1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include "protocol.h"
25 #include "mib.h"
26
27 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
28 struct mptcp6_sock {
29 struct mptcp_sock msk;
30 struct ipv6_pinfo np;
31 };
32 #endif
33
34 struct mptcp_skb_cb {
35 u64 map_seq;
36 u64 end_seq;
37 u32 offset;
38 };
39
40 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
41
42 static struct percpu_counter mptcp_sockets_allocated;
43
44 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
45 * completed yet or has failed, return the subflow socket.
46 * Otherwise return NULL.
47 */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)48 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
49 {
50 if (!msk->subflow || READ_ONCE(msk->can_ack))
51 return NULL;
52
53 return msk->subflow;
54 }
55
mptcp_is_tcpsk(struct sock * sk)56 static bool mptcp_is_tcpsk(struct sock *sk)
57 {
58 struct socket *sock = sk->sk_socket;
59
60 if (unlikely(sk->sk_prot == &tcp_prot)) {
61 /* we are being invoked after mptcp_accept() has
62 * accepted a non-mp-capable flow: sk is a tcp_sk,
63 * not an mptcp one.
64 *
65 * Hand the socket over to tcp so all further socket ops
66 * bypass mptcp.
67 */
68 sock->ops = &inet_stream_ops;
69 return true;
70 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
71 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
72 sock->ops = &inet6_stream_ops;
73 return true;
74 #endif
75 }
76
77 return false;
78 }
79
__mptcp_tcp_fallback(struct mptcp_sock * msk)80 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
81 {
82 sock_owned_by_me((const struct sock *)msk);
83
84 if (likely(!__mptcp_check_fallback(msk)))
85 return NULL;
86
87 return msk->first;
88 }
89
__mptcp_socket_create(struct mptcp_sock * msk)90 static int __mptcp_socket_create(struct mptcp_sock *msk)
91 {
92 struct mptcp_subflow_context *subflow;
93 struct sock *sk = (struct sock *)msk;
94 struct socket *ssock;
95 int err;
96
97 err = mptcp_subflow_create_socket(sk, &ssock);
98 if (err)
99 return err;
100
101 msk->first = ssock->sk;
102 msk->subflow = ssock;
103 subflow = mptcp_subflow_ctx(ssock->sk);
104 list_add(&subflow->node, &msk->conn_list);
105 subflow->request_mptcp = 1;
106
107 /* accept() will wait on first subflow sk_wq, and we always wakes up
108 * via msk->sk_socket
109 */
110 RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq);
111
112 return 0;
113 }
114
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 sk_drops_add(sk, skb);
118 __kfree_skb(skb);
119 }
120
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
122 struct sk_buff *from)
123 {
124 bool fragstolen;
125 int delta;
126
127 if (MPTCP_SKB_CB(from)->offset ||
128 !skb_try_coalesce(to, from, &fragstolen, &delta))
129 return false;
130
131 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
132 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
133 to->len, MPTCP_SKB_CB(from)->end_seq);
134 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
135 kfree_skb_partial(from, fragstolen);
136 atomic_add(delta, &sk->sk_rmem_alloc);
137 sk_mem_charge(sk, delta);
138 return true;
139 }
140
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)141 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
142 struct sk_buff *from)
143 {
144 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
145 return false;
146
147 return mptcp_try_coalesce((struct sock *)msk, to, from);
148 }
149
150 /* "inspired" by tcp_data_queue_ofo(), main differences:
151 * - use mptcp seqs
152 * - don't cope with sacks
153 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)154 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
155 {
156 struct sock *sk = (struct sock *)msk;
157 struct rb_node **p, *parent;
158 u64 seq, end_seq, max_seq;
159 struct sk_buff *skb1;
160 int space;
161
162 seq = MPTCP_SKB_CB(skb)->map_seq;
163 end_seq = MPTCP_SKB_CB(skb)->end_seq;
164 space = tcp_space(sk);
165 max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq;
166
167 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
168 RB_EMPTY_ROOT(&msk->out_of_order_queue));
169 if (after64(seq, max_seq)) {
170 /* out of window */
171 mptcp_drop(sk, skb);
172 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
173 return;
174 }
175
176 p = &msk->out_of_order_queue.rb_node;
177 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
178 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
179 rb_link_node(&skb->rbnode, NULL, p);
180 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
181 msk->ooo_last_skb = skb;
182 goto end;
183 }
184
185 /* with 2 subflows, adding at end of ooo queue is quite likely
186 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
187 */
188 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
189 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
190 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
191 return;
192 }
193
194 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
195 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
196 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
197 parent = &msk->ooo_last_skb->rbnode;
198 p = &parent->rb_right;
199 goto insert;
200 }
201
202 /* Find place to insert this segment. Handle overlaps on the way. */
203 parent = NULL;
204 while (*p) {
205 parent = *p;
206 skb1 = rb_to_skb(parent);
207 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
208 p = &parent->rb_left;
209 continue;
210 }
211 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
212 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
213 /* All the bits are present. Drop. */
214 mptcp_drop(sk, skb);
215 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
216 return;
217 }
218 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
219 /* partial overlap:
220 * | skb |
221 * | skb1 |
222 * continue traversing
223 */
224 } else {
225 /* skb's seq == skb1's seq and skb covers skb1.
