->ofs_in_node++) {
1156 block_t blkaddr = f2fs_data_blkaddr(dn);
1157 if (blkaddr == NULL_ADDR) {
1158 dn->data_blkaddr = NEW_ADDR;
1159 __set_data_blkaddr(dn);
1160 count--;
1161 }
1162 }
1163
1164 if (set_page_dirty(dn->node_page))
1165 dn->node_changed = true;
1166 return 0;
1167 }
1168
1169 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1170 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1171 {
1172 unsigned int ofs_in_node = dn->ofs_in_node;
1173 int ret;
1174
1175 ret = f2fs_reserve_new_blocks(dn, 1);
1176 dn->ofs_in_node = ofs_in_node;
1177 return ret;
1178 }
1179
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1180 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1181 {
1182 bool need_put = dn->inode_page ? false : true;
1183 int err;
1184
1185 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1186 if (err)
1187 return err;
1188
1189 if (dn->data_blkaddr == NULL_ADDR)
1190 err = f2fs_reserve_new_block(dn);
1191 if (err || need_put)
1192 f2fs_put_dnode(dn);
1193 return err;
1194 }
1195
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1196 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1197 {
1198 struct extent_info ei = {0, 0, 0};
1199 struct inode *inode = dn->inode;
1200
1201 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1202 dn->data_blkaddr = ei.blk + index - ei.fofs;
1203 return 0;
1204 }
1205
1206 return f2fs_reserve_block(dn, index);
1207 }
1208
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1210 int op_flags, bool for_write)
1211 {
1212 struct address_space *mapping = inode->i_mapping;
1213 struct dnode_of_data dn;
1214 struct page *page;
1215 struct extent_info ei = {0,0,0};
1216 int err;
1217
1218 page = f2fs_grab_cache_page(mapping, index, for_write);
1219 if (!page)
1220 return ERR_PTR(-ENOMEM);
1221
1222 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1223 dn.data_blkaddr = ei.blk + index - ei.fofs;
1224 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1225 DATA_GENERIC_ENHANCE_READ)) {
1226 err = -EFSCORRUPTED;
1227 goto put_err;
1228 }
1229 goto got_it;
1230 }
1231
1232 set_new_dnode(&dn, inode, NULL, NULL, 0);
1233 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1234 if (err)
1235 goto put_err;
1236 f2fs_put_dnode(&dn);
1237
1238 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1239 err = -ENOENT;
1240 goto put_err;
1241 }
1242 if (dn.data_blkaddr != NEW_ADDR &&
1243 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1244 dn.data_blkaddr,
1245 DATA_GENERIC_ENHANCE)) {
1246 err = -EFSCORRUPTED;
1247 goto put_err;
1248 }
1249 got_it:
1250 if (PageUptodate(page)) {
1251 unlock_page(page);
1252 return page;
1253 }
1254
1255 /*
1256 * A new dentry page is allocated but not able to be written, since its
1257 * new inode page couldn't be allocated due to -ENOSPC.
1258 * In such the case, its blkaddr can be remained as NEW_ADDR.
1259 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1260 * f2fs_init_inode_metadata.
1261 */
1262 if (dn.data_blkaddr == NEW_ADDR) {
1263 zero_user_segment(page, 0, PAGE_SIZE);
1264 if (!PageUptodate(page))
1265 SetPageUptodate(page);
1266 unlock_page(page);
1267 return page;
1268 }
1269
1270 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1271 op_flags, for_write);
1272 if (err)
1273 goto put_err;
1274 return page;
1275
1276 put_err:
1277 f2fs_put_page(page, 1);
1278 return ERR_PTR(err);
1279 }
1280
f2fs_find_data_page(struct inode * inode,pgoff_t index)1281 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1282 {
1283 struct address_space *mapping = inode->i_mapping;
1284 struct page *page;
1285
1286 page = find_get_page(mapping, index);
1287 if (page && PageUptodate(page))
1288 return page;
1289 f2fs_put_page(page, 0);
1290
1291 page = f2fs_get_read_data_page(inode, index, 0, false);
1292 if (IS_ERR(page))
1293 return page;
1294
1295 if (PageUptodate(page))
1296 return page;
1297
1298 wait_on_page_locked(page);
1299 if (unlikely(!PageUptodate(page))) {
1300 f2fs_put_page(page, 0);
1301 return ERR_PTR(-EIO);
1302 }
1303 return page;
1304 }
1305
1306 /*
1307 * If it tries to access a hole, return an error.
1308 * Because, the callers, functions in dir.c and GC, should be able to know
1309 * whether this page exists or not.
1310 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1311 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1312 bool for_write)
1313 {
1314 struct address_space *mapping = inode->i_mapping;
1315 struct page *page;
1316 repeat:
1317 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1318 if (IS_ERR(page))
1319 return page;
1320
1321 /* wait for read completion */
1322 lock_page(page);
1323 if (unlikely(page->mapping != mapping)) {
1324 f2fs_put_page(page, 1);
1325 goto repeat;
1326 }
1327 if (unlikely(!PageUptodate(page))) {
1328 f2fs_put_page(page, 1);
1329 return ERR_PTR(-EIO);
1330 }
1331 return page;
1332 }
1333
1334 /*
1335 * Caller ensures that this data page is never allocated.
1336 * A new zero-filled data page is allocated in the page cache.
1337 *
1338 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1339 * f2fs_unlock_op().
1340 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1341 * ipage should be released by this function.
1342 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1343 struct page *f2fs_get_new_data_page(struct inode *inode,
1344 struct page *ipage, pgoff_t index, bool new_i_size)
1345 {
1346 struct address_space *mapping = inode->i_mapping;
1347 struct page *page;
1348 struct dnode_of_data dn;
1349 int err;
1350
1351 page = f2fs_grab_cache_page(mapping, index, true);
1352 if (!page) {
1353 /*
1354 * before exiting, we should make sure ipage will be released
1355 * if any error occur.
1356 */
1357 f2fs_put_page(ipage, 1);
1358 return ERR_PTR(-ENOMEM);
1359 }
1360
1361 set_new_dnode(&dn, inode, ipage, NULL, 0);
1362 err = f2fs_reserve_block(&dn, index);
1363 if (err) {
1364 f2fs_put_page(page, 1);
1365 return ERR_PTR(err);
1366 }
1367 if (!ipage)
1368 f2fs_put_dnode(&dn);
1369
1370 if (PageUptodate(page))
1371 goto got_it;
1372
1373 if (dn.data_blkaddr == NEW_ADDR) {
1374 zero_user_segment(page, 0, PAGE_SIZE);
1375 if (!PageUptodate(page))
1376 SetPageUptodate(page);
1377 } else {
1378 f2fs_put_page(page, 1);
1379
1380 /* if ipage exists, blkaddr should be NEW_ADDR */
1381 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1382 page = f2fs_get_lock_data_page(inode, index, true);
1383 if (IS_ERR(page))
1384 return page;
1385 }
1386 got_it:
1387 if (new_i_size && i_size_read(inode) <
1388 ((loff_t)(index + 1) << PAGE_SHIFT))
1389 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1390 return page;
1391 }
1392
__allocate_data_block(struct dnode_of_data * dn,int seg_type,int contig_level)1393 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type, int contig_level)
1394 {
1395 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1396 struct f2fs_summary sum;
1397 struct node_info ni;
1398 block_t old_blkaddr;
1399 blkcnt_t count = 1;
1400 int err;
1401
1402 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1403 return -EPERM;
1404
1405 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1406 if (err)
1407 return err;
1408
1409 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1410 if (dn->data_blkaddr != NULL_ADDR)
1411 goto alloc;
1412
1413 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1414 return err;
1415
1416 alloc:
1417 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 old_blkaddr = dn->data_blkaddr;
1419 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1420 &sum, seg_type, NULL, contig_level);
1421 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1422 invalidate_mapping_pages(META_MAPPING(sbi),
1423 old_blkaddr, old_blkaddr);
1424 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1425
1426 /*
1427 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1428 * data from unwritten block via dio_read.
1429 */
1430 return 0;
1431 }
1432
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1433 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1434 {
1435 struct inode *inode = file_inode(iocb->ki_filp);
1436 struct f2fs_map_blocks map;
1437 int flag;
1438 int err = 0;
1439 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1440
1441 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1442 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1443 if (map.m_len > map.m_lblk)
1444 map.m_len -= map.m_lblk;
1445 else
1446 map.m_len = 0;
1447
1448 map.m_next_pgofs = NULL;
1449 map.m_next_extent = NULL;
1450 map.m_seg_type = NO_CHECK_TYPE;
1451 map.m_may_create = true;
1452
1453 if (direct_io) {
1454 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1455 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1456 F2FS_GET_BLOCK_PRE_AIO :
1457 F2FS_GET_BLOCK_PRE_DIO;
1458 goto map_blocks;
1459 }
1460 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1461 err = f2fs_convert_inline_inode(inode);
1462 if (err)
1463 return err;
1464 }
1465 if (f2fs_has_inline_data(inode))
1466 return err;
1467
1468 flag = F2FS_GET_BLOCK_PRE_AIO;
1469
1470 map_blocks:
1471 err = f2fs_map_blocks(inode, &map, 1, flag);
1472 if (map.m_len > 0 && err == -ENOSPC) {
1473 if (!direct_io)
1474 set_inode_flag(inode, FI_NO_PREALLOC);
1475 err = 0;
1476 }
1477 return err;
1478 }
1479
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1480 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1481 {
1482 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1483 if (lock)
1484 down_read(&sbi->node_change);
1485 else
1486 up_read(&sbi->node_change);
1487 } else {
1488 if (lock)
1489 f2fs_lock_op(sbi);
1490 else
1491 f2fs_unlock_op(sbi);
1492 }
1493 }
1494
1495 /*
1496 * f2fs_map_blocks() tries to find or build mapping relationship which
1497 * maps continuous logical blocks to physical blocks, and return such
1498 * info via f2fs_map_blocks structure.
1499 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1500 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1501 int create, int flag)
1502 {
1503 unsigned int maxblocks = map->m_len;
1504 struct dnode_of_data dn;
1505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1506 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1507 pgoff_t pgofs, end_offset, end;
1508 int err = 0, ofs = 1;
1509 unsigned int ofs_in_node, last_ofs_in_node;
1510 blkcnt_t prealloc;
1511 struct extent_info ei = {0,0,0};
1512 block_t blkaddr;
1513 unsigned int start_pgofs;
1514 int contig_level = SEQ_NONE;
1515 #ifdef CONFIG_F2FS_GRADING_SSR
1516 contig_level = check_io_seq(maxblocks);
1517 #endif
1518
1519 if (!maxblocks)
1520 return 0;
1521
1522 map->m_len = 0;
1523 map->m_flags = 0;
1524
1525 /* it only supports block size == page size */
1526 pgofs = (pgoff_t)map->m_lblk;
1527 end = pgofs + maxblocks;
1528
1529 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1530 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1531 map->m_may_create)
1532 goto next_dnode;
1533
1534 map->m_pblk = ei.blk + pgofs - ei.fofs;
1535 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1536 map->m_flags = F2FS_MAP_MAPPED;
1537 if (map->m_next_extent)
1538 *map->m_next_extent = pgofs + map->m_len;
1539
1540 /* for hardware encryption, but to avoid potential issue in future */
1541 if (flag == F2FS_GET_BLOCK_DIO)
1542 f2fs_wait_on_block_writeback_range(inode,
1543 map->m_pblk, map->m_len);
1544 goto out;
1545 }
1546
1547 next_dnode:
1548 if (map->m_may_create)
1549 f2fs_do_map_lock(sbi, flag, true);
1550
1551 /* When reading holes, we need its node page */
1552 set_new_dnode(&dn, inode, NULL, NULL, 0);
1553 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1554 if (err) {
1555 if (flag == F2FS_GET_BLOCK_BMAP)
1556 map->m_pblk = 0;
1557
1558 if (err == -ENOENT) {
1559 /*
1560 * There is one exceptional case that read_node_page()
1561 * may return -ENOENT due to filesystem has been
1562 * shutdown or cp_error, so force to convert error
1563 * number to EIO for such case.
