• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name[NR_KMALLOC_TYPES];
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 			slab_flags_t flags, unsigned int useroffset,
99 			unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 			unsigned int size, slab_flags_t flags,
102 			unsigned int useroffset, unsigned int usersize);
103 
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 		slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 		   slab_flags_t flags, void (*ctor)(void *));
111 
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 	slab_flags_t flags, const char *name);
114 #else
115 static inline struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))116 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117 		   slab_flags_t flags, void (*ctor)(void *))
118 { return NULL; }
119 
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)120 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121 	slab_flags_t flags, const char *name)
122 {
123 	return flags;
124 }
125 #endif
126 
127 
128 /* Legal flag mask for kmem_cache_create(), for various configurations */
129 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
130 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
131 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
132 
133 #if defined(CONFIG_DEBUG_SLAB)
134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135 #elif defined(CONFIG_SLUB_DEBUG)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
137 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
138 #else
139 #define SLAB_DEBUG_FLAGS (0)
140 #endif
141 
142 #if defined(CONFIG_SLAB)
143 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
144 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
145 			  SLAB_ACCOUNT)
146 #elif defined(CONFIG_SLUB)
147 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
148 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
149 #else
150 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
151 #endif
152 
153 /* Common flags available with current configuration */
154 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155 
156 /* Common flags permitted for kmem_cache_create */
157 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 			      SLAB_RED_ZONE | \
159 			      SLAB_POISON | \
160 			      SLAB_STORE_USER | \
161 			      SLAB_TRACE | \
162 			      SLAB_CONSISTENCY_CHECKS | \
163 			      SLAB_MEM_SPREAD | \
164 			      SLAB_NOLEAKTRACE | \
165 			      SLAB_RECLAIM_ACCOUNT | \
166 			      SLAB_TEMPORARY | \
167 			      SLAB_ACCOUNT)
168 
169 bool __kmem_cache_empty(struct kmem_cache *);
170 int __kmem_cache_shutdown(struct kmem_cache *);
171 void __kmem_cache_release(struct kmem_cache *);
172 int __kmem_cache_shrink(struct kmem_cache *);
173 void slab_kmem_cache_release(struct kmem_cache *);
174 
175 struct seq_file;
176 struct file;
177 
178 struct slabinfo {
179 	unsigned long active_objs;
180 	unsigned long num_objs;
181 	unsigned long active_slabs;
182 	unsigned long num_slabs;
183 	unsigned long shared_avail;
184 	unsigned int limit;
185 	unsigned int batchcount;
186 	unsigned int shared;
187 	unsigned int objects_per_slab;
188 	unsigned int cache_order;
189 };
190 
191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 		       size_t count, loff_t *ppos);
195 
196 /*
197  * Generic implementation of bulk operations
198  * These are useful for situations in which the allocator cannot
199  * perform optimizations. In that case segments of the object listed
200  * may be allocated or freed using these operations.
201  */
202 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204 
cache_vmstat_idx(struct kmem_cache * s)205 static inline int cache_vmstat_idx(struct kmem_cache *s)
206 {
207 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
208 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
209 }
210 
211 #ifdef CONFIG_SLUB_DEBUG
212 #ifdef CONFIG_SLUB_DEBUG_ON
213 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
214 #else
215 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
216 #endif
217 extern void print_tracking(struct kmem_cache *s, void *object);
218 #else
print_tracking(struct kmem_cache * s,void * object)219 static inline void print_tracking(struct kmem_cache *s, void *object)
220 {
221 }
222 #endif
223 
224 /*
225  * Returns true if any of the specified slub_debug flags is enabled for the
226  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
227  * the static key.
228  */
kmem_cache_debug_flags(struct kmem_cache * s,slab_flags_t flags)229 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
230 {
231 #ifdef CONFIG_SLUB_DEBUG
232 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
233 	if (static_branch_unlikely(&slub_debug_enabled))
234 		return s->flags & flags;
235 #endif
236 	return false;
237 }
238 
239 #ifdef CONFIG_MEMCG_KMEM
page_obj_cgroups(struct page * page)240 static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
241 {
242 	/*
243 	 * page->mem_cgroup and page->obj_cgroups are sharing the same
244 	 * space. To distinguish between them in case we don't know for sure
245 	 * that the page is a slab page (e.g. page_cgroup_ino()), let's
246 	 * always set the lowest bit of obj_cgroups.