226 * Replace skb1 with skb.
227 */
228 rb_replace_node(&skb1->rbnode, &skb->rbnode,
229 &msk->out_of_order_queue);
230 mptcp_drop(sk, skb1);
231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
232 goto merge_right;
233 }
234 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
236 return;
237 }
238 p = &parent->rb_right;
239 }
240
241 insert:
242 /* Insert segment into RB tree. */
243 rb_link_node(&skb->rbnode, parent, p);
244 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
245
246 merge_right:
247 /* Remove other segments covered by skb. */
248 while ((skb1 = skb_rb_next(skb)) != NULL) {
249 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
250 break;
251 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
252 mptcp_drop(sk, skb1);
253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
254 }
255 /* If there is no skb after us, we are the last_skb ! */
256 if (!skb1)
257 msk->ooo_last_skb = skb;
258
259 end:
260 skb_condense(skb);
261 skb_set_owner_r(skb, sk);
262 }
263
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)264 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
265 struct sk_buff *skb, unsigned int offset,
266 size_t copy_len)
267 {
268 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
269 struct sock *sk = (struct sock *)msk;
270 struct sk_buff *tail;
271
272 __skb_unlink(skb, &ssk->sk_receive_queue);
273
274 skb_ext_reset(skb);
275 skb_orphan(skb);
276
277 /* try to fetch required memory from subflow */
278 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
279 int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
280
281 if (ssk->sk_forward_alloc < amount)
282 goto drop;
283
284 ssk->sk_forward_alloc -= amount;
285 sk->sk_forward_alloc += amount;
286 }
287
288 /* the skb map_seq accounts for the skb offset:
289 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
290 * value
291 */
292 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
293 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
294 MPTCP_SKB_CB(skb)->offset = offset;
295
296 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
297 /* in sequence */
298 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
299 tail = skb_peek_tail(&sk->sk_receive_queue);
300 if (tail && mptcp_try_coalesce(sk, tail, skb))
301 return true;
302
303 skb_set_owner_r(skb, sk);
304 __skb_queue_tail(&sk->sk_receive_queue, skb);
305 return true;
306 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
307 mptcp_data_queue_ofo(msk, skb);
308 return false;
309 }
310
311 /* old data, keep it simple and drop the whole pkt, sender
312 * will retransmit as needed, if needed.