1564 */
1565 if (map->m_may_create &&
1566 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1567 f2fs_cp_error(sbi))) {
1568 err = -EIO;
1569 goto unlock_out;
1570 }
1571
1572 err = 0;
1573 if (map->m_next_pgofs)
1574 *map->m_next_pgofs =
1575 f2fs_get_next_page_offset(&dn, pgofs);
1576 if (map->m_next_extent)
1577 *map->m_next_extent =
1578 f2fs_get_next_page_offset(&dn, pgofs);
1579 }
1580 goto unlock_out;
1581 }
1582
1583 start_pgofs = pgofs;
1584 prealloc = 0;
1585 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1586 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1587
1588 next_block:
1589 blkaddr = f2fs_data_blkaddr(&dn);
1590
1591 if (__is_valid_data_blkaddr(blkaddr) &&
1592 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1593 err = -EFSCORRUPTED;
1594 goto sync_out;
1595 }
1596
1597 if (__is_valid_data_blkaddr(blkaddr)) {
1598 /* use out-place-update for driect IO under LFS mode */
1599 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1600 map->m_may_create) {
1601 err = __allocate_data_block(&dn, map->m_seg_type, contig_level);
1602 if (err)
1603 goto sync_out;
1604 blkaddr = dn.data_blkaddr;
1605 set_inode_flag(inode, FI_APPEND_WRITE);
1606 }
1607 } else {
1608 if (create) {
1609 if (unlikely(f2fs_cp_error(sbi))) {
1610 err = -EIO;
1611 goto sync_out;
1612 }
1613 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1614 if (blkaddr == NULL_ADDR) {
1615 prealloc++;
1616 last_ofs_in_node = dn.ofs_in_node;
1617 }
1618 } else {
1619 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1620 flag != F2FS_GET_BLOCK_DIO);
1621 err = __allocate_data_block(&dn,
1622 map->m_seg_type, contig_level);
1623 if (!err)
1624 set_inode_flag(inode, FI_APPEND_WRITE);
1625 }
1626 if (err)
1627 goto sync_out;
1628 map->m_flags |= F2FS_MAP_NEW;
1629 blkaddr = dn.data_blkaddr;
1630 } else {
1631 if (flag == F2FS_GET_BLOCK_BMAP) {
1632 map->m_pblk = 0;
1633 goto sync_out;
1634 }
1635 if (flag == F2FS_GET_BLOCK_PRECACHE)
1636 goto sync_out;
1637 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1638 blkaddr == NULL_ADDR) {
1639 if (map->m_next_pgofs)
1640 *map->m_next_pgofs = pgofs + 1;
1641 goto sync_out;
1642 }
1643 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1644 /* for defragment case */
1645 if (map->m_next_pgofs)
1646 *map->m_next_pgofs = pgofs + 1;
1647 goto sync_out;
1648 }
1649 }
1650 }
1651
1652 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1653 goto skip;
1654
1655 if (map->m_len == 0) {
1656 /* preallocated unwritten block should be mapped for fiemap. */
1657 if (blkaddr == NEW_ADDR)
1658 map->m_flags |= F2FS_MAP_UNWRITTEN;
1659 map->m_flags |= F2FS_MAP_MAPPED;
1660
1661 map->m_pblk = blkaddr;
1662 map->m_len = 1;
1663 } else if ((map->m_pblk != NEW_ADDR &&
1664 blkaddr == (map->m_pblk + ofs)) ||
1665 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1666 flag == F2FS_GET_BLOCK_PRE_DIO) {
1667 ofs++;
1668 map->m_len++;
1669 } else {
1670 goto sync_out;
1671 }
1672
1673 skip:
1674 dn.ofs_in_node++;
1675 pgofs++;
1676
1677 /* preallocate blocks in batch for one dnode page */
1678 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1679 (pgofs == end || dn.ofs_in_node == end_offset)) {
1680
1681 dn.ofs_in_node = ofs_in_node;
1682 err = f2fs_reserve_new_blocks(&dn, prealloc);
1683 if (err)
1684 goto sync_out;
1685
1686 map->m_len += dn.ofs_in_node - ofs_in_node;
1687 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1688 err = -ENOSPC;
1689 goto sync_out;
1690 }
1691 dn.ofs_in_node = end_offset;
1692 }
1693
1694 if (pgofs >= end)
1695 goto sync_out;
1696 else if (dn.ofs_in_node < end_offset)
1697 goto next_block;
1698
1699 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1700 if (map->m_flags & F2FS_MAP_MAPPED) {
1701 unsigned int ofs = start_pgofs - map->m_lblk;
1702
1703 f2fs_update_extent_cache_range(&dn,
1704 start_pgofs, map->m_pblk + ofs,
1705 map->m_len - ofs);
1706 }
1707 }
1708
1709 f2fs_put_dnode(&dn);
1710
1711 if (map->m_may_create) {
1712 f2fs_do_map_lock(sbi, flag, false);
1713 f2fs_balance_fs(sbi, dn.node_changed);
1714 }
1715 goto next_dnode;
1716
1717 sync_out:
1718
1719 /* for hardware encryption, but to avoid potential issue in future */
1720 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1721 f2fs_wait_on_block_writeback_range(inode,
1722 map->m_pblk, map->m_len);
1723
1724 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1725 if (map->m_flags & F2FS_MAP_MAPPED) {
1726 unsigned int ofs = start_pgofs - map->m_lblk;
1727
1728 f2fs_update_extent_cache_range(&dn,
1729 start_pgofs, map->m_pblk + ofs,
1730 map->m_len - ofs);
1731 }
1732 if (map->m_next_extent)
1733 *map->m_next_extent = pgofs + 1;
1734 }
1735 f2fs_put_dnode(&dn);
1736 unlock_out:
1737 if (map->m_may_create) {
1738 f2fs_do_map_lock(sbi, flag, false);
1739 f2fs_balance_fs(sbi, dn.node_changed);
1740 }
1741 out:
1742 trace_f2fs_map_blocks(inode, map, err);
1743 return err;
1744 }
1745
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1746 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1747 {
1748 struct f2fs_map_blocks map;
1749 block_t last_lblk;
1750 int err;
1751
1752 if (pos + len > i_size_read(inode))
1753 return false;
1754
1755 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1756 map.m_next_pgofs = NULL;
1757 map.m_next_extent = NULL;
1758 map.m_seg_type = NO_CHECK_TYPE;
1759 map.m_may_create = false;
1760 last_lblk = F2FS_BLK_ALIGN(pos + len);
1761
1762 while (map.m_lblk < last_lblk) {
1763 map.m_len = last_lblk - map.m_lblk;
1764 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1765 if (err || map.m_len == 0)
1766 return false;
1767 map.m_lblk += map.m_len;
1768 }
1769 return true;
1770 }
1771
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1772 static int __get_data_block(struct inode *inode, sector_t iblock,
1773 struct buffer_head *bh, int create, int flag,
1774 pgoff_t *next_pgofs, int seg_type, bool may_write)
1775 {
1776 struct f2fs_map_blocks map;
1777 int err;
1778
1779 map.m_lblk = iblock;
1780 map.m_len = bh->b_size >> inode->i_blkbits;
1781 map.m_next_pgofs = next_pgofs;
1782 map.m_next_extent = NULL;
1783 map.m_seg_type = seg_type;
1784 map.m_may_create = may_write;
1785
1786 err = f2fs_map_blocks(inode, &map, create, flag);
1787 if (!err) {
1788 map_bh(bh, inode->i_sb, map.m_pblk);
1789 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1790 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1791 }
1792 return err;
1793 }
1794
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1795 static int get_data_block(struct inode *inode, sector_t iblock,
1796 struct buffer_head *bh_result, int create, int flag,
1797 pgoff_t *next_pgofs)
1798 {
1799 return __get_data_block(inode, iblock, bh_result, create,
1800 flag, next_pgofs,
1801 NO_CHECK_TYPE, create);
1802 }
1803
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1804 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1805 struct buffer_head *bh_result, int create)
1806 {
1807 return __get_data_block(inode, iblock, bh_result, create,
1808 F2FS_GET_BLOCK_DIO, NULL,
1809 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1810 IS_SWAPFILE(inode) ? false : true);
1811 }
1812
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1813 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1814 struct buffer_head *bh_result, int create)
1815 {
1816 return __get_data_block(inode, iblock, bh_result, create,
1817 F2FS_GET_BLOCK_DIO, NULL,
1818 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1819 false);
1820 }
1821
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1822 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1823 struct buffer_head *bh_result, int create)
1824 {
1825 return __get_data_block(inode, iblock, bh_result, create,
1826 F2FS_GET_BLOCK_BMAP, NULL,
1827 NO_CHECK_TYPE, create);
1828 }
1829
logical_to_blk(struct inode * inode,loff_t offset)1830 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1831 {
1832 return (offset >> inode->i_blkbits);
1833 }
1834
blk_to_logical(struct inode * inode,sector_t blk)1835 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1836 {
1837 return (blk << inode->i_blkbits);
1838 }
1839
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1840 static int f2fs_xattr_fiemap(struct inode *inode,
1841 struct fiemap_extent_info *fieinfo)
1842 {
1843 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1844 struct page *page;
1845 struct node_info ni;
1846 __u64 phys = 0, len;
1847 __u32 flags;
1848 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1849 int err = 0;
1850
1851 if (f2fs_has_inline_xattr(inode)) {
1852 int offset;
1853
1854 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1855 inode->i_ino, false);
1856 if (!page)
1857 return -ENOMEM;
1858
1859 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1860 if (err) {
1861 f2fs_put_page(page, 1);
1862 return err;
1863 }
1864
1865 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1866 offset = offsetof(struct f2fs_inode, i_addr) +
1867 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1868 get_inline_xattr_addrs(inode));
1869
1870 phys += offset;
1871 len = inline_xattr_size(inode);
1872
1873 f2fs_put_page(page, 1);
1874
1875 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1876
1877 if (!xnid)
1878 flags |= FIEMAP_EXTENT_LAST;
1879
1880 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1881 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1882 if (err || err == 1)
1883 return err;
1884 }
1885
1886 if (xnid) {
1887 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1888 if (!page)
1889 return -ENOMEM;
1890
1891 err = f2fs_get_node_info(sbi, xnid, &ni);
1892 if (err) {
1893 f2fs_put_page(page, 1);
1894 return err;
1895 }
1896
1897 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1898 len = inode->i_sb->s_blocksize;
1899
1900 f2fs_put_page(page, 1);
1901
1902 flags = FIEMAP_EXTENT_LAST;
1903 }
1904
1905 if (phys) {
1906 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1907 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1908 }
1909
1910 return (err < 0 ? err : 0);
1911 }
1912
max_inode_blocks(struct inode * inode)1913 static loff_t max_inode_blocks(struct inode *inode)
1914 {
1915 loff_t result = ADDRS_PER_INODE(inode);
1916 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1917
1918 /* two direct node blocks */
1919 result += (leaf_count * 2);
1920
1921 /* two indirect node blocks */
1922 leaf_count *= NIDS_PER_BLOCK;
1923 result += (leaf_count * 2);
1924
1925 /* one double indirect node block */
1926 leaf_count *= NIDS_PER_BLOCK;
1927 result += leaf_count;
1928
1929 return result;
1930 }
1931
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1932 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1933 u64 start, u64 len)
1934 {
1935 struct buffer_head map_bh;
1936 sector_t start_blk, last_blk;
1937 pgoff_t next_pgofs;
1938 u64 logical = 0, phys = 0, size = 0;
1939 u32 flags = 0;
1940 int ret = 0;
1941 bool compr_cluster = false;
1942 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1943
1944 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1945 ret = f2fs_precache_extents(inode);
1946 if (ret)
1947 return ret;
1948 }
1949
1950 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1951 if (ret)
1952 return ret;
1953
1954 inode_lock(inode);
1955