247 	 */
248 	return (struct obj_cgroup **)
249 		((unsigned long)page->obj_cgroups & ~0x1UL);
250 }
251 
page_has_obj_cgroups(struct page * page)252 static inline bool page_has_obj_cgroups(struct page *page)
253 {
254 	return ((unsigned long)page->obj_cgroups & 0x1UL);
255 }
256 
257 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
258 				 gfp_t gfp);
259 
memcg_free_page_obj_cgroups(struct page * page)260 static inline void memcg_free_page_obj_cgroups(struct page *page)
261 {
262 	kfree(page_obj_cgroups(page));
263 	page->obj_cgroups = NULL;
264 }
265 
obj_full_size(struct kmem_cache * s)266 static inline size_t obj_full_size(struct kmem_cache *s)
267 {
268 	/*
269 	 * For each accounted object there is an extra space which is used
270 	 * to store obj_cgroup membership. Charge it too.
271 	 */
272 	return s->size + sizeof(struct obj_cgroup *);
273 }
274 
275 /*
276  * Returns false if the allocation should fail.
277  */
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)278 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
279 					     struct obj_cgroup **objcgp,
280 					     size_t objects, gfp_t flags)
281 {
282 	struct obj_cgroup *objcg;
283 
284 	if (!memcg_kmem_enabled())
285 		return true;
286 
287 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
288 		return true;
289 
290 	objcg = get_obj_cgroup_from_current();
291 	if (!objcg)
292 		return true;
293 
294 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
295 		obj_cgroup_put(objcg);
296 		return false;
297 	}
298 
299 	*objcgp = objcg;
300 	return true;
301 }
302 
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,int idx,int nr)303 static inline void mod_objcg_state(struct obj_cgroup *objcg,
304 				   struct pglist_data *pgdat,
305 				   int idx, int nr)
306 {
307 	struct mem_cgroup *memcg;
308 	struct lruvec *lruvec;
309 
310 	rcu_read_lock();
311 	memcg = obj_cgroup_memcg(objcg);
312 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
313 	mod_memcg_lruvec_state(lruvec, idx, nr);
314 	rcu_read_unlock();
315 }
316 
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)317 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
318 					      struct obj_cgroup *objcg,
319 					      gfp_t flags, size_t size,
320 					      void **p)
321 {
322 	struct page *page;
323 	unsigned long off;
324 	size_t i;
325 
326 	if (!memcg_kmem_enabled() || !objcg)
327 		return;
328 
329 	for (i = 0; i < size; i++) {
330 		if (likely(p[i])) {
331 			page = virt_to_head_page(p[i]);
332 
333 			if (!page_has_obj_cgroups(page) &&
334 			    memcg_alloc_page_obj_cgroups(page, s, flags)) {
335 				obj_cgroup_uncharge(objcg, obj_full_size(s));
336 				continue;
337 			}
338 
339 			off = obj_to_index(s, page, p[i]);
340 			obj_cgroup_get(objcg);
341 			page_obj_cgroups(page)[off] = objcg;
342 			mod_objcg_state(objcg, page_pgdat(page),
343 					cache_vmstat_idx(s), obj_full_size(s));
344 		} else {
345 			obj_cgroup_uncharge(objcg, obj_full_size(s));
346 		}
347 	}
348 	obj_cgroup_put(objcg);
349 }
350 
memcg_slab_free_hook(struct kmem_cache * s_orig,void ** p,int objects)351 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
352 					void **p, int objects)
353 {
354 	struct kmem_cache *s;
355 	struct obj_cgroup *objcg;
356 	struct page *page;
357 	unsigned int off;
358 	int i;
359 
360 	if (!memcg_kmem_enabled())
361 		return;
362 
363 	for (i = 0; i < objects; i++) {
364 		if (unlikely(!p[i]))
365 			continue;
366 
367 		page = virt_to_head_page(p[i]);
368 		if (!page_has_obj_cgroups(page))
369 			continue;
370 
371 		if (!s_orig)
372 			s = page->slab_cache;
373 		else
374 			s = s_orig;
375 
376 		off = obj_to_index(s, page, p[i]);
377 		objcg = page_obj_cgroups(page)[off];
378 		if (!objcg)