313 */
314 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
315 drop:
316 mptcp_drop(sk, skb);
317 return false;
318 }
319
mptcp_stop_timer(struct sock * sk)320 static void mptcp_stop_timer(struct sock *sk)
321 {
322 struct inet_connection_sock *icsk = inet_csk(sk);
323
324 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
325 mptcp_sk(sk)->timer_ival = 0;
326 }
327
mptcp_check_data_fin_ack(struct sock * sk)328 static void mptcp_check_data_fin_ack(struct sock *sk)
329 {
330 struct mptcp_sock *msk = mptcp_sk(sk);
331
332 if (__mptcp_check_fallback(msk))
333 return;
334
335 /* Look for an acknowledged DATA_FIN */
336 if (((1 << sk->sk_state) &
337 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
338 msk->write_seq == atomic64_read(&msk->snd_una)) {
339 mptcp_stop_timer(sk);
340
341 WRITE_ONCE(msk->snd_data_fin_enable, 0);
342
343 switch (sk->sk_state) {
344 case TCP_FIN_WAIT1:
345 inet_sk_state_store(sk, TCP_FIN_WAIT2);
346 sk->sk_state_change(sk);
347 break;
348 case TCP_CLOSING:
349 case TCP_LAST_ACK:
350 inet_sk_state_store(sk, TCP_CLOSE);
351 sk->sk_state_change(sk);
352 break;
353 }
354
355 if (sk->sk_shutdown == SHUTDOWN_MASK ||
356 sk->sk_state == TCP_CLOSE)
357 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
358 else
359 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
360 }
361 }
362
mptcp_pending_data_fin(struct sock * sk,u64 * seq)363 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
364 {
365 struct mptcp_sock *msk = mptcp_sk(sk);
366
367 if (READ_ONCE(msk->rcv_data_fin) &&
368 ((1 << sk->sk_state) &
369 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
370 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
371
372 if (msk->ack_seq == rcv_data_fin_seq) {
373 if (seq)
374 *seq = rcv_data_fin_seq;
375
376 return true;
377 }
378 }
379
380 return false;
381 }
382
mptcp_set_timeout(const struct sock * sk,const struct sock * ssk)383 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
384 {
385 long tout = ssk && inet_csk(ssk)->icsk_pending ?
386 inet_csk(ssk)->icsk_timeout - jiffies : 0;
387
388 if (tout <= 0)
389 tout = mptcp_sk(sk)->timer_ival;
390 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
391 }
392
mptcp_check_data_fin(struct sock * sk)393 static void mptcp_check_data_fin(struct sock *sk)
394 {
395 struct mptcp_sock *msk = mptcp_sk(sk);
396 u64 rcv_data_fin_seq;
397
398 if (__mptcp_check_fallback(msk) || !msk->first)
399 return;
400
401 /* Need to ack a DATA_FIN received from a peer while this side
402 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
403 * msk->rcv_data_fin was set when parsing the incoming options
404 * at the subflow level and the msk lock was not held, so this
405 * is the first opportunity to act on the DATA_FIN and change
406 * the msk state.
407 *
408 * If we are caught up to the sequence number of the incoming
409 * DATA_FIN, send the DATA_ACK now and do state transition. If
410 * not caught up, do nothing and let the recv code send DATA_ACK
411 * when catching up.
412 */
413
414 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
415 struct mptcp_subflow_context *subflow;
416
417 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
418 WRITE_ONCE(msk->rcv_data_fin, 0);
419
420 sk->sk_shutdown |= RCV_SHUTDOWN;
421 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
422 set_bit(MPTCP_DATA_READY, &msk->flags);
423
424 switch (sk->sk_state) {
425 case TCP_ESTABLISHED:
426 inet_sk_state_store(sk, TCP_CLOSE_WAIT);
427 break;
428 case TCP_FIN_WAIT1:
429 inet_sk_state_store(sk, TCP_CLOSING);
430 break;
431 case TCP_FIN_WAIT2:
432 inet_sk_state_store(sk, TCP_CLOSE);
433 // @@ Close subflows now?