1956 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1957 ret = f2fs_xattr_fiemap(inode, fieinfo);
1958 goto out;
1959 }
1960
1961 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1962 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1963 if (ret != -EAGAIN)
1964 goto out;
1965 }
1966
1967 if (logical_to_blk(inode, len) == 0)
1968 len = blk_to_logical(inode, 1);
1969
1970 start_blk = logical_to_blk(inode, start);
1971 last_blk = logical_to_blk(inode, start + len - 1);
1972
1973 next:
1974 memset(&map_bh, 0, sizeof(struct buffer_head));
1975 map_bh.b_size = len;
1976
1977 if (compr_cluster)
1978 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1979
1980 ret = get_data_block(inode, start_blk, &map_bh, 0,
1981 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1982 if (ret)
1983 goto out;
1984
1985 /* HOLE */
1986 if (!buffer_mapped(&map_bh)) {
1987 start_blk = next_pgofs;
1988
1989 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1990 max_inode_blocks(inode)))
1991 goto prep_next;
1992
1993 flags |= FIEMAP_EXTENT_LAST;
1994 }
1995
1996 if (size) {
1997 if (IS_ENCRYPTED(inode))
1998 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1999
2000 ret = fiemap_fill_next_extent(fieinfo, logical,
2001 phys, size, flags);
2002 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2003 if (ret)
2004 goto out;
2005 size = 0;
2006 }
2007
2008 if (start_blk > last_blk)
2009 goto out;
2010
2011 if (compr_cluster) {
2012 compr_cluster = false;
2013
2014
2015 logical = blk_to_logical(inode, start_blk - 1);
2016 phys = blk_to_logical(inode, map_bh.b_blocknr);
2017 size = blk_to_logical(inode, cluster_size);
2018
2019 flags |= FIEMAP_EXTENT_ENCODED;
2020
2021 start_blk += cluster_size - 1;
2022
2023 if (start_blk > last_blk)
2024 goto out;
2025
2026 goto prep_next;
2027 }
2028
2029 if (map_bh.b_blocknr == COMPRESS_ADDR) {
2030 compr_cluster = true;
2031 start_blk++;
2032 goto prep_next;
2033 }
2034
2035 logical = blk_to_logical(inode, start_blk);
2036 phys = blk_to_logical(inode, map_bh.b_blocknr);
2037 size = map_bh.b_size;
2038 flags = 0;
2039 if (buffer_unwritten(&map_bh))
2040 flags = FIEMAP_EXTENT_UNWRITTEN;
2041
2042 start_blk += logical_to_blk(inode, size);
2043
2044 prep_next:
2045 cond_resched();
2046 if (fatal_signal_pending(current))
2047 ret = -EINTR;
2048 else
2049 goto next;
2050 out:
2051 if (ret == 1)
2052 ret = 0;
2053
2054 inode_unlock(inode);
2055 return ret;
2056 }
2057
f2fs_readpage_limit(struct inode * inode)2058 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2059 {
2060 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2061 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2062 return inode->i_sb->s_maxbytes;
2063
2064 return i_size_read(inode);
2065 }
2066
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2067 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2068 unsigned nr_pages,
2069 struct f2fs_map_blocks *map,
2070 struct bio **bio_ret,
2071 sector_t *last_block_in_bio,
2072 bool is_readahead)
2073 {
2074 struct bio *bio = *bio_ret;
2075 const unsigned blkbits = inode->i_blkbits;
2076 const unsigned blocksize = 1 << blkbits;
2077 sector_t block_in_file;
2078 sector_t last_block;
2079 sector_t last_block_in_file;
2080 sector_t block_nr;
2081 int ret = 0;
2082
2083 block_in_file = (sector_t)page_index(page);
2084 last_block = block_in_file + nr_pages;
2085 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2086 blkbits;
2087 if (last_block > last_block_in_file)
2088 last_block = last_block_in_file;
2089
2090 /* just zeroing out page which is beyond EOF */
2091 if (block_in_file >= last_block)
2092 goto zero_out;
2093 /*
2094 * Map blocks using the previous result first.
2095 */
2096 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2097 block_in_file > map->m_lblk &&
2098 block_in_file < (map->m_lblk + map->m_len))
2099 goto got_it;
2100
2101 /*
2102 * Then do more f2fs_map_blocks() calls until we are
2103 * done with this page.
2104 */
2105 map->m_lblk = block_in_file;
2106 map->m_len = last_block - block_in_file;
2107
2108 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2109 if (ret)
2110 goto out;
2111 got_it:
2112 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2113 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2114 SetPageMappedToDisk(page);
2115
2116 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2117 !cleancache_get_page(page))) {
2118 SetPageUptodate(page);
2119 goto confused;
2120 }
2121
2122 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2123 DATA_GENERIC_ENHANCE_READ)) {
2124 ret = -EFSCORRUPTED;
2125 goto out;
2126 }
2127 } else {
2128 zero_out:
2129 zero_user_segment(page, 0, PAGE_SIZE);
2130 if (f2fs_need_verity(inode, page->index) &&
2131 !fsverity_verify_page(page)) {
2132 ret = -EIO;
2133 goto out;
2134 }
2135 if (!PageUptodate(page))
2136 SetPageUptodate(page);
2137 unlock_page(page);
2138 goto out;
2139 }
2140
2141 /*
2142 * This page will go to BIO. Do we need to send this
2143 * BIO off first?
2144 */
2145 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2146 *last_block_in_bio, block_nr) ||
2147 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2148 submit_and_realloc:
2149 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2150 bio = NULL;
2151 }
2152 if (bio == NULL) {
2153 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2154 is_readahead ? REQ_RAHEAD : 0, page->index,
2155 false, true);
2156 if (IS_ERR(bio)) {
2157 ret = PTR_ERR(bio);
2158 bio = NULL;
2159 goto out;
2160 }
2161 }
2162
2163 /*
2164 * If the page is under writeback, we need to wait for
2165 * its completion to see the correct decrypted data.
2166 */
2167 f2fs_wait_on_block_writeback(inode, block_nr);
2168
2169 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2170 goto submit_and_realloc;
2171
2172 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2173 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2174 ClearPageError(page);
2175 *last_block_in_bio = block_nr;
2176 goto out;
2177 confused:
2178 if (bio) {
2179 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2180 bio = NULL;
2181 }
2182 unlock_page(page);
2183 out:
2184 *bio_ret = bio;
2185 return ret;
2186 }
2187
2188 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2189 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2190 unsigned nr_pages, sector_t *last_block_in_bio,
2191 bool is_readahead, bool for_write)
2192 {
2193 struct dnode_of_data dn;
2194 struct inode *inode = cc->inode;
2195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2196 struct bio *bio = *bio_ret;
2197 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2198 sector_t last_block_in_file;
2199 const unsigned blkbits = inode->i_blkbits;
2200 const unsigned blocksize = 1 << blkbits;
2201 struct decompress_io_ctx *dic = NULL;
2202 struct bio_post_read_ctx *ctx;
2203 bool for_verity = false;
2204 int i;
2205 int ret = 0;
2206
2207 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2208
2209 last_block_in_file = (f2fs_readpage_limit(inode) +
2210 blocksize - 1) >> blkbits;
2211
2212 /* get rid of pages beyond EOF */
2213 for (i = 0; i < cc->cluster_size; i++) {
2214 struct page *page = cc->rpages[i];
2215
2216 if (!page)
2217 continue;
2218 if ((sector_t)page->index >= last_block_in_file) {
2219 zero_user_segment(page, 0, PAGE_SIZE);
2220 if (!PageUptodate(page))
2221 SetPageUptodate(page);
2222 } else if (!PageUptodate(page)) {
2223 continue;
2224 }
2225 unlock_page(page);
2226 if (for_write)
2227 put_page(page);
2228 cc->rpages[i] = NULL;
2229 cc->nr_rpages--;
2230 }
2231
2232 /* we are done since all pages are beyond EOF */
2233 if (f2fs_cluster_is_empty(cc))
2234 goto out;
2235
2236 set_new_dnode(&dn, inode, NULL, NULL, 0);
2237 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2238 if (ret)
2239 goto out;
2240
2241 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2242
2243 for (i = 1; i < cc->cluster_size; i++) {
2244 block_t blkaddr;
2245
2246 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2247 dn.ofs_in_node + i);
2248
2249 if (!__is_valid_data_blkaddr(blkaddr))
2250 break;
2251
2252 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2253 ret = -EFAULT;
2254 goto out_put_dnode;
2255 }
2256 cc->nr_cpages++;
2257 }
2258
2259 /* nothing to decompress */
2260 if (cc->nr_cpages == 0) {
2261 ret = 0;
2262 goto out_put_dnode;
2263 }
2264
2265 dic = f2fs_alloc_dic(cc);
2266 if (IS_ERR(dic)) {
2267 ret = PTR_ERR(dic);
2268 goto out_put_dnode;
2269 }
2270
2271 /*
2272 * It's possible to enable fsverity on the fly when handling a cluster,
2273 * which requires complicated error handling. Instead of adding more
2274 * complexity, let's give a rule where end_io post-processes fsverity
2275 * per cluster. In order to do that, we need to submit bio, if previous
2276 * bio sets a different post-process policy.
2277 */
2278 if (fsverity_active(cc->inode)) {
2279 atomic_set(&dic->verity_pages, cc->nr_cpages);
2280 for_verity = true;
2281
2282 if (bio) {
2283 ctx = bio->bi_private;
2284 if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2285 __submit_bio(sbi, bio, DATA);
2286 bio = NULL;
2287 }
2288 }
2289 }
2290
2291 for (i = 0; i < dic->nr_cpages; i++) {
2292 struct page *page = dic->cpages[i];
2293 block_t blkaddr;
2294
2295 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2296 dn.ofs_in_node + i + 1);
2297
2298 if (bio && (!page_is_mergeable(sbi, bio,
2299 *last_block_in_bio, blkaddr) ||
2300 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2301 submit_and_realloc:
2302 __submit_bio(sbi, bio, DATA);
2303 bio = NULL;
2304 }
2305
2306 if (!bio) {
2307 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2308 is_readahead ? REQ_RAHEAD : 0,
2309 page->index, for_write, for_verity);
2310 if (IS_ERR(bio)) {
2311 unsigned int remained = dic->nr_cpages - i;
2312 bool release = false;
2313
2314 ret = PTR_ERR(bio);
2315 dic->failed = true;
2316
2317 if (for_verity) {
2318 if (!atomic_sub_return(remained,
2319 &dic->verity_pages))
2320 release = true;
2321 } else {
2322 if (!atomic_sub_return(remained,
2323 &dic->pending_pages))
2324 release = true;
2325 }
2326
2327 if (release) {
2328 f2fs_decompress_end_io(dic->rpages,
2329 cc->cluster_size, true,
2330 false);
2331 f2fs_free_dic(dic);
2332 }
2333
2334 f2fs_put_dnode(&dn);
2335 *bio_ret = NULL;
2336 return ret;
2337 }
2338 }
2339
2340 f2fs_wait_on_block_writeback(inode, blkaddr);
2341
2342 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2343 goto submit_and_realloc;
2344
2345 /* tag STEP_DECOMPRESS to handle IO in wq */
2346 ctx = bio->bi_private;
2347 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2348 ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2349
2350 inc_page_count(sbi, F2FS_RD_DATA);
2351 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2352 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2353 ClearPageError(page);
2354 *last_block_in_bio = blkaddr;
2355 }
2356
2357 f2fs_put_dnode(&dn);
2358
2359 *bio_ret = bio;
2360 return 0;
2361
2362 out_put_dnode:
2363 f2fs_put_dnode(&dn);
2364 out:
2365 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2366 *bio_ret = bio;
2367 return ret;
2368 }
2369 #endif
2370
2371 /*
2372 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2373 * Major change was from block_size == page_size in f2fs by default.
