• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 
21 struct xfs_writepage_ctx {
22 	struct iomap_writepage_ctx ctx;
23 	unsigned int		data_seq;
24 	unsigned int		cow_seq;
25 };
26 
27 static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx * ctx)28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32 
33 /*
34  * Fast and loose check if this write could update the on-disk inode size.
35  */
xfs_ioend_is_append(struct iomap_ioend * ioend)36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
37 {
38 	return ioend->io_offset + ioend->io_size >
39 		XFS_I(ioend->io_inode)->i_d.di_size;
40 }
41 
42 STATIC int
xfs_setfilesize_trans_alloc(struct iomap_ioend * ioend)43 xfs_setfilesize_trans_alloc(
44 	struct iomap_ioend	*ioend)
45 {
46 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
47 	struct xfs_trans	*tp;
48 	int			error;
49 
50 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
51 	if (error)
52 		return error;
53 
54 	ioend->io_private = tp;
55 
56 	/*
57 	 * We may pass freeze protection with a transaction.  So tell lockdep
58 	 * we released it.
59 	 */
60 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
61 	/*
62 	 * We hand off the transaction to the completion thread now, so
63 	 * clear the flag here.
64 	 */
65 	xfs_trans_clear_context(tp);
66 	return 0;
67 }
68 
69 /*
70  * Update on-disk file size now that data has been written to disk.
71  */
72 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)73 __xfs_setfilesize(
74 	struct xfs_inode	*ip,
75 	struct xfs_trans	*tp,
76 	xfs_off_t		offset,
77 	size_t			size)
78 {
79 	xfs_fsize_t		isize;
80 
81 	xfs_ilock(ip, XFS_ILOCK_EXCL);
82 	isize = xfs_new_eof(ip, offset + size);
83 	if (!isize) {
84 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
85 		xfs_trans_cancel(tp);
86 		return 0;
87 	}
88 
89 	trace_xfs_setfilesize(ip, offset, size);
90 
91 	ip->i_d.di_size = isize;
92 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
93 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
94 
95 	return xfs_trans_commit(tp);
96 }
97 
98 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)99 xfs_setfilesize(
100 	struct xfs_inode	*ip,
101 	xfs_off_t		offset,
102 	size_t			size)
103 {
104 	struct xfs_mount	*mp = ip->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
109 	if (error)
110 		return error;
111 
112 	return __xfs_setfilesize(ip, tp, offset, size);
113 }
114 
115 STATIC int
xfs_setfilesize_ioend(struct iomap_ioend * ioend,int error)116 xfs_setfilesize_ioend(
117 	struct iomap_ioend	*ioend,
118 	int			error)
119 {
120 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
121 	struct xfs_trans	*tp = ioend->io_private;
122 
123 	/*
124 	 * The transaction may have been allocated in the I/O submission thread,
125 	 * thus we need to mark ourselves as being in a transaction manually.
126 	 * Similarly for freeze protection.
127 	 */
128 	xfs_trans_set_context(tp);
129 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
130 
131 	/* we abort the update if there was an IO error */
132 	if (error) {
133 		xfs_trans_cancel(tp);
134 		return error;
135 	}
136 
137 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
138 }
139 
140 /*
141  * IO write completion.
142  */
143 STATIC void
xfs_end_ioend(struct iomap_ioend * ioend)144 xfs_end_ioend(
145 	struct iomap_ioend	*ioend)
146 {
147 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148 	struct xfs_mount	*mp = ip->i_mount;
149 	xfs_off_t		offset = ioend->io_offset;
150 	size_t			size = ioend->io_size;
151 	unsigned int		nofs_flag;
152 	int			error;
153 
154 	/*
155 	 * We can allocate memory here while doing writeback on behalf of
156 	 * memory reclaim.  To avoid memory allocation deadlocks set the
157 	 * task-wide nofs context for the following operations.
158 	 */
159 	nofs_flag = memalloc_nofs_save();
160 
161 	/*
162 	 * Just clean up the in-memory strutures if the fs has been shut down.
163 	 */
164 	if (XFS_FORCED_SHUTDOWN(mp)) {
165 		error = -EIO;
166 		goto done;
167 	}
168 
169 	/*
170 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
171 	 * I/O error. The delalloc punch is required because this ioend was
172 	 * mapped to blocks in the COW fork and the associated pages are no
173 	 * longer dirty. If we don't remove delalloc blocks here, they become
174 	 * stale and can corrupt free space accounting on unmount.