434 break;
435 default:
436 /* Other states not expected */
437 WARN_ON_ONCE(1);
438 break;
439 }
440
441 mptcp_set_timeout(sk, NULL);
442 mptcp_for_each_subflow(msk, subflow) {
443 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
444
445 lock_sock(ssk);
446 tcp_send_ack(ssk);
447 release_sock(ssk);
448 }
449
450 sk->sk_state_change(sk);
451
452 if (sk->sk_shutdown == SHUTDOWN_MASK ||
453 sk->sk_state == TCP_CLOSE)
454 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
455 else
456 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
457 }
458 }
459
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)460 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
461 struct sock *ssk,
462 unsigned int *bytes)
463 {
464 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
465 struct sock *sk = (struct sock *)msk;
466 unsigned int moved = 0;
467 bool more_data_avail;
468 struct tcp_sock *tp;
469 u32 old_copied_seq;
470 bool done = false;
471
472 pr_debug("msk=%p ssk=%p", msk, ssk);
473 tp = tcp_sk(ssk);
474 old_copied_seq = tp->copied_seq;
475 do {
476 u32 map_remaining, offset;
477 u32 seq = tp->copied_seq;
478 struct sk_buff *skb;
479 bool fin;
480
481 /* try to move as much data as available */
482 map_remaining = subflow->map_data_len -
483 mptcp_subflow_get_map_offset(subflow);
484
485 skb = skb_peek(&ssk->sk_receive_queue);
486 if (!skb) {
487 /* if no data is found, a racing workqueue/recvmsg
488 * already processed the new data, stop here or we
489 * can enter an infinite loop
490 */
491 if (!moved)
492 done = true;
493 break;
494 }
495
496 if (__mptcp_check_fallback(msk)) {
497 /* if we are running under the workqueue, TCP could have
498 * collapsed skbs between dummy map creation and now
499 * be sure to adjust the size
500 */
501 map_remaining = skb->len;
502 subflow->map_data_len = skb->len;
503 }
504
505 offset = seq - TCP_SKB_CB(skb)->seq;
506 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
507 if (fin) {
508 done = true;
509 seq++;
510 }
511
512 if (offset < skb->len) {
513 size_t len = skb->len - offset;
514
515 if (tp->urg_data)
516 done = true;
517
518 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
519 moved += len;
520 seq += len;
521
522 if (WARN_ON_ONCE(map_remaining < len))
523 break;
524 } else {
525 WARN_ON_ONCE(!fin);
526 sk_eat_skb(ssk, skb);
527 done = true;
528 }
529
530 WRITE_ONCE(tp->copied_seq, seq);
531 more_data_avail = mptcp_subflow_data_available(ssk);
532
533 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) {
534 done = true;
535 break;
536 }
537 } while (more_data_avail);
538
539 *bytes += moved;
540 if (tp->copied_seq != old_copied_seq)
541 tcp_cleanup_rbuf(ssk, 1);
542
543 return done;
544 }
545
mptcp_ofo_queue(struct mptcp_sock * msk)546 static bool mptcp_ofo_queue(struct mptcp_sock *msk)
547 {
548 struct sock *sk = (struct sock *)msk;
549 struct sk_buff *skb, *tail;
550 bool moved = false;
551 struct rb_node *p;
552 u64 end_seq;
553
554 p = rb_first(&msk->out_of_order_queue);
555 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
556 while (p) {
557 skb = rb_to_skb(p);
558 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
559 break;
560
561 p = rb_next(p);
562 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
563
564 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
565 msk->ack_seq))) {
566 mptcp_drop(sk, skb);
567 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
568 continue;
569 }
570
571 end_seq = MPTCP_SKB_CB(skb)->end_seq;
572 tail = skb_peek_tail(&sk->sk_receive_queue);
573 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
574 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
575
576 /* skip overlapping data, if any */
577 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
578 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
579 delta);
580 MPTCP_SKB_CB(skb)->offset += delta;
581 __skb_queue_tail(&sk->sk_receive_queue, skb);
582 }
583 msk->ack_seq = end_seq;
584 moved = true;
585 }
586 return moved;
587 }
588
589 /* In most cases we will be able to lock the mptcp socket. If its already
590 * owned, we need to defer to the work queue to avoid ABBA deadlock.
591 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)592 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
593 {
594 struct sock *sk = (struct sock *)msk;
595 unsigned int moved = 0;
596
597 if (READ_ONCE(sk->sk_lock.owned))
598 return false;
599
600 if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock)))
601 return false;
602
603 /* must re-check after taking the lock */
604 if (!READ_ONCE(sk->sk_lock.owned)) {
605 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
606 mptcp_ofo_queue(msk);
607
608 /* If the moves have caught up with the DATA_FIN sequence number
609 * it's time to ack the DATA_FIN and change socket state, but
610 * this is not a good place to change state. Let the workqueue
611 * do it.