2374 *
2375 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2376 * this function ever deviates from doing just read-ahead, it should either
2377 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2378 * from read-ahead.
2379 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2380 static int f2fs_mpage_readpages(struct inode *inode,
2381 struct readahead_control *rac, struct page *page)
2382 {
2383 struct bio *bio = NULL;
2384 sector_t last_block_in_bio = 0;
2385 struct f2fs_map_blocks map;
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 struct compress_ctx cc = {
2388 .inode = inode,
2389 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2390 .cluster_size = F2FS_I(inode)->i_cluster_size,
2391 .cluster_idx = NULL_CLUSTER,
2392 .rpages = NULL,
2393 .cpages = NULL,
2394 .nr_rpages = 0,
2395 .nr_cpages = 0,
2396 };
2397 #endif
2398 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2399 unsigned max_nr_pages = nr_pages;
2400 int ret = 0;
2401 bool drop_ra = false;
2402
2403 map.m_pblk = 0;
2404 map.m_lblk = 0;
2405 map.m_len = 0;
2406 map.m_flags = 0;
2407 map.m_next_pgofs = NULL;
2408 map.m_next_extent = NULL;
2409 map.m_seg_type = NO_CHECK_TYPE;
2410 map.m_may_create = false;
2411
2412 /*
2413 * Two readahead threads for same address range can cause race condition
2414 * which fragments sequential read IOs. So let's avoid each other.
2415 */
2416 if (rac && readahead_count(rac)) {
2417 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2418 drop_ra = true;
2419 else
2420 WRITE_ONCE(F2FS_I(inode)->ra_offset,
2421 readahead_index(rac));
2422 }
2423
2424 for (; nr_pages; nr_pages--) {
2425 if (rac) {
2426 page = readahead_page(rac);
2427 prefetchw(&page->flags);
2428 if (drop_ra) {
2429 f2fs_put_page(page, 1);
2430 continue;
2431 }
2432 }
2433
2434 #ifdef CONFIG_F2FS_FS_COMPRESSION
2435 if (f2fs_compressed_file(inode)) {
2436 /* there are remained comressed pages, submit them */
2437 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2438 ret = f2fs_read_multi_pages(&cc, &bio,
2439 max_nr_pages,
2440 &last_block_in_bio,
2441 rac != NULL, false);
2442 f2fs_destroy_compress_ctx(&cc, false);
2443 if (ret)
2444 goto set_error_page;
2445 }
2446 ret = f2fs_is_compressed_cluster(inode, page->index);
2447 if (ret < 0)
2448 goto set_error_page;
2449 else if (!ret)
2450 goto read_single_page;
2451
2452 ret = f2fs_init_compress_ctx(&cc);
2453 if (ret)
2454 goto set_error_page;
2455
2456 f2fs_compress_ctx_add_page(&cc, page);
2457
2458 goto next_page;
2459 }
2460 read_single_page:
2461 #endif
2462
2463 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2464 &bio, &last_block_in_bio, rac);
2465 if (ret) {
2466 #ifdef CONFIG_F2FS_FS_COMPRESSION
2467 set_error_page:
2468 #endif
2469 SetPageError(page);
2470 zero_user_segment(page, 0, PAGE_SIZE);
2471 unlock_page(page);
2472 }
2473 #ifdef CONFIG_F2FS_FS_COMPRESSION
2474 next_page:
2475 #endif
2476 if (rac)
2477 put_page(page);
2478
2479 #ifdef CONFIG_F2FS_FS_COMPRESSION
2480 if (f2fs_compressed_file(inode)) {
2481 /* last page */
2482 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2483 ret = f2fs_read_multi_pages(&cc, &bio,
2484 max_nr_pages,
2485 &last_block_in_bio,
2486 rac != NULL, false);
2487 f2fs_destroy_compress_ctx(&cc, false);
2488 }
2489 }
2490 #endif
2491 }
2492 if (bio)
2493 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2494
2495 if (rac && readahead_count(rac) && !drop_ra)
2496 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2497 return ret;
2498 }
2499
f2fs_read_data_page(struct file * file,struct page * page)2500 static int f2fs_read_data_page(struct file *file, struct page *page)
2501 {
2502 struct inode *inode = page_file_mapping(page)->host;
2503 int ret = -EAGAIN;
2504
2505 trace_f2fs_readpage(page, DATA);
2506
2507 if (!f2fs_is_compress_backend_ready(inode)) {
2508 unlock_page(page);
2509 return -EOPNOTSUPP;
2510 }
2511
2512 /* If the file has inline data, try to read it directly */
2513 if (f2fs_has_inline_data(inode))
2514 ret = f2fs_read_inline_data(inode, page);
2515 if (ret == -EAGAIN)
2516 ret = f2fs_mpage_readpages(inode, NULL, page);
2517 return ret;
2518 }
2519
f2fs_readahead(struct readahead_control * rac)2520 static void f2fs_readahead(struct readahead_control *rac)
2521 {
2522 struct inode *inode = rac->mapping->host;
2523
2524 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2525
2526 if (!f2fs_is_compress_backend_ready(inode))
2527 return;
2528
2529 /* If the file has inline data, skip readpages */
2530 if (f2fs_has_inline_data(inode))
2531 return;
2532
2533 f2fs_mpage_readpages(inode, rac, NULL);
2534 }
2535
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2536 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2537 {
2538 struct inode *inode = fio->page->mapping->host;
2539 struct page *mpage, *page;
2540 gfp_t gfp_flags = GFP_NOFS;
2541
2542 if (!f2fs_encrypted_file(inode))
2543 return 0;
2544
2545 page = fio->compressed_page ? fio->compressed_page : fio->page;
2546
2547 /* wait for GCed page writeback via META_MAPPING */
2548 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2549
2550 if (fscrypt_inode_uses_inline_crypto(inode))
2551 return 0;
2552
2553 retry_encrypt:
2554 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2555 PAGE_SIZE, 0, gfp_flags);
2556 if (IS_ERR(fio->encrypted_page)) {
2557 /* flush pending IOs and wait for a while in the ENOMEM case */
2558 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2559 f2fs_flush_merged_writes(fio->sbi);
2560 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2561 gfp_flags |= __GFP_NOFAIL;
2562 goto retry_encrypt;
2563 }
2564 return PTR_ERR(fio->encrypted_page);
2565 }
2566
2567 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2568 if (mpage) {
2569 if (PageUptodate(mpage))
2570 memcpy(page_address(mpage),
2571 page_address(fio->encrypted_page), PAGE_SIZE);
2572 f2fs_put_page(mpage, 1);
2573 }
2574 return 0;
2575 }
2576
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2577 static inline bool check_inplace_update_policy(struct inode *inode,
2578 struct f2fs_io_info *fio)
2579 {
2580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2581 unsigned int policy = SM_I(sbi)->ipu_policy;
2582
2583 if (policy & (0x1 << F2FS_IPU_FORCE))
2584 return true;
2585 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2586 return true;
2587 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2588 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2589 return true;
2590 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2591 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2592 return true;
2593
2594 /*
2595 * IPU for rewrite async pages
2596 */
2597 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2598 fio && fio->op == REQ_OP_WRITE &&
2599 !(fio->op_flags & REQ_SYNC) &&
2600 !IS_ENCRYPTED(inode))
2601 return true;
2602
2603 /* this is only set during fdatasync */
2604 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2605 is_inode_flag_set(inode, FI_NEED_IPU))
2606 return true;
2607
2608 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2609 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2610 return true;
2611
2612 return false;
2613 }
2614
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2615 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2616 {
2617 if (f2fs_is_pinned_file(inode))
2618 return true;
2619
2620 /* if this is cold file, we should overwrite to avoid fragmentation */
2621 if (file_is_cold(inode))
2622 return true;
2623
2624 return check_inplace_update_policy(inode, fio);
2625 }
2626
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2627 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2628 {
2629 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2630
2631 if (f2fs_lfs_mode(sbi))
2632 return true;
2633 if (S_ISDIR(inode->i_mode))
2634 return true;
2635 if (IS_NOQUOTA(inode))
2636 return true;
2637 if (f2fs_is_atomic_file(inode))
2638 return true;
2639 if (fio) {
2640 if (is_cold_data(fio->page))
2641 return true;
2642 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2643 return true;
2644 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2645 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2646 return true;
2647 }
2648 return false;
2649 }
2650
need_inplace_update(struct f2fs_io_info * fio)2651 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2652 {
2653 struct inode *inode = fio->page->mapping->host;
2654
2655 if (f2fs_should_update_outplace(inode, fio))
2656 return false;
2657
2658 return f2fs_should_update_inplace(inode, fio);
2659 }
2660
f2fs_do_write_data_page(struct f2fs_io_info * fio)2661 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2662 {
2663 struct page *page = fio->page;
2664 struct inode *inode = page->mapping->host;
2665 struct dnode_of_data dn;
2666 struct extent_info ei = {0,0,0};
2667 struct node_info ni;
2668 bool ipu_force = false;
2669 int err = 0;
2670
2671 set_new_dnode(&dn, inode, NULL, NULL, 0);
2672 if (need_inplace_update(fio) &&
2673 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2674 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2675
2676 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2677 DATA_GENERIC_ENHANCE))
2678 return -EFSCORRUPTED;
2679
2680 ipu_force = true;
2681 fio->need_lock = LOCK_DONE;
2682 goto got_it;
2683 }
2684
2685 /* Deadlock due to between page->lock and f2fs_lock_op */
2686 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2687 return -EAGAIN;
2688
2689 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2690 if (err)
2691 goto out;
2692
2693 fio->old_blkaddr = dn.data_blkaddr;
2694
2695 /* This page is already truncated */
2696 if (fio->old_blkaddr == NULL_ADDR) {
2697 ClearPageUptodate(page);
2698 clear_cold_data(page);
2699 goto out_writepage;
2700 }
2701 got_it:
2702 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2703 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2704 DATA_GENERIC_ENHANCE)) {
2705 err = -EFSCORRUPTED;
2706 goto out_writepage;
2707 }
2708 /*
2709 * If current allocation needs SSR,
2710 * it had better in-place writes for updated data.