175 	 */
176 	error = blk_status_to_errno(ioend->io_bio->bi_status);
177 	if (unlikely(error)) {
178 		if (ioend->io_flags & IOMAP_F_SHARED) {
179 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
180 			xfs_bmap_punch_delalloc_range(ip,
181 						      XFS_B_TO_FSBT(mp, offset),
182 						      XFS_B_TO_FSB(mp, size));
183 		}
184 		goto done;
185 	}
186 
187 	/*
188 	 * Success: commit the COW or unwritten blocks if needed.
189 	 */
190 	if (ioend->io_flags & IOMAP_F_SHARED)
191 		error = xfs_reflink_end_cow(ip, offset, size);
192 	else if (ioend->io_type == IOMAP_UNWRITTEN)
193 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
194 	else
195 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private);
196 
197 done:
198 	if (ioend->io_private)
199 		error = xfs_setfilesize_ioend(ioend, error);
200 	iomap_finish_ioends(ioend, error);
201 	memalloc_nofs_restore(nofs_flag);
202 }
203 
204 /*
205  * If the to be merged ioend has a preallocated transaction for file
206  * size updates we need to ensure the ioend it is merged into also
207  * has one.  If it already has one we can simply cancel the transaction
208  * as it is guaranteed to be clean.
209  */
210 static void
xfs_ioend_merge_private(struct iomap_ioend * ioend,struct iomap_ioend * next)211 xfs_ioend_merge_private(
212 	struct iomap_ioend	*ioend,
213 	struct iomap_ioend	*next)
214 {
215 	if (!ioend->io_private) {
216 		ioend->io_private = next->io_private;
217 		next->io_private = NULL;
218 	} else {
219 		xfs_setfilesize_ioend(next, -ECANCELED);
220 	}
221 }
222 
223 /* Finish all pending io completions. */
224 void
xfs_end_io(struct work_struct * work)225 xfs_end_io(
226 	struct work_struct	*work)
227 {
228 	struct xfs_inode	*ip =
229 		container_of(work, struct xfs_inode, i_ioend_work);
230 	struct iomap_ioend	*ioend;
231 	struct list_head	tmp;
232 	unsigned long		flags;
233 
234 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
235 	list_replace_init(&ip->i_ioend_list, &tmp);
236 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
237 
238 	iomap_sort_ioends(&tmp);
239 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
240 			io_list))) {
241 		list_del_init(&ioend->io_list);
242 		iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
243 		xfs_end_ioend(ioend);
244 	}
245 }
246 
xfs_ioend_needs_workqueue(struct iomap_ioend * ioend)247 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
248 {
249 	return ioend->io_private ||
250 		ioend->io_type == IOMAP_UNWRITTEN ||
251 		(ioend->io_flags & IOMAP_F_SHARED);
252 }
253 
254 STATIC void
xfs_end_bio(struct bio * bio)255 xfs_end_bio(
256 	struct bio		*bio)
257 {
258 	struct iomap_ioend	*ioend = bio->bi_private;
259 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
260 	unsigned long		flags;
261 
262 	ASSERT(xfs_ioend_needs_workqueue(ioend));
263 
264 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
265 	if (list_empty(&ip->i_ioend_list))
266 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
267 					 &ip->i_ioend_work));
268 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
269 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
270 }
271 
272 /*
273  * Fast revalidation of the cached writeback mapping. Return true if the current
274  * mapping is valid, false otherwise.
275  */
276 static bool
xfs_imap_valid(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,loff_t offset)277 xfs_imap_valid(
278 	struct iomap_writepage_ctx	*wpc,
279 	struct xfs_inode		*ip,
280 	loff_t				offset)
281 {
282 	if (offset < wpc->iomap.offset ||
283 	    offset >= wpc->iomap.offset + wpc->iomap.length)
284 		return false;
285 	/*
286 	 * If this is a COW mapping, it is sufficient to check that the mapping
287 	 * covers the offset. Be careful to check this first because the caller
288 	 * can revalidate a COW mapping without updating the data seqno.
289 	 */
290 	if (wpc->iomap.flags & IOMAP_F_SHARED)
291 		return true;
292 
293 	/*
294 	 * This is not a COW mapping. Check the sequence number of the data fork
295 	 * because concurrent changes could have invalidated the extent. Check
296 	 * the COW fork because concurrent changes since the last time we
297 	 * checked (and found nothing at this offset) could have added
298 	 * overlapping blocks.
