1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
106 unsigned int offset;
107
108 if (!UDF_SB(sb)->s_lvid_bh)
109 return NULL;
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
116 }
117
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
121 {
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
127 .name = "udf",
128 .mount = udf_mount,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133
134 static struct kmem_cache *udf_inode_cachep;
135
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 struct udf_inode_info *ei;
139 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
140 if (!ei)
141 return NULL;
142
143 ei->i_unique = 0;
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
148 ei->i_strat4096 = 0;
149 ei->i_streamdir = 0;
150 init_rwsem(&ei->i_data_sem);
151 ei->cached_extent.lstart = -1;
152 spin_lock_init(&ei->i_extent_cache_lock);
153 inode_set_iversion(&ei->vfs_inode, 1);
154
155 return &ei->vfs_inode;
156 }
157
udf_free_in_core_inode(struct inode * inode)158 static void udf_free_in_core_inode(struct inode *inode)
159 {
160 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
161 }
162
init_once(void * foo)163 static void init_once(void *foo)
164 {
165 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
166
167 ei->i_data = NULL;
168 inode_init_once(&ei->vfs_inode);
169 }
170
init_inodecache(void)171 static int __init init_inodecache(void)
172 {
173 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
174 sizeof(struct udf_inode_info),
175 0, (SLAB_RECLAIM_ACCOUNT |
176 SLAB_MEM_SPREAD |
177 SLAB_ACCOUNT),
178 init_once);
179 if (!udf_inode_cachep)
180 return -ENOMEM;
181 return 0;
182 }
183
destroy_inodecache(void)184 static void destroy_inodecache(void)
185 {
186 /*
187 * Make sure all delayed rcu free inodes are flushed before we
188 * destroy cache.
189 */
190 rcu_barrier();
191 kmem_cache_destroy(udf_inode_cachep);
192 }
193
194 /* Superblock operations */
195 static const struct super_operations udf_sb_ops = {
196 .alloc_inode = udf_alloc_inode,
197 .free_inode = udf_free_in_core_inode,
198 .write_inode = udf_write_inode,
199 .evict_inode = udf_evict_inode,
200 .put_super = udf_put_super,
201 .sync_fs = udf_sync_fs,
202 .statfs = udf_statfs,
203 .remount_fs = udf_remount_fs,
204 .show_options = udf_show_options,
205 };
206
207 struct udf_options {
208 unsigned char novrs;
209 unsigned int blocksize;
210 unsigned int session;
211 unsigned int lastblock;
212 unsigned int anchor;
213 unsigned int flags;
214 umode_t umask;
215 kgid_t gid;
216 kuid_t uid;
217 umode_t fmode;
218 umode_t dmode;
219 struct nls_table *nls_map;
220 };
221
init_udf_fs(void)222 static int __init init_udf_fs(void)
223 {
224 int err;
225
226 err = init_inodecache();
227 if (err)
228 goto out1;
229 err = register_filesystem(&udf_fstype);
230 if (err)
231 goto out;
232
233 return 0;
234
235 out:
236 destroy_inodecache();
237
238 out1:
239 return err;
240 }
241
exit_udf_fs(void)242 static void __exit exit_udf_fs(void)
243 {
244 unregister_filesystem(&udf_fstype);
245 destroy_inodecache();
246 }
247
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)248 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
249 {
250 struct udf_sb_info *sbi = UDF_SB(sb);
251
252 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
253 if (!sbi->s_partmaps) {
254 sbi->s_partitions = 0;
255 return -ENOMEM;
256 }
257
258 sbi->s_partitions = count;
259 return 0;
260 }
261
udf_sb_free_bitmap(struct udf_bitmap * bitmap)262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263 {
264 int i;
265 int nr_groups = bitmap->s_nr_groups;
266
267 for (i = 0; i < nr_groups; i++)
268 brelse(bitmap->s_block_bitmap[i]);
269
270 kvfree(bitmap);
271 }
272
udf_free_partition(struct udf_part_map * map)273 static void udf_free_partition(struct udf_part_map *map)
274 {
275 int i;
276 struct udf_meta_data *mdata;
277
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
279 iput(map->s_uspace.s_table);
280 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
281 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
282 if (map->s_partition_type == UDF_SPARABLE_MAP15)
283 for (i = 0; i < 4; i++)
284 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
285 else if (map->s_partition_type == UDF_METADATA_MAP25) {
286 mdata = &map->s_type_specific.s_metadata;
287 iput(mdata->s_metadata_fe);
288 mdata->s_metadata_fe = NULL;
289
290 iput(mdata->s_mirror_fe);
291 mdata->s_mirror_fe = NULL;
292
293 iput(mdata->s_bitmap_fe);
294 mdata->s_bitmap_fe = NULL;
295 }
296 }
297
udf_sb_free_partitions(struct super_block * sb)298 static void udf_sb_free_partitions(struct super_block *sb)
299 {
300 struct udf_sb_info *sbi = UDF_SB(sb);
301 int i;
302
303 if (!sbi->s_partmaps)
304 return;
305 for (i = 0; i < sbi->s_partitions; i++)
306 udf_free_partition(&sbi->s_partmaps[i]);
307 kfree(sbi->s_partmaps);
308 sbi->s_partmaps = NULL;
309 }
310
udf_show_options(struct seq_file * seq,struct dentry * root)311 static int udf_show_options(struct seq_file *seq, struct dentry *root)
312 {
313 struct super_block *sb = root->d_sb;
314 struct udf_sb_info *sbi = UDF_SB(sb);
315
316 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
317 seq_puts(seq, ",nostrict");
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
319 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
321 seq_puts(seq, ",unhide");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
323 seq_puts(seq, ",undelete");
324 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
325 seq_puts(seq, ",noadinicb");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
327 seq_puts(seq, ",shortad");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
329 seq_puts(seq, ",uid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
331 seq_puts(seq, ",gid=forget");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
333 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
335 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
336 if (sbi->s_umask != 0)
337 seq_printf(seq, ",umask=%ho", sbi->s_umask);
338 if (sbi->s_fmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
340 if (sbi->s_dmode != UDF_INVALID_MODE)
341 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
343 seq_printf(seq, ",session=%d", sbi->s_session);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
345 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
346 if (sbi->s_anchor != 0)
347 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
348 if (sbi->s_nls_map)
349 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
350 else
351 seq_puts(seq, ",iocharset=utf8");
352
353 return 0;
354 }
355
356 /*
357 * udf_parse_options
358 *
359 * PURPOSE
360 * Parse mount options.
361 *
362 * DESCRIPTION
363 * The following mount options are supported:
364 *
365 * gid= Set the default group.
366 * umask= Set the default umask.
367 * mode= Set the default file permissions.
368 * dmode= Set the default directory permissions.
369 * uid= Set the default user.
370 * bs= Set the block size.
371 * unhide Show otherwise hidden files.
372 * undelete Show deleted files in lists.
373 * adinicb Embed data in the inode (default)
374 * noadinicb Don't embed data in the inode
375 * shortad Use short ad's
376 * longad Use long ad's (default)
377 * nostrict Unset strict conformance
378 * iocharset= Set the NLS character set
379 *
380 * The remaining are for debugging and disaster recovery:
381 *
382 * novrs Skip volume sequence recognition
383 *
384 * The following expect a offset from 0.
385 *
386 * session= Set the CDROM session (default= last session)
387 * anchor= Override standard anchor location. (default= 256)
388 * volume= Override the VolumeDesc location. (unused)
389 * partition= Override the PartitionDesc location. (unused)
390 * lastblock= Set the last block of the filesystem/
391 *
392 * The following expect a offset from the partition root.
393 *
394 * fileset= Override the fileset block location. (unused)
395 * rootdir= Override the root directory location. (unused)
396 * WARNING: overriding the rootdir to a non-directory may
397 * yield highly unpredictable results.
398 *
399 * PRE-CONDITIONS
400 * options Pointer to mount options string.
401 * uopts Pointer to mount options variable.
402 *
403 * POST-CONDITIONS
404 * <return> 1 Mount options parsed okay.
405 * <return> 0 Error parsing mount options.
406 *
407 * HISTORY
408 * July 1, 1997 - Andrew E. Mileski
409 * Written, tested, and released.