379 			continue;
380 
381 		page_obj_cgroups(page)[off] = NULL;
382 		obj_cgroup_uncharge(objcg, obj_full_size(s));
383 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
384 				-obj_full_size(s));
385 		obj_cgroup_put(objcg);
386 	}
387 }
388 
389 #else /* CONFIG_MEMCG_KMEM */
page_has_obj_cgroups(struct page * page)390 static inline bool page_has_obj_cgroups(struct page *page)
391 {
392 	return false;
393 }
394 
memcg_from_slab_obj(void * ptr)395 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
396 {
397 	return NULL;
398 }
399 
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)400 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
401 					       struct kmem_cache *s, gfp_t gfp)
402 {
403 	return 0;
404 }
405 
memcg_free_page_obj_cgroups(struct page * page)406 static inline void memcg_free_page_obj_cgroups(struct page *page)
407 {
408 }
409 
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)410 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
411 					     struct obj_cgroup **objcgp,
412 					     size_t objects, gfp_t flags)
413 {
414 	return true;
415 }
416 
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)417 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
418 					      struct obj_cgroup *objcg,
419 					      gfp_t flags, size_t size,
420 					      void **p)
421 {
422 }
423 
memcg_slab_free_hook(struct kmem_cache * s,void ** p,int objects)424 static inline void memcg_slab_free_hook(struct kmem_cache *s,
425 					void **p, int objects)
426 {
427 }
428 #endif /* CONFIG_MEMCG_KMEM */
429 
virt_to_cache(const void * obj)430 static inline struct kmem_cache *virt_to_cache(const void *obj)
431 {
432 	struct page *page;
433 
434 	page = virt_to_head_page(obj);
435 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
436 					__func__))
437 		return NULL;
438 	return page->slab_cache;
439 }
440 
account_slab_page(struct page * page,int order,struct kmem_cache * s)441 static __always_inline void account_slab_page(struct page *page, int order,
442 					      struct kmem_cache *s)
443 {
444 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
445 			    PAGE_SIZE << order);
446 }
447 
unaccount_slab_page(struct page * page,int order,struct kmem_cache * s)448 static __always_inline void unaccount_slab_page(struct page *page, int order,
449 						struct kmem_cache *s)
450 {
451 	if (memcg_kmem_enabled())
452 		memcg_free_page_obj_cgroups(page);
453 
454 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
455 			    -(PAGE_SIZE << order));
456 }
457 
cache_from_obj(struct kmem_cache * s,void * x)458 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
459 {
460 	struct kmem_cache *cachep;
461 
462 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
463 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
464 		return s;
465 
466 	cachep = virt_to_cache(x);
467 	if (WARN(cachep && cachep != s,
468 		  "%s: Wrong slab cache. %s but object is from %s\n",
469 		  __func__, s->name, cachep->name))
470 		print_tracking(cachep, x);
471 	return cachep;
472 }
473 
slab_ksize(const struct kmem_cache * s)474 static inline size_t slab_ksize(const struct kmem_cache *s)
475 {
476 #ifndef CONFIG_SLUB
477 	return s->object_size;
478 
479 #else /* CONFIG_SLUB */
480 # ifdef CONFIG_SLUB_DEBUG
481 	/*
482 	 * Debugging requires use of the padding between object
483 	 * and whatever may come after it.
484 	 */
485 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
486 		return s->object_size;
487 # endif
488 	if (s->flags & SLAB_KASAN)
489 		return s->object_size;
490 	/*
491 	 * If we have the need to store the freelist pointer
492 	 * back there or track user information then we can
493 	 * only use the space before that information.
