1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 #include <linux/xpm.h>
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /**
55 * DOC: Overview
56 *
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same struct stable_node structure.
86 *
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
112 */
113
114 /**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
124 struct rmap_item *rmap_list;
125 struct mm_struct *mm;
126 };
127
128 /**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137 struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 struct rmap_item **rmap_list;
141 unsigned long seqnr;
142 };
143
144 /**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149 * @list: linked into migrate_nodes, pending placement in the proper node tree
150 * @hlist: hlist head of rmap_items using this ksm page
151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155 */
156 struct stable_node {
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
165 };
166 };
167 struct hlist_head hlist;
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177 #define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 int nid;
181 #endif
182 };
183
184 /**
185 * struct rmap_item - reverse mapping item for virtual addresses
186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
195 */
196 struct rmap_item {
197 struct rmap_item *rmap_list;
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200 #ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202 #endif
203 };
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
206 unsigned int oldchecksum; /* when unstable */
207 union {
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
213 };
214 };
215
216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239 .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes 1U
288 #define ksm_nr_node_ids 1
289 #endif
290
291 #define KSM_RUN_STOP 0
292 #define KSM_RUN_MERGE 1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 sizeof(struct __struct), __alignof__(struct __struct),\
305 (__flags), NULL)
306
ksm_slab_init(void)307 static int __init ksm_slab_init(void)
308 {
309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 if (!rmap_item_cache)
311 goto out;
312
313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 if (!stable_node_cache)
315 goto out_free1;
316
317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 if (!mm_slot_cache)
319 goto out_free2;
320
321 return 0;
322
323 out_free2:
324 kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 kmem_cache_destroy(rmap_item_cache);
327 out:
328 return -ENOMEM;
329 }
330
ksm_slab_free(void)331 static void __init ksm_slab_free(void)
332 {
333 kmem_cache_destroy(mm_slot_cache);
334 kmem_cache_destroy(stable_node_cache);
335 kmem_cache_destroy(rmap_item_cache);
336 mm_slot_cache = NULL;
337 }
338
is_stable_node_chain(struct stable_node * chain)339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
is_stable_node_dup(struct stable_node * dup)344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346 return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 struct stable_node *chain)
351 {
352 VM_BUG_ON(is_stable_node_dup(dup));
353 dup->head = STABLE_NODE_DUP_HEAD;
354 VM_BUG_ON(!is_stable_node_chain(chain));
355 hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 ksm_stable_node_dups++;
357 }
358
__stable_node_dup_del(struct stable_node * dup)359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361 VM_BUG_ON(!is_stable_node_dup(dup));
362 hlist_del(&dup->hlist_dup);
363 ksm_stable_node_dups--;
364 }
365
stable_node_dup_del(struct stable_node * dup)366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368 VM_BUG_ON(is_stable_node_chain(dup));
369 if (is_stable_node_dup(dup))
370 __stable_node_dup_del(dup);
371 else
372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 dup->head = NULL;
375 #endif
376 }
377
alloc_rmap_item(void)378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380 struct rmap_item *rmap_item;
381
382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 __GFP_NORETRY | __GFP_NOWARN);
384 if (rmap_item)
385 ksm_rmap_items++;
386 return rmap_item;
387 }
388
free_rmap_item(struct rmap_item * rmap_item)389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391 ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
alloc_stable_node(void)396 static inline struct stable_node *alloc_stable_node(void)
397 {
398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
free_stable_node(struct stable_node * stable_node)406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
411 }
412
alloc_mm_slot(void)413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415 if (!mm_slot_cache) /* initialization failed */
416 return NULL;
417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
free_mm_slot(struct mm_slot * mm_slot)420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422 kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
get_mm_slot(struct mm_struct * mm)425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427 struct mm_slot *slot;
428
429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 if (slot->mm == mm)
431 return slot;
432
433 return NULL;
434 }
435
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 struct mm_slot *mm_slot)
438 {
439 mm_slot->mm = mm;
440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445 * page tables after it has passed through ksm_exit() - which, if necessary,
446 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
447 * a special flag: they can just back out as soon as mm_users goes to zero.
448 * ksm_test_exit() is used throughout to make this test for exit: in some
449 * places for correctness, in some places just to avoid unnecessary work.
450 */
ksm_test_exit(struct mm_struct * mm)451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453 return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 *
459 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
460 * put_page(page);
461 *
462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463 * in case the application has unmapped and remapped mm,addr meanwhile.
464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466 *
467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468 * of the process that owns 'vma'. We also do not want to enforce
469 * protection keys here anyway.
470 */
break_ksm(struct vm_area_struct * vma,unsigned long addr)471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473 struct page *page;
474 vm_fault_t ret = 0;
475
476 do {
477 cond_resched();
478 page = follow_page(vma, addr,
479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 if (IS_ERR_OR_NULL(page))
481 break;
482 if (PageKsm(page))
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
485 NULL);
486 else
487 ret = VM_FAULT_WRITE;
488 put_page(page);
489 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490 /*
491 * We must loop because handle_mm_fault() may back out if there's
492 * any difficulty e.g. if pte accessed bit gets updated concurrently.
493 *
494 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
495 * COW has been broken, even if the vma does not permit VM_WRITE;
496 * but note that a concurrent fault might break PageKsm for us.
497 *
498 * VM_FAULT_SIGBUS could occur if we race with truncation of the
499 * backing file, which also invalidates anonymous pages: that's
500 * okay, that truncation will have unmapped the PageKsm for us.
501 *
502 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
503 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
504 * current task has TIF_MEMDIE set, and will be OOM killed on return
505 * to user; and ksmd, having no mm, would never be chosen for that.
506 *
507 * But if the mm is in a limited mem_cgroup, then the fault may fail
508 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
509 * even ksmd can fail in this way - though it's usually breaking ksm
510 * just to undo a merge it made a moment before, so unlikely to oom.
511 *
512 * That's a pity: we might therefore have more kernel pages allocated
513 * than we're counting as nodes in the stable tree; but ksm_do_scan
514 * will retry to break_cow on each pass, so should recover the page
515 * in due course. The important thing is to not let VM_MERGEABLE
516 * be cleared while any such pages might remain in the area.
517 */
518 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
519 }
520
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)521 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
522 unsigned long addr)
523 {
524 struct vm_area_struct *vma;
525 if (ksm_test_exit(mm))
526 return NULL;
527 vma = find_vma(mm, addr);
528 if (!vma || vma->vm_start > addr)
529 return NULL;
530 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
531 return NULL;
532 return vma;
533 }
534
break_cow(struct rmap_item * rmap_item)535 static void break_cow(struct rmap_item *rmap_item)
536 {
537 struct mm_struct *mm = rmap_item->mm;
538 unsigned long addr = rmap_item->address;
539 struct vm_area_struct *vma;
540
541 /*
542 * It is not an accident that whenever we want to break COW
543 * to undo, we also need to drop a reference to the anon_vma.
544 */
545 put_anon_vma(rmap_item->anon_vma);
546
547 mmap_read_lock(mm);
548 vma = find_mergeable_vma(mm, addr);
549 if (vma)
550 break_ksm(vma, addr);
551 mmap_read_unlock(mm);
552 }
553
get_mergeable_page(struct rmap_item * rmap_item)554 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
555 {
556 struct mm_struct *mm = rmap_item->mm;
557 unsigned long addr = rmap_item->address;
558 struct vm_area_struct *vma;
559 struct page *page;
560
561 mmap_read_lock(mm);
562 vma = find_mergeable_vma(mm, addr);
563 if (!vma)
564 goto out;
565
566 page = follow_page(vma, addr, FOLL_GET);
567 if (IS_ERR_OR_NULL(page))
568 goto out;
569 if (PageAnon(page)) {
570 flush_anon_page(vma, page, addr);
571 flush_dcache_page(page);
572 } else {
573 put_page(page);
574 out:
575 page = NULL;
576 }
577 mmap_read_unlock(mm);
578 return page;
579 }
580
581 /*
582 * This helper is used for getting right index into array of tree roots.
583 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
584 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
585 * every node has its own stable and unstable tree.
586 */
get_kpfn_nid(unsigned long kpfn)587 static inline int get_kpfn_nid(unsigned long kpfn)
588 {
589 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
590 }
591
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)592 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
593 struct rb_root *root)
594 {
595 struct stable_node *chain = alloc_stable_node();
596 VM_BUG_ON(is_stable_node_chain(dup));
597 if (likely(chain)) {
598 INIT_HLIST_HEAD(&chain->hlist);
599 chain->chain_prune_time = jiffies;
600 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
601 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
602 chain->nid = NUMA_NO_NODE; /* debug */
603 #endif
604 ksm_stable_node_chains++;
605
606 /*
607 * Put the stable node chain in the first dimension of
608 * the stable tree and at the same time remove the old
609 * stable node.
610 */
611 rb_replace_node(&dup->node, &chain->node, root);
612
613 /*
614 * Move the old stable node to the second dimension
615 * queued in the hlist_dup. The invariant is that all
616 * dup stable_nodes in the chain->hlist point to pages
617 * that are write protected and have the exact same
618 * content.
619 */
620 stable_node_chain_add_dup(dup, chain);
621 }
622 return chain;
623 }
624
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)625 static inline void free_stable_node_chain(struct stable_node *chain,
626 struct rb_root *root)
627 {
628 rb_erase(&chain->node, root);
629 free_stable_node(chain);
630 ksm_stable_node_chains--;
631 }
632
remove_node_from_stable_tree(struct stable_node * stable_node)633 static void remove_node_from_stable_tree(struct stable_node *stable_node)
634 {
635 struct rmap_item *rmap_item;
636
637 /* check it's not STABLE_NODE_CHAIN or negative */
638 BUG_ON(stable_node->rmap_hlist_len < 0);
639
640 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
641 if (rmap_item->hlist.next)
642 ksm_pages_sharing--;
643 else
644 ksm_pages_shared--;
645 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
646 stable_node->rmap_hlist_len--;
647 put_anon_vma(rmap_item->anon_vma);
648 rmap_item->address &= PAGE_MASK;
649 cond_resched();
650 }
651
652 /*
653 * We need the second aligned pointer of the migrate_nodes
654 * list_head to stay clear from the rb_parent_color union
655 * (aligned and different than any node) and also different
656 * from &migrate_nodes. This will verify that future list.h changes
657 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
658 */
659 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
661 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
662 #endif
663
664 if (stable_node->head == &migrate_nodes)
665 list_del(&stable_node->list);
666 else
667 stable_node_dup_del(stable_node);
668 free_stable_node(stable_node);
669 }
670
671 enum get_ksm_page_flags {
672 GET_KSM_PAGE_NOLOCK,
673 GET_KSM_PAGE_LOCK,
674 GET_KSM_PAGE_TRYLOCK
675 };
676
677 /*
678 * get_ksm_page: checks if the page indicated by the stable node
679 * is still its ksm page, despite having held no reference to it.
680 * In which case we can trust the content of the page, and it
681 * returns the gotten page; but if the page has now been zapped,
682 * remove the stale node from the stable tree and return NULL.
683 * But beware, the stable node's page might be being migrated.
684 *
685 * You would expect the stable_node to hold a reference to the ksm page.
686 * But if it increments the page's count, swapping out has to wait for
687 * ksmd to come around again before it can free the page, which may take
688 * seconds or even minutes: much too unresponsive. So instead we use a
689 * "keyhole reference": access to the ksm page from the stable node peeps
690 * out through its keyhole to see if that page still holds the right key,
691 * pointing back to this stable node. This relies on freeing a PageAnon
692 * page to reset its page->mapping to NULL, and relies on no other use of
693 * a page to put something that might look like our key in page->mapping.