410 */
411
412 enum {
413 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
414 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
415 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
416 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
417 Opt_rootdir, Opt_utf8, Opt_iocharset,
418 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
419 Opt_fmode, Opt_dmode
420 };
421
422 static const match_table_t tokens = {
423 {Opt_novrs, "novrs"},
424 {Opt_nostrict, "nostrict"},
425 {Opt_bs, "bs=%u"},
426 {Opt_unhide, "unhide"},
427 {Opt_undelete, "undelete"},
428 {Opt_noadinicb, "noadinicb"},
429 {Opt_adinicb, "adinicb"},
430 {Opt_shortad, "shortad"},
431 {Opt_longad, "longad"},
432 {Opt_uforget, "uid=forget"},
433 {Opt_uignore, "uid=ignore"},
434 {Opt_gforget, "gid=forget"},
435 {Opt_gignore, "gid=ignore"},
436 {Opt_gid, "gid=%u"},
437 {Opt_uid, "uid=%u"},
438 {Opt_umask, "umask=%o"},
439 {Opt_session, "session=%u"},
440 {Opt_lastblock, "lastblock=%u"},
441 {Opt_anchor, "anchor=%u"},
442 {Opt_volume, "volume=%u"},
443 {Opt_partition, "partition=%u"},
444 {Opt_fileset, "fileset=%u"},
445 {Opt_rootdir, "rootdir=%u"},
446 {Opt_utf8, "utf8"},
447 {Opt_iocharset, "iocharset=%s"},
448 {Opt_fmode, "mode=%o"},
449 {Opt_dmode, "dmode=%o"},
450 {Opt_err, NULL}
451 };
452
udf_parse_options(char * options,struct udf_options * uopt,bool remount)453 static int udf_parse_options(char *options, struct udf_options *uopt,
454 bool remount)
455 {
456 char *p;
457 int option;
458
459 uopt->novrs = 0;
460 uopt->session = 0xFFFFFFFF;
461 uopt->lastblock = 0;
462 uopt->anchor = 0;
463
464 if (!options)
465 return 1;
466
467 while ((p = strsep(&options, ",")) != NULL) {
468 substring_t args[MAX_OPT_ARGS];
469 int token;
470 unsigned n;
471 if (!*p)
472 continue;
473
474 token = match_token(p, tokens, args);
475 switch (token) {
476 case Opt_novrs:
477 uopt->novrs = 1;
478 break;
479 case Opt_bs:
480 if (match_int(&args[0], &option))
481 return 0;
482 n = option;
483 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
484 return 0;
485 uopt->blocksize = n;
486 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
487 break;
488 case Opt_unhide:
489 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
490 break;
491 case Opt_undelete:
492 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
493 break;
494 case Opt_noadinicb:
495 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
496 break;
497 case Opt_adinicb:
498 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
499 break;
500 case Opt_shortad:
501 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
502 break;
503 case Opt_longad:
504 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
505 break;
506 case Opt_gid:
507 if (match_int(args, &option))
508 return 0;
509 uopt->gid = make_kgid(current_user_ns(), option);
510 if (!gid_valid(uopt->gid))
511 return 0;
512 uopt->flags |= (1 << UDF_FLAG_GID_SET);
513 break;
514 case Opt_uid:
515 if (match_int(args, &option))
516 return 0;
517 uopt->uid = make_kuid(current_user_ns(), option);
518 if (!uid_valid(uopt->uid))
519 return 0;
520 uopt->flags |= (1 << UDF_FLAG_UID_SET);
521 break;
522 case Opt_umask:
523 if (match_octal(args, &option))
524 return 0;
525 uopt->umask = option;
526 break;
527 case Opt_nostrict:
528 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
529 break;
530 case Opt_session:
531 if (match_int(args, &option))
532 return 0;
533 uopt->session = option;
534 if (!remount)
535 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
536 break;
537 case Opt_lastblock:
538 if (match_int(args, &option))
539 return 0;
540 uopt->lastblock = option;
541 if (!remount)
542 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
543 break;
544 case Opt_anchor:
545 if (match_int(args, &option))
546 return 0;
547 uopt->anchor = option;
548 break;
549 case Opt_volume:
550 case Opt_partition:
551 case Opt_fileset:
552 case Opt_rootdir:
553 /* Ignored (never implemented properly) */
554 break;
555 case Opt_utf8:
556 if (!remount) {
557 unload_nls(uopt->nls_map);
558 uopt->nls_map = NULL;
559 }
560 break;
561 case Opt_iocharset:
562 if (!remount) {
563 unload_nls(uopt->nls_map);
564 uopt->nls_map = NULL;
565 }
566 /* When nls_map is not loaded then UTF-8 is used */
567 if (!remount && strcmp(args[0].from, "utf8") != 0) {
568 uopt->nls_map = load_nls(args[0].from);
569 if (!uopt->nls_map) {
570 pr_err("iocharset %s not found\n",
571 args[0].from);
572 return 0;
573 }
574 }
575 break;
576 case Opt_uforget:
577 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
578 break;
579 case Opt_uignore:
580 case Opt_gignore:
581 /* These options are superseeded by uid=<number> */
582 break;
583 case Opt_gforget:
584 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
585 break;
586 case Opt_fmode:
587 if (match_octal(args, &option))
588 return 0;
589 uopt->fmode = option & 0777;
590 break;
591 case Opt_dmode:
592 if (match_octal(args, &option))
593 return 0;
594 uopt->dmode = option & 0777;
595 break;
596 default:
597 pr_err("bad mount option \"%s\" or missing value\n", p);
598 return 0;
599 }
600 }
601 return 1;
602 }
603
udf_remount_fs(struct super_block * sb,int * flags,char * options)604 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
605 {
606 struct udf_options uopt;
607 struct udf_sb_info *sbi = UDF_SB(sb);
608 int error = 0;
609
610 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
611 return -EACCES;
612
613 sync_filesystem(sb);
614
615 uopt.flags = sbi->s_flags;
616 uopt.uid = sbi->s_uid;
617 uopt.gid = sbi->s_gid;
618 uopt.umask = sbi->s_umask;
619 uopt.fmode = sbi->s_fmode;
620 uopt.dmode = sbi->s_dmode;
621 uopt.nls_map = NULL;
622
623 if (!udf_parse_options(options, &uopt, true))
624 return -EINVAL;
625
626 write_lock(&sbi->s_cred_lock);
627 sbi->s_flags = uopt.flags;
628 sbi->s_uid = uopt.uid;
629 sbi->s_gid = uopt.gid;
630 sbi->s_umask = uopt.umask;
631 sbi->s_fmode = uopt.fmode;
632 sbi->s_dmode = uopt.dmode;
633 write_unlock(&sbi->s_cred_lock);
634
635 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
636 goto out_unlock;
637
638 if (*flags & SB_RDONLY)
639 udf_close_lvid(sb);
640 else
641 udf_open_lvid(sb);
642
643 out_unlock:
644 return error;
645 }
646
647 /*
648 * Check VSD descriptor. Returns -1 in case we are at the end of volume
649 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
650 * we found one of NSR descriptors we are looking for.
651 */
identify_vsd(const struct volStructDesc * vsd)652 static int identify_vsd(const struct volStructDesc *vsd)
653 {
654 int ret = 0;
655
656 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
657 switch (vsd->structType) {
658 case 0:
659 udf_debug("ISO9660 Boot Record found\n");
660 break;
661 case 1:
662 udf_debug("ISO9660 Primary Volume Descriptor found\n");
663 break;
664 case 2:
665 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
666 break;
667 case 3:
668 udf_debug("ISO9660 Volume Partition Descriptor found\n");
669 break;
670 case 255:
671 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
672 break;
673 default:
674 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
675 break;
676 }
677 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
678 ; /* ret = 0 */
679 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
680 ret = 1;
681 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
682 ret = 1;
683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
684 ; /* ret = 0 */
685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
686 ; /* ret = 0 */
687 else {
688 /* TEA01 or invalid id : end of volume recognition area */
689 ret = -1;
690 }
691
692 return ret;
693 }
694
695 /*
696 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
697 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
698 * @return 1 if NSR02 or NSR03 found,
699 * -1 if first sector read error, 0 otherwise
700 */
udf_check_vsd(struct super_block * sb)701 static int udf_check_vsd(struct super_block *sb)
702 {
703 struct volStructDesc *vsd = NULL;
704 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
705 int sectorsize;
706 struct buffer_head *bh = NULL;
707 int nsr = 0;
708 struct udf_sb_info *sbi;
709 loff_t session_offset;
710
711 sbi = UDF_SB(sb);
712 if (sb->s_blocksize < sizeof(struct volStructDesc))
713 sectorsize = sizeof(struct volStructDesc);
714 else
715 sectorsize = sb->s_blocksize;
716
717 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
718 sector += session_offset;
719
720 udf_debug("Starting at sector %u (%lu byte sectors)\n",
721 (unsigned int)(sector >> sb->s_blocksize_bits),
722 sb->s_blocksize);
723 /* Process the sequence (if applicable). The hard limit on the sector
724 * offset is arbitrary, hopefully large enough so that all valid UDF
725 * filesystems will be recognised. There is no mention of an upper
726 * bound to the size of the volume recognition area in the standard.