299 	 */
300 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
301 		return false;
302 	if (xfs_inode_has_cow_data(ip) &&
303 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
304 		return false;
305 	return true;
306 }
307 
308 /*
309  * Pass in a dellalloc extent and convert it to real extents, return the real
310  * extent that maps offset_fsb in wpc->iomap.
311  *
312  * The current page is held locked so nothing could have removed the block
313  * backing offset_fsb, although it could have moved from the COW to the data
314  * fork by another thread.
315  */
316 static int
xfs_convert_blocks(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,int whichfork,loff_t offset)317 xfs_convert_blocks(
318 	struct iomap_writepage_ctx *wpc,
319 	struct xfs_inode	*ip,
320 	int			whichfork,
321 	loff_t			offset)
322 {
323 	int			error;
324 	unsigned		*seq;
325 
326 	if (whichfork == XFS_COW_FORK)
327 		seq = &XFS_WPC(wpc)->cow_seq;
328 	else
329 		seq = &XFS_WPC(wpc)->data_seq;
330 
331 	/*
332 	 * Attempt to allocate whatever delalloc extent currently backs offset
333 	 * and put the result into wpc->iomap.  Allocate in a loop because it
334 	 * may take several attempts to allocate real blocks for a contiguous
335 	 * delalloc extent if free space is sufficiently fragmented.
336 	 */
337 	do {
338 		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
339 				&wpc->iomap, seq);
340 		if (error)
341 			return error;
342 	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
343 
344 	return 0;
345 }
346 
347 static int
xfs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)348 xfs_map_blocks(
349 	struct iomap_writepage_ctx *wpc,
350 	struct inode		*inode,
351 	loff_t			offset)
352 {
353 	struct xfs_inode	*ip = XFS_I(inode);
354 	struct xfs_mount	*mp = ip->i_mount;
355 	ssize_t			count = i_blocksize(inode);
356 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
357 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
358 	xfs_fileoff_t		cow_fsb;
359 	int			whichfork;
360 	struct xfs_bmbt_irec	imap;
361 	struct xfs_iext_cursor	icur;
362 	int			retries = 0;
363 	int			error = 0;
364 
365 	if (XFS_FORCED_SHUTDOWN(mp))
366 		return -EIO;
367 
368 	/*
369 	 * COW fork blocks can overlap data fork blocks even if the blocks
370 	 * aren't shared.  COW I/O always takes precedent, so we must always
371 	 * check for overlap on reflink inodes unless the mapping is already a
372 	 * COW one, or the COW fork hasn't changed from the last time we looked
373 	 * at it.
374 	 *
375 	 * It's safe to check the COW fork if_seq here without the ILOCK because
376 	 * we've indirectly protected against concurrent updates: writeback has
377 	 * the page locked, which prevents concurrent invalidations by reflink
378 	 * and directio and prevents concurrent buffered writes to the same
379 	 * page.  Changes to if_seq always happen under i_lock, which protects
380 	 * against concurrent updates and provides a memory barrier on the way
381 	 * out that ensures that we always see the current value.
382 	 */
383 	if (xfs_imap_valid(wpc, ip, offset))
384 		return 0;
385 
386 	/*
387 	 * If we don't have a valid map, now it's time to get a new one for this
388 	 * offset.  This will convert delayed allocations (including COW ones)
389 	 * into real extents.  If we return without a valid map, it means we
390 	 * landed in a hole and we skip the block.
391 	 */
392 retry:
393 	cow_fsb = NULLFILEOFF;
394 	whichfork = XFS_DATA_FORK;
395 	xfs_ilock(ip, XFS_ILOCK_SHARED);
396 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
397 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
398 
399 	/*
400 	 * Check if this is offset is covered by a COW extents, and if yes use
401 	 * it directly instead of looking up anything in the data fork.
402 	 */
403 	if (xfs_inode_has_cow_data(ip) &&
404 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
405 		cow_fsb = imap.br_startoff;
406 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
407 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
408 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
409 
410 		whichfork = XFS_COW_FORK;
411 		goto allocate_blocks;
412 	}
413 
414 	/*
415 	 * No COW extent overlap. Revalidate now that we may have updated
416 	 * ->cow_seq. If the data mapping is still valid, we're done.
417 	 */
418 	if (xfs_imap_valid(wpc, ip, offset)) {
419 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
420 		return 0;
421 	}
422 
423 	/*
424 	 * If we don't have a valid map, now it's time to get a new one for this
425 	 * offset.  This will convert delayed allocations (including COW ones)
426 	 * into real extents.