694 * is on its way to being freed; but it is an anomaly to bear in mind.
695 */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)696 static struct page *get_ksm_page(struct stable_node *stable_node,
697 enum get_ksm_page_flags flags)
698 {
699 struct page *page;
700 void *expected_mapping;
701 unsigned long kpfn;
702
703 expected_mapping = (void *)((unsigned long)stable_node |
704 PAGE_MAPPING_KSM);
705 again:
706 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
707 page = pfn_to_page(kpfn);
708 if (READ_ONCE(page->mapping) != expected_mapping)
709 goto stale;
710
711 /*
712 * We cannot do anything with the page while its refcount is 0.
713 * Usually 0 means free, or tail of a higher-order page: in which
714 * case this node is no longer referenced, and should be freed;
715 * however, it might mean that the page is under page_ref_freeze().
716 * The __remove_mapping() case is easy, again the node is now stale;
717 * the same is in reuse_ksm_page() case; but if page is swapcache
718 * in migrate_page_move_mapping(), it might still be our page,
719 * in which case it's essential to keep the node.
720 */
721 while (!get_page_unless_zero(page)) {
722 /*
723 * Another check for page->mapping != expected_mapping would
724 * work here too. We have chosen the !PageSwapCache test to
725 * optimize the common case, when the page is or is about to
726 * be freed: PageSwapCache is cleared (under spin_lock_irq)
727 * in the ref_freeze section of __remove_mapping(); but Anon
728 * page->mapping reset to NULL later, in free_pages_prepare().
729 */
730 if (!PageSwapCache(page))
731 goto stale;
732 cpu_relax();
733 }
734
735 if (READ_ONCE(page->mapping) != expected_mapping) {
736 put_page(page);
737 goto stale;
738 }
739
740 if (flags == GET_KSM_PAGE_TRYLOCK) {
741 if (!trylock_page(page)) {
742 put_page(page);
743 return ERR_PTR(-EBUSY);
744 }
745 } else if (flags == GET_KSM_PAGE_LOCK)
746 lock_page(page);
747
748 if (flags != GET_KSM_PAGE_NOLOCK) {
749 if (READ_ONCE(page->mapping) != expected_mapping) {
750 unlock_page(page);
751 put_page(page);
752 goto stale;
753 }
754 }
755 return page;
756
757 stale:
758 /*
759 * We come here from above when page->mapping or !PageSwapCache
760 * suggests that the node is stale; but it might be under migration.
761 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
762 * before checking whether node->kpfn has been changed.
763 */
764 smp_rmb();
765 if (READ_ONCE(stable_node->kpfn) != kpfn)
766 goto again;
767 remove_node_from_stable_tree(stable_node);
768 return NULL;
769 }
770
771 /*
772 * Removing rmap_item from stable or unstable tree.
773 * This function will clean the information from the stable/unstable tree.
774 */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)775 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
776 {
777 if (rmap_item->address & STABLE_FLAG) {
778 struct stable_node *stable_node;
779 struct page *page;
780
781 stable_node = rmap_item->head;
782 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
783 if (!page)
784 goto out;
785
786 hlist_del(&rmap_item->hlist);
787 unlock_page(page);
788 put_page(page);
789
790 if (!hlist_empty(&stable_node->hlist))
791 ksm_pages_sharing--;
792 else
793 ksm_pages_shared--;
794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 stable_node->rmap_hlist_len--;
796
797 put_anon_vma(rmap_item->anon_vma);
798 rmap_item->head = NULL;
799 rmap_item->address &= PAGE_MASK;
800
801 } else if (rmap_item->address & UNSTABLE_FLAG) {
802 unsigned char age;
803 /*
804 * Usually ksmd can and must skip the rb_erase, because
805 * root_unstable_tree was already reset to RB_ROOT.
806 * But be careful when an mm is exiting: do the rb_erase
807 * if this rmap_item was inserted by this scan, rather
808 * than left over from before.
809 */
810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811 BUG_ON(age > 1);
812 if (!age)
813 rb_erase(&rmap_item->node,
814 root_unstable_tree + NUMA(rmap_item->nid));
815 ksm_pages_unshared--;
816 rmap_item->address &= PAGE_MASK;
817 }
818 out:
819 cond_resched(); /* we're called from many long loops */
820 }
821
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)822 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
823 struct rmap_item **rmap_list)
824 {
825 while (*rmap_list) {
826 struct rmap_item *rmap_item = *rmap_list;
827 *rmap_list = rmap_item->rmap_list;
828 remove_rmap_item_from_tree(rmap_item);
829 free_rmap_item(rmap_item);
830 }
831 }
832
833 /*
834 * Though it's very tempting to unmerge rmap_items from stable tree rather
835 * than check every pte of a given vma, the locking doesn't quite work for
836 * that - an rmap_item is assigned to the stable tree after inserting ksm
837 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
838 * rmap_items from parent to child at fork time (so as not to waste time
839 * if exit comes before the next scan reaches it).
840 *
841 * Similarly, although we'd like to remove rmap_items (so updating counts
842 * and freeing memory) when unmerging an area, it's easier to leave that
843 * to the next pass of ksmd - consider, for example, how ksmd might be
844 * in cmp_and_merge_page on one of the rmap_items we would be removing.
845 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)846 static int unmerge_ksm_pages(struct vm_area_struct *vma,
847 unsigned long start, unsigned long end)
848 {
849 unsigned long addr;
850 int err = 0;
851
852 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
853 if (ksm_test_exit(vma->vm_mm))
854 break;
855 if (signal_pending(current))
856 err = -ERESTARTSYS;
857 else
858 err = break_ksm(vma, addr);
859 }
860 return err;
861 }
862
page_stable_node(struct page * page)863 static inline struct stable_node *page_stable_node(struct page *page)
864 {
865 return PageKsm(page) ? page_rmapping(page) : NULL;
866 }
867
set_page_stable_node(struct page * page,struct stable_node * stable_node)868 static inline void set_page_stable_node(struct page *page,
869 struct stable_node *stable_node)
870 {
871 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
872 }
873
874 #ifdef CONFIG_SYSFS
875 /*
876 * Only called through the sysfs control interface:
877 */
remove_stable_node(struct stable_node * stable_node)878 static int remove_stable_node(struct stable_node *stable_node)
879 {
880 struct page *page;
881 int err;
882
883 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
884 if (!page) {
885 /*
886 * get_ksm_page did remove_node_from_stable_tree itself.
887 */
888 return 0;
889 }
890
891 /*
892 * Page could be still mapped if this races with __mmput() running in
893 * between ksm_exit() and exit_mmap(). Just refuse to let
894 * merge_across_nodes/max_page_sharing be switched.
895 */
896 err = -EBUSY;
897 if (!page_mapped(page)) {
898 /*
899 * The stable node did not yet appear stale to get_ksm_page(),
900 * since that allows for an unmapped ksm page to be recognized
901 * right up until it is freed; but the node is safe to remove.
902 * This page might be in a pagevec waiting to be freed,
903 * or it might be PageSwapCache (perhaps under writeback),
904 * or it might have been removed from swapcache a moment ago.
905 */
906 set_page_stable_node(page, NULL);
907 remove_node_from_stable_tree(stable_node);
908 err = 0;
909 }
910
911 unlock_page(page);
912 put_page(page);
913 return err;
914 }
915
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)916 static int remove_stable_node_chain(struct stable_node *stable_node,
917 struct rb_root *root)
918 {
919 struct stable_node *dup;
920 struct hlist_node *hlist_safe;
921
922 if (!is_stable_node_chain(stable_node)) {
923 VM_BUG_ON(is_stable_node_dup(stable_node));
924 if (remove_stable_node(stable_node))
925 return true;
926 else
927 return false;
928 }
929
930 hlist_for_each_entry_safe(dup, hlist_safe,
931 &stable_node->hlist, hlist_dup) {
932 VM_BUG_ON(!is_stable_node_dup(dup));
933 if (remove_stable_node(dup))
934 return true;
935 }
936 BUG_ON(!hlist_empty(&stable_node->hlist));
937 free_stable_node_chain(stable_node, root);
938 return false;
939 }
940
remove_all_stable_nodes(void)941 static int remove_all_stable_nodes(void)
942 {
943 struct stable_node *stable_node, *next;
944 int nid;
945 int err = 0;
946
947 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
948 while (root_stable_tree[nid].rb_node) {
949 stable_node = rb_entry(root_stable_tree[nid].rb_node,
950 struct stable_node, node);
951 if (remove_stable_node_chain(stable_node,
952 root_stable_tree + nid)) {
953 err = -EBUSY;
954 break; /* proceed to next nid */
955 }
956 cond_resched();
957 }
958 }
959 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
960 if (remove_stable_node(stable_node))
961 err = -EBUSY;
962 cond_resched();
963 }
964 return err;
965 }
966
unmerge_and_remove_all_rmap_items(void)967 static int unmerge_and_remove_all_rmap_items(void)
968 {
969 struct mm_slot *mm_slot;
970 struct mm_struct *mm;
971 struct vm_area_struct *vma;
972 int err = 0;
973
974 spin_lock(&ksm_mmlist_lock);
975 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
976 struct mm_slot, mm_list);
977 spin_unlock(&ksm_mmlist_lock);
978
979 for (mm_slot = ksm_scan.mm_slot;
980 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
981 mm = mm_slot->mm;
982 mmap_read_lock(mm);
983 for (vma = mm->mmap; vma; vma = vma->vm_next) {
984 if (ksm_test_exit(mm))
985 break;
986 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
987 continue;
988 err = unmerge_ksm_pages(vma,
989 vma->vm_start, vma->vm_end);
990 if (err)
991 goto error;
992 }
993
994 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
995 mmap_read_unlock(mm);
996
997 spin_lock(&ksm_mmlist_lock);
998 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
999 struct mm_slot, mm_list);
1000 if (ksm_test_exit(mm)) {
1001 hash_del(&mm_slot->link);
1002 list_del(&mm_slot->mm_list);
1003 spin_unlock(&ksm_mmlist_lock);
1004
1005 free_mm_slot(mm_slot);
1006 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1007 mmdrop(mm);
1008 } else
1009 spin_unlock(&ksm_mmlist_lock);
1010 }
1011
1012 /* Clean up stable nodes, but don't worry if some are still busy */
1013 remove_all_stable_nodes();
1014 ksm_scan.seqnr = 0;
1015 return 0;
1016
1017 error:
1018 mmap_read_unlock(mm);
1019 spin_lock(&ksm_mmlist_lock);
1020 ksm_scan.mm_slot = &ksm_mm_head;
1021 spin_unlock(&ksm_mmlist_lock);
1022 return err;
1023 }
1024 #endif /* CONFIG_SYSFS */
1025
calc_checksum(struct page * page)1026 static u32 calc_checksum(struct page *page)
1027 {
1028 u32 checksum;
1029 void *addr = kmap_atomic(page);
1030 checksum = xxhash(addr, PAGE_SIZE, 0);
1031 kunmap_atomic(addr);
1032 return checksum;
1033 }
1034
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1035 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1036 pte_t *orig_pte)
1037 {
1038 struct mm_struct *mm = vma->vm_mm;
1039 struct page_vma_mapped_walk pvmw = {
1040 .page = page,
1041 .vma = vma,
1042 };
1043 int swapped;
1044 int err = -EFAULT;
1045 struct mmu_notifier_range range;
1046
1047 pvmw.address = page_address_in_vma(page, vma);
1048 if (pvmw.address == -EFAULT)
1049 goto out;
1050
1051 BUG_ON(PageTransCompound(page));
1052
1053 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1054 pvmw.address,
1055 pvmw.address + PAGE_SIZE);
1056 mmu_notifier_invalidate_range_start(&range);
1057
1058 if (!page_vma_mapped_walk(&pvmw))
1059 goto out_mn;
1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061 goto out_unlock;
1062
1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065 mm_tlb_flush_pending(mm)) {
1066 pte_t entry;
1067
1068 swapped = PageSwapCache(page);
1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070 /*
1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072 * take any lock, therefore the check that we are going to make
1073 * with the pagecount against the mapcount is racey and
1074 * O_DIRECT can happen right after the check.