727 * The limit will prevent the code to read all the sectors of a
728 * specially crafted image (like a bluray disc full of CD001 sectors),
729 * potentially causing minutes or even hours of uninterruptible I/O
730 * activity. This actually happened with uninitialised SSD partitions
731 * (all 0xFF) before the check for the limit and all valid IDs were
732 * added */
733 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
734 /* Read a block */
735 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
736 if (!bh)
737 break;
738
739 vsd = (struct volStructDesc *)(bh->b_data +
740 (sector & (sb->s_blocksize - 1)));
741 nsr = identify_vsd(vsd);
742 /* Found NSR or end? */
743 if (nsr) {
744 brelse(bh);
745 break;
746 }
747 /*
748 * Special handling for improperly formatted VRS (e.g., Win10)
749 * where components are separated by 2048 bytes even though
750 * sectors are 4K
751 */
752 if (sb->s_blocksize == 4096) {
753 nsr = identify_vsd(vsd + 1);
754 /* Ignore unknown IDs... */
755 if (nsr < 0)
756 nsr = 0;
757 }
758 brelse(bh);
759 }
760
761 if (nsr > 0)
762 return 1;
763 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
764 return -1;
765 else
766 return 0;
767 }
768
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)769 static int udf_verify_domain_identifier(struct super_block *sb,
770 struct regid *ident, char *dname)
771 {
772 struct domainIdentSuffix *suffix;
773
774 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
775 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
776 goto force_ro;
777 }
778 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
779 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
780 dname);
781 goto force_ro;
782 }
783 suffix = (struct domainIdentSuffix *)ident->identSuffix;
784 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
785 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
786 if (!sb_rdonly(sb)) {
787 udf_warn(sb, "Descriptor for %s marked write protected."
788 " Forcing read only mount.\n", dname);
789 }
790 goto force_ro;
791 }
792 return 0;
793
794 force_ro:
795 if (!sb_rdonly(sb))
796 return -EACCES;
797 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
798 return 0;
799 }
800
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)801 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
802 struct kernel_lb_addr *root)
803 {
804 int ret;
805
806 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
807 if (ret < 0)
808 return ret;
809
810 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
811 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
812
813 udf_debug("Rootdir at block=%u, partition=%u\n",
814 root->logicalBlockNum, root->partitionReferenceNum);
815 return 0;
816 }
817
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)818 static int udf_find_fileset(struct super_block *sb,
819 struct kernel_lb_addr *fileset,
820 struct kernel_lb_addr *root)
821 {
822 struct buffer_head *bh = NULL;
823 uint16_t ident;
824 int ret;
825
826 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
827 fileset->partitionReferenceNum == 0xFFFF)
828 return -EINVAL;
829
830 bh = udf_read_ptagged(sb, fileset, 0, &ident);
831 if (!bh)
832 return -EIO;
833 if (ident != TAG_IDENT_FSD) {
834 brelse(bh);
835 return -EINVAL;
836 }
837
838 udf_debug("Fileset at block=%u, partition=%u\n",
839 fileset->logicalBlockNum, fileset->partitionReferenceNum);
840
841 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
842 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
843 brelse(bh);
844 return ret;
845 }
846
847 /*
848 * Load primary Volume Descriptor Sequence
849 *
850 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
851 * should be tried.
852 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)853 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
854 {
855 struct primaryVolDesc *pvoldesc;
856 uint8_t *outstr;
857 struct buffer_head *bh;
858 uint16_t ident;
859 int ret;
860 struct timestamp *ts;
861
862 outstr = kmalloc(128, GFP_NOFS);
863 if (!outstr)
864 return -ENOMEM;
865
866 bh = udf_read_tagged(sb, block, block, &ident);
867 if (!bh) {
868 ret = -EAGAIN;
869 goto out2;
870 }
871
872 if (ident != TAG_IDENT_PVD) {
873 ret = -EIO;
874 goto out_bh;
875 }
876
877 pvoldesc = (struct primaryVolDesc *)bh->b_data;
878
879 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
880 pvoldesc->recordingDateAndTime);
881 ts = &pvoldesc->recordingDateAndTime;
882 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
883 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
884 ts->minute, le16_to_cpu(ts->typeAndTimezone));
885
886 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
887 if (ret < 0) {
888 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
889 pr_warn("incorrect volume identification, setting to "
890 "'InvalidName'\n");
891 } else {
892 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
893 }
894 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
895
896 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
897 if (ret < 0) {
898 ret = 0;
899 goto out_bh;
900 }
901 outstr[ret] = 0;
902 udf_debug("volSetIdent[] = '%s'\n", outstr);
903
904 ret = 0;
905 out_bh:
906 brelse(bh);
907 out2:
908 kfree(outstr);
909 return ret;
910 }
911
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)912 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
913 u32 meta_file_loc, u32 partition_ref)
914 {
915 struct kernel_lb_addr addr;
916 struct inode *metadata_fe;
917
918 addr.logicalBlockNum = meta_file_loc;
919 addr.partitionReferenceNum = partition_ref;
920
921 metadata_fe = udf_iget_special(sb, &addr);
922
923 if (IS_ERR(metadata_fe)) {
924 udf_warn(sb, "metadata inode efe not found\n");
925 return metadata_fe;
926 }
927 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
928 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
929 iput(metadata_fe);
930 return ERR_PTR(-EIO);
931 }
932
933 return metadata_fe;
934 }
935
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)936 static int udf_load_metadata_files(struct super_block *sb, int partition,
937 int type1_index)
938 {
939 struct udf_sb_info *sbi = UDF_SB(sb);
940 struct udf_part_map *map;
941 struct udf_meta_data *mdata;
942 struct kernel_lb_addr addr;
943 struct inode *fe;
944
945 map = &sbi->s_partmaps[partition];
946 mdata = &map->s_type_specific.s_metadata;
947 mdata->s_phys_partition_ref = type1_index;
948
949 /* metadata address */
950 udf_debug("Metadata file location: block = %u part = %u\n",
951 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
952
953 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
954 mdata->s_phys_partition_ref);
955 if (IS_ERR(fe)) {
956 /* mirror file entry */
957 udf_debug("Mirror metadata file location: block = %u part = %u\n",
958 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
959
960 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
961 mdata->s_phys_partition_ref);
962
963 if (IS_ERR(fe)) {
964 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
965 return PTR_ERR(fe);
966 }
967 mdata->s_mirror_fe = fe;
968 } else
969 mdata->s_metadata_fe = fe;
970
971
972 /*
973 * bitmap file entry
974 * Note:
975 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
976 */
977 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
978 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
979 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
980
981 udf_debug("Bitmap file location: block = %u part = %u\n",
982 addr.logicalBlockNum, addr.partitionReferenceNum);
983
984 fe = udf_iget_special(sb, &addr);
985 if (IS_ERR(fe)) {
986 if (sb_rdonly(sb))
987 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
988 else {
989 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
990 return PTR_ERR(fe);
991 }
992 } else
993 mdata->s_bitmap_fe = fe;
994 }
995
996 udf_debug("udf_load_metadata_files Ok\n");
997 return 0;
998 }
999
udf_compute_nr_groups(struct super_block * sb,u32 partition)1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1001 {
1002 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1003 return DIV_ROUND_UP(map->s_partition_len +
1004 (sizeof(struct spaceBitmapDesc) << 3),
1005 sb->s_blocksize * 8);
1006 }
1007
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1009 {
1010 struct udf_bitmap *bitmap;
1011 int nr_groups = udf_compute_nr_groups(sb, index);
1012
1013 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1014 GFP_KERNEL);
1015 if (!bitmap)
1016 return NULL;
1017
1018 bitmap->s_nr_groups = nr_groups;
1019 return bitmap;
1020 }
1021
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1022 static int check_partition_desc(struct super_block *sb,
1023 struct partitionDesc *p,
1024 struct udf_part_map *map)
1025 {
1026 bool umap, utable, fmap, ftable;
1027 struct partitionHeaderDesc *phd;
1028
1029 switch (le32_to_cpu(p->accessType)) {
1030 case PD_ACCESS_TYPE_READ_ONLY:
1031 case PD_ACCESS_TYPE_WRITE_ONCE:
1032 case PD_ACCESS_TYPE_NONE:
1033 goto force_ro;
1034 }
1035
1036 /* No Partition Header Descriptor? */
1037 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1038 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1039 goto force_ro;
1040
1041 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1042 utable = phd->unallocSpaceTable.extLength;
1043 umap = phd->unallocSpaceBitmap.extLength;
1044 ftable = phd->freedSpaceTable.extLength;
1045 fmap = phd->freedSpaceBitmap.extLength;
1046
1047 /* No allocation info? */
1048 if (!utable && !umap && !ftable && !fmap)
1049 goto force_ro;
1050
1051 /* We don't support blocks that require erasing before overwrite */
1052 if (ftable || fmap)
1053 goto force_ro;
1054 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1055 if (utable && umap)
1056 goto force_ro;
1057
1058 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1059 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1060 map->s_partition_type == UDF_METADATA_MAP25)
1061 goto force_ro;
1062
1063 return 0;
1064 force_ro:
1065 if (!sb_rdonly(sb))
1066 return -EACCES;
1067 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1068 return 0;
1069 }
1070
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1071 static int udf_fill_partdesc_info(struct super_block *sb,
1072 struct partitionDesc *p, int p_index)
1073 {
1074 struct udf_part_map *map;
1075 struct udf_sb_info *sbi = UDF_SB(sb);
1076 struct partitionHeaderDesc *phd;
1077 int err;
1078
1079 map = &sbi->s_partmaps[p_index];
1080
1081 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1082 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1083
1084 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1085 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1087 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1089 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1091 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1092
1093 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1094 p_index, map->s_partition_type,
1095 map->s_partition_root, map->s_partition_len);
1096
1097 err = check_partition_desc(sb, p, map);
1098 if (err)
1099 return err;
1100
1101 /*
1102 * Skip loading allocation info it we cannot ever write to the fs.