427 	 */
428 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
429 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
430 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
431 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
432 
433 	/* landed in a hole or beyond EOF? */
434 	if (imap.br_startoff > offset_fsb) {
435 		imap.br_blockcount = imap.br_startoff - offset_fsb;
436 		imap.br_startoff = offset_fsb;
437 		imap.br_startblock = HOLESTARTBLOCK;
438 		imap.br_state = XFS_EXT_NORM;
439 	}
440 
441 	/*
442 	 * Truncate to the next COW extent if there is one.  This is the only
443 	 * opportunity to do this because we can skip COW fork lookups for the
444 	 * subsequent blocks in the mapping; however, the requirement to treat
445 	 * the COW range separately remains.
446 	 */
447 	if (cow_fsb != NULLFILEOFF &&
448 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
449 		imap.br_blockcount = cow_fsb - imap.br_startoff;
450 
451 	/* got a delalloc extent? */
452 	if (imap.br_startblock != HOLESTARTBLOCK &&
453 	    isnullstartblock(imap.br_startblock))
454 		goto allocate_blocks;
455 
456 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
457 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
458 	return 0;
459 allocate_blocks:
460 	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
461 	if (error) {
462 		/*
463 		 * If we failed to find the extent in the COW fork we might have
464 		 * raced with a COW to data fork conversion or truncate.
465 		 * Restart the lookup to catch the extent in the data fork for
466 		 * the former case, but prevent additional retries to avoid
467 		 * looping forever for the latter case.
468 		 */
469 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
470 			goto retry;
471 		ASSERT(error != -EAGAIN);
472 		return error;
473 	}
474 
475 	/*
476 	 * Due to merging the return real extent might be larger than the
477 	 * original delalloc one.  Trim the return extent to the next COW
478 	 * boundary again to force a re-lookup.
479 	 */
480 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
481 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
482 
483 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
484 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
485 	}
486 
487 	ASSERT(wpc->iomap.offset <= offset);
488 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
489 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
490 	return 0;
491 }
492 
493 static int
xfs_prepare_ioend(struct iomap_ioend * ioend,int status)494 xfs_prepare_ioend(
495 	struct iomap_ioend	*ioend,
496 	int			status)
497 {
498 	unsigned int		nofs_flag;
499 
500 	/*
501 	 * We can allocate memory here while doing writeback on behalf of
502 	 * memory reclaim.  To avoid memory allocation deadlocks set the
503 	 * task-wide nofs context for the following operations.
504 	 */
505 	nofs_flag = memalloc_nofs_save();
506 
507 	/* Convert CoW extents to regular */
508 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
509 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
510 				ioend->io_offset, ioend->io_size);
511 	}
512 
513 	/* Reserve log space if we might write beyond the on-disk inode size. */
514 	if (!status &&
515 	    ((ioend->io_flags & IOMAP_F_SHARED) ||
516 	     ioend->io_type != IOMAP_UNWRITTEN) &&
517 	    xfs_ioend_is_append(ioend) &&
518 	    !ioend->io_private)
519 		status = xfs_setfilesize_trans_alloc(ioend);
520 
521 	memalloc_nofs_restore(nofs_flag);
522 
523 	if (xfs_ioend_needs_workqueue(ioend))
524 		ioend->io_bio->bi_end_io = xfs_end_bio;
525 	return status;
526 }
527 
528 /*
529  * If the page has delalloc blocks on it, we need to punch them out before we
530  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
531  * inode that can trip up a later direct I/O read operation on the same region.
532  *
533  * We prevent this by truncating away the delalloc regions on the page.  Because
534  * they are delalloc, we can do this without needing a transaction. Indeed - if
535  * we get ENOSPC errors, we have to be able to do this truncation without a
536  * transaction as there is no space left for block reservation (typically why we
537  * see a ENOSPC in writeback).