1075 * So we clear the pte and flush the tlb before the check
1076 * this assure us that no O_DIRECT can happen after the check
1077 * or in the middle of the check.
1078 *
1079 * No need to notify as we are downgrading page table to read
1080 * only not changing it to point to a new page.
1081 *
1082 * See Documentation/vm/mmu_notifier.rst
1083 */
1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085 /*
1086 * Check that no O_DIRECT or similar I/O is in progress on the
1087 * page
1088 */
1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091 goto out_unlock;
1092 }
1093 if (pte_dirty(entry))
1094 set_page_dirty(page);
1095
1096 if (pte_protnone(entry))
1097 entry = pte_mkclean(pte_clear_savedwrite(entry));
1098 else
1099 entry = pte_mkclean(pte_wrprotect(entry));
1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101 }
1102 *orig_pte = *pvmw.pte;
1103 err = 0;
1104
1105 out_unlock:
1106 page_vma_mapped_walk_done(&pvmw);
1107 out_mn:
1108 mmu_notifier_invalidate_range_end(&range);
1109 out:
1110 return err;
1111 }
1112
1113 /**
1114 * replace_page - replace page in vma by new ksm page
1115 * @vma: vma that holds the pte pointing to page
1116 * @page: the page we are replacing by kpage
1117 * @kpage: the ksm page we replace page by
1118 * @orig_pte: the original value of the pte
1119 *
1120 * Returns 0 on success, -EFAULT on failure.
1121 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1122 static int replace_page(struct vm_area_struct *vma, struct page *page,
1123 struct page *kpage, pte_t orig_pte)
1124 {
1125 struct mm_struct *mm = vma->vm_mm;
1126 pmd_t *pmd;
1127 pte_t *ptep;
1128 pte_t newpte;
1129 spinlock_t *ptl;
1130 unsigned long addr;
1131 int err = -EFAULT;
1132 struct mmu_notifier_range range;
1133
1134 addr = page_address_in_vma(page, vma);
1135 if (addr == -EFAULT)
1136 goto out;
1137
1138 pmd = mm_find_pmd(mm, addr);
1139 if (!pmd)
1140 goto out;
1141
1142 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1143 addr + PAGE_SIZE);
1144 mmu_notifier_invalidate_range_start(&range);
1145
1146 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147 if (!pte_same(*ptep, orig_pte)) {
1148 pte_unmap_unlock(ptep, ptl);
1149 goto out_mn;
1150 }
1151
1152 /*
1153 * No need to check ksm_use_zero_pages here: we can only have a
1154 * zero_page here if ksm_use_zero_pages was enabled already.
1155 */
1156 if (!is_zero_pfn(page_to_pfn(kpage))) {
1157 get_page(kpage);
1158 page_add_anon_rmap(kpage, vma, addr, false);
1159 newpte = mk_pte(kpage, vma->vm_page_prot);
1160 } else {
1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162 vma->vm_page_prot));
1163 /*
1164 * We're replacing an anonymous page with a zero page, which is
1165 * not anonymous. We need to do proper accounting otherwise we
1166 * will get wrong values in /proc, and a BUG message in dmesg
1167 * when tearing down the mm.
1168 */
1169 dec_mm_counter(mm, MM_ANONPAGES);
1170 }
1171
1172 flush_cache_page(vma, addr, pte_pfn(*ptep));
1173 /*
1174 * No need to notify as we are replacing a read only page with another
1175 * read only page with the same content.
1176 *
1177 * See Documentation/vm/mmu_notifier.rst
1178 */
1179 ptep_clear_flush(vma, addr, ptep);
1180 set_pte_at_notify(mm, addr, ptep, newpte);
1181
1182 page_remove_rmap(page, false);
1183 if (!page_mapped(page))
1184 try_to_free_swap(page);
1185 put_page(page);
1186
1187 pte_unmap_unlock(ptep, ptl);
1188 err = 0;
1189 out_mn:
1190 mmu_notifier_invalidate_range_end(&range);
1191 out:
1192 return err;
1193 }
1194
1195 /*
1196 * try_to_merge_one_page - take two pages and merge them into one
1197 * @vma: the vma that holds the pte pointing to page
1198 * @page: the PageAnon page that we want to replace with kpage
1199 * @kpage: the PageKsm page that we want to map instead of page,
1200 * or NULL the first time when we want to use page as kpage.
1201 *
1202 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1204 static int try_to_merge_one_page(struct vm_area_struct *vma,
1205 struct page *page, struct page *kpage)
1206 {
1207 pte_t orig_pte = __pte(0);
1208 int err = -EFAULT;
1209
1210 if (page == kpage) /* ksm page forked */
1211 return 0;
1212
1213 if (!PageAnon(page))
1214 goto out;
1215
1216 if(!xpm_integrity_check_one_page_merge(page, kpage))
1217 goto out;
1218
1219 /*
1220 * We need the page lock to read a stable PageSwapCache in
1221 * write_protect_page(). We use trylock_page() instead of
1222 * lock_page() because we don't want to wait here - we
1223 * prefer to continue scanning and merging different pages,
1224 * then come back to this page when it is unlocked.
1225 */
1226 if (!trylock_page(page))
1227 goto out;
1228
1229 if (PageTransCompound(page)) {
1230 if (split_huge_page(page))
1231 goto out_unlock;
1232 }
1233
1234 /*
1235 * If this anonymous page is mapped only here, its pte may need
1236 * to be write-protected. If it's mapped elsewhere, all of its
1237 * ptes are necessarily already write-protected. But in either
1238 * case, we need to lock and check page_count is not raised.
1239 */
1240 if (write_protect_page(vma, page, &orig_pte) == 0) {
1241 if (!kpage) {
1242 /*
1243 * While we hold page lock, upgrade page from
1244 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1245 * stable_tree_insert() will update stable_node.
1246 */
1247 set_page_stable_node(page, NULL);
1248 mark_page_accessed(page);
1249 /*
1250 * Page reclaim just frees a clean page with no dirty
1251 * ptes: make sure that the ksm page would be swapped.
1252 */
1253 if (!PageDirty(page))
1254 SetPageDirty(page);
1255 err = 0;
1256 } else if (pages_identical(page, kpage))
1257 err = replace_page(vma, page, kpage, orig_pte);
1258 }
1259
1260 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1261 munlock_vma_page(page);
1262 if (!PageMlocked(kpage)) {
1263 unlock_page(page);
1264 lock_page(kpage);
1265 mlock_vma_page(kpage);
1266 page = kpage; /* for final unlock */
1267 }
1268 }
1269
1270 out_unlock:
1271 unlock_page(page);
1272 out:
1273 return err;
1274 }
1275
1276 /*
1277 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1278 * but no new kernel page is allocated: kpage must already be a ksm page.
1279 *
1280 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1281 */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1282 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1283 struct page *page, struct page *kpage)
1284 {
1285 struct mm_struct *mm = rmap_item->mm;
1286 struct vm_area_struct *vma;
1287 int err = -EFAULT;
1288
1289 mmap_read_lock(mm);
1290 vma = find_mergeable_vma(mm, rmap_item->address);
1291 if (!vma)
1292 goto out;
1293
1294 err = try_to_merge_one_page(vma, page, kpage);
1295 if (err)
1296 goto out;
1297
1298 /* Unstable nid is in union with stable anon_vma: remove first */
1299 remove_rmap_item_from_tree(rmap_item);
1300
1301 /* Must get reference to anon_vma while still holding mmap_lock */
1302 rmap_item->anon_vma = vma->anon_vma;
1303 get_anon_vma(vma->anon_vma);
1304 out:
1305 mmap_read_unlock(mm);
1306 return err;
1307 }
1308
1309 /*
1310 * try_to_merge_two_pages - take two identical pages and prepare them
1311 * to be merged into one page.
1312 *
1313 * This function returns the kpage if we successfully merged two identical
1314 * pages into one ksm page, NULL otherwise.
1315 *
1316 * Note that this function upgrades page to ksm page: if one of the pages
1317 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1318 */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1319 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1320 struct page *page,
1321 struct rmap_item *tree_rmap_item,
1322 struct page *tree_page)
1323 {
1324 int err;
1325
1326 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1327 if (!err) {
1328 err = try_to_merge_with_ksm_page(tree_rmap_item,
1329 tree_page, page);
1330 /*
1331 * If that fails, we have a ksm page with only one pte
1332 * pointing to it: so break it.
1333 */
1334 if (err)
1335 break_cow(rmap_item);
1336 }
1337 return err ? NULL : page;
1338 }
1339
1340 static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1341 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1342 {
1343 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1344 /*
1345 * Check that at least one mapping still exists, otherwise
1346 * there's no much point to merge and share with this
1347 * stable_node, as the underlying tree_page of the other
1348 * sharer is going to be freed soon.
1349 */
1350 return stable_node->rmap_hlist_len &&
1351 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1352 }
1353
1354 static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1355 bool is_page_sharing_candidate(struct stable_node *stable_node)
1356 {
1357 return __is_page_sharing_candidate(stable_node, 0);
1358 }
1359
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1360 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1361 struct stable_node **_stable_node,
1362 struct rb_root *root,
1363 bool prune_stale_stable_nodes)
1364 {
1365 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1366 struct hlist_node *hlist_safe;
1367 struct page *_tree_page, *tree_page = NULL;
1368 int nr = 0;
1369 int found_rmap_hlist_len;
1370
1371 if (!prune_stale_stable_nodes ||
1372 time_before(jiffies, stable_node->chain_prune_time +
1373 msecs_to_jiffies(
1374 ksm_stable_node_chains_prune_millisecs)))
1375 prune_stale_stable_nodes = false;
1376 else
1377 stable_node->chain_prune_time = jiffies;
1378
1379 hlist_for_each_entry_safe(dup, hlist_safe,
1380 &stable_node->hlist, hlist_dup) {
1381 cond_resched();
1382 /*
1383 * We must walk all stable_node_dup to prune the stale
1384 * stable nodes during lookup.
1385 *
1386 * get_ksm_page can drop the nodes from the
1387 * stable_node->hlist if they point to freed pages
1388 * (that's why we do a _safe walk). The "dup"
1389 * stable_node parameter itself will be freed from
1390 * under us if it returns NULL.
1391 */
1392 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1393 if (!_tree_page)
1394 continue;
1395 nr += 1;
1396 if (is_page_sharing_candidate(dup)) {
1397 if (!found ||
1398 dup->rmap_hlist_len > found_rmap_hlist_len) {
1399 if (found)
1400 put_page(tree_page);
1401 found = dup;
1402 found_rmap_hlist_len = found->rmap_hlist_len;
1403 tree_page = _tree_page;
1404
1405 /* skip put_page for found dup */
1406 if (!prune_stale_stable_nodes)
1407 break;
1408 continue;
1409 }
1410 }
1411 put_page(_tree_page);
1412 }
1413
1414 if (found) {
1415 /*
1416 * nr is counting all dups in the chain only if
1417 * prune_stale_stable_nodes is true, otherwise we may
1418 * break the loop at nr == 1 even if there are
1419 * multiple entries.
1420 */
1421 if (prune_stale_stable_nodes && nr == 1) {
1422 /*
1423 * If there's not just one entry it would
1424 * corrupt memory, better BUG_ON. In KSM
1425 * context with no lock held it's not even
1426 * fatal.