1103 * This is a correctness thing as we may have decided to force ro mount
1104 * to avoid allocation info we don't support.
1105 */
1106 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1107 return 0;
1108
1109 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1110 if (phd->unallocSpaceTable.extLength) {
1111 struct kernel_lb_addr loc = {
1112 .logicalBlockNum = le32_to_cpu(
1113 phd->unallocSpaceTable.extPosition),
1114 .partitionReferenceNum = p_index,
1115 };
1116 struct inode *inode;
1117
1118 inode = udf_iget_special(sb, &loc);
1119 if (IS_ERR(inode)) {
1120 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1121 p_index);
1122 return PTR_ERR(inode);
1123 }
1124 map->s_uspace.s_table = inode;
1125 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1126 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1127 p_index, map->s_uspace.s_table->i_ino);
1128 }
1129
1130 if (phd->unallocSpaceBitmap.extLength) {
1131 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1132 if (!bitmap)
1133 return -ENOMEM;
1134 map->s_uspace.s_bitmap = bitmap;
1135 bitmap->s_extPosition = le32_to_cpu(
1136 phd->unallocSpaceBitmap.extPosition);
1137 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1138 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1139 p_index, bitmap->s_extPosition);
1140 }
1141
1142 return 0;
1143 }
1144
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1145 static void udf_find_vat_block(struct super_block *sb, int p_index,
1146 int type1_index, sector_t start_block)
1147 {
1148 struct udf_sb_info *sbi = UDF_SB(sb);
1149 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1150 sector_t vat_block;
1151 struct kernel_lb_addr ino;
1152 struct inode *inode;
1153
1154 /*
1155 * VAT file entry is in the last recorded block. Some broken disks have
1156 * it a few blocks before so try a bit harder...
1157 */
1158 ino.partitionReferenceNum = type1_index;
1159 for (vat_block = start_block;
1160 vat_block >= map->s_partition_root &&
1161 vat_block >= start_block - 3; vat_block--) {
1162 ino.logicalBlockNum = vat_block - map->s_partition_root;
1163 inode = udf_iget_special(sb, &ino);
1164 if (!IS_ERR(inode)) {
1165 sbi->s_vat_inode = inode;
1166 break;
1167 }
1168 }
1169 }
1170
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1171 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1172 {
1173 struct udf_sb_info *sbi = UDF_SB(sb);
1174 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1175 struct buffer_head *bh = NULL;
1176 struct udf_inode_info *vati;
1177 uint32_t pos;
1178 struct virtualAllocationTable20 *vat20;
1179 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1180 sb->s_blocksize_bits;
1181
1182 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183 if (!sbi->s_vat_inode &&
1184 sbi->s_last_block != blocks - 1) {
1185 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186 (unsigned long)sbi->s_last_block,
1187 (unsigned long)blocks - 1);
1188 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189 }
1190 if (!sbi->s_vat_inode)
1191 return -EIO;
1192
1193 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194 map->s_type_specific.s_virtual.s_start_offset = 0;
1195 map->s_type_specific.s_virtual.s_num_entries =
1196 (sbi->s_vat_inode->i_size - 36) >> 2;
1197 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198 vati = UDF_I(sbi->s_vat_inode);
1199 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200 pos = udf_block_map(sbi->s_vat_inode, 0);
1201 bh = sb_bread(sb, pos);
1202 if (!bh)
1203 return -EIO;
1204 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205 } else {
1206 vat20 = (struct virtualAllocationTable20 *)
1207 vati->i_data;
1208 }
1209
1210 map->s_type_specific.s_virtual.s_start_offset =
1211 le16_to_cpu(vat20->lengthHeader);
1212 map->s_type_specific.s_virtual.s_num_entries =
1213 (sbi->s_vat_inode->i_size -
1214 map->s_type_specific.s_virtual.
1215 s_start_offset) >> 2;
1216 brelse(bh);
1217 }
1218 return 0;
1219 }
1220
1221 /*
1222 * Load partition descriptor block
1223 *
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225 * sequence.
1226 */
udf_load_partdesc(struct super_block * sb,sector_t block)1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228 {
1229 struct buffer_head *bh;
1230 struct partitionDesc *p;
1231 struct udf_part_map *map;
1232 struct udf_sb_info *sbi = UDF_SB(sb);
1233 int i, type1_idx;
1234 uint16_t partitionNumber;
1235 uint16_t ident;
1236 int ret;
1237
1238 bh = udf_read_tagged(sb, block, block, &ident);
1239 if (!bh)
1240 return -EAGAIN;
1241 if (ident != TAG_IDENT_PD) {
1242 ret = 0;
1243 goto out_bh;
1244 }
1245
1246 p = (struct partitionDesc *)bh->b_data;
1247 partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249 /* First scan for TYPE1 and SPARABLE partitions */
1250 for (i = 0; i < sbi->s_partitions; i++) {
1251 map = &sbi->s_partmaps[i];
1252 udf_debug("Searching map: (%u == %u)\n",
1253 map->s_partition_num, partitionNumber);
1254 if (map->s_partition_num == partitionNumber &&
1255 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256 map->s_partition_type == UDF_SPARABLE_MAP15))
1257 break;
1258 }
1259
1260 if (i >= sbi->s_partitions) {
1261 udf_debug("Partition (%u) not found in partition map\n",
1262 partitionNumber);
1263 ret = 0;
1264 goto out_bh;
1265 }
1266
1267 ret = udf_fill_partdesc_info(sb, p, i);
1268 if (ret < 0)
1269 goto out_bh;
1270
1271 /*
1272 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273 * PHYSICAL partitions are already set up
1274 */
1275 type1_idx = i;
1276 map = NULL; /* supress 'maybe used uninitialized' warning */
1277 for (i = 0; i < sbi->s_partitions; i++) {
1278 map = &sbi->s_partmaps[i];
1279
1280 if (map->s_partition_num == partitionNumber &&
1281 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283 map->s_partition_type == UDF_METADATA_MAP25))
1284 break;
1285 }
1286
1287 if (i >= sbi->s_partitions) {
1288 ret = 0;
1289 goto out_bh;
1290 }
1291
1292 ret = udf_fill_partdesc_info(sb, p, i);
1293 if (ret < 0)
1294 goto out_bh;
1295
1296 if (map->s_partition_type == UDF_METADATA_MAP25) {
1297 ret = udf_load_metadata_files(sb, i, type1_idx);
1298 if (ret < 0) {
1299 udf_err(sb, "error loading MetaData partition map %d\n",
1300 i);
1301 goto out_bh;
1302 }
1303 } else {
1304 /*
1305 * If we have a partition with virtual map, we don't handle
1306 * writing to it (we overwrite blocks instead of relocating
1307 * them).
1308 */
1309 if (!sb_rdonly(sb)) {
1310 ret = -EACCES;
1311 goto out_bh;
1312 }
1313 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314 ret = udf_load_vat(sb, i, type1_idx);
1315 if (ret < 0)
1316 goto out_bh;
1317 }
1318 ret = 0;
1319 out_bh:
1320 /* In case loading failed, we handle cleanup in udf_fill_super */
1321 brelse(bh);
1322 return ret;
1323 }
1324
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1325 static int udf_load_sparable_map(struct super_block *sb,
1326 struct udf_part_map *map,
1327 struct sparablePartitionMap *spm)
1328 {
1329 uint32_t loc;
1330 uint16_t ident;
1331 struct sparingTable *st;
1332 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333 int i;
1334 struct buffer_head *bh;
1335
1336 map->s_partition_type = UDF_SPARABLE_MAP15;
1337 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338 if (!is_power_of_2(sdata->s_packet_len)) {
1339 udf_err(sb, "error loading logical volume descriptor: "
1340 "Invalid packet length %u\n",
1341 (unsigned)sdata->s_packet_len);
1342 return -EIO;
1343 }
1344 if (spm->numSparingTables > 4) {
1345 udf_err(sb, "error loading logical volume descriptor: "
1346 "Too many sparing tables (%d)\n",
1347 (int)spm->numSparingTables);
1348 return -EIO;
1349 }
1350 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Too big sparing table size (%u)\n",
1353 le32_to_cpu(spm->sizeSparingTable));
1354 return -EIO;
1355 }
1356
1357 for (i = 0; i < spm->numSparingTables; i++) {
1358 loc = le32_to_cpu(spm->locSparingTable[i]);
1359 bh = udf_read_tagged(sb, loc, loc, &ident);
1360 if (!bh)
1361 continue;
1362
1363 st = (struct sparingTable *)bh->b_data;
1364 if (ident != 0 ||
1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 strlen(UDF_ID_SPARING)) ||
1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 sb->s_blocksize) {
1369 brelse(bh);
1370 continue;
1371 }
1372
1373 sdata->s_spar_map[i] = bh;
1374 }
1375 map->s_partition_func = udf_get_pblock_spar15;
1376 return 0;
1377 }
1378
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 struct kernel_lb_addr *fileset)
1381 {
1382 struct logicalVolDesc *lvd;
1383 int i, offset;
1384 uint8_t type;
1385 struct udf_sb_info *sbi = UDF_SB(sb);
1386 struct genericPartitionMap *gpm;
1387 uint16_t ident;
1388 struct buffer_head *bh;
1389 unsigned int table_len;
1390 int ret;
1391
1392 bh = udf_read_tagged(sb, block, block, &ident);
1393 if (!bh)
1394 return -EAGAIN;
1395 BUG_ON(ident != TAG_IDENT_LVD);
1396 lvd = (struct logicalVolDesc *)bh->b_data;
1397 table_len = le32_to_cpu(lvd->mapTableLength);
1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Partition table too long (%u > %lu)\n", table_len,
1401 sb->s_blocksize - sizeof(*lvd));
1402 ret = -EIO;
1403 goto out_bh;
1404 }
1405
1406 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407 "logical volume");
1408 if (ret)
1409 goto out_bh;
1410 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411 if (ret)
1412 goto out_bh;
1413
1414 for (i = 0, offset = 0;
1415 i < sbi->s_partitions && offset < table_len;
1416 i++, offset += gpm->partitionMapLength) {
1417 struct udf_part_map *map = &sbi->s_partmaps[i];
1418 gpm = (struct genericPartitionMap *)
1419 &(lvd->partitionMaps[offset]);
1420 type = gpm->partitionMapType;
1421 if (type == 1) {
1422 struct genericPartitionMap1 *gpm1 =
1423 (struct genericPartitionMap1 *)gpm;
1424 map->s_partition_type = UDF_TYPE1_MAP15;
1425 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 map->s_partition_func = NULL;
1428 } else if (type == 2) {
1429 struct udfPartitionMap2 *upm2 =
1430 (struct udfPartitionMap2 *)gpm;
1431 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 strlen(UDF_ID_VIRTUAL))) {
1433 u16 suf =
1434 le16_to_cpu(((__le16 *)upm2->partIdent.