612 */
613 if (mptcp_pending_data_fin(sk, NULL) &&
614 schedule_work(&msk->work))
615 sock_hold(sk);
616 }
617
618 spin_unlock_bh(&sk->sk_lock.slock);
619
620 return moved > 0;
621 }
622
mptcp_data_ready(struct sock * sk,struct sock * ssk)623 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
624 {
625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 struct mptcp_sock *msk = mptcp_sk(sk);
627 bool wake;
628
629 /* move_skbs_to_msk below can legitly clear the data_avail flag,
630 * but we will need later to properly woke the reader, cache its
631 * value
632 */
633 wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
634 if (wake)
635 set_bit(MPTCP_DATA_READY, &msk->flags);
636
637 if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) &&
638 move_skbs_to_msk(msk, ssk))
639 goto wake;
640
641 /* don't schedule if mptcp sk is (still) over limit */
642 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf))
643 goto wake;
644
645 /* mptcp socket is owned, release_cb should retry */
646 if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
647 &sk->sk_tsq_flags)) {
648 sock_hold(sk);
649
650 /* need to try again, its possible release_cb() has already
651 * been called after the test_and_set_bit() above.
652 */
653 move_skbs_to_msk(msk, ssk);
654 }
655 wake:
656 if (wake)
657 sk->sk_data_ready(sk);
658 }
659
__mptcp_flush_join_list(struct mptcp_sock * msk)660 static void __mptcp_flush_join_list(struct mptcp_sock *msk)
661 {
662 if (likely(list_empty(&msk->join_list)))
663 return;
664
665 spin_lock_bh(&msk->join_list_lock);
666 list_splice_tail_init(&msk->join_list, &msk->conn_list);
667 spin_unlock_bh(&msk->join_list_lock);
668 }
669
mptcp_timer_pending(struct sock * sk)670 static bool mptcp_timer_pending(struct sock *sk)
671 {
672 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
673 }
674
mptcp_reset_timer(struct sock * sk)675 static void mptcp_reset_timer(struct sock *sk)
676 {
677 struct inet_connection_sock *icsk = inet_csk(sk);
678 unsigned long tout;
679
680 /* should never be called with mptcp level timer cleared */
681 tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
682 if (WARN_ON_ONCE(!tout))
683 tout = TCP_RTO_MIN;
684 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
685 }
686
mptcp_data_acked(struct sock * sk)687 void mptcp_data_acked(struct sock *sk)
688 {
689 mptcp_reset_timer(sk);
690
691 if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) ||
692 (inet_sk_state_load(sk) != TCP_ESTABLISHED)) &&
693 schedule_work(&mptcp_sk(sk)->work))
694 sock_hold(sk);
695 }
696
mptcp_subflow_eof(struct sock * sk)697 void mptcp_subflow_eof(struct sock *sk)
698 {
699 struct mptcp_sock *msk = mptcp_sk(sk);
700
701 if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) &&
702 schedule_work(&msk->work))
703 sock_hold(sk);
704 }
705
mptcp_check_for_eof(struct mptcp_sock * msk)706 static void mptcp_check_for_eof(struct mptcp_sock *msk)
707 {
708 struct mptcp_subflow_context *subflow;
709 struct sock *sk = (struct sock *)msk;
710 int receivers = 0;
711
712 mptcp_for_each_subflow(msk, subflow)
713 receivers += !subflow->rx_eof;
714
715 if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
716 /* hopefully temporary hack: propagate shutdown status
717 * to msk, when all subflows agree on it
718 */
719 sk->sk_shutdown |= RCV_SHUTDOWN;
720
721 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
722 set_bit(MPTCP_DATA_READY, &msk->flags);
723 sk->sk_data_ready(sk);
724 }
725 }
726
mptcp_ext_cache_refill(struct mptcp_sock * msk)727 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk)
728 {
729 const struct sock *sk = (const struct sock *)msk;
730
731 if (!msk->cached_ext)
732 msk->cached_ext = __skb_ext_alloc(sk->sk_allocation);
733
734 return !!msk->cached_ext;
735 }
736
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)737 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
738 {
739 struct mptcp_subflow_context *subflow;
740 struct sock *sk = (struct sock *)msk;
741
742 sock_owned_by_me(sk);
743
744 mptcp_for_each_subflow(msk, subflow) {