1427 */
1428 BUG_ON(stable_node->hlist.first->next);
1429
1430 /*
1431 * There's just one entry and it is below the
1432 * deduplication limit so drop the chain.
1433 */
1434 rb_replace_node(&stable_node->node, &found->node,
1435 root);
1436 free_stable_node(stable_node);
1437 ksm_stable_node_chains--;
1438 ksm_stable_node_dups--;
1439 /*
1440 * NOTE: the caller depends on the stable_node
1441 * to be equal to stable_node_dup if the chain
1442 * was collapsed.
1443 */
1444 *_stable_node = found;
1445 /*
1446 * Just for robustneess as stable_node is
1447 * otherwise left as a stable pointer, the
1448 * compiler shall optimize it away at build
1449 * time.
1450 */
1451 stable_node = NULL;
1452 } else if (stable_node->hlist.first != &found->hlist_dup &&
1453 __is_page_sharing_candidate(found, 1)) {
1454 /*
1455 * If the found stable_node dup can accept one
1456 * more future merge (in addition to the one
1457 * that is underway) and is not at the head of
1458 * the chain, put it there so next search will
1459 * be quicker in the !prune_stale_stable_nodes
1460 * case.
1461 *
1462 * NOTE: it would be inaccurate to use nr > 1
1463 * instead of checking the hlist.first pointer
1464 * directly, because in the
1465 * prune_stale_stable_nodes case "nr" isn't
1466 * the position of the found dup in the chain,
1467 * but the total number of dups in the chain.
1468 */
1469 hlist_del(&found->hlist_dup);
1470 hlist_add_head(&found->hlist_dup,
1471 &stable_node->hlist);
1472 }
1473 }
1474
1475 *_stable_node_dup = found;
1476 return tree_page;
1477 }
1478
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1479 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1480 struct rb_root *root)
1481 {
1482 if (!is_stable_node_chain(stable_node))
1483 return stable_node;
1484 if (hlist_empty(&stable_node->hlist)) {
1485 free_stable_node_chain(stable_node, root);
1486 return NULL;
1487 }
1488 return hlist_entry(stable_node->hlist.first,
1489 typeof(*stable_node), hlist_dup);
1490 }
1491
1492 /*
1493 * Like for get_ksm_page, this function can free the *_stable_node and
1494 * *_stable_node_dup if the returned tree_page is NULL.
1495 *
1496 * It can also free and overwrite *_stable_node with the found
1497 * stable_node_dup if the chain is collapsed (in which case
1498 * *_stable_node will be equal to *_stable_node_dup like if the chain
1499 * never existed). It's up to the caller to verify tree_page is not
1500 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1501 *
1502 * *_stable_node_dup is really a second output parameter of this
1503 * function and will be overwritten in all cases, the caller doesn't
1504 * need to initialize it.
1505 */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1506 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1507 struct stable_node **_stable_node,
1508 struct rb_root *root,
1509 bool prune_stale_stable_nodes)
1510 {
1511 struct stable_node *stable_node = *_stable_node;
1512 if (!is_stable_node_chain(stable_node)) {
1513 if (is_page_sharing_candidate(stable_node)) {
1514 *_stable_node_dup = stable_node;
1515 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1516 }
1517 /*
1518 * _stable_node_dup set to NULL means the stable_node
1519 * reached the ksm_max_page_sharing limit.
1520 */
1521 *_stable_node_dup = NULL;
1522 return NULL;
1523 }
1524 return stable_node_dup(_stable_node_dup, _stable_node, root,
1525 prune_stale_stable_nodes);
1526 }
1527
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1528 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1529 struct stable_node **s_n,
1530 struct rb_root *root)
1531 {
1532 return __stable_node_chain(s_n_d, s_n, root, true);
1533 }
1534
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1535 static __always_inline struct page *chain(struct stable_node **s_n_d,
1536 struct stable_node *s_n,
1537 struct rb_root *root)
1538 {
1539 struct stable_node *old_stable_node = s_n;
1540 struct page *tree_page;
1541
1542 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1543 /* not pruning dups so s_n cannot have changed */
1544 VM_BUG_ON(s_n != old_stable_node);
1545 return tree_page;
1546 }
1547
1548 /*
1549 * stable_tree_search - search for page inside the stable tree
1550 *
1551 * This function checks if there is a page inside the stable tree
1552 * with identical content to the page that we are scanning right now.
1553 *
1554 * This function returns the stable tree node of identical content if found,
1555 * NULL otherwise.
1556 */
stable_tree_search(struct page * page)1557 static struct page *stable_tree_search(struct page *page)
1558 {
1559 int nid;
1560 struct rb_root *root;
1561 struct rb_node **new;
1562 struct rb_node *parent;
1563 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1564 struct stable_node *page_node;
1565
1566 page_node = page_stable_node(page);
1567 if (page_node && page_node->head != &migrate_nodes) {
1568 /* ksm page forked */
1569 get_page(page);
1570 return page;
1571 }
1572
1573 nid = get_kpfn_nid(page_to_pfn(page));
1574 root = root_stable_tree + nid;
1575 again:
1576 new = &root->rb_node;
1577 parent = NULL;
1578
1579 while (*new) {
1580 struct page *tree_page;
1581 int ret;
1582
1583 cond_resched();
1584 stable_node = rb_entry(*new, struct stable_node, node);
1585 stable_node_any = NULL;
1586 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1587 /*
1588 * NOTE: stable_node may have been freed by
1589 * chain_prune() if the returned stable_node_dup is
1590 * not NULL. stable_node_dup may have been inserted in
1591 * the rbtree instead as a regular stable_node (in
1592 * order to collapse the stable_node chain if a single
1593 * stable_node dup was found in it). In such case the
1594 * stable_node is overwritten by the calleee to point
1595 * to the stable_node_dup that was collapsed in the
1596 * stable rbtree and stable_node will be equal to
1597 * stable_node_dup like if the chain never existed.
1598 */
1599 if (!stable_node_dup) {
1600 /*
1601 * Either all stable_node dups were full in
1602 * this stable_node chain, or this chain was
1603 * empty and should be rb_erased.
1604 */
1605 stable_node_any = stable_node_dup_any(stable_node,
1606 root);
1607 if (!stable_node_any) {
1608 /* rb_erase just run */
1609 goto again;
1610 }
1611 /*
1612 * Take any of the stable_node dups page of
1613 * this stable_node chain to let the tree walk
1614 * continue. All KSM pages belonging to the
1615 * stable_node dups in a stable_node chain
1616 * have the same content and they're
1617 * write protected at all times. Any will work
1618 * fine to continue the walk.
1619 */
1620 tree_page = get_ksm_page(stable_node_any,
1621 GET_KSM_PAGE_NOLOCK);
1622 }
1623 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1624 if (!tree_page) {
1625 /*
1626 * If we walked over a stale stable_node,
1627 * get_ksm_page() will call rb_erase() and it
1628 * may rebalance the tree from under us. So
1629 * restart the search from scratch. Returning
1630 * NULL would be safe too, but we'd generate
1631 * false negative insertions just because some
1632 * stable_node was stale.
1633 */
1634 goto again;
1635 }
1636
1637 ret = memcmp_pages(page, tree_page);
1638 put_page(tree_page);
1639
1640 parent = *new;
1641 if (ret < 0)
1642 new = &parent->rb_left;
1643 else if (ret > 0)
1644 new = &parent->rb_right;
1645 else {
1646 if (page_node) {
1647 VM_BUG_ON(page_node->head != &migrate_nodes);
1648 /*
1649 * Test if the migrated page should be merged
1650 * into a stable node dup. If the mapcount is
1651 * 1 we can migrate it with another KSM page
1652 * without adding it to the chain.
1653 */
1654 if (page_mapcount(page) > 1)
1655 goto chain_append;
1656 }
1657
1658 if (!stable_node_dup) {
1659 /*
1660 * If the stable_node is a chain and
1661 * we got a payload match in memcmp
1662 * but we cannot merge the scanned
1663 * page in any of the existing
1664 * stable_node dups because they're
1665 * all full, we need to wait the
1666 * scanned page to find itself a match
1667 * in the unstable tree to create a
1668 * brand new KSM page to add later to
1669 * the dups of this stable_node.
1670 */
1671 return NULL;
1672 }
1673
1674 /*
1675 * Lock and unlock the stable_node's page (which
1676 * might already have been migrated) so that page
1677 * migration is sure to notice its raised count.
1678 * It would be more elegant to return stable_node
1679 * than kpage, but that involves more changes.
1680 */
1681 tree_page = get_ksm_page(stable_node_dup,
1682 GET_KSM_PAGE_TRYLOCK);
1683
1684 if (PTR_ERR(tree_page) == -EBUSY)
1685 return ERR_PTR(-EBUSY);
1686
1687 if (unlikely(!tree_page))
1688 /*
1689 * The tree may have been rebalanced,
1690 * so re-evaluate parent and new.
1691 */
1692 goto again;
1693 unlock_page(tree_page);
1694
1695 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1696 NUMA(stable_node_dup->nid)) {
1697 put_page(tree_page);
1698 goto replace;
1699 }
1700 return tree_page;
1701 }
1702 }
1703
1704 if (!page_node)
1705 return NULL;
1706
1707 list_del(&page_node->list);
1708 DO_NUMA(page_node->nid = nid);
1709 rb_link_node(&page_node->node, parent, new);
1710 rb_insert_color(&page_node->node, root);
1711 out:
1712 if (is_page_sharing_candidate(page_node)) {
1713 get_page(page);
1714 return page;
1715 } else
1716 return NULL;
1717
1718 replace:
1719 /*
1720 * If stable_node was a chain and chain_prune collapsed it,
1721 * stable_node has been updated to be the new regular
1722 * stable_node. A collapse of the chain is indistinguishable
1723 * from the case there was no chain in the stable
1724 * rbtree. Otherwise stable_node is the chain and
1725 * stable_node_dup is the dup to replace.
1726 */
1727 if (stable_node_dup == stable_node) {
1728 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1729 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1730 /* there is no chain */
1731 if (page_node) {
1732 VM_BUG_ON(page_node->head != &migrate_nodes);
1733 list_del(&page_node->list);
1734 DO_NUMA(page_node->nid = nid);
1735 rb_replace_node(&stable_node_dup->node,
1736 &page_node->node,
1737 root);
1738 if (is_page_sharing_candidate(page_node))
1739 get_page(page);
1740 else
1741 page = NULL;
1742 } else {
1743 rb_erase(&stable_node_dup->node, root);
1744 page = NULL;
1745 }
1746 } else {
1747 VM_BUG_ON(!is_stable_node_chain(stable_node));
1748 __stable_node_dup_del(stable_node_dup);
1749 if (page_node) {
1750 VM_BUG_ON(page_node->head != &migrate_nodes);
1751 list_del(&page_node->list);
1752 DO_NUMA(page_node->nid = nid);
1753 stable_node_chain_add_dup(page_node, stable_node);
1754 if (is_page_sharing_candidate(page_node))
1755 get_page(page);
1756 else
1757 page = NULL;
1758 } else {
1759 page = NULL;
1760 }
1761 }
1762 stable_node_dup->head = &migrate_nodes;
1763 list_add(&stable_node_dup->list, stable_node_dup->head);
1764 return page;
1765
1766 chain_append:
1767 /* stable_node_dup could be null if it reached the limit */
1768 if (!stable_node_dup)
1769 stable_node_dup = stable_node_any;
1770 /*
1771 * If stable_node was a chain and chain_prune collapsed it,
1772 * stable_node has been updated to be the new regular
1773 * stable_node. A collapse of the chain is indistinguishable
1774 * from the case there was no chain in the stable
1775 * rbtree. Otherwise stable_node is the chain and
1776 * stable_node_dup is the dup to replace.