1435 identSuffix)[0]);
1436 if (suf < 0x0200) {
1437 map->s_partition_type =
1438 UDF_VIRTUAL_MAP15;
1439 map->s_partition_func =
1440 udf_get_pblock_virt15;
1441 } else {
1442 map->s_partition_type =
1443 UDF_VIRTUAL_MAP20;
1444 map->s_partition_func =
1445 udf_get_pblock_virt20;
1446 }
1447 } else if (!strncmp(upm2->partIdent.ident,
1448 UDF_ID_SPARABLE,
1449 strlen(UDF_ID_SPARABLE))) {
1450 ret = udf_load_sparable_map(sb, map,
1451 (struct sparablePartitionMap *)gpm);
1452 if (ret < 0)
1453 goto out_bh;
1454 } else if (!strncmp(upm2->partIdent.ident,
1455 UDF_ID_METADATA,
1456 strlen(UDF_ID_METADATA))) {
1457 struct udf_meta_data *mdata =
1458 &map->s_type_specific.s_metadata;
1459 struct metadataPartitionMap *mdm =
1460 (struct metadataPartitionMap *)
1461 &(lvd->partitionMaps[offset]);
1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1463 i, type, UDF_ID_METADATA);
1464
1465 map->s_partition_type = UDF_METADATA_MAP25;
1466 map->s_partition_func = udf_get_pblock_meta25;
1467
1468 mdata->s_meta_file_loc =
1469 le32_to_cpu(mdm->metadataFileLoc);
1470 mdata->s_mirror_file_loc =
1471 le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 mdata->s_bitmap_file_loc =
1473 le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 mdata->s_alloc_unit_size =
1475 le32_to_cpu(mdm->allocUnitSize);
1476 mdata->s_align_unit_size =
1477 le16_to_cpu(mdm->alignUnitSize);
1478 if (mdm->flags & 0x01)
1479 mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481 udf_debug("Metadata Ident suffix=0x%x\n",
1482 le16_to_cpu(*(__le16 *)
1483 mdm->partIdent.identSuffix));
1484 udf_debug("Metadata part num=%u\n",
1485 le16_to_cpu(mdm->partitionNum));
1486 udf_debug("Metadata part alloc unit size=%u\n",
1487 le32_to_cpu(mdm->allocUnitSize));
1488 udf_debug("Metadata file loc=%u\n",
1489 le32_to_cpu(mdm->metadataFileLoc));
1490 udf_debug("Mirror file loc=%u\n",
1491 le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 udf_debug("Bitmap file loc=%u\n",
1493 le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 udf_debug("Flags: %d %u\n",
1495 mdata->s_flags, mdm->flags);
1496 } else {
1497 udf_debug("Unknown ident: %s\n",
1498 upm2->partIdent.ident);
1499 continue;
1500 }
1501 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 }
1504 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 i, map->s_partition_num, type, map->s_volumeseqnum);
1506 }
1507
1508 if (fileset) {
1509 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511 *fileset = lelb_to_cpu(la->extLocation);
1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 fileset->logicalBlockNum,
1514 fileset->partitionReferenceNum);
1515 }
1516 if (lvd->integritySeqExt.extLength)
1517 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518 ret = 0;
1519
1520 if (!sbi->s_lvid_bh) {
1521 /* We can't generate unique IDs without a valid LVID */
1522 if (sb_rdonly(sb)) {
1523 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524 } else {
1525 udf_warn(sb, "Damaged or missing LVID, forcing "
1526 "readonly mount\n");
1527 ret = -EACCES;
1528 }
1529 }
1530 out_bh:
1531 brelse(bh);
1532 return ret;
1533 }
1534
1535 /*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1537 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540 struct buffer_head *bh, *final_bh;
1541 uint16_t ident;
1542 struct udf_sb_info *sbi = UDF_SB(sb);
1543 struct logicalVolIntegrityDesc *lvid;
1544 int indirections = 0;
1545 u32 parts, impuselen;
1546
1547 while (++indirections <= UDF_MAX_LVID_NESTING) {
1548 final_bh = NULL;
1549 while (loc.extLength > 0 &&
1550 (bh = udf_read_tagged(sb, loc.extLocation,
1551 loc.extLocation, &ident))) {
1552 if (ident != TAG_IDENT_LVID) {
1553 brelse(bh);
1554 break;
1555 }
1556
1557 brelse(final_bh);
1558 final_bh = bh;
1559
1560 loc.extLength -= sb->s_blocksize;
1561 loc.extLocation++;
1562 }
1563
1564 if (!final_bh)
1565 return;
1566
1567 brelse(sbi->s_lvid_bh);
1568 sbi->s_lvid_bh = final_bh;
1569
1570 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571 if (lvid->nextIntegrityExt.extLength == 0)
1572 goto check;
1573
1574 loc = leea_to_cpu(lvid->nextIntegrityExt);
1575 }
1576
1577 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578 UDF_MAX_LVID_NESTING);
1579 out_err:
1580 brelse(sbi->s_lvid_bh);
1581 sbi->s_lvid_bh = NULL;
1582 return;
1583 check:
1584 parts = le32_to_cpu(lvid->numOfPartitions);
1585 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588 2 * parts * sizeof(u32) > sb->s_blocksize) {
1589 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590 "ignoring.\n", parts, impuselen);
1591 goto out_err;
1592 }
1593 }
1594
1595 /*
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1598 */
1599 #define PART_DESC_ALLOC_STEP 32
1600
1601 struct part_desc_seq_scan_data {
1602 struct udf_vds_record rec;
1603 u32 partnum;
1604 };
1605
1606 struct desc_seq_scan_data {
1607 struct udf_vds_record vds[VDS_POS_LENGTH];
1608 unsigned int size_part_descs;
1609 unsigned int num_part_descs;
1610 struct part_desc_seq_scan_data *part_descs_loc;
1611 };
1612
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1613 static struct udf_vds_record *handle_partition_descriptor(
1614 struct buffer_head *bh,
1615 struct desc_seq_scan_data *data)
1616 {
1617 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618 int partnum;
1619 int i;
1620
1621 partnum = le16_to_cpu(desc->partitionNumber);
1622 for (i = 0; i < data->num_part_descs; i++)
1623 if (partnum == data->part_descs_loc[i].partnum)
1624 return &(data->part_descs_loc[i].rec);
1625 if (data->num_part_descs >= data->size_part_descs) {
1626 struct part_desc_seq_scan_data *new_loc;
1627 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630 if (!new_loc)
1631 return ERR_PTR(-ENOMEM);
1632 memcpy(new_loc, data->part_descs_loc,
1633 data->size_part_descs * sizeof(*new_loc));
1634 kfree(data->part_descs_loc);
1635 data->part_descs_loc = new_loc;
1636 data->size_part_descs = new_size;
1637 }
1638 return &(data->part_descs_loc[data->num_part_descs++].rec);
1639 }
1640
1641
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1642 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643 struct buffer_head *bh, struct desc_seq_scan_data *data)
1644 {
1645 switch (ident) {
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655 return handle_partition_descriptor(bh, data);
1656 }
1657 return NULL;
1658 }
1659
1660 /*
1661 * Process a main/reserve volume descriptor sequence.
1662 * @block First block of first extent of the sequence.