2711 */
2712 if (ipu_force ||
2713 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2714 need_inplace_update(fio))) {
2715 err = f2fs_encrypt_one_page(fio);
2716 if (err)
2717 goto out_writepage;
2718
2719 set_page_writeback(page);
2720 ClearPageError(page);
2721 f2fs_put_dnode(&dn);
2722 if (fio->need_lock == LOCK_REQ)
2723 f2fs_unlock_op(fio->sbi);
2724 err = f2fs_inplace_write_data(fio);
2725 if (err) {
2726 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2727 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2728 if (PageWriteback(page))
2729 end_page_writeback(page);
2730 } else {
2731 set_inode_flag(inode, FI_UPDATE_WRITE);
2732 }
2733 trace_f2fs_do_write_data_page(fio->page, IPU);
2734 return err;
2735 }
2736
2737 if (fio->need_lock == LOCK_RETRY) {
2738 if (!f2fs_trylock_op(fio->sbi)) {
2739 err = -EAGAIN;
2740 goto out_writepage;
2741 }
2742 fio->need_lock = LOCK_REQ;
2743 }
2744
2745 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2746 if (err)
2747 goto out_writepage;
2748
2749 fio->version = ni.version;
2750
2751 err = f2fs_encrypt_one_page(fio);
2752 if (err)
2753 goto out_writepage;
2754
2755 set_page_writeback(page);
2756 ClearPageError(page);
2757
2758 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2759 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2760
2761 /* LFS mode write path */
2762 f2fs_outplace_write_data(&dn, fio);
2763 trace_f2fs_do_write_data_page(page, OPU);
2764 set_inode_flag(inode, FI_APPEND_WRITE);
2765 if (page->index == 0)
2766 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2767 out_writepage:
2768 f2fs_put_dnode(&dn);
2769 out:
2770 if (fio->need_lock == LOCK_REQ)
2771 f2fs_unlock_op(fio->sbi);
2772 return err;
2773 }
2774
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2775 int f2fs_write_single_data_page(struct page *page, int *submitted,
2776 struct bio **bio,
2777 sector_t *last_block,
2778 struct writeback_control *wbc,
2779 enum iostat_type io_type,
2780 int compr_blocks,
2781 bool allow_balance)
2782 {
2783 struct inode *inode = page->mapping->host;
2784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2785 loff_t i_size = i_size_read(inode);
2786 const pgoff_t end_index = ((unsigned long long)i_size)
2787 >> PAGE_SHIFT;
2788 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2789 unsigned offset = 0;
2790 bool need_balance_fs = false;
2791 int err = 0;
2792 struct f2fs_io_info fio = {
2793 .sbi = sbi,
2794 .ino = inode->i_ino,
2795 .type = DATA,
2796 .op = REQ_OP_WRITE,
2797 .op_flags = wbc_to_write_flags(wbc),
2798 .old_blkaddr = NULL_ADDR,
2799 .page = page,
2800 .encrypted_page = NULL,
2801 .submitted = false,
2802 .compr_blocks = compr_blocks,
2803 .need_lock = LOCK_RETRY,
2804 .io_type = io_type,
2805 .io_wbc = wbc,
2806 .bio = bio,
2807 .last_block = last_block,
2808 };
2809
2810 trace_f2fs_writepage(page, DATA);
2811
2812 /* we should bypass data pages to proceed the kworkder jobs */
2813 if (unlikely(f2fs_cp_error(sbi))) {
2814 mapping_set_error(page->mapping, -EIO);
2815 /*
2816 * don't drop any dirty dentry pages for keeping lastest
2817 * directory structure.
2818 */
2819 if (S_ISDIR(inode->i_mode))
2820 goto redirty_out;
2821 goto out;
2822 }
2823
2824 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2825 goto redirty_out;
2826
2827 if (page->index < end_index ||
2828 f2fs_verity_in_progress(inode) ||
2829 compr_blocks)
2830 goto write;
2831
2832 /*
2833 * If the offset is out-of-range of file size,
2834 * this page does not have to be written to disk.
2835 */
2836 offset = i_size & (PAGE_SIZE - 1);
2837 if ((page->index >= end_index + 1) || !offset)
2838 goto out;
2839
2840 zero_user_segment(page, offset, PAGE_SIZE);
2841 write:
2842 if (f2fs_is_drop_cache(inode))
2843 goto out;
2844 /* we should not write 0'th page having journal header */
2845 if (f2fs_is_volatile_file(inode) && (!page->index ||
2846 (!wbc->for_reclaim &&
2847 f2fs_available_free_memory(sbi, BASE_CHECK))))
2848 goto redirty_out;
2849
2850 /* Dentry/quota blocks are controlled by checkpoint */
2851 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2852 /*
2853 * We need to wait for node_write to avoid block allocation during
2854 * checkpoint. This can only happen to quota writes which can cause
2855 * the below discard race condition.
2856 */
2857 if (IS_NOQUOTA(inode))
2858 down_read(&sbi->node_write);
2859
2860 fio.need_lock = LOCK_DONE;
2861 err = f2fs_do_write_data_page(&fio);
2862
2863 if (IS_NOQUOTA(inode))
2864 up_read(&sbi->node_write);
2865
2866 goto done;
2867 }
2868
2869 if (!wbc->for_reclaim)
2870 need_balance_fs = true;
2871 else if (has_not_enough_free_secs(sbi, 0, 0))
2872 goto redirty_out;
2873 else
2874 set_inode_flag(inode, FI_HOT_DATA);
2875
2876 err = -EAGAIN;
2877 if (f2fs_has_inline_data(inode)) {
2878 err = f2fs_write_inline_data(inode, page);
2879 if (!err)
2880 goto out;
2881 }
2882
2883 if (err == -EAGAIN) {
2884 err = f2fs_do_write_data_page(&fio);
2885 if (err == -EAGAIN) {
2886 fio.need_lock = LOCK_REQ;
2887 err = f2fs_do_write_data_page(&fio);
2888 }
2889 }
2890
2891 if (err) {
2892 file_set_keep_isize(inode);
2893 } else {
2894 spin_lock(&F2FS_I(inode)->i_size_lock);
2895 if (F2FS_I(inode)->last_disk_size < psize)
2896 F2FS_I(inode)->last_disk_size = psize;
2897 spin_unlock(&F2FS_I(inode)->i_size_lock);
2898 }
2899
2900 done:
2901 if (err && err != -ENOENT)
2902 goto redirty_out;
2903
2904 out:
2905 inode_dec_dirty_pages(inode);
2906 if (err) {
2907 ClearPageUptodate(page);
2908 clear_cold_data(page);
2909 }
2910
2911 if (wbc->for_reclaim) {
2912 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2913 clear_inode_flag(inode, FI_HOT_DATA);
2914 f2fs_remove_dirty_inode(inode);
2915 submitted = NULL;
2916 }
2917 unlock_page(page);
2918 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2919 !F2FS_I(inode)->wb_task && allow_balance)
2920 f2fs_balance_fs(sbi, need_balance_fs);
2921
2922 if (unlikely(f2fs_cp_error(sbi))) {
2923 f2fs_submit_merged_write(sbi, DATA);
2924 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2925 submitted = NULL;
2926 }
2927
2928 if (submitted)
2929 *submitted = fio.submitted ? 1 : 0;
2930
2931 return 0;
2932
2933 redirty_out:
2934 redirty_page_for_writepage(wbc, page);
2935 /*
2936 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2937 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2938 * file_write_and_wait_range() will see EIO error, which is critical
2939 * to return value of fsync() followed by atomic_write failure to user.
2940 */
2941 if (!err || wbc->for_reclaim)
2942 return AOP_WRITEPAGE_ACTIVATE;
2943 unlock_page(page);
2944 return err;
2945 }
2946
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2947 static int f2fs_write_data_page(struct page *page,
2948 struct writeback_control *wbc)
2949 {
2950 #ifdef CONFIG_F2FS_FS_COMPRESSION
2951 struct inode *inode = page->mapping->host;
2952
2953 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2954 goto out;
2955
2956 if (f2fs_compressed_file(inode)) {
2957 if (f2fs_is_compressed_cluster(inode, page->index)) {
2958 redirty_page_for_writepage(wbc, page);
2959 return AOP_WRITEPAGE_ACTIVATE;
2960 }
2961 }
2962 out:
2963 #endif
2964
2965 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2966 wbc, FS_DATA_IO, 0, true);
2967 }
2968
2969 /*
2970 * This function was copied from write_cche_pages from mm/page-writeback.c.
2971 * The major change is making write step of cold data page separately from
2972 * warm/hot data page.
2973 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2974 static int f2fs_write_cache_pages(struct address_space *mapping,
2975 struct writeback_control *wbc,
2976 enum iostat_type io_type)
2977 {
2978 int ret = 0;
2979 int done = 0, retry = 0;
2980 struct pagevec pvec;
2981 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2982 struct bio *bio = NULL;
2983 sector_t last_block;
2984 #ifdef CONFIG_F2FS_FS_COMPRESSION
2985 struct inode *inode = mapping->host;
2986 struct compress_ctx cc = {
2987 .inode = inode,
2988 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2989 .cluster_size = F2FS_I(inode)->i_cluster_size,
2990 .cluster_idx = NULL_CLUSTER,
2991 .rpages = NULL,
2992 .nr_rpages = 0,
2993 .cpages = NULL,
2994 .rbuf = NULL,
2995 .cbuf = NULL,
2996 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2997 .private = NULL,
2998 };
2999 #endif
3000 int nr_pages;
3001 pgoff_t index;
3002 pgoff_t end; /* Inclusive */
3003 pgoff_t done_index;
3004 int range_whole = 0;
3005 xa_mark_t tag;
3006 int nwritten = 0;
3007 int submitted = 0;
3008 int i;
3009
3010 pagevec_init(&pvec);
3011
3012 if (get_dirty_pages(mapping->host) <=
3013 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3014 set_inode_flag(mapping->host, FI_HOT_DATA);
3015 else
3016 clear_inode_flag(mapping->host, FI_HOT_DATA);
3017
3018 if (wbc->range_cyclic) {
3019 index = mapping->writeback_index; /* prev offset */
3020 end = -1;
3021 } else {
3022 index = wbc->range_start >> PAGE_SHIFT;
3023 end = wbc->range_end >> PAGE_SHIFT;
3024 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3025 range_whole = 1;
3026 }
3027 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028 tag = PAGECACHE_TAG_TOWRITE;
3029 else
3030 tag = PAGECACHE_TAG_DIRTY;
3031 retry:
3032 retry = 0;
3033 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3034 tag_pages_for_writeback(mapping, index, end);
3035 done_index = index;
3036 while (!done && !retry && (index <= end)) {
3037 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3038 tag);
3039 if (nr_pages == 0)
3040 break;
3041
3042 for (i = 0; i < nr_pages; i++) {
3043 struct page *page = pvec.pages[i];
3044 bool need_readd;
3045 readd:
3046 need_readd = false;
3047 #ifdef CONFIG_F2FS_FS_COMPRESSION
3048 if (f2fs_compressed_file(inode)) {
3049 ret = f2fs_init_compress_ctx(&cc);
3050 if (ret) {
3051 done = 1;
3052 break;
3053 }
3054
3055 if (!f2fs_cluster_can_merge_page(&cc,
3056 page->index)) {
3057 ret = f2fs_write_multi_pages(&cc,
3058 &submitted, wbc, io_type);
3059 if (!ret)
3060 need_readd = true;
3061 goto result;
3062 }
3063
3064 if (unlikely(f2fs_cp_error(sbi)))
3065 goto lock_page;
3066
3067 if (f2fs_cluster_is_empty(&cc)) {
3068 void *fsdata = NULL;
3069 struct page *pagep;
3070 int ret2;
3071
3072 ret2 = f2fs_prepare_compress_overwrite(
3073 inode, &pagep,
3074 page->index, &fsdata);
3075 if (ret2 < 0) {
3076 ret = ret2;
3077 done = 1;
3078 break;
3079 } else if (ret2 &&
3080 !f2fs_compress_write_end(inode,
3081 fsdata, page->index,
3082 1)) {
3083 retry = 1;
3084 break;
3085 }
3086 } else {
3087 goto lock_page;
3088 }
3089 }
3090 #endif
3091 /* give a priority to WB_SYNC threads */
3092 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3093 wbc->sync_mode == WB_SYNC_NONE) {
3094 done = 1;
3095 break;
3096 }
3097 #ifdef CONFIG_F2FS_FS_COMPRESSION
3098 lock_page:
3099 #endif
3100 done_index = page->index;
3101 retry_write:
3102 lock_page(page);
3103
3104 if (unlikely(page->mapping != mapping)) {
3105 continue_unlock:
3106 unlock_page(page);
3107 continue;
3108 }
3109
3110 if (!PageDirty(page)) {
3111 /* someone wrote it for us */
3112 goto continue_unlock;
3113 }
3114
3115 if (PageWriteback(page)) {
3116 if (wbc->sync_mode != WB_SYNC_NONE)
3117 f2fs_wait_on_page_writeback(page,
3118 DATA, true, true);
3119 else
3120 goto continue_unlock;
3121 }
3122
3123 if (!clear_page_dirty_for_io(page))
3124 goto continue_unlock;
3125
3126 #ifdef CONFIG_F2FS_FS_COMPRESSION
3127 if (f2fs_compressed_file(inode)) {
3128 get_page(page);
3129 f2fs_compress_ctx_add_page(&cc, page);
3130 continue;
3131 }
3132 #endif
3133 ret = f2fs_write_single_data_page(page, &submitted,
3134 &bio, &last_block, wbc, io_type,
3135 0, true);
3136 if (ret == AOP_WRITEPAGE_ACTIVATE)
3137 unlock_page(page);
3138 #ifdef CONFIG_F2FS_FS_COMPRESSION
3139 result:
3140 #endif
3141 nwritten += submitted;
3142 wbc->nr_to_write -= submitted;
3143
3144 if (unlikely(ret)) {
3145 /*
3146 * keep nr_to_write, since vfs uses this to
3147 * get # of written pages.