1777 */
1778 if (stable_node_dup == stable_node) {
1779 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1780 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1781 /* chain is missing so create it */
1782 stable_node = alloc_stable_node_chain(stable_node_dup,
1783 root);
1784 if (!stable_node)
1785 return NULL;
1786 }
1787 /*
1788 * Add this stable_node dup that was
1789 * migrated to the stable_node chain
1790 * of the current nid for this page
1791 * content.
1792 */
1793 VM_BUG_ON(!is_stable_node_chain(stable_node));
1794 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1795 VM_BUG_ON(page_node->head != &migrate_nodes);
1796 list_del(&page_node->list);
1797 DO_NUMA(page_node->nid = nid);
1798 stable_node_chain_add_dup(page_node, stable_node);
1799 goto out;
1800 }
1801
1802 /*
1803 * stable_tree_insert - insert stable tree node pointing to new ksm page
1804 * into the stable tree.
1805 *
1806 * This function returns the stable tree node just allocated on success,
1807 * NULL otherwise.
1808 */
stable_tree_insert(struct page * kpage)1809 static struct stable_node *stable_tree_insert(struct page *kpage)
1810 {
1811 int nid;
1812 unsigned long kpfn;
1813 struct rb_root *root;
1814 struct rb_node **new;
1815 struct rb_node *parent;
1816 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1817 bool need_chain = false;
1818
1819 kpfn = page_to_pfn(kpage);
1820 nid = get_kpfn_nid(kpfn);
1821 root = root_stable_tree + nid;
1822 again:
1823 parent = NULL;
1824 new = &root->rb_node;
1825
1826 while (*new) {
1827 struct page *tree_page;
1828 int ret;
1829
1830 cond_resched();
1831 stable_node = rb_entry(*new, struct stable_node, node);
1832 stable_node_any = NULL;
1833 tree_page = chain(&stable_node_dup, stable_node, root);
1834 if (!stable_node_dup) {
1835 /*
1836 * Either all stable_node dups were full in
1837 * this stable_node chain, or this chain was
1838 * empty and should be rb_erased.
1839 */
1840 stable_node_any = stable_node_dup_any(stable_node,
1841 root);
1842 if (!stable_node_any) {
1843 /* rb_erase just run */
1844 goto again;
1845 }
1846 /*
1847 * Take any of the stable_node dups page of
1848 * this stable_node chain to let the tree walk
1849 * continue. All KSM pages belonging to the
1850 * stable_node dups in a stable_node chain
1851 * have the same content and they're
1852 * write protected at all times. Any will work
1853 * fine to continue the walk.
1854 */
1855 tree_page = get_ksm_page(stable_node_any,
1856 GET_KSM_PAGE_NOLOCK);
1857 }
1858 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1859 if (!tree_page) {
1860 /*
1861 * If we walked over a stale stable_node,
1862 * get_ksm_page() will call rb_erase() and it
1863 * may rebalance the tree from under us. So
1864 * restart the search from scratch. Returning
1865 * NULL would be safe too, but we'd generate
1866 * false negative insertions just because some
1867 * stable_node was stale.
1868 */
1869 goto again;
1870 }
1871
1872 ret = memcmp_pages(kpage, tree_page);
1873 put_page(tree_page);
1874
1875 parent = *new;
1876 if (ret < 0)
1877 new = &parent->rb_left;
1878 else if (ret > 0)
1879 new = &parent->rb_right;
1880 else {
1881 need_chain = true;
1882 break;
1883 }
1884 }
1885
1886 stable_node_dup = alloc_stable_node();
1887 if (!stable_node_dup)
1888 return NULL;
1889
1890 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1891 stable_node_dup->kpfn = kpfn;
1892 set_page_stable_node(kpage, stable_node_dup);
1893 stable_node_dup->rmap_hlist_len = 0;
1894 DO_NUMA(stable_node_dup->nid = nid);
1895 if (!need_chain) {
1896 rb_link_node(&stable_node_dup->node, parent, new);
1897 rb_insert_color(&stable_node_dup->node, root);
1898 } else {
1899 if (!is_stable_node_chain(stable_node)) {
1900 struct stable_node *orig = stable_node;
1901 /* chain is missing so create it */
1902 stable_node = alloc_stable_node_chain(orig, root);
1903 if (!stable_node) {
1904 free_stable_node(stable_node_dup);
1905 return NULL;
1906 }
1907 }
1908 stable_node_chain_add_dup(stable_node_dup, stable_node);
1909 }
1910
1911 return stable_node_dup;
1912 }
1913
1914 /*
1915 * unstable_tree_search_insert - search for identical page,
1916 * else insert rmap_item into the unstable tree.
1917 *
1918 * This function searches for a page in the unstable tree identical to the
1919 * page currently being scanned; and if no identical page is found in the
1920 * tree, we insert rmap_item as a new object into the unstable tree.
1921 *
1922 * This function returns pointer to rmap_item found to be identical
1923 * to the currently scanned page, NULL otherwise.
1924 *
1925 * This function does both searching and inserting, because they share
1926 * the same walking algorithm in an rbtree.
1927 */
1928 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1929 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1930 struct page *page,
1931 struct page **tree_pagep)
1932 {
1933 struct rb_node **new;
1934 struct rb_root *root;
1935 struct rb_node *parent = NULL;
1936 int nid;
1937
1938 nid = get_kpfn_nid(page_to_pfn(page));
1939 root = root_unstable_tree + nid;
1940 new = &root->rb_node;
1941
1942 while (*new) {
1943 struct rmap_item *tree_rmap_item;
1944 struct page *tree_page;
1945 int ret;
1946
1947 cond_resched();
1948 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1949 tree_page = get_mergeable_page(tree_rmap_item);
1950 if (!tree_page)
1951 return NULL;
1952
1953 /*
1954 * Don't substitute a ksm page for a forked page.
1955 */
1956 if (page == tree_page) {
1957 put_page(tree_page);
1958 return NULL;
1959 }
1960
1961 ret = memcmp_pages(page, tree_page);
1962
1963 parent = *new;
1964 if (ret < 0) {
1965 put_page(tree_page);
1966 new = &parent->rb_left;
1967 } else if (ret > 0) {
1968 put_page(tree_page);
1969 new = &parent->rb_right;
1970 } else if (!ksm_merge_across_nodes &&
1971 page_to_nid(tree_page) != nid) {
1972 /*
1973 * If tree_page has been migrated to another NUMA node,
1974 * it will be flushed out and put in the right unstable
1975 * tree next time: only merge with it when across_nodes.
1976 */
1977 put_page(tree_page);
1978 return NULL;
1979 } else {
1980 *tree_pagep = tree_page;
1981 return tree_rmap_item;
1982 }
1983 }
1984
1985 rmap_item->address |= UNSTABLE_FLAG;
1986 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1987 DO_NUMA(rmap_item->nid = nid);
1988 rb_link_node(&rmap_item->node, parent, new);
1989 rb_insert_color(&rmap_item->node, root);
1990
1991 ksm_pages_unshared++;
1992 return NULL;
1993 }
1994
1995 /*
1996 * stable_tree_append - add another rmap_item to the linked list of
1997 * rmap_items hanging off a given node of the stable tree, all sharing
1998 * the same ksm page.
1999 */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)2000 static void stable_tree_append(struct rmap_item *rmap_item,
2001 struct stable_node *stable_node,
2002 bool max_page_sharing_bypass)
2003 {
2004 /*
2005 * rmap won't find this mapping if we don't insert the
2006 * rmap_item in the right stable_node
2007 * duplicate. page_migration could break later if rmap breaks,
2008 * so we can as well crash here. We really need to check for
2009 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2010 * for other negative values as an underflow if detected here
2011 * for the first time (and not when decreasing rmap_hlist_len)
2012 * would be sign of memory corruption in the stable_node.
2013 */
2014 BUG_ON(stable_node->rmap_hlist_len < 0);
2015
2016 stable_node->rmap_hlist_len++;
2017 if (!max_page_sharing_bypass)
2018 /* possibly non fatal but unexpected overflow, only warn */
2019 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2020 ksm_max_page_sharing);
2021
2022 rmap_item->head = stable_node;
2023 rmap_item->address |= STABLE_FLAG;
2024 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2025
2026 if (rmap_item->hlist.next)
2027 ksm_pages_sharing++;
2028 else
2029 ksm_pages_shared++;
2030 }
2031
2032 /*
2033 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2034 * if not, compare checksum to previous and if it's the same, see if page can
2035 * be inserted into the unstable tree, or merged with a page already there and
2036 * both transferred to the stable tree.
2037 *
2038 * @page: the page that we are searching identical page to.
2039 * @rmap_item: the reverse mapping into the virtual address of this page
2040 */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2041 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2042 {
2043 struct mm_struct *mm = rmap_item->mm;
2044 struct rmap_item *tree_rmap_item;
2045 struct page *tree_page = NULL;
2046 struct stable_node *stable_node;
2047 struct page *kpage;
2048 unsigned int checksum;
2049 int err;
2050 bool max_page_sharing_bypass = false;
2051
2052 stable_node = page_stable_node(page);
2053 if (stable_node) {
2054 if (stable_node->head != &migrate_nodes &&
2055 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2056 NUMA(stable_node->nid)) {
2057 stable_node_dup_del(stable_node);
2058 stable_node->head = &migrate_nodes;
2059 list_add(&stable_node->list, stable_node->head);
2060 }
2061 if (stable_node->head != &migrate_nodes &&
2062 rmap_item->head == stable_node)
2063 return;
2064 /*
2065 * If it's a KSM fork, allow it to go over the sharing limit
2066 * without warnings.
2067 */
2068 if (!is_page_sharing_candidate(stable_node))
2069 max_page_sharing_bypass = true;
2070 }
2071
2072 /* We first start with searching the page inside the stable tree */
2073 kpage = stable_tree_search(page);
2074 if (kpage == page && rmap_item->head == stable_node) {
2075 put_page(kpage);
2076 return;
2077 }
2078
2079 remove_rmap_item_from_tree(rmap_item);
2080
2081 if (kpage) {
2082 if (PTR_ERR(kpage) == -EBUSY)
2083 return;
2084
2085 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2086 if (!err) {
2087 /*
2088 * The page was successfully merged:
2089 * add its rmap_item to the stable tree.
2090 */
2091 lock_page(kpage);
2092 stable_tree_append(rmap_item, page_stable_node(kpage),
2093 max_page_sharing_bypass);
2094 unlock_page(kpage);
2095 }
2096 put_page(kpage);
2097 return;
2098 }
2099
2100 /*
2101 * If the hash value of the page has changed from the last time
2102 * we calculated it, this page is changing frequently: therefore we
2103 * don't want to insert it in the unstable tree, and we don't want
2104 * to waste our time searching for something identical to it there.
2105 */
2106 checksum = calc_checksum(page);
2107 if (rmap_item->oldchecksum != checksum) {
2108 rmap_item->oldchecksum = checksum;
2109 return;
2110 }
2111
2112 /*
2113 * Same checksum as an empty page. We attempt to merge it with the
2114 * appropriate zero page if the user enabled this via sysfs.
2115 */
2116 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2117 struct vm_area_struct *vma;
2118
2119 mmap_read_lock(mm);
2120 vma = find_mergeable_vma(mm, rmap_item->address);
2121 if (vma) {
2122 err = try_to_merge_one_page(vma, page,
2123 ZERO_PAGE(rmap_item->address));
2124 } else {
2125 /*
2126 * If the vma is out of date, we do not need to
2127 * continue.