1663 * @lastblock Lastblock of first extent of the sequence.
1664 * @fileset There we store extent containing root fileset
1665 *
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667 * sequence
1668 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1669 static noinline int udf_process_sequence(
1670 struct super_block *sb,
1671 sector_t block, sector_t lastblock,
1672 struct kernel_lb_addr *fileset)
1673 {
1674 struct buffer_head *bh = NULL;
1675 struct udf_vds_record *curr;
1676 struct generic_desc *gd;
1677 struct volDescPtr *vdp;
1678 bool done = false;
1679 uint32_t vdsn;
1680 uint16_t ident;
1681 int ret;
1682 unsigned int indirections = 0;
1683 struct desc_seq_scan_data data;
1684 unsigned int i;
1685
1686 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687 data.size_part_descs = PART_DESC_ALLOC_STEP;
1688 data.num_part_descs = 0;
1689 data.part_descs_loc = kcalloc(data.size_part_descs,
1690 sizeof(*data.part_descs_loc),
1691 GFP_KERNEL);
1692 if (!data.part_descs_loc)
1693 return -ENOMEM;
1694
1695 /*
1696 * Read the main descriptor sequence and find which descriptors
1697 * are in it.
1698 */
1699 for (; (!done && block <= lastblock); block++) {
1700 bh = udf_read_tagged(sb, block, block, &ident);
1701 if (!bh)
1702 break;
1703
1704 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705 gd = (struct generic_desc *)bh->b_data;
1706 vdsn = le32_to_cpu(gd->volDescSeqNum);
1707 switch (ident) {
1708 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709 if (++indirections > UDF_MAX_TD_NESTING) {
1710 udf_err(sb, "too many Volume Descriptor "
1711 "Pointers (max %u supported)\n",
1712 UDF_MAX_TD_NESTING);
1713 brelse(bh);
1714 ret = -EIO;
1715 goto out;
1716 }
1717
1718 vdp = (struct volDescPtr *)bh->b_data;
1719 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720 lastblock = le32_to_cpu(
1721 vdp->nextVolDescSeqExt.extLength) >>
1722 sb->s_blocksize_bits;
1723 lastblock += block - 1;
1724 /* For loop is going to increment 'block' again */
1725 block--;
1726 break;
1727 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732 curr = get_volume_descriptor_record(ident, bh, &data);
1733 if (IS_ERR(curr)) {
1734 brelse(bh);
1735 ret = PTR_ERR(curr);
1736 goto out;
1737 }
1738 /* Descriptor we don't care about? */
1739 if (!curr)
1740 break;
1741 if (vdsn >= curr->volDescSeqNum) {
1742 curr->volDescSeqNum = vdsn;
1743 curr->block = block;
1744 }
1745 break;
1746 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747 done = true;
1748 break;
1749 }
1750 brelse(bh);
1751 }
1752 /*
1753 * Now read interesting descriptors again and process them
1754 * in a suitable order
1755 */
1756 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757 udf_err(sb, "Primary Volume Descriptor not found!\n");
1758 ret = -EAGAIN;
1759 goto out;
1760 }
1761 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762 if (ret < 0)
1763 goto out;
1764
1765 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766 ret = udf_load_logicalvol(sb,
1767 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768 fileset);
1769 if (ret < 0)
1770 goto out;
1771 }
1772
1773 /* Now handle prevailing Partition Descriptors */
1774 for (i = 0; i < data.num_part_descs; i++) {
1775 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776 if (ret < 0)
1777 goto out;
1778 }
1779 ret = 0;
1780 out:
1781 kfree(data.part_descs_loc);
1782 return ret;
1783 }
1784
1785 /*
1786 * Load Volume Descriptor Sequence described by anchor in bh
1787 *
1788 * Returns <0 on error, 0 on success
1789 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1790 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791 struct kernel_lb_addr *fileset)
1792 {
1793 struct anchorVolDescPtr *anchor;
1794 sector_t main_s, main_e, reserve_s, reserve_e;
1795 int ret;
1796
1797 anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799 /* Locate the main sequence */
1800 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802 main_e = main_e >> sb->s_blocksize_bits;
1803 main_e += main_s - 1;
1804
1805 /* Locate the reserve sequence */
1806 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808 reserve_e = reserve_e >> sb->s_blocksize_bits;
1809 reserve_e += reserve_s - 1;
1810
1811 /* Process the main & reserve sequences */
1812 /* responsible for finding the PartitionDesc(s) */
1813 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814 if (ret != -EAGAIN)
1815 return ret;
1816 udf_sb_free_partitions(sb);
1817 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818 if (ret < 0) {
1819 udf_sb_free_partitions(sb);
1820 /* No sequence was OK, return -EIO */
1821 if (ret == -EAGAIN)
1822 ret = -EIO;
1823 }
1824 return ret;
1825 }
1826
1827 /*
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1830 *
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832 * block
1833 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1834 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835 struct kernel_lb_addr *fileset)
1836 {
1837 struct buffer_head *bh;
1838 uint16_t ident;
1839 int ret;
1840
1841 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842 udf_fixed_to_variable(block) >=
1843 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1844 return -EAGAIN;
1845
1846 bh = udf_read_tagged(sb, block, block, &ident);
1847 if (!bh)
1848 return -EAGAIN;
1849 if (ident != TAG_IDENT_AVDP) {
1850 brelse(bh);
1851 return -EAGAIN;
1852 }
1853 ret = udf_load_sequence(sb, bh, fileset);
1854 brelse(bh);
1855 return ret;
1856 }
1857
1858 /*
1859 * Search for an anchor volume descriptor pointer.
1860 *
1861 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1862 * of anchors.
1863 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1864 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1865 struct kernel_lb_addr *fileset)
1866 {
1867 sector_t last[6];
1868 int i;
1869 struct udf_sb_info *sbi = UDF_SB(sb);
1870 int last_count = 0;
1871 int ret;
1872
1873 /* First try user provided anchor */
1874 if (sbi->s_anchor) {
1875 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1876 if (ret != -EAGAIN)
1877 return ret;
1878 }
1879 /*
1880 * according to spec, anchor is in either:
1881 * block 256
1882 * lastblock-256
1883 * lastblock
1884 * however, if the disc isn't closed, it could be 512.
1885 */
1886 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1887 if (ret != -EAGAIN)
1888 return ret;
1889 /*
1890 * The trouble is which block is the last one. Drives often misreport
1891 * this so we try various possibilities.
1892 */
1893 last[last_count++] = *lastblock;
1894 if (*lastblock >= 1)
1895 last[last_count++] = *lastblock - 1;
1896 last[last_count++] = *lastblock + 1;
1897 if (*lastblock >= 2)
1898 last[last_count++] = *lastblock - 2;
1899 if (*lastblock >= 150)
1900 last[last_count++] = *lastblock - 150;
1901 if (*lastblock >= 152)
1902 last[last_count++] = *lastblock - 152;
1903
1904 for (i = 0; i < last_count; i++) {
1905 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1906 sb->s_blocksize_bits)
1907 continue;
1908 ret = udf_check_anchor_block(sb, last[i], fileset);
1909 if (ret != -EAGAIN) {
1910 if (!ret)
1911 *lastblock = last[i];
1912 return ret;
1913 }
1914 if (last[i] < 256)
1915 continue;
1916 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1917 if (ret != -EAGAIN) {
1918 if (!ret)
1919 *lastblock = last[i];
1920 return ret;
1921 }
1922 }
1923
1924 /* Finally try block 512 in case media is open */
1925 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1926 }
1927
1928 /*
1929 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1930 * area specified by it. The function expects sbi->s_lastblock to be the last
1931 * block on the media.
1932 *
1933 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1934 * was not found.
1935 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1936 static int udf_find_anchor(struct super_block *sb,
1937 struct kernel_lb_addr *fileset)
1938 {
1939 struct udf_sb_info *sbi = UDF_SB(sb);
1940 sector_t lastblock = sbi->s_last_block;
1941 int ret;
1942
1943 ret = udf_scan_anchors(sb, &lastblock, fileset);
1944 if (ret != -EAGAIN)
1945 goto out;
1946
1947 /* No anchor found? Try VARCONV conversion of block numbers */
1948 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1949 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1950 /* Firstly, we try to not convert number of the last block */
1951 ret = udf_scan_anchors(sb, &lastblock, fileset);
1952 if (ret != -EAGAIN)
1953 goto out;
1954
1955 lastblock = sbi->s_last_block;
1956 /* Secondly, we try with converted number of the last block */
1957 ret = udf_scan_anchors(sb, &lastblock, fileset);
1958 if (ret < 0) {
1959 /* VARCONV didn't help. Clear it. */
1960 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1961 }
1962 out:
1963 if (ret == 0)
1964 sbi->s_last_block = lastblock;
1965 return ret;
1966 }
1967
1968 /*
1969 * Check Volume Structure Descriptor, find Anchor block and load Volume
1970 * Descriptor Sequence.
1971 *
1972 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1973 * block was not found.