3148 */
3149 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3150 ret = 0;
3151 goto next;
3152 } else if (ret == -EAGAIN) {
3153 ret = 0;
3154 if (wbc->sync_mode == WB_SYNC_ALL) {
3155 cond_resched();
3156 congestion_wait(BLK_RW_ASYNC,
3157 DEFAULT_IO_TIMEOUT);
3158 goto retry_write;
3159 }
3160 goto next;
3161 }
3162 done_index = page->index + 1;
3163 done = 1;
3164 break;
3165 }
3166
3167 if (wbc->nr_to_write <= 0 &&
3168 wbc->sync_mode == WB_SYNC_NONE) {
3169 done = 1;
3170 break;
3171 }
3172 next:
3173 if (need_readd)
3174 goto readd;
3175 }
3176 pagevec_release(&pvec);
3177 cond_resched();
3178 }
3179 #ifdef CONFIG_F2FS_FS_COMPRESSION
3180 /* flush remained pages in compress cluster */
3181 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3182 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3183 nwritten += submitted;
3184 wbc->nr_to_write -= submitted;
3185 if (ret) {
3186 done = 1;
3187 retry = 0;
3188 }
3189 }
3190 if (f2fs_compressed_file(inode))
3191 f2fs_destroy_compress_ctx(&cc, false);
3192 #endif
3193 if (retry) {
3194 index = 0;
3195 end = -1;
3196 goto retry;
3197 }
3198 if (wbc->range_cyclic && !done)
3199 done_index = 0;
3200 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3201 mapping->writeback_index = done_index;
3202
3203 if (nwritten)
3204 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3205 NULL, 0, DATA);
3206 /* submit cached bio of IPU write */
3207 if (bio)
3208 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3209
3210 return ret;
3211 }
3212
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3213 static inline bool __should_serialize_io(struct inode *inode,
3214 struct writeback_control *wbc)
3215 {
3216 /* to avoid deadlock in path of data flush */
3217 if (F2FS_I(inode)->wb_task)
3218 return false;
3219
3220 if (!S_ISREG(inode->i_mode))
3221 return false;
3222 if (IS_NOQUOTA(inode))
3223 return false;
3224
3225 if (f2fs_compressed_file(inode))
3226 return true;
3227 if (wbc->sync_mode != WB_SYNC_ALL)
3228 return true;
3229 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3230 return true;
3231 return false;
3232 }
3233
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3234 static int __f2fs_write_data_pages(struct address_space *mapping,
3235 struct writeback_control *wbc,
3236 enum iostat_type io_type)
3237 {
3238 struct inode *inode = mapping->host;
3239 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3240 struct blk_plug plug;
3241 int ret;
3242 bool locked = false;
3243
3244 /* deal with chardevs and other special file */
3245 if (!mapping->a_ops->writepage)
3246 return 0;
3247
3248 /* skip writing if there is no dirty page in this inode */
3249 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3250 return 0;
3251
3252 /* during POR, we don't need to trigger writepage at all. */
3253 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3254 goto skip_write;
3255
3256 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3257 wbc->sync_mode == WB_SYNC_NONE &&
3258 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3259 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3260 goto skip_write;
3261
3262 /* skip writing during file defragment */
3263 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3264 goto skip_write;
3265
3266 trace_f2fs_writepages(mapping->host, wbc, DATA);
3267
3268 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3269 if (wbc->sync_mode == WB_SYNC_ALL)
3270 atomic_inc(&sbi->wb_sync_req[DATA]);
3271 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3272 /* to avoid potential deadlock */
3273 if (current->plug)
3274 blk_finish_plug(current->plug);
3275 goto skip_write;
3276 }
3277
3278 if (__should_serialize_io(inode, wbc)) {
3279 mutex_lock(&sbi->writepages);
3280 locked = true;
3281 }
3282
3283 blk_start_plug(&plug);
3284 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3285 blk_finish_plug(&plug);
3286
3287 if (locked)
3288 mutex_unlock(&sbi->writepages);
3289
3290 if (wbc->sync_mode == WB_SYNC_ALL)
3291 atomic_dec(&sbi->wb_sync_req[DATA]);
3292 /*
3293 * if some pages were truncated, we cannot guarantee its mapping->host
3294 * to detect pending bios.
3295 */
3296
3297 f2fs_remove_dirty_inode(inode);
3298 return ret;
3299
3300 skip_write:
3301 wbc->pages_skipped += get_dirty_pages(inode);
3302 trace_f2fs_writepages(mapping->host, wbc, DATA);
3303 return 0;
3304 }
3305
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3306 static int f2fs_write_data_pages(struct address_space *mapping,
3307 struct writeback_control *wbc)
3308 {
3309 struct inode *inode = mapping->host;
3310
3311 return __f2fs_write_data_pages(mapping, wbc,
3312 F2FS_I(inode)->cp_task == current ?
3313 FS_CP_DATA_IO : FS_DATA_IO);
3314 }
3315
f2fs_write_failed(struct address_space * mapping,loff_t to)3316 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3317 {
3318 struct inode *inode = mapping->host;
3319 loff_t i_size = i_size_read(inode);
3320
3321 if (IS_NOQUOTA(inode))
3322 return;
3323
3324 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3325 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3326 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3327 down_write(&F2FS_I(inode)->i_mmap_sem);
3328
3329 truncate_pagecache(inode, i_size);
3330 f2fs_truncate_blocks(inode, i_size, true);
3331
3332 up_write(&F2FS_I(inode)->i_mmap_sem);
3333 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3334 }
3335 }
3336
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3337 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3338 struct page *page, loff_t pos, unsigned len,
3339 block_t *blk_addr, bool *node_changed)
3340 {
3341 struct inode *inode = page->mapping->host;
3342 pgoff_t index = page->index;
3343 struct dnode_of_data dn;
3344 struct page *ipage;
3345 bool locked = false;
3346 struct extent_info ei = {0,0,0};
3347 int err = 0;
3348 int flag;
3349
3350 /*
3351 * we already allocated all the blocks, so we don't need to get
3352 * the block addresses when there is no need to fill the page.
3353 */
3354 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3355 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3356 !f2fs_verity_in_progress(inode))
3357 return 0;
3358
3359 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3360 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3361 flag = F2FS_GET_BLOCK_DEFAULT;
3362 else
3363 flag = F2FS_GET_BLOCK_PRE_AIO;
3364
3365 if (f2fs_has_inline_data(inode) ||
3366 (pos & PAGE_MASK) >= i_size_read(inode)) {
3367 f2fs_do_map_lock(sbi, flag, true);
3368 locked = true;
3369 }
3370
3371 restart:
3372 /* check inline_data */
3373 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3374 if (IS_ERR(ipage)) {
3375 err = PTR_ERR(ipage);
3376 goto unlock_out;
3377 }
3378
3379 set_new_dnode(&dn, inode, ipage, ipage, 0);
3380
3381 if (f2fs_has_inline_data(inode)) {
3382 if (pos + len <= MAX_INLINE_DATA(inode)) {
3383 f2fs_do_read_inline_data(page, ipage);
3384 set_inode_flag(inode, FI_DATA_EXIST);
3385 if (inode->i_nlink)
3386 set_inline_node(ipage);
3387 } else {
3388 err = f2fs_convert_inline_page(&dn, page);
3389 if (err)
3390 goto out;
3391 if (dn.data_blkaddr == NULL_ADDR)
3392 err = f2fs_get_block(&dn, index);
3393 }
3394 } else if (locked) {
3395 err = f2fs_get_block(&dn, index);
3396 } else {
3397 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3398 dn.data_blkaddr = ei.blk + index - ei.fofs;
3399 } else {
3400 /* hole case */
3401 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3402 if (err || dn.data_blkaddr == NULL_ADDR) {
3403 f2fs_put_dnode(&dn);
3404 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3405 true);
3406 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3407 locked = true;
3408 goto restart;
3409 }
3410 }
3411 }
3412
3413 /* convert_inline_page can make node_changed */
3414 *blk_addr = dn.data_blkaddr;
3415 *node_changed = dn.node_changed;
3416 out:
3417 f2fs_put_dnode(&dn);
3418 unlock_out:
3419 if (locked)
3420 f2fs_do_map_lock(sbi, flag, false);
3421 return err;
3422 }
3423
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3424 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3425 loff_t pos, unsigned len, unsigned flags,
3426 struct page **pagep, void **fsdata)
3427 {
3428 struct inode *inode = mapping->host;
3429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3430 struct page *page = NULL;
3431 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3432 bool need_balance = false, drop_atomic = false;
3433 block_t blkaddr = NULL_ADDR;
3434 int err = 0;
3435
3436 trace_f2fs_write_begin(inode, pos, len, flags);
3437
3438 if (!f2fs_is_checkpoint_ready(sbi)) {
3439 err = -ENOSPC;
3440 goto fail;
3441 }
3442
3443 if ((f2fs_is_atomic_file(inode) &&
3444 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3445 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3446 err = -ENOMEM;
3447 drop_atomic = true;
3448 goto fail;
3449 }
3450
3451 /*
3452 * We should check this at this moment to avoid deadlock on inode page
3453 * and #0 page. The locking rule for inline_data conversion should be:
3454 * lock_page(page #0) -> lock_page(inode_page)
3455 */
3456 if (index != 0) {
3457 err = f2fs_convert_inline_inode(inode);
3458 if (err)
3459 goto fail;
3460 }
3461
3462 #ifdef CONFIG_F2FS_FS_COMPRESSION
3463 if (f2fs_compressed_file(inode)) {
3464 int ret;
3465
3466 *fsdata = NULL;
3467
3468 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3469 goto repeat;
3470
3471 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3472 index, fsdata);
3473 if (ret < 0) {
3474 err = ret;
3475 goto fail;
3476 } else if (ret) {
3477 return 0;
3478 }
3479 }
3480 #endif
3481
3482 repeat:
3483 /*
3484 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3485 * wait_for_stable_page. Will wait that below with our IO control.