2128 */
2129 err = 0;
2130 }
2131 mmap_read_unlock(mm);
2132 /*
2133 * In case of failure, the page was not really empty, so we
2134 * need to continue. Otherwise we're done.
2135 */
2136 if (!err)
2137 return;
2138 }
2139 tree_rmap_item =
2140 unstable_tree_search_insert(rmap_item, page, &tree_page);
2141 if (tree_rmap_item) {
2142 bool split;
2143
2144 kpage = try_to_merge_two_pages(rmap_item, page,
2145 tree_rmap_item, tree_page);
2146 /*
2147 * If both pages we tried to merge belong to the same compound
2148 * page, then we actually ended up increasing the reference
2149 * count of the same compound page twice, and split_huge_page
2150 * failed.
2151 * Here we set a flag if that happened, and we use it later to
2152 * try split_huge_page again. Since we call put_page right
2153 * afterwards, the reference count will be correct and
2154 * split_huge_page should succeed.
2155 */
2156 split = PageTransCompound(page)
2157 && compound_head(page) == compound_head(tree_page);
2158 put_page(tree_page);
2159 if (kpage) {
2160 /*
2161 * The pages were successfully merged: insert new
2162 * node in the stable tree and add both rmap_items.
2163 */
2164 lock_page(kpage);
2165 stable_node = stable_tree_insert(kpage);
2166 if (stable_node) {
2167 stable_tree_append(tree_rmap_item, stable_node,
2168 false);
2169 stable_tree_append(rmap_item, stable_node,
2170 false);
2171 }
2172 unlock_page(kpage);
2173
2174 /*
2175 * If we fail to insert the page into the stable tree,
2176 * we will have 2 virtual addresses that are pointing
2177 * to a ksm page left outside the stable tree,
2178 * in which case we need to break_cow on both.
2179 */
2180 if (!stable_node) {
2181 break_cow(tree_rmap_item);
2182 break_cow(rmap_item);
2183 }
2184 } else if (split) {
2185 /*
2186 * We are here if we tried to merge two pages and
2187 * failed because they both belonged to the same
2188 * compound page. We will split the page now, but no
2189 * merging will take place.
2190 * We do not want to add the cost of a full lock; if
2191 * the page is locked, it is better to skip it and
2192 * perhaps try again later.
2193 */
2194 if (!trylock_page(page))
2195 return;
2196 split_huge_page(page);
2197 unlock_page(page);
2198 }
2199 }
2200 }
2201
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2202 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2203 struct rmap_item **rmap_list,
2204 unsigned long addr)
2205 {
2206 struct rmap_item *rmap_item;
2207
2208 while (*rmap_list) {
2209 rmap_item = *rmap_list;
2210 if ((rmap_item->address & PAGE_MASK) == addr)
2211 return rmap_item;
2212 if (rmap_item->address > addr)
2213 break;
2214 *rmap_list = rmap_item->rmap_list;
2215 remove_rmap_item_from_tree(rmap_item);
2216 free_rmap_item(rmap_item);
2217 }
2218
2219 rmap_item = alloc_rmap_item();
2220 if (rmap_item) {
2221 /* It has already been zeroed */
2222 rmap_item->mm = mm_slot->mm;
2223 rmap_item->address = addr;
2224 rmap_item->rmap_list = *rmap_list;
2225 *rmap_list = rmap_item;
2226 }
2227 return rmap_item;
2228 }
2229
scan_get_next_rmap_item(struct page ** page)2230 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2231 {
2232 struct mm_struct *mm;
2233 struct mm_slot *slot;
2234 struct vm_area_struct *vma;
2235 struct rmap_item *rmap_item;
2236 int nid;
2237
2238 if (list_empty(&ksm_mm_head.mm_list))
2239 return NULL;
2240
2241 slot = ksm_scan.mm_slot;
2242 if (slot == &ksm_mm_head) {
2243 /*
2244 * A number of pages can hang around indefinitely on per-cpu
2245 * pagevecs, raised page count preventing write_protect_page
2246 * from merging them. Though it doesn't really matter much,
2247 * it is puzzling to see some stuck in pages_volatile until
2248 * other activity jostles them out, and they also prevented
2249 * LTP's KSM test from succeeding deterministically; so drain
2250 * them here (here rather than on entry to ksm_do_scan(),
2251 * so we don't IPI too often when pages_to_scan is set low).
2252 */
2253 lru_add_drain_all();
2254
2255 /*
2256 * Whereas stale stable_nodes on the stable_tree itself
2257 * get pruned in the regular course of stable_tree_search(),
2258 * those moved out to the migrate_nodes list can accumulate:
2259 * so prune them once before each full scan.
2260 */
2261 if (!ksm_merge_across_nodes) {
2262 struct stable_node *stable_node, *next;
2263 struct page *page;
2264
2265 list_for_each_entry_safe(stable_node, next,
2266 &migrate_nodes, list) {
2267 page = get_ksm_page(stable_node,
2268 GET_KSM_PAGE_NOLOCK);
2269 if (page)
2270 put_page(page);
2271 cond_resched();
2272 }
2273 }
2274
2275 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2276 root_unstable_tree[nid] = RB_ROOT;
2277
2278 spin_lock(&ksm_mmlist_lock);
2279 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2280 ksm_scan.mm_slot = slot;
2281 spin_unlock(&ksm_mmlist_lock);
2282 /*
2283 * Although we tested list_empty() above, a racing __ksm_exit
2284 * of the last mm on the list may have removed it since then.
2285 */
2286 if (slot == &ksm_mm_head)
2287 return NULL;
2288 next_mm:
2289 ksm_scan.address = 0;
2290 ksm_scan.rmap_list = &slot->rmap_list;
2291 }
2292
2293 mm = slot->mm;
2294 mmap_read_lock(mm);
2295 if (ksm_test_exit(mm))
2296 vma = NULL;
2297 else
2298 vma = find_vma(mm, ksm_scan.address);
2299
2300 for (; vma; vma = vma->vm_next) {
2301 if (!(vma->vm_flags & VM_MERGEABLE))
2302 continue;
2303 if (ksm_scan.address < vma->vm_start)
2304 ksm_scan.address = vma->vm_start;
2305 if (!vma->anon_vma)
2306 ksm_scan.address = vma->vm_end;
2307
2308 while (ksm_scan.address < vma->vm_end) {
2309 if (ksm_test_exit(mm))
2310 break;
2311 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2312 if (IS_ERR_OR_NULL(*page)) {
2313 ksm_scan.address += PAGE_SIZE;
2314 cond_resched();
2315 continue;
2316 }
2317 if (PageAnon(*page)) {
2318 flush_anon_page(vma, *page, ksm_scan.address);
2319 flush_dcache_page(*page);
2320 rmap_item = get_next_rmap_item(slot,
2321 ksm_scan.rmap_list, ksm_scan.address);
2322 if (rmap_item) {
2323 ksm_scan.rmap_list =
2324 &rmap_item->rmap_list;
2325 ksm_scan.address += PAGE_SIZE;
2326 } else
2327 put_page(*page);
2328 mmap_read_unlock(mm);
2329 return rmap_item;
2330 }
2331 put_page(*page);
2332 ksm_scan.address += PAGE_SIZE;
2333 cond_resched();
2334 }
2335 }
2336
2337 if (ksm_test_exit(mm)) {
2338 ksm_scan.address = 0;
2339 ksm_scan.rmap_list = &slot->rmap_list;
2340 }
2341 /*
2342 * Nuke all the rmap_items that are above this current rmap:
2343 * because there were no VM_MERGEABLE vmas with such addresses.
2344 */
2345 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2346
2347 spin_lock(&ksm_mmlist_lock);
2348 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2349 struct mm_slot, mm_list);
2350 if (ksm_scan.address == 0) {
2351 /*
2352 * We've completed a full scan of all vmas, holding mmap_lock
2353 * throughout, and found no VM_MERGEABLE: so do the same as
2354 * __ksm_exit does to remove this mm from all our lists now.
2355 * This applies either when cleaning up after __ksm_exit
2356 * (but beware: we can reach here even before __ksm_exit),
2357 * or when all VM_MERGEABLE areas have been unmapped (and
2358 * mmap_lock then protects against race with MADV_MERGEABLE).
2359 */
2360 hash_del(&slot->link);
2361 list_del(&slot->mm_list);
2362 spin_unlock(&ksm_mmlist_lock);
2363
2364 free_mm_slot(slot);
2365 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2366 mmap_read_unlock(mm);
2367 mmdrop(mm);
2368 } else {
2369 mmap_read_unlock(mm);
2370 /*
2371 * mmap_read_unlock(mm) first because after
2372 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2373 * already have been freed under us by __ksm_exit()
2374 * because the "mm_slot" is still hashed and
2375 * ksm_scan.mm_slot doesn't point to it anymore.
2376 */
2377 spin_unlock(&ksm_mmlist_lock);
2378 }
2379
2380 /* Repeat until we've completed scanning the whole list */
2381 slot = ksm_scan.mm_slot;
2382 if (slot != &ksm_mm_head)
2383 goto next_mm;
2384
2385 ksm_scan.seqnr++;
2386 return NULL;
2387 }
2388
2389 /**
2390 * ksm_do_scan - the ksm scanner main worker function.
2391 * @scan_npages: number of pages we want to scan before we return.
2392 */
ksm_do_scan(unsigned int scan_npages)2393 static void ksm_do_scan(unsigned int scan_npages)
2394 {
2395 struct rmap_item *rmap_item;
2396 struct page *page;
2397
2398 while (scan_npages-- && likely(!freezing(current))) {
2399 cond_resched();
2400 rmap_item = scan_get_next_rmap_item(&page);
2401 if (!rmap_item)
2402 return;
2403 cmp_and_merge_page(page, rmap_item);
2404 put_page(page);
2405 }
2406 }
2407
ksmd_should_run(void)2408 static int ksmd_should_run(void)
2409 {
2410 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2411 }
2412
ksm_scan_thread(void * nothing)2413 static int ksm_scan_thread(void *nothing)
2414 {
2415 unsigned int sleep_ms;
2416
2417 set_freezable();
2418 set_user_nice(current, 5);
2419
2420 while (!kthread_should_stop()) {
2421 mutex_lock(&ksm_thread_mutex);
2422 wait_while_offlining();
2423 if (ksmd_should_run())
2424 ksm_do_scan(ksm_thread_pages_to_scan);
2425 mutex_unlock(&ksm_thread_mutex);
2426
2427 try_to_freeze();
2428
2429 if (ksmd_should_run()) {
2430 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2431 wait_event_interruptible_timeout(ksm_iter_wait,
2432 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2433 msecs_to_jiffies(sleep_ms));
2434 } else {
2435 wait_event_freezable(ksm_thread_wait,
2436 ksmd_should_run() || kthread_should_stop());
2437 }
2438 }
2439 return 0;
2440 }
2441
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2442 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2443 unsigned long end, int advice, unsigned long *vm_flags)
2444 {
2445 struct mm_struct *mm = vma->vm_mm;
2446 int err;
2447
2448 switch (advice) {
2449 case MADV_MERGEABLE:
2450 /*
2451 * Be somewhat over-protective for now!