494 	 */
495 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
496 		return s->inuse;
497 	/*
498 	 * Else we can use all the padding etc for the allocation
499 	 */
500 	return s->size;
501 #endif
502 }
503 
slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t size,gfp_t flags)504 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
505 						     struct obj_cgroup **objcgp,
506 						     size_t size, gfp_t flags)
507 {
508 	flags &= gfp_allowed_mask;
509 
510 	fs_reclaim_acquire(flags);
511 	fs_reclaim_release(flags);
512 
513 	might_sleep_if(gfpflags_allow_blocking(flags));
514 
515 	if (should_failslab(s, flags))
516 		return NULL;
517 
518 	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
519 		return NULL;
520 
521 	return s;
522 }
523 
slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)524 static inline void slab_post_alloc_hook(struct kmem_cache *s,
525 					struct obj_cgroup *objcg,
526 					gfp_t flags, size_t size, void **p)
527 {
528 	size_t i;
529 
530 	flags &= gfp_allowed_mask;
531 	for (i = 0; i < size; i++) {
532 		p[i] = kasan_slab_alloc(s, p[i], flags);
533 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
534 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
535 					 s->flags, flags);
536 	}
537 
538 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
539 }
540 
541 #ifndef CONFIG_SLOB
542 /*
543  * The slab lists for all objects.
544  */
545 struct kmem_cache_node {
546 	spinlock_t list_lock;
547 
548 #ifdef CONFIG_SLAB
549 	struct list_head slabs_partial;	/* partial list first, better asm code */
550 	struct list_head slabs_full;
551 	struct list_head slabs_free;
552 	unsigned long total_slabs;	/* length of all slab lists */
553 	unsigned long free_slabs;	/* length of free slab list only */
554 	unsigned long free_objects;
555 	unsigned int free_limit;
556 	unsigned int colour_next;	/* Per-node cache coloring */
557 	struct array_cache *shared;	/* shared per node */
558 	struct alien_cache **alien;	/* on other nodes */
559 	unsigned long next_reap;	/* updated without locking */
560 	int free_touched;		/* updated without locking */
561 #endif
562 
563 #ifdef CONFIG_SLUB
564 	unsigned long nr_partial;
565 	struct list_head partial;
566 #ifdef CONFIG_SLUB_DEBUG
567 	atomic_long_t nr_slabs;
568 	atomic_long_t total_objects;
569 	struct list_head full;
570 #endif
571 #endif
572 
573 };
574 
get_node(struct kmem_cache * s,int node)575 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
576 {
577 	return s->node[node];
578 }
579 
580 /*
581  * Iterator over all nodes. The body will be executed for each node that has
582  * a kmem_cache_node structure allocated (which is true for all online nodes)
583  */
584 #define for_each_kmem_cache_node(__s, __node, __n) \
585 	for (__node = 0; __node < nr_node_ids; __node++) \
586 		 if ((__n = get_node(__s, __node)))
587 
588 #endif
589 
590 void *slab_start(struct seq_file *m, loff_t *pos);
591 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
592 void slab_stop(struct seq_file *m, void *p);
593 int memcg_slab_show(struct seq_file *m, void *p);
594 
595 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
596 void dump_unreclaimable_slab(void);
597 #else
dump_unreclaimable_slab(void)598 static inline void dump_unreclaimable_slab(void)
599 {
600 }
601 #endif
602 
603 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
604 
605 #ifdef CONFIG_SLAB_FREELIST_RANDOM
606 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
607 			gfp_t gfp);
608 void cache_random_seq_destroy(struct kmem_cache *cachep);
609 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)610 static inline int cache_random_seq_create(struct kmem_cache *cachep,
611 					unsigned int count, gfp_t gfp)
612 {
613 	return 0;
614 }
cache_random_seq_destroy(struct kmem_cache * cachep)615 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
616 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
617 
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)618 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
619 {
620 	if (static_branch_unlikely(&init_on_alloc)) {
621 		if (c->ctor)
622 			return false;
623 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
624 			return flags & __GFP_ZERO;
625 		return true;
626 	}
627 	return flags & __GFP_ZERO;
628 }
629 
slab_want_init_on_free(struct kmem_cache * c)630 static inline bool slab_want_init_on_free(struct kmem_cache *c)
631 {
632 	if (static_branch_unlikely(&init_on_free))
633 		return !(c->ctor ||
634 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
635 	return false;
636 }
637 
638 #endif /* MM_SLAB_H */
639