3486 */
3487 page = f2fs_pagecache_get_page(mapping, index,
3488 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3489 if (!page) {
3490 err = -ENOMEM;
3491 goto fail;
3492 }
3493
3494 /* TODO: cluster can be compressed due to race with .writepage */
3495
3496 *pagep = page;
3497
3498 err = prepare_write_begin(sbi, page, pos, len,
3499 &blkaddr, &need_balance);
3500 if (err)
3501 goto fail;
3502
3503 if (need_balance && !IS_NOQUOTA(inode) &&
3504 has_not_enough_free_secs(sbi, 0, 0)) {
3505 unlock_page(page);
3506 f2fs_balance_fs(sbi, true);
3507 lock_page(page);
3508 if (page->mapping != mapping) {
3509 /* The page got truncated from under us */
3510 f2fs_put_page(page, 1);
3511 goto repeat;
3512 }
3513 }
3514
3515 f2fs_wait_on_page_writeback(page, DATA, false, true);
3516
3517 if (len == PAGE_SIZE || PageUptodate(page))
3518 return 0;
3519
3520 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3521 !f2fs_verity_in_progress(inode)) {
3522 zero_user_segment(page, len, PAGE_SIZE);
3523 return 0;
3524 }
3525
3526 if (blkaddr == NEW_ADDR) {
3527 zero_user_segment(page, 0, PAGE_SIZE);
3528 SetPageUptodate(page);
3529 } else {
3530 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3531 DATA_GENERIC_ENHANCE_READ)) {
3532 err = -EFSCORRUPTED;
3533 goto fail;
3534 }
3535 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3536 if (err)
3537 goto fail;
3538
3539 lock_page(page);
3540 if (unlikely(page->mapping != mapping)) {
3541 f2fs_put_page(page, 1);
3542 goto repeat;
3543 }
3544 if (unlikely(!PageUptodate(page))) {
3545 err = -EIO;
3546 goto fail;
3547 }
3548 }
3549 return 0;
3550
3551 fail:
3552 f2fs_put_page(page, 1);
3553 f2fs_write_failed(mapping, pos + len);
3554 if (drop_atomic)
3555 f2fs_drop_inmem_pages_all(sbi, false);
3556 return err;
3557 }
3558
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3559 static int f2fs_write_end(struct file *file,
3560 struct address_space *mapping,
3561 loff_t pos, unsigned len, unsigned copied,
3562 struct page *page, void *fsdata)
3563 {
3564 struct inode *inode = page->mapping->host;
3565
3566 trace_f2fs_write_end(inode, pos, len, copied);
3567
3568 /*
3569 * This should be come from len == PAGE_SIZE, and we expect copied
3570 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3571 * let generic_perform_write() try to copy data again through copied=0.
3572 */
3573 if (!PageUptodate(page)) {
3574 if (unlikely(copied != len))
3575 copied = 0;
3576 else
3577 SetPageUptodate(page);
3578 }
3579
3580 #ifdef CONFIG_F2FS_FS_COMPRESSION
3581 /* overwrite compressed file */
3582 if (f2fs_compressed_file(inode) && fsdata) {
3583 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3584 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3585
3586 if (pos + copied > i_size_read(inode) &&
3587 !f2fs_verity_in_progress(inode))
3588 f2fs_i_size_write(inode, pos + copied);
3589 return copied;
3590 }
3591 #endif
3592
3593 if (!copied)
3594 goto unlock_out;
3595
3596 set_page_dirty(page);
3597
3598 if (pos + copied > i_size_read(inode) &&
3599 !f2fs_verity_in_progress(inode))
3600 f2fs_i_size_write(inode, pos + copied);
3601 unlock_out:
3602 f2fs_put_page(page, 1);
3603 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3604 return copied;
3605 }
3606
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)3607 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3608 loff_t offset)
3609 {
3610 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3611 unsigned blkbits = i_blkbits;
3612 unsigned blocksize_mask = (1 << blkbits) - 1;
3613 unsigned long align = offset | iov_iter_alignment(iter);
3614 struct block_device *bdev = inode->i_sb->s_bdev;
3615
3616 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3617 return 1;
3618
3619 if (align & blocksize_mask) {
3620 if (bdev)
3621 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3622 blocksize_mask = (1 << blkbits) - 1;
3623 if (align & blocksize_mask)
3624 return -EINVAL;
3625 return 1;
3626 }
3627 return 0;
3628 }
3629
f2fs_dio_end_io(struct bio * bio)3630 static void f2fs_dio_end_io(struct bio *bio)
3631 {
3632 struct f2fs_private_dio *dio = bio->bi_private;
3633
3634 dec_page_count(F2FS_I_SB(dio->inode),
3635 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3636
3637 bio->bi_private = dio->orig_private;
3638 bio->bi_end_io = dio->orig_end_io;
3639
3640 kfree(dio);
3641
3642 bio_endio(bio);
3643 }
3644
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)3645 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3646 loff_t file_offset)
3647 {
3648 struct f2fs_private_dio *dio;
3649 bool write = (bio_op(bio) == REQ_OP_WRITE);
3650
3651 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3652 sizeof(struct f2fs_private_dio), GFP_NOFS);
3653 if (!dio)
3654 goto out;
3655
3656 dio->inode = inode;
3657 dio->orig_end_io = bio->bi_end_io;
3658 dio->orig_private = bio->bi_private;
3659 dio->write = write;
3660
3661 bio->bi_end_io = f2fs_dio_end_io;
3662 bio->bi_private = dio;
3663
3664 inc_page_count(F2FS_I_SB(inode),
3665 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3666
3667 submit_bio(bio);
3668 return;
3669 out:
3670 bio->bi_status = BLK_STS_IOERR;
3671 bio_endio(bio);
3672 }
3673
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3674 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3675 {
3676 struct address_space *mapping = iocb->ki_filp->f_mapping;
3677 struct inode *inode = mapping->host;
3678 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3679 struct f2fs_inode_info *fi = F2FS_I(inode);
3680 size_t count = iov_iter_count(iter);
3681 loff_t offset = iocb->ki_pos;
3682 int rw = iov_iter_rw(iter);
3683 int err;
3684 enum rw_hint hint = iocb->ki_hint;
3685 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3686 bool do_opu;
3687
3688 err = check_direct_IO(inode, iter, offset);
3689 if (err)
3690 return err < 0 ? err : 0;
3691
3692 if (f2fs_force_buffered_io(inode, iocb, iter))
3693 return 0;
3694
3695 do_opu = allow_outplace_dio(inode, iocb, iter);
3696
3697 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3698
3699 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3700 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3701
3702 if (iocb->ki_flags & IOCB_NOWAIT) {
3703 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3704 iocb->ki_hint = hint;
3705 err = -EAGAIN;
3706 goto out;
3707 }
3708 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3709 up_read(&fi->i_gc_rwsem[rw]);
3710 iocb->ki_hint = hint;
3711 err = -EAGAIN;
3712 goto out;
3713 }
3714 } else {
3715 down_read(&fi->i_gc_rwsem[rw]);
3716 if (do_opu)
3717 down_read(&fi->i_gc_rwsem[READ]);
3718 }
3719
3720 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3721 iter, rw == WRITE ? get_data_block_dio_write :
3722 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3723 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3724 DIO_SKIP_HOLES);
3725
3726 if (do_opu)
3727 up_read(&fi->i_gc_rwsem[READ]);
3728
3729 up_read(&fi->i_gc_rwsem[rw]);
3730
3731 if (rw == WRITE) {
3732 if (whint_mode == WHINT_MODE_OFF)
3733 iocb->ki_hint = hint;
3734 if (err > 0) {
3735 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3736 err);
3737 if (!do_opu)
3738 set_inode_flag(inode, FI_UPDATE_WRITE);
3739 } else if (err == -EIOCBQUEUED) {
3740 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3741 count - iov_iter_count(iter));
3742 } else if (err < 0) {
3743 f2fs_write_failed(mapping, offset + count);
3744 }
3745 } else {
3746 if (err > 0)
3747 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3748 else if (err == -EIOCBQUEUED)
3749 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3750 count - iov_iter_count(iter));
3751 }
3752
3753 out:
3754 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3755
3756 return err;
3757 }
3758
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3759 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3760 unsigned int length)
3761 {
3762 struct inode *inode = page->mapping->host;
3763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3764
3765 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3766 (offset % PAGE_SIZE || length != PAGE_SIZE))
3767 return;
3768
3769 if (PageDirty(page)) {
3770 if (inode->i_ino == F2FS_META_INO(sbi)) {
3771 dec_page_count(sbi, F2FS_DIRTY_META);
3772 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3773 dec_page_count(sbi, F2FS_DIRTY_NODES);
3774 } else {
3775 inode_dec_dirty_pages(inode);
3776 f2fs_remove_dirty_inode(inode);
3777 }
3778 }
3779
3780 clear_cold_data(page);
3781
3782 if (IS_ATOMIC_WRITTEN_PAGE(page))
3783 return f2fs_drop_inmem_page(inode, page);
3784
3785 f2fs_clear_page_private(page);
3786 }
3787
f2fs_release_page(struct page * page,gfp_t wait)3788 int f2fs_release_page(struct page *page, gfp_t wait)
3789 {
3790 /* If this is dirty page, keep PagePrivate */
3791 if (PageDirty(page))
3792 return 0;
3793
3794 /* This is atomic written page, keep Private */
3795 if (IS_ATOMIC_WRITTEN_PAGE(page))
3796 return 0;
3797
3798 clear_cold_data(page);
3799 f2fs_clear_page_private(page);
3800 return 1;
3801 }
3802
f2fs_set_data_page_dirty(struct page * page)3803 static int f2fs_set_data_page_dirty(struct page *page)
3804 {
3805 struct inode *inode = page_file_mapping(page)->host;
3806
3807 trace_f2fs_set_page_dirty(page, DATA);
3808
3809 if (!PageUptodate(page))
3810 SetPageUptodate(page);
3811 if (PageSwapCache(page))
3812 return __set_page_dirty_nobuffers(page);
3813
3814 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3815 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3816 f2fs_register_inmem_page(inode, page);
3817 return 1;
3818 }
3819 /*
3820 * Previously, this page has been registered, we just
3821 * return here.
3822 */
3823 return 0;
3824 }
3825
3826 if (!PageDirty(page)) {
3827 __set_page_dirty_nobuffers(page);
3828 f2fs_update_dirty_page(inode, page);
3829 return 1;
3830 }
3831 return 0;
3832 }
3833
3834
f2fs_bmap_compress(struct inode * inode,sector_t block)3835 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3836 {
3837 #ifdef CONFIG_F2FS_FS_COMPRESSION
3838 struct dnode_of_data dn;
3839 sector_t start_idx, blknr = 0;
3840 int ret;
3841
3842 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3843
3844 set_new_dnode(&dn, inode, NULL, NULL, 0);
3845 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3846 if (ret)
3847 return 0;
3848
3849 if (dn.data_blkaddr != COMPRESS_ADDR) {
3850 dn.ofs_in_node += block - start_idx;
3851 blknr = f2fs_data_blkaddr(&dn);
3852 if (!__is_valid_data_blkaddr(blknr))
3853 blknr = 0;
3854 }
3855
3856 f2fs_put_dnode(&dn);
3857 return blknr;
3858 #else
3859 return 0;
3860 #endif
3861 }
3862
3863
f2fs_bmap(struct address_space * mapping,sector_t block)3864 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3865 {
3866 struct inode *inode = mapping->host;
3867 struct buffer_head tmp = {
3868 .b_size = i_blocksize(inode),
3869 };
3870 sector_t blknr = 0;
3871
3872 if (f2fs_has_inline_data(inode))
3873 goto out;
3874
3875 /* make sure allocating whole blocks */
3876 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3877 filemap_write_and_wait(mapping);
3878
3879 /* Block number less than F2FS MAX BLOCKS */
3880 if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3881 goto out;
3882
3883 if (f2fs_compressed_file(inode)) {
3884 blknr = f2fs_bmap_compress(inode, block);
3885 } else {
3886 if (!get_data_block_bmap(inode, block, &tmp, 0))
3887 blknr = tmp.b_blocknr;
3888 }
3889 out:
3890 trace_f2fs_bmap(inode, block, blknr);
3891 return blknr;
3892 }
3893
3894 #ifdef CONFIG_MIGRATION
3895 #include <linux/migrate.h>
3896
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3897 int f2fs_migrate_page(struct address_space *mapping,
3898 struct page *newpage, struct page *page, enum migrate_mode mode)
3899 {
3900 int rc, extra_count;
3901 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3902 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3903
3904 BUG_ON(PageWriteback(page));
3905
3906 /* migrating an atomic written page is safe with the inmem_lock hold */
3907 if (atomic_written) {
3908 if (mode != MIGRATE_SYNC)
3909 return -EBUSY;
3910 if (!mutex_trylock(&fi->inmem_lock))
3911 return -EAGAIN;
3912 }
3913
3914 /* one extra reference was held for atomic_write page */
3915 extra_count = atomic_written ? 1 : 0;
3916 rc = migrate_page_move_mapping(mapping, newpage,
3917 page, extra_count);
3918 if (rc != MIGRATEPAGE_SUCCESS) {
3919 if (atomic_written)
3920 mutex_unlock(&fi->inmem_lock);
3921 return rc;
3922 }
3923
3924 if (atomic_written) {
3925 struct inmem_pages *cur;
3926 list_for_each_entry(cur, &fi->inmem_pages, list)
3927 if (cur->page == page) {
3928 cur->page = newpage;
3929 break;
3930 }
3931 mutex_unlock(&fi->inmem_lock);
3932 put_page(page);
3933 get_page(newpage);
3934 }
3935
3936 if (PagePrivate(page)) {
3937 f2fs_set_page_private(newpage, page_private(page));
3938 f2fs_clear_page_private(page);
3939 }
3940
3941 if (mode != MIGRATE_SYNC_NO_COPY)
3942 migrate_page_copy(newpage, page);
3943 else
3944 migrate_page_states(newpage, page);
3945
3946 return MIGRATEPAGE_SUCCESS;
3947 }
3948 #endif
3949
3950 #ifdef CONFIG_SWAP
check_swap_activate_fast(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3951 static int check_swap_activate_fast(struct swap_info_struct *sis,
3952 struct file *swap_file, sector_t *span)
3953 {
3954 struct address_space *mapping = swap_file->f_mapping;
3955 struct inode *inode = mapping->host;
3956 sector_t cur_lblock;
3957 sector_t last_lblock;
3958 sector_t pblock;
3959 sector_t lowest_pblock = -1;
3960 sector_t highest_pblock = 0;
3961 int nr_extents = 0;
3962 unsigned long nr_pblocks;
3963 unsigned long len;
3964 int ret;
3965
3966 /*
3967 * Map all the blocks into the extent list. This code doesn't try
3968 * to be very smart.