2452 */
2453 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2454 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2455 VM_HUGETLB | VM_MIXEDMAP))
2456 return 0; /* just ignore the advice */
2457
2458 if (vma_is_dax(vma))
2459 return 0;
2460
2461 #ifdef VM_SAO
2462 if (*vm_flags & VM_SAO)
2463 return 0;
2464 #endif
2465 #ifdef VM_SPARC_ADI
2466 if (*vm_flags & VM_SPARC_ADI)
2467 return 0;
2468 #endif
2469
2470 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2471 err = __ksm_enter(mm);
2472 if (err)
2473 return err;
2474 }
2475
2476 *vm_flags |= VM_MERGEABLE;
2477 break;
2478
2479 case MADV_UNMERGEABLE:
2480 if (!(*vm_flags & VM_MERGEABLE))
2481 return 0; /* just ignore the advice */
2482
2483 if (vma->anon_vma) {
2484 err = unmerge_ksm_pages(vma, start, end);
2485 if (err)
2486 return err;
2487 }
2488
2489 *vm_flags &= ~VM_MERGEABLE;
2490 break;
2491 }
2492
2493 return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(ksm_madvise);
2496
__ksm_enter(struct mm_struct * mm)2497 int __ksm_enter(struct mm_struct *mm)
2498 {
2499 struct mm_slot *mm_slot;
2500 int needs_wakeup;
2501
2502 mm_slot = alloc_mm_slot();
2503 if (!mm_slot)
2504 return -ENOMEM;
2505
2506 /* Check ksm_run too? Would need tighter locking */
2507 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2508
2509 spin_lock(&ksm_mmlist_lock);
2510 insert_to_mm_slots_hash(mm, mm_slot);
2511 /*
2512 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2513 * insert just behind the scanning cursor, to let the area settle
2514 * down a little; when fork is followed by immediate exec, we don't
2515 * want ksmd to waste time setting up and tearing down an rmap_list.
2516 *
2517 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2518 * scanning cursor, otherwise KSM pages in newly forked mms will be
2519 * missed: then we might as well insert at the end of the list.
2520 */
2521 if (ksm_run & KSM_RUN_UNMERGE)
2522 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2523 else
2524 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2525 spin_unlock(&ksm_mmlist_lock);
2526
2527 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2528 mmgrab(mm);
2529
2530 if (needs_wakeup)
2531 wake_up_interruptible(&ksm_thread_wait);
2532
2533 return 0;
2534 }
2535
__ksm_exit(struct mm_struct * mm)2536 void __ksm_exit(struct mm_struct *mm)
2537 {
2538 struct mm_slot *mm_slot;
2539 int easy_to_free = 0;
2540
2541 /*
2542 * This process is exiting: if it's straightforward (as is the
2543 * case when ksmd was never running), free mm_slot immediately.
2544 * But if it's at the cursor or has rmap_items linked to it, use
2545 * mmap_lock to synchronize with any break_cows before pagetables
2546 * are freed, and leave the mm_slot on the list for ksmd to free.
2547 * Beware: ksm may already have noticed it exiting and freed the slot.
2548 */
2549
2550 spin_lock(&ksm_mmlist_lock);
2551 mm_slot = get_mm_slot(mm);
2552 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2553 if (!mm_slot->rmap_list) {
2554 hash_del(&mm_slot->link);
2555 list_del(&mm_slot->mm_list);
2556 easy_to_free = 1;
2557 } else {
2558 list_move(&mm_slot->mm_list,
2559 &ksm_scan.mm_slot->mm_list);
2560 }
2561 }
2562 spin_unlock(&ksm_mmlist_lock);
2563
2564 if (easy_to_free) {
2565 free_mm_slot(mm_slot);
2566 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2567 mmdrop(mm);
2568 } else if (mm_slot) {
2569 mmap_write_lock(mm);
2570 mmap_write_unlock(mm);
2571 }
2572 }
2573
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2574 struct page *ksm_might_need_to_copy(struct page *page,
2575 struct vm_area_struct *vma, unsigned long address)
2576 {
2577 struct anon_vma *anon_vma = page_anon_vma(page);
2578 struct page *new_page;
2579
2580 if (PageKsm(page)) {
2581 if (page_stable_node(page) &&
2582 !(ksm_run & KSM_RUN_UNMERGE))
2583 return page; /* no need to copy it */
2584 } else if (!anon_vma) {
2585 return page; /* no need to copy it */
2586 } else if (anon_vma->root == vma->anon_vma->root &&
2587 page->index == linear_page_index(vma, address)) {
2588 return page; /* still no need to copy it */
2589 }
2590 if (!PageUptodate(page))
2591 return page; /* let do_swap_page report the error */
2592
2593 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2594 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2595 put_page(new_page);
2596 new_page = NULL;
2597 }
2598 if (new_page) {
2599 copy_user_highpage(new_page, page, address, vma);
2600
2601 SetPageDirty(new_page);
2602 __SetPageUptodate(new_page);
2603 __SetPageLocked(new_page);
2604 }
2605
2606 return new_page;
2607 }
2608
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2610 {
2611 struct stable_node *stable_node;
2612 struct rmap_item *rmap_item;
2613 int search_new_forks = 0;
2614
2615 VM_BUG_ON_PAGE(!PageKsm(page), page);
2616
2617 /*
2618 * Rely on the page lock to protect against concurrent modifications
2619 * to that page's node of the stable tree.
2620 */
2621 VM_BUG_ON_PAGE(!PageLocked(page), page);
2622
2623 stable_node = page_stable_node(page);
2624 if (!stable_node)
2625 return;
2626 again:
2627 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2628 struct anon_vma *anon_vma = rmap_item->anon_vma;
2629 struct anon_vma_chain *vmac;
2630 struct vm_area_struct *vma;
2631
2632 cond_resched();
2633 anon_vma_lock_read(anon_vma);
2634 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2635 0, ULONG_MAX) {
2636 unsigned long addr;
2637
2638 cond_resched();
2639 vma = vmac->vma;
2640
2641 /* Ignore the stable/unstable/sqnr flags */
2642 addr = rmap_item->address & ~KSM_FLAG_MASK;
2643
2644 if (addr < vma->vm_start || addr >= vma->vm_end)
2645 continue;
2646 /*
2647 * Initially we examine only the vma which covers this
2648 * rmap_item; but later, if there is still work to do,
2649 * we examine covering vmas in other mms: in case they
2650 * were forked from the original since ksmd passed.
2651 */
2652 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2653 continue;
2654
2655 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656 continue;
2657
2658 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2659 anon_vma_unlock_read(anon_vma);
2660 return;
2661 }
2662 if (rwc->done && rwc->done(page)) {
2663 anon_vma_unlock_read(anon_vma);
2664 return;
2665 }
2666 }
2667 anon_vma_unlock_read(anon_vma);
2668 }
2669 if (!search_new_forks++)
2670 goto again;
2671 }
2672
2673 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2674 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2675 {
2676 struct stable_node *stable_node;
2677
2678 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2679 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2680 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2681
2682 stable_node = page_stable_node(newpage);
2683 if (stable_node) {
2684 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2685 stable_node->kpfn = page_to_pfn(newpage);
2686 /*
2687 * newpage->mapping was set in advance; now we need smp_wmb()
2688 * to make sure that the new stable_node->kpfn is visible
2689 * to get_ksm_page() before it can see that oldpage->mapping
2690 * has gone stale (or that PageSwapCache has been cleared).
2691 */
2692 smp_wmb();
2693 set_page_stable_node(oldpage, NULL);
2694 }
2695 }
2696 #endif /* CONFIG_MIGRATION */
2697
2698 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2699 static void wait_while_offlining(void)
2700 {
2701 while (ksm_run & KSM_RUN_OFFLINE) {
2702 mutex_unlock(&ksm_thread_mutex);
2703 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2704 TASK_UNINTERRUPTIBLE);
2705 mutex_lock(&ksm_thread_mutex);
2706 }
2707 }
2708
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2709 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2710 unsigned long start_pfn,
2711 unsigned long end_pfn)
2712 {
2713 if (stable_node->kpfn >= start_pfn &&
2714 stable_node->kpfn < end_pfn) {
2715 /*
2716 * Don't get_ksm_page, page has already gone:
2717 * which is why we keep kpfn instead of page*
2718 */
2719 remove_node_from_stable_tree(stable_node);
2720 return true;
2721 }
2722 return false;
2723 }
2724
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2725 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2726 unsigned long start_pfn,
2727 unsigned long end_pfn,
2728 struct rb_root *root)
2729 {
2730 struct stable_node *dup;
2731 struct hlist_node *hlist_safe;
2732
2733 if (!is_stable_node_chain(stable_node)) {
2734 VM_BUG_ON(is_stable_node_dup(stable_node));
2735 return stable_node_dup_remove_range(stable_node, start_pfn,
2736 end_pfn);
2737 }
2738
2739 hlist_for_each_entry_safe(dup, hlist_safe,
2740 &stable_node->hlist, hlist_dup) {
2741 VM_BUG_ON(!is_stable_node_dup(dup));
2742 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2743 }
2744 if (hlist_empty(&stable_node->hlist)) {
2745 free_stable_node_chain(stable_node, root);
2746 return true; /* notify caller that tree was rebalanced */
2747 } else
2748 return false;
2749 }
2750
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2751 static void ksm_check_stable_tree(unsigned long start_pfn,
2752 unsigned long end_pfn)
2753 {
2754 struct stable_node *stable_node, *next;
2755 struct rb_node *node;
2756 int nid;
2757
2758 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2759 node = rb_first(root_stable_tree + nid);
2760 while (node) {
2761 stable_node = rb_entry(node, struct stable_node, node);
2762 if (stable_node_chain_remove_range(stable_node,
2763 start_pfn, end_pfn,
2764 root_stable_tree +
2765 nid))
2766 node = rb_first(root_stable_tree + nid);
2767 else
2768 node = rb_next(node);
2769 cond_resched();
2770 }
2771 }
2772 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2773 if (stable_node->kpfn >= start_pfn &&
2774 stable_node->kpfn < end_pfn)
2775 remove_node_from_stable_tree(stable_node);
2776 cond_resched();
2777 }
2778 }
2779
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2780 static int ksm_memory_callback(struct notifier_block *self,
2781 unsigned long action, void *arg)
2782 {
2783 struct memory_notify *mn = arg;
2784
2785 switch (action) {
2786 case MEM_GOING_OFFLINE:
2787 /*
2788 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2789 * and remove_all_stable_nodes() while memory is going offline:
2790 * it is unsafe for them to touch the stable tree at this time.
2791 * But unmerge_ksm_pages(), rmap lookups and other entry points
2792 * which do not need the ksm_thread_mutex are all safe.
2793 */
2794 mutex_lock(&ksm_thread_mutex);
2795 ksm_run |= KSM_RUN_OFFLINE;
2796 mutex_unlock(&ksm_thread_mutex);
2797 break;
2798
2799 case MEM_OFFLINE:
2800 /*
2801 * Most of the work is done by page migration; but there might
2802 * be a few stable_nodes left over, still pointing to struct
2803 * pages which have been offlined: prune those from the tree,
2804 * otherwise get_ksm_page() might later try to access a
2805 * non-existent struct page.