1974 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1975 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1976 int silent, struct kernel_lb_addr *fileset)
1977 {
1978 struct udf_sb_info *sbi = UDF_SB(sb);
1979 int nsr = 0;
1980 int ret;
1981
1982 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1983 if (!silent)
1984 udf_warn(sb, "Bad block size\n");
1985 return -EINVAL;
1986 }
1987 sbi->s_last_block = uopt->lastblock;
1988 if (!uopt->novrs) {
1989 /* Check that it is NSR02 compliant */
1990 nsr = udf_check_vsd(sb);
1991 if (!nsr) {
1992 if (!silent)
1993 udf_warn(sb, "No VRS found\n");
1994 return -EINVAL;
1995 }
1996 if (nsr == -1)
1997 udf_debug("Failed to read sector at offset %d. "
1998 "Assuming open disc. Skipping validity "
1999 "check\n", VSD_FIRST_SECTOR_OFFSET);
2000 if (!sbi->s_last_block)
2001 sbi->s_last_block = udf_get_last_block(sb);
2002 } else {
2003 udf_debug("Validity check skipped because of novrs option\n");
2004 }
2005
2006 /* Look for anchor block and load Volume Descriptor Sequence */
2007 sbi->s_anchor = uopt->anchor;
2008 ret = udf_find_anchor(sb, fileset);
2009 if (ret < 0) {
2010 if (!silent && ret == -EAGAIN)
2011 udf_warn(sb, "No anchor found\n");
2012 return ret;
2013 }
2014 return 0;
2015 }
2016
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2017 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2018 {
2019 struct timespec64 ts;
2020
2021 ktime_get_real_ts64(&ts);
2022 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2023 lvid->descTag.descCRC = cpu_to_le16(
2024 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2025 le16_to_cpu(lvid->descTag.descCRCLength)));
2026 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2027 }
2028
udf_open_lvid(struct super_block * sb)2029 static void udf_open_lvid(struct super_block *sb)
2030 {
2031 struct udf_sb_info *sbi = UDF_SB(sb);
2032 struct buffer_head *bh = sbi->s_lvid_bh;
2033 struct logicalVolIntegrityDesc *lvid;
2034 struct logicalVolIntegrityDescImpUse *lvidiu;
2035
2036 if (!bh)
2037 return;
2038 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2039 lvidiu = udf_sb_lvidiu(sb);
2040 if (!lvidiu)
2041 return;
2042
2043 mutex_lock(&sbi->s_alloc_mutex);
2044 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2045 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2046 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2047 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2048 else
2049 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2050
2051 udf_finalize_lvid(lvid);
2052 mark_buffer_dirty(bh);
2053 sbi->s_lvid_dirty = 0;
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 /* Make opening of filesystem visible on the media immediately */
2056 sync_dirty_buffer(bh);
2057 }
2058
udf_close_lvid(struct super_block * sb)2059 static void udf_close_lvid(struct super_block *sb)
2060 {
2061 struct udf_sb_info *sbi = UDF_SB(sb);
2062 struct buffer_head *bh = sbi->s_lvid_bh;
2063 struct logicalVolIntegrityDesc *lvid;
2064 struct logicalVolIntegrityDescImpUse *lvidiu;
2065
2066 if (!bh)
2067 return;
2068 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2069 lvidiu = udf_sb_lvidiu(sb);
2070 if (!lvidiu)
2071 return;
2072
2073 mutex_lock(&sbi->s_alloc_mutex);
2074 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2075 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2076 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2077 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2079 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2080 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2081 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2082 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2083 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2084
2085 /*
2086 * We set buffer uptodate unconditionally here to avoid spurious
2087 * warnings from mark_buffer_dirty() when previous EIO has marked
2088 * the buffer as !uptodate
2089 */
2090 set_buffer_uptodate(bh);
2091 udf_finalize_lvid(lvid);
2092 mark_buffer_dirty(bh);
2093 sbi->s_lvid_dirty = 0;
2094 mutex_unlock(&sbi->s_alloc_mutex);
2095 /* Make closing of filesystem visible on the media immediately */
2096 sync_dirty_buffer(bh);
2097 }
2098
lvid_get_unique_id(struct super_block * sb)2099 u64 lvid_get_unique_id(struct super_block *sb)
2100 {
2101 struct buffer_head *bh;
2102 struct udf_sb_info *sbi = UDF_SB(sb);
2103 struct logicalVolIntegrityDesc *lvid;
2104 struct logicalVolHeaderDesc *lvhd;
2105 u64 uniqueID;
2106 u64 ret;
2107
2108 bh = sbi->s_lvid_bh;
2109 if (!bh)
2110 return 0;
2111
2112 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2113 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2114
2115 mutex_lock(&sbi->s_alloc_mutex);
2116 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2117 if (!(++uniqueID & 0xFFFFFFFF))
2118 uniqueID += 16;
2119 lvhd->uniqueID = cpu_to_le64(uniqueID);
2120 udf_updated_lvid(sb);
2121 mutex_unlock(&sbi->s_alloc_mutex);
2122
2123 return ret;
2124 }
2125
udf_fill_super(struct super_block * sb,void * options,int silent)2126 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2127 {
2128 int ret = -EINVAL;
2129 struct inode *inode = NULL;
2130 struct udf_options uopt;
2131 struct kernel_lb_addr rootdir, fileset;
2132 struct udf_sb_info *sbi;
2133 bool lvid_open = false;
2134
2135 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2136 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2137 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2138 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2139 uopt.umask = 0;
2140 uopt.fmode = UDF_INVALID_MODE;
2141 uopt.dmode = UDF_INVALID_MODE;
2142 uopt.nls_map = NULL;
2143
2144 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2145 if (!sbi)
2146 return -ENOMEM;
2147
2148 sb->s_fs_info = sbi;
2149
2150 mutex_init(&sbi->s_alloc_mutex);
2151
2152 if (!udf_parse_options((char *)options, &uopt, false))
2153 goto parse_options_failure;
2154
2155 fileset.logicalBlockNum = 0xFFFFFFFF;
2156 fileset.partitionReferenceNum = 0xFFFF;
2157
2158 sbi->s_flags = uopt.flags;
2159 sbi->s_uid = uopt.uid;
2160 sbi->s_gid = uopt.gid;
2161 sbi->s_umask = uopt.umask;
2162 sbi->s_fmode = uopt.fmode;
2163 sbi->s_dmode = uopt.dmode;
2164 sbi->s_nls_map = uopt.nls_map;
2165 rwlock_init(&sbi->s_cred_lock);
2166
2167 if (uopt.session == 0xFFFFFFFF)
2168 sbi->s_session = udf_get_last_session(sb);
2169 else
2170 sbi->s_session = uopt.session;
2171
2172 udf_debug("Multi-session=%d\n", sbi->s_session);
2173
2174 /* Fill in the rest of the superblock */
2175 sb->s_op = &udf_sb_ops;
2176 sb->s_export_op = &udf_export_ops;
2177
2178 sb->s_magic = UDF_SUPER_MAGIC;
2179 sb->s_time_gran = 1000;
2180
2181 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2182 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 } else {
2184 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2185 while (uopt.blocksize <= 4096) {
2186 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187 if (ret < 0) {
2188 if (!silent && ret != -EACCES) {
2189 pr_notice("Scanning with blocksize %u failed\n",
2190 uopt.blocksize);
2191 }
2192 brelse(sbi->s_lvid_bh);
2193 sbi->s_lvid_bh = NULL;
2194 /*
2195 * EACCES is special - we want to propagate to
2196 * upper layers that we cannot handle RW mount.