538  */
539 static void
xfs_discard_page(struct page * page,loff_t fileoff)540 xfs_discard_page(
541 	struct page		*page,
542 	loff_t			fileoff)
543 {
544 	struct inode		*inode = page->mapping->host;
545 	struct xfs_inode	*ip = XFS_I(inode);
546 	struct xfs_mount	*mp = ip->i_mount;
547 	unsigned int		pageoff = offset_in_page(fileoff);
548 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, fileoff);
549 	xfs_fileoff_t		pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff);
550 	int			error;
551 
552 	if (XFS_FORCED_SHUTDOWN(mp))
553 		goto out_invalidate;
554 
555 	xfs_alert_ratelimited(mp,
556 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
557 			page, ip->i_ino, fileoff);
558 
559 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
560 			i_blocks_per_page(inode, page) - pageoff_fsb);
561 	if (error && !XFS_FORCED_SHUTDOWN(mp))
562 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
563 out_invalidate:
564 	iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff);
565 }
566 
567 static const struct iomap_writeback_ops xfs_writeback_ops = {
568 	.map_blocks		= xfs_map_blocks,
569 	.prepare_ioend		= xfs_prepare_ioend,
570 	.discard_page		= xfs_discard_page,
571 };
572 
573 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)574 xfs_vm_writepage(
575 	struct page		*page,
576 	struct writeback_control *wbc)
577 {
578 	struct xfs_writepage_ctx wpc = { };
579 
580 	if (WARN_ON_ONCE(current->journal_info)) {
581 		redirty_page_for_writepage(wbc, page);
582 		unlock_page(page);
583 		return 0;
584 	}
585 
586 	return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
587 }
588 
589 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)590 xfs_vm_writepages(
591 	struct address_space	*mapping,
592 	struct writeback_control *wbc)
593 {
594 	struct xfs_writepage_ctx wpc = { };
595 
596 	/*
597 	 * Writing back data in a transaction context can result in recursive
598 	 * transactions. This is bad, so issue a warning and get out of here.
599 	 */
600 	if (WARN_ON_ONCE(current->journal_info))
601 		return 0;
602 
603 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
604 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
605 }
606 
607 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)608 xfs_dax_writepages(
609 	struct address_space	*mapping,
610 	struct writeback_control *wbc)
611 {
612 	struct xfs_inode	*ip = XFS_I(mapping->host);
613 
614 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
615 	return dax_writeback_mapping_range(mapping,
616 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
617 }
618 
619 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)620 xfs_vm_bmap(
621 	struct address_space	*mapping,
622 	sector_t		block)
623 {
624 	struct xfs_inode	*ip = XFS_I(mapping->host);
625 
626 	trace_xfs_vm_bmap(ip);
627 
628 	/*
629 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
630 	 * bypasses the file system for actual I/O.  We really can't allow
631 	 * that on reflinks inodes, so we have to skip out here.  And yes,
632 	 * 0 is the magic code for a bmap error.
633 	 *
634 	 * Since we don't pass back blockdev info, we can't return bmap
635 	 * information for rt files either.
636 	 */
637 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
638 		return 0;
639 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
640 }
641 
642 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)643 xfs_vm_readpage(
644 	struct file		*unused,
645 	struct page		*page)
646 {
647 	return iomap_readpage(page, &xfs_read_iomap_ops);
648 }
649 
650 STATIC void
xfs_vm_readahead(struct readahead_control * rac)651 xfs_vm_readahead(
652 	struct readahead_control	*rac)
653 {
654 	iomap_readahead(rac, &xfs_read_iomap_ops);
655 }
656 
657 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)658 xfs_iomap_swapfile_activate(
659 	struct swap_info_struct		*sis,
660 	struct file			*swap_file,
661 	sector_t			*span)
662 {
663 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
664 	return iomap_swapfile_activate(sis, swap_file, span,
665 			&xfs_read_iomap_ops);
666 }
667 
668 const struct address_space_operations xfs_address_space_operations = {
669 	.readpage		= xfs_vm_readpage,
670 	.readahead		= xfs_vm_readahead,
671 	.writepage		= xfs_vm_writepage,
672 	.writepages		= xfs_vm_writepages,
673 	.set_page_dirty		= iomap_set_page_dirty,
674 	.releasepage		= iomap_releasepage,
675 	.invalidatepage		= iomap_invalidatepage,
676 	.bmap			= xfs_vm_bmap,
677 	.direct_IO		= noop_direct_IO,
678 	.migratepage		= iomap_migrate_page,
679 	.is_partially_uptodate  = iomap_is_partially_uptodate,
680 	.error_remove_page	= generic_error_remove_page,
681 	.swap_activate		= xfs_iomap_swapfile_activate,
682 };
683 
684 const struct address_space_operations xfs_dax_aops = {
685 	.writepages		= xfs_dax_writepages,
686 	.direct_IO		= noop_direct_IO,
687 	.set_page_dirty		= noop_set_page_dirty,
688 	.invalidatepage		= noop_invalidatepage,
689 	.swap_activate		= xfs_iomap_swapfile_activate,
690 };
691