3969 */
3970 cur_lblock = 0;
3971 last_lblock = logical_to_blk(inode, i_size_read(inode));
3972 len = i_size_read(inode);
3973
3974 while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3975 struct buffer_head map_bh;
3976 pgoff_t next_pgofs;
3977
3978 cond_resched();
3979
3980 memset(&map_bh, 0, sizeof(struct buffer_head));
3981 map_bh.b_size = len - cur_lblock;
3982
3983 ret = get_data_block(inode, cur_lblock, &map_bh, 0,
3984 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
3985 if (ret)
3986 goto err_out;
3987
3988 /* hole */
3989 if (!buffer_mapped(&map_bh))
3990 goto err_out;
3991
3992 pblock = map_bh.b_blocknr;
3993 nr_pblocks = logical_to_blk(inode, map_bh.b_size);
3994
3995 if (cur_lblock + nr_pblocks >= sis->max)
3996 nr_pblocks = sis->max - cur_lblock;
3997
3998 if (cur_lblock) { /* exclude the header page */
3999 if (pblock < lowest_pblock)
4000 lowest_pblock = pblock;
4001 if (pblock + nr_pblocks - 1 > highest_pblock)
4002 highest_pblock = pblock + nr_pblocks - 1;
4003 }
4004
4005 /*
4006 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4007 */
4008 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4009 if (ret < 0)
4010 goto out;
4011 nr_extents += ret;
4012 cur_lblock += nr_pblocks;
4013 }
4014 ret = nr_extents;
4015 *span = 1 + highest_pblock - lowest_pblock;
4016 if (cur_lblock == 0)
4017 cur_lblock = 1; /* force Empty message */
4018 sis->max = cur_lblock;
4019 sis->pages = cur_lblock - 1;
4020 sis->highest_bit = cur_lblock - 1;
4021 out:
4022 return ret;
4023 err_out:
4024 pr_err("swapon: swapfile has holes\n");
4025 return -EINVAL;
4026 }
4027
4028 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)4029 static int check_swap_activate(struct swap_info_struct *sis,
4030 struct file *swap_file, sector_t *span)
4031 {
4032 struct address_space *mapping = swap_file->f_mapping;
4033 struct inode *inode = mapping->host;
4034 unsigned blocks_per_page;
4035 unsigned long page_no;
4036 unsigned blkbits;
4037 sector_t probe_block;
4038 sector_t last_block;
4039 sector_t lowest_block = -1;
4040 sector_t highest_block = 0;
4041 int nr_extents = 0;
4042 int ret;
4043
4044 if (PAGE_SIZE == F2FS_BLKSIZE)
4045 return check_swap_activate_fast(sis, swap_file, span);
4046
4047 blkbits = inode->i_blkbits;
4048 blocks_per_page = PAGE_SIZE >> blkbits;
4049
4050 /*
4051 * Map all the blocks into the extent list. This code doesn't try
4052 * to be very smart.
4053 */
4054 probe_block = 0;
4055 page_no = 0;
4056 last_block = i_size_read(inode) >> blkbits;
4057 while ((probe_block + blocks_per_page) <= last_block &&
4058 page_no < sis->max) {
4059 unsigned block_in_page;
4060 sector_t first_block;
4061 sector_t block = 0;
4062 int err = 0;
4063
4064 cond_resched();
4065
4066 block = probe_block;
4067 err = bmap(inode, &block);
4068 if (err || !block)
4069 goto bad_bmap;
4070 first_block = block;
4071
4072 /*
4073 * It must be PAGE_SIZE aligned on-disk
4074 */
4075 if (first_block & (blocks_per_page - 1)) {
4076 probe_block++;
4077 goto reprobe;
4078 }
4079
4080 for (block_in_page = 1; block_in_page < blocks_per_page;
4081 block_in_page++) {
4082
4083 block = probe_block + block_in_page;
4084 err = bmap(inode, &block);
4085
4086 if (err || !block)
4087 goto bad_bmap;
4088
4089 if (block != first_block + block_in_page) {
4090 /* Discontiguity */
4091 probe_block++;
4092 goto reprobe;
4093 }
4094 }
4095
4096 first_block >>= (PAGE_SHIFT - blkbits);
4097 if (page_no) { /* exclude the header page */
4098 if (first_block < lowest_block)
4099 lowest_block = first_block;
4100 if (first_block > highest_block)
4101 highest_block = first_block;
4102 }
4103
4104 /*
4105 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4106 */
4107 ret = add_swap_extent(sis, page_no, 1, first_block);
4108 if (ret < 0)
4109 goto out;
4110 nr_extents += ret;
4111 page_no++;
4112 probe_block += blocks_per_page;
4113 reprobe:
4114 continue;
4115 }
4116 ret = nr_extents;
4117 *span = 1 + highest_block - lowest_block;
4118 if (page_no == 0)
4119 page_no = 1; /* force Empty message */
4120 sis->max = page_no;
4121 sis->pages = page_no - 1;
4122 sis->highest_bit = page_no - 1;
4123 out:
4124 return ret;
4125 bad_bmap:
4126 pr_err("swapon: swapfile has holes\n");
4127 return -EINVAL;
4128 }
4129
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4130 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4131 sector_t *span)
4132 {
4133 struct inode *inode = file_inode(file);
4134 int ret;
4135
4136 if (!S_ISREG(inode->i_mode))
4137 return -EINVAL;
4138
4139 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4140 return -EROFS;
4141
4142 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4143 f2fs_err(F2FS_I_SB(inode),
4144 "Swapfile not supported in LFS mode");
4145 return -EINVAL;
4146 }
4147
4148 ret = f2fs_convert_inline_inode(inode);
4149 if (ret)
4150 return ret;
4151
4152 if (!f2fs_disable_compressed_file(inode))
4153 return -EINVAL;
4154
4155 ret = check_swap_activate(sis, file, span);
4156 if (ret < 0)
4157 return ret;
4158
4159 set_inode_flag(inode, FI_PIN_FILE);
4160 f2fs_precache_extents(inode);
4161 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4162 return ret;
4163 }
4164
f2fs_swap_deactivate(struct file * file)4165 static void f2fs_swap_deactivate(struct file *file)
4166 {
4167 struct inode *inode = file_inode(file);
4168
4169 clear_inode_flag(inode, FI_PIN_FILE);
4170 }
4171 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4172 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4173 sector_t *span)
4174 {
4175 return -EOPNOTSUPP;
4176 }
4177
f2fs_swap_deactivate(struct file * file)4178 static void f2fs_swap_deactivate(struct file *file)
4179 {
4180 }
4181 #endif
4182
4183 const struct address_space_operations f2fs_dblock_aops = {
4184 .readpage = f2fs_read_data_page,
4185 .readahead = f2fs_readahead,
4186 .writepage = f2fs_write_data_page,
4187 .writepages = f2fs_write_data_pages,
4188 .write_begin = f2fs_write_begin,
4189 .write_end = f2fs_write_end,
4190 .set_page_dirty = f2fs_set_data_page_dirty,
4191 .invalidatepage = f2fs_invalidate_page,
4192 .releasepage = f2fs_release_page,
4193 .direct_IO = f2fs_direct_IO,
4194 .bmap = f2fs_bmap,
4195 .swap_activate = f2fs_swap_activate,
4196 .swap_deactivate = f2fs_swap_deactivate,
4197 #ifdef CONFIG_MIGRATION
4198 .migratepage = f2fs_migrate_page,
4199 #endif
4200 };
4201
f2fs_clear_page_cache_dirty_tag(struct page * page)4202 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4203 {
4204 struct address_space *mapping = page_mapping(page);
4205 unsigned long flags;
4206
4207 xa_lock_irqsave(&mapping->i_pages, flags);
4208 __xa_clear_mark(&mapping->i_pages, page_index(page),
4209 PAGECACHE_TAG_DIRTY);
4210 xa_unlock_irqrestore(&mapping->i_pages, flags);
4211 }
4212
f2fs_init_post_read_processing(void)4213 int __init f2fs_init_post_read_processing(void)
4214 {
4215 bio_post_read_ctx_cache =
4216 kmem_cache_create("f2fs_bio_post_read_ctx",
4217 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4218 if (!bio_post_read_ctx_cache)
4219 goto fail;
4220 bio_post_read_ctx_pool =
4221 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4222 bio_post_read_ctx_cache);
4223 if (!bio_post_read_ctx_pool)
4224 goto fail_free_cache;
4225 return 0;
4226
4227 fail_free_cache:
4228 kmem_cache_destroy(bio_post_read_ctx_cache);
4229 fail:
4230 return -ENOMEM;
4231 }
4232
f2fs_destroy_post_read_processing(void)4233 void f2fs_destroy_post_read_processing(void)
4234 {
4235 mempool_destroy(bio_post_read_ctx_pool);
4236 kmem_cache_destroy(bio_post_read_ctx_cache);
4237 }
4238
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4239 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4240 {
4241 if (!f2fs_sb_has_encrypt(sbi) &&
4242 !f2fs_sb_has_verity(sbi) &&
4243 !f2fs_sb_has_compression(sbi))
4244 return 0;
4245
4246 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4247 WQ_UNBOUND | WQ_HIGHPRI,
4248 num_online_cpus());
4249 if (!sbi->post_read_wq)
4250 return -ENOMEM;
4251 return 0;
4252 }
4253
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4254 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4255 {
4256 if (sbi->post_read_wq)
4257 destroy_workqueue(sbi->post_read_wq);
4258 }
4259
f2fs_init_bio_entry_cache(void)4260 int __init f2fs_init_bio_entry_cache(void)
4261 {
4262 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4263 sizeof(struct bio_entry));
4264 if (!bio_entry_slab)
4265 return -ENOMEM;
4266 return 0;
4267 }
4268
f2fs_destroy_bio_entry_cache(void)4269 void f2fs_destroy_bio_entry_cache(void)
4270 {
4271 kmem_cache_destroy(bio_entry_slab);
4272 }
4273