2197 */
2198 if (ret == -EACCES)
2199 break;
2200 } else
2201 break;
2202
2203 uopt.blocksize <<= 1;
2204 }
2205 }
2206 if (ret < 0) {
2207 if (ret == -EAGAIN) {
2208 udf_warn(sb, "No partition found (1)\n");
2209 ret = -EINVAL;
2210 }
2211 goto error_out;
2212 }
2213
2214 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215
2216 if (sbi->s_lvid_bh) {
2217 struct logicalVolIntegrityDescImpUse *lvidiu =
2218 udf_sb_lvidiu(sb);
2219 uint16_t minUDFReadRev;
2220 uint16_t minUDFWriteRev;
2221
2222 if (!lvidiu) {
2223 ret = -EINVAL;
2224 goto error_out;
2225 }
2226 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2227 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2228 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2229 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230 minUDFReadRev,
2231 UDF_MAX_READ_VERSION);
2232 ret = -EINVAL;
2233 goto error_out;
2234 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2235 if (!sb_rdonly(sb)) {
2236 ret = -EACCES;
2237 goto error_out;
2238 }
2239 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240 }
2241
2242 sbi->s_udfrev = minUDFWriteRev;
2243
2244 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2246 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2247 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248 }
2249
2250 if (!sbi->s_partitions) {
2251 udf_warn(sb, "No partition found (2)\n");
2252 ret = -EINVAL;
2253 goto error_out;
2254 }
2255
2256 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2257 UDF_PART_FLAG_READ_ONLY) {
2258 if (!sb_rdonly(sb)) {
2259 ret = -EACCES;
2260 goto error_out;
2261 }
2262 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263 }
2264
2265 ret = udf_find_fileset(sb, &fileset, &rootdir);
2266 if (ret < 0) {
2267 udf_warn(sb, "No fileset found\n");
2268 goto error_out;
2269 }
2270
2271 if (!silent) {
2272 struct timestamp ts;
2273 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2274 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2275 sbi->s_volume_ident,
2276 le16_to_cpu(ts.year), ts.month, ts.day,
2277 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278 }
2279 if (!sb_rdonly(sb)) {
2280 udf_open_lvid(sb);
2281 lvid_open = true;
2282 }
2283
2284 /* Assign the root inode */
2285 /* assign inodes by physical block number */
2286 /* perhaps it's not extensible enough, but for now ... */
2287 inode = udf_iget(sb, &rootdir);
2288 if (IS_ERR(inode)) {
2289 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2290 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2291 ret = PTR_ERR(inode);
2292 goto error_out;
2293 }
2294
2295 /* Allocate a dentry for the root inode */
2296 sb->s_root = d_make_root(inode);
2297 if (!sb->s_root) {
2298 udf_err(sb, "Couldn't allocate root dentry\n");
2299 ret = -ENOMEM;
2300 goto error_out;
2301 }
2302 sb->s_maxbytes = MAX_LFS_FILESIZE;
2303 sb->s_max_links = UDF_MAX_LINKS;
2304 return 0;
2305
2306 error_out:
2307 iput(sbi->s_vat_inode);
2308 parse_options_failure:
2309 unload_nls(uopt.nls_map);
2310 if (lvid_open)
2311 udf_close_lvid(sb);
2312 brelse(sbi->s_lvid_bh);
2313 udf_sb_free_partitions(sb);
2314 kfree(sbi);
2315 sb->s_fs_info = NULL;
2316
2317 return ret;
2318 }
2319
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2320 void _udf_err(struct super_block *sb, const char *function,
2321 const char *fmt, ...)
2322 {
2323 struct va_format vaf;
2324 va_list args;
2325
2326 va_start(args, fmt);
2327
2328 vaf.fmt = fmt;
2329 vaf.va = &args;
2330
2331 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2332
2333 va_end(args);
2334 }
2335
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2336 void _udf_warn(struct super_block *sb, const char *function,
2337 const char *fmt, ...)
2338 {
2339 struct va_format vaf;
2340 va_list args;
2341
2342 va_start(args, fmt);
2343
2344 vaf.fmt = fmt;
2345 vaf.va = &args;
2346
2347 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2348
2349 va_end(args);
2350 }
2351
udf_put_super(struct super_block * sb)2352 static void udf_put_super(struct super_block *sb)
2353 {
2354 struct udf_sb_info *sbi;
2355
2356 sbi = UDF_SB(sb);
2357
2358 iput(sbi->s_vat_inode);
2359 unload_nls(sbi->s_nls_map);
2360 if (!sb_rdonly(sb))
2361 udf_close_lvid(sb);
2362 brelse(sbi->s_lvid_bh);
2363 udf_sb_free_partitions(sb);
2364 mutex_destroy(&sbi->s_alloc_mutex);
2365 kfree(sb->s_fs_info);
2366 sb->s_fs_info = NULL;
2367 }
2368
udf_sync_fs(struct super_block * sb,int wait)2369 static int udf_sync_fs(struct super_block *sb, int wait)
2370 {
2371 struct udf_sb_info *sbi = UDF_SB(sb);
2372
2373 mutex_lock(&sbi->s_alloc_mutex);
2374 if (sbi->s_lvid_dirty) {
2375 struct buffer_head *bh = sbi->s_lvid_bh;
2376 struct logicalVolIntegrityDesc *lvid;
2377
2378 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2379 udf_finalize_lvid(lvid);
2380
2381 /*
2382 * Blockdevice will be synced later so we don't have to submit
2383 * the buffer for IO
2384 */
2385 mark_buffer_dirty(bh);
2386 sbi->s_lvid_dirty = 0;
2387 }
2388 mutex_unlock(&sbi->s_alloc_mutex);
2389
2390 return 0;
2391 }
2392
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2393 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2394 {
2395 struct super_block *sb = dentry->d_sb;
2396 struct udf_sb_info *sbi = UDF_SB(sb);
2397 struct logicalVolIntegrityDescImpUse *lvidiu;
2398 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2399
2400 lvidiu = udf_sb_lvidiu(sb);
2401 buf->f_type = UDF_SUPER_MAGIC;
2402 buf->f_bsize = sb->s_blocksize;
2403 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2404 buf->f_bfree = udf_count_free(sb);
2405 buf->f_bavail = buf->f_bfree;
2406 /*
2407 * Let's pretend each free block is also a free 'inode' since UDF does
2408 * not have separate preallocated table of inodes.
2409 */
2410 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2411 le32_to_cpu(lvidiu->numDirs)) : 0)
2412 + buf->f_bfree;
2413 buf->f_ffree = buf->f_bfree;
2414 buf->f_namelen = UDF_NAME_LEN;
2415 buf->f_fsid = u64_to_fsid(id);
2416
2417 return 0;
2418 }
2419
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2420 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2421 struct udf_bitmap *bitmap)
2422 {
2423 struct buffer_head *bh = NULL;
2424 unsigned int accum = 0;
2425 int index;
2426 udf_pblk_t block = 0, newblock;
2427 struct kernel_lb_addr loc;
2428 uint32_t bytes;
2429 uint8_t *ptr;
2430 uint16_t ident;
2431 struct spaceBitmapDesc *bm;
2432
2433 loc.logicalBlockNum = bitmap->s_extPosition;
2434 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2435 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2436
2437 if (!bh) {
2438 udf_err(sb, "udf_count_free failed\n");
2439 goto out;
2440 } else if (ident != TAG_IDENT_SBD) {
2441 brelse(bh);
2442 udf_err(sb, "udf_count_free failed\n");
2443 goto out;
2444 }
2445
2446 bm = (struct spaceBitmapDesc *)bh->b_data;
2447 bytes = le32_to_cpu(bm->numOfBytes);
2448 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2449 ptr = (uint8_t *)bh->b_data;
2450
2451 while (bytes > 0) {
2452 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2453 accum += bitmap_weight((const unsigned long *)(ptr + index),
2454 cur_bytes * 8);
2455 bytes -= cur_bytes;
2456 if (bytes) {
2457 brelse(bh);
2458 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2459 bh = udf_tread(sb, newblock);
2460 if (!bh) {
2461 udf_debug("read failed\n");
2462 goto out;
2463 }
2464 index = 0;
2465 ptr = (uint8_t *)bh->b_data;
2466 }
2467 }
2468 brelse(bh);
2469 out:
2470 return accum;
2471 }
2472
udf_count_free_table(struct super_block * sb,struct inode * table)2473 static unsigned int udf_count_free_table(struct super_block *sb,
2474 struct inode *table)
2475 {
2476 unsigned int accum = 0;
2477 uint32_t elen;
2478 struct kernel_lb_addr eloc;
2479 int8_t etype;
2480 struct extent_position epos;
2481
2482 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2483 epos.block = UDF_I(table)->i_location;
2484 epos.offset = sizeof(struct unallocSpaceEntry);
2485 epos.bh = NULL;
2486
2487 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2488 accum += (elen >> table->i_sb->s_blocksize_bits);
2489
2490 brelse(epos.bh);
2491 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2492
2493 return accum;
2494 }
2495
udf_count_free(struct super_block * sb)2496 static unsigned int udf_count_free(struct super_block *sb)
2497 {
2498 unsigned int accum = 0;
2499 struct udf_sb_info *sbi = UDF_SB(sb);
2500 struct udf_part_map *map;
2501 unsigned int part = sbi->s_partition;
2502 int ptype = sbi->s_partmaps[part].s_partition_type;
2503
2504 if (ptype == UDF_METADATA_MAP25) {
2505 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2506 s_phys_partition_ref;
2507 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2508 /*
2509 * Filesystems with VAT are append-only and we cannot write to
2510 * them. Let's just report 0 here.
2511 */
2512 return 0;
2513 }
2514
2515 if (sbi->s_lvid_bh) {
2516 struct logicalVolIntegrityDesc *lvid =
2517 (struct logicalVolIntegrityDesc *)
2518 sbi->s_lvid_bh->b_data;
2519 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2520 accum = le32_to_cpu(
2521 lvid->freeSpaceTable[part]);
2522 if (accum == 0xFFFFFFFF)
2523 accum = 0;
2524 }
2525 }
2526
2527 if (accum)
2528 return accum;
2529
2530 map = &sbi->s_partmaps[part];
2531 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2532 accum += udf_count_free_bitmap(sb,
2533 map->s_uspace.s_bitmap);
2534 }
2535 if (accum)
2536 return accum;
2537
2538 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2539 accum += udf_count_free_table(sb,
2540 map->s_uspace.s_table);
2541 }
2542 return accum;
2543 }
2544
2545 MODULE_AUTHOR("Ben Fennema");
2546 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2547 MODULE_LICENSE("GPL");
2548 module_init(init_udf_fs)
2549 module_exit(exit_udf_fs)
2550