2806 */
2807 ksm_check_stable_tree(mn->start_pfn,
2808 mn->start_pfn + mn->nr_pages);
2809 fallthrough;
2810 case MEM_CANCEL_OFFLINE:
2811 mutex_lock(&ksm_thread_mutex);
2812 ksm_run &= ~KSM_RUN_OFFLINE;
2813 mutex_unlock(&ksm_thread_mutex);
2814
2815 smp_mb(); /* wake_up_bit advises this */
2816 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2817 break;
2818 }
2819 return NOTIFY_OK;
2820 }
2821 #else
wait_while_offlining(void)2822 static void wait_while_offlining(void)
2823 {
2824 }
2825 #endif /* CONFIG_MEMORY_HOTREMOVE */
2826
2827 #ifdef CONFIG_SYSFS
2828 /*
2829 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2830 */
2831
2832 #define KSM_ATTR_RO(_name) \
2833 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2834 #define KSM_ATTR(_name) \
2835 static struct kobj_attribute _name##_attr = \
2836 __ATTR(_name, 0644, _name##_show, _name##_store)
2837
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2838 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2839 struct kobj_attribute *attr, char *buf)
2840 {
2841 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2842 }
2843
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2844 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2845 struct kobj_attribute *attr,
2846 const char *buf, size_t count)
2847 {
2848 unsigned long msecs;
2849 int err;
2850
2851 err = kstrtoul(buf, 10, &msecs);
2852 if (err || msecs > UINT_MAX)
2853 return -EINVAL;
2854
2855 ksm_thread_sleep_millisecs = msecs;
2856 wake_up_interruptible(&ksm_iter_wait);
2857
2858 return count;
2859 }
2860 KSM_ATTR(sleep_millisecs);
2861
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2862 static ssize_t pages_to_scan_show(struct kobject *kobj,
2863 struct kobj_attribute *attr, char *buf)
2864 {
2865 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2866 }
2867
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2868 static ssize_t pages_to_scan_store(struct kobject *kobj,
2869 struct kobj_attribute *attr,
2870 const char *buf, size_t count)
2871 {
2872 int err;
2873 unsigned long nr_pages;
2874
2875 err = kstrtoul(buf, 10, &nr_pages);
2876 if (err || nr_pages > UINT_MAX)
2877 return -EINVAL;
2878
2879 ksm_thread_pages_to_scan = nr_pages;
2880
2881 return count;
2882 }
2883 KSM_ATTR(pages_to_scan);
2884
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2885 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2886 char *buf)
2887 {
2888 return sprintf(buf, "%lu\n", ksm_run);
2889 }
2890
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2891 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2892 const char *buf, size_t count)
2893 {
2894 int err;
2895 unsigned long flags;
2896
2897 err = kstrtoul(buf, 10, &flags);
2898 if (err || flags > UINT_MAX)
2899 return -EINVAL;
2900 if (flags > KSM_RUN_UNMERGE)
2901 return -EINVAL;
2902
2903 /*
2904 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2905 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2906 * breaking COW to free the pages_shared (but leaves mm_slots
2907 * on the list for when ksmd may be set running again).
2908 */
2909
2910 mutex_lock(&ksm_thread_mutex);
2911 wait_while_offlining();
2912 if (ksm_run != flags) {
2913 ksm_run = flags;
2914 if (flags & KSM_RUN_UNMERGE) {
2915 set_current_oom_origin();
2916 err = unmerge_and_remove_all_rmap_items();
2917 clear_current_oom_origin();
2918 if (err) {
2919 ksm_run = KSM_RUN_STOP;
2920 count = err;
2921 }
2922 }
2923 }
2924 mutex_unlock(&ksm_thread_mutex);
2925
2926 if (flags & KSM_RUN_MERGE)
2927 wake_up_interruptible(&ksm_thread_wait);
2928
2929 return count;
2930 }
2931 KSM_ATTR(run);
2932
2933 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2934 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2935 struct kobj_attribute *attr, char *buf)
2936 {
2937 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2938 }
2939
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2940 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2941 struct kobj_attribute *attr,
2942 const char *buf, size_t count)
2943 {
2944 int err;
2945 unsigned long knob;
2946
2947 err = kstrtoul(buf, 10, &knob);
2948 if (err)
2949 return err;
2950 if (knob > 1)
2951 return -EINVAL;
2952
2953 mutex_lock(&ksm_thread_mutex);
2954 wait_while_offlining();
2955 if (ksm_merge_across_nodes != knob) {
2956 if (ksm_pages_shared || remove_all_stable_nodes())
2957 err = -EBUSY;
2958 else if (root_stable_tree == one_stable_tree) {
2959 struct rb_root *buf;
2960 /*
2961 * This is the first time that we switch away from the
2962 * default of merging across nodes: must now allocate
2963 * a buffer to hold as many roots as may be needed.
2964 * Allocate stable and unstable together:
2965 * MAXSMP NODES_SHIFT 10 will use 16kB.
2966 */
2967 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2968 GFP_KERNEL);
2969 /* Let us assume that RB_ROOT is NULL is zero */
2970 if (!buf)
2971 err = -ENOMEM;
2972 else {
2973 root_stable_tree = buf;
2974 root_unstable_tree = buf + nr_node_ids;
2975 /* Stable tree is empty but not the unstable */
2976 root_unstable_tree[0] = one_unstable_tree[0];
2977 }
2978 }
2979 if (!err) {
2980 ksm_merge_across_nodes = knob;
2981 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2982 }
2983 }
2984 mutex_unlock(&ksm_thread_mutex);
2985
2986 return err ? err : count;
2987 }
2988 KSM_ATTR(merge_across_nodes);
2989 #endif
2990
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2991 static ssize_t use_zero_pages_show(struct kobject *kobj,
2992 struct kobj_attribute *attr, char *buf)
2993 {
2994 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2995 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2996 static ssize_t use_zero_pages_store(struct kobject *kobj,
2997 struct kobj_attribute *attr,
2998 const char *buf, size_t count)
2999 {
3000 int err;
3001 bool value;
3002
3003 err = kstrtobool(buf, &value);
3004 if (err)
3005 return -EINVAL;
3006
3007 ksm_use_zero_pages = value;
3008
3009 return count;
3010 }
3011 KSM_ATTR(use_zero_pages);
3012
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3013 static ssize_t max_page_sharing_show(struct kobject *kobj,
3014 struct kobj_attribute *attr, char *buf)
3015 {
3016 return sprintf(buf, "%u\n", ksm_max_page_sharing);
3017 }
3018
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3019 static ssize_t max_page_sharing_store(struct kobject *kobj,
3020 struct kobj_attribute *attr,
3021 const char *buf, size_t count)
3022 {
3023 int err;
3024 int knob;
3025
3026 err = kstrtoint(buf, 10, &knob);
3027 if (err)
3028 return err;
3029 /*
3030 * When a KSM page is created it is shared by 2 mappings. This
3031 * being a signed comparison, it implicitly verifies it's not
3032 * negative.
3033 */
3034 if (knob < 2)
3035 return -EINVAL;
3036
3037 if (READ_ONCE(ksm_max_page_sharing) == knob)
3038 return count;
3039
3040 mutex_lock(&ksm_thread_mutex);
3041 wait_while_offlining();
3042 if (ksm_max_page_sharing != knob) {
3043 if (ksm_pages_shared || remove_all_stable_nodes())
3044 err = -EBUSY;
3045 else
3046 ksm_max_page_sharing = knob;
3047 }
3048 mutex_unlock(&ksm_thread_mutex);
3049
3050 return err ? err : count;
3051 }
3052 KSM_ATTR(max_page_sharing);
3053
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3054 static ssize_t pages_shared_show(struct kobject *kobj,
3055 struct kobj_attribute *attr, char *buf)
3056 {
3057 return sprintf(buf, "%lu\n", ksm_pages_shared);
3058 }
3059 KSM_ATTR_RO(pages_shared);
3060
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3061 static ssize_t pages_sharing_show(struct kobject *kobj,
3062 struct kobj_attribute *attr, char *buf)
3063 {
3064 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3065 }
3066 KSM_ATTR_RO(pages_sharing);
3067
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3068 static ssize_t pages_unshared_show(struct kobject *kobj,
3069 struct kobj_attribute *attr, char *buf)
3070 {
3071 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3072 }
3073 KSM_ATTR_RO(pages_unshared);
3074
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3075 static ssize_t pages_volatile_show(struct kobject *kobj,
3076 struct kobj_attribute *attr, char *buf)
3077 {
3078 long ksm_pages_volatile;
3079
3080 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3081 - ksm_pages_sharing - ksm_pages_unshared;
3082 /*
3083 * It was not worth any locking to calculate that statistic,
3084 * but it might therefore sometimes be negative: conceal that.
3085 */
3086 if (ksm_pages_volatile < 0)
3087 ksm_pages_volatile = 0;
3088 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3089 }
3090 KSM_ATTR_RO(pages_volatile);
3091
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3092 static ssize_t stable_node_dups_show(struct kobject *kobj,
3093 struct kobj_attribute *attr, char *buf)
3094 {
3095 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3096 }
3097 KSM_ATTR_RO(stable_node_dups);
3098
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3099 static ssize_t stable_node_chains_show(struct kobject *kobj,
3100 struct kobj_attribute *attr, char *buf)
3101 {
3102 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3103 }
3104 KSM_ATTR_RO(stable_node_chains);
3105
3106 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3107 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3108 struct kobj_attribute *attr,
3109 char *buf)
3110 {
3111 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3112 }
3113
3114 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3115 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3116 struct kobj_attribute *attr,
3117 const char *buf, size_t count)
3118 {
3119 unsigned long msecs;
3120 int err;
3121
3122 err = kstrtoul(buf, 10, &msecs);
3123 if (err || msecs > UINT_MAX)
3124 return -EINVAL;
3125
3126 ksm_stable_node_chains_prune_millisecs = msecs;
3127
3128 return count;
3129 }
3130 KSM_ATTR(stable_node_chains_prune_millisecs);
3131
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3132 static ssize_t full_scans_show(struct kobject *kobj,
3133 struct kobj_attribute *attr, char *buf)
3134 {
3135 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3136 }
3137 KSM_ATTR_RO(full_scans);
3138
3139 static struct attribute *ksm_attrs[] = {
3140 &sleep_millisecs_attr.attr,
3141 &pages_to_scan_attr.attr,
3142 &run_attr.attr,
3143 &pages_shared_attr.attr,
3144 &pages_sharing_attr.attr,
3145 &pages_unshared_attr.attr,
3146 &pages_volatile_attr.attr,
3147 &full_scans_attr.attr,
3148 #ifdef CONFIG_NUMA
3149 &merge_across_nodes_attr.attr,
3150 #endif
3151 &max_page_sharing_attr.attr,
3152 &stable_node_chains_attr.attr,
3153 &stable_node_dups_attr.attr,
3154 &stable_node_chains_prune_millisecs_attr.attr,
3155 &use_zero_pages_attr.attr,
3156 NULL,
3157 };
3158
3159 static const struct attribute_group ksm_attr_group = {
3160 .attrs = ksm_attrs,
3161 .name = "ksm",
3162 };
3163 #endif /* CONFIG_SYSFS */
3164
ksm_init(void)3165 static int __init ksm_init(void)
3166 {
3167 struct task_struct *ksm_thread;
3168 int err;
3169
3170 /* The correct value depends on page size and endianness */
3171 zero_checksum = calc_checksum(ZERO_PAGE(0));
3172 /* Default to false for backwards compatibility */
3173 ksm_use_zero_pages = false;
3174
3175 err = ksm_slab_init();
3176 if (err)
3177 goto out;
3178
3179 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3180 if (IS_ERR(ksm_thread)) {
3181 pr_err("ksm: creating kthread failed\n");
3182 err = PTR_ERR(ksm_thread);
3183 goto out_free;
3184 }
3185
3186 #ifdef CONFIG_SYSFS
3187 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3188 if (err) {
3189 pr_err("ksm: register sysfs failed\n");
3190 kthread_stop(ksm_thread);
3191 goto out_free;
3192 }
3193 #else
3194 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3195
3196 #endif /* CONFIG_SYSFS */
3197
3198 #ifdef CONFIG_MEMORY_HOTREMOVE
3199 /* There is no significance to this priority 100 */
3200 hotplug_memory_notifier(ksm_memory_callback, 100);
3201 #endif
3202 return 0;
3203
3204 out_free:
3205 ksm_slab_free();
3206 out:
3207 return err;
3208 }
3209 subsys_initcall(ksm_init);
3210