745 if (subflow->data_avail)
746 return mptcp_subflow_tcp_sock(subflow);
747 }
748
749 return NULL;
750 }
751
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)752 static bool mptcp_skb_can_collapse_to(u64 write_seq,
753 const struct sk_buff *skb,
754 const struct mptcp_ext *mpext)
755 {
756 if (!tcp_skb_can_collapse_to(skb))
757 return false;
758
759 /* can collapse only if MPTCP level sequence is in order */
760 return mpext && mpext->data_seq + mpext->data_len == write_seq;
761 }
762
763 /* we can append data to the given data frag if:
764 * - there is space available in the backing page_frag
765 * - the data frag tail matches the current page_frag free offset
766 * - the data frag end sequence number matches the current write seq
767 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)768 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
769 const struct page_frag *pfrag,
770 const struct mptcp_data_frag *df)
771 {
772 return df && pfrag->page == df->page &&
773 pfrag->offset == (df->offset + df->data_len) &&
774 df->data_seq + df->data_len == msk->write_seq;
775 }
776
dfrag_uncharge(struct sock * sk,int len)777 static void dfrag_uncharge(struct sock *sk, int len)
778 {
779 sk_mem_uncharge(sk, len);
780 sk_wmem_queued_add(sk, -len);
781 }
782
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)783 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
784 {
785 int len = dfrag->data_len + dfrag->overhead;
786
787 list_del(&dfrag->list);
788 dfrag_uncharge(sk, len);
789 put_page(dfrag->page);
790 }
791
mptcp_is_writeable(struct mptcp_sock * msk)792 static bool mptcp_is_writeable(struct mptcp_sock *msk)
793 {
794 struct mptcp_subflow_context *subflow;
795
796 if (!sk_stream_is_writeable((struct sock *)msk))
797 return false;
798
799 mptcp_for_each_subflow(msk, subflow) {
800 if (sk_stream_is_writeable(subflow->tcp_sock))
801 return true;
802 }
803 return false;
804 }
805
mptcp_clean_una(struct sock * sk)806 static void mptcp_clean_una(struct sock *sk)
807 {
808 struct mptcp_sock *msk = mptcp_sk(sk);
809 struct mptcp_data_frag *dtmp, *dfrag;
810 bool cleaned = false;
811 u64 snd_una;
812
813 /* on fallback we just need to ignore snd_una, as this is really
814 * plain TCP
815 */
816 if (__mptcp_check_fallback(msk))
817 atomic64_set(&msk->snd_una, msk->write_seq);
818 snd_una = atomic64_read(&msk->snd_una);
819
820 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
821 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
822 break;
823
824 dfrag_clear(sk, dfrag);
825 cleaned = true;
826 }
827
828 dfrag = mptcp_rtx_head(sk);
829 if (dfrag && after64(snd_una, dfrag->data_seq)) {
830 u64 delta = snd_una - dfrag->data_seq;
831
832 if (WARN_ON_ONCE(delta > dfrag->data_len))
833 goto out;
834
835 dfrag->data_seq += delta;
836 dfrag->offset += delta;
837 dfrag->data_len -= delta;
838
839 dfrag_uncharge(sk, delta);
840 cleaned = true;
841 }
842
843 out:
844 if (cleaned) {
845 sk_mem_reclaim_partial(sk);
846
847 /* Only wake up writers if a subflow is ready */
848 if (mptcp_is_writeable(msk)) {
849 set_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags);
850 smp_mb__after_atomic();
851
852 /* set SEND_SPACE before sk_stream_write_space clears
853 * NOSPACE
854 */
855 sk_stream_write_space(sk);
856 }
857 }
858 }
859
860 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
861 * data
862 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)863 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
864 {
865 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
866 pfrag, sk->sk_allocation)))
867 return true;
868
869 sk->sk_prot->enter_memory_pressure(sk);
870 sk_stream_moderate_sndbuf(sk);
871 return false;
872 }
873
874 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)875 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
876 int orig_offset)
877 {
878 int offset = ALIGN(orig_offset, sizeof(long));
879 struct mptcp_data_frag *dfrag;
880
881 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
882 dfrag->data_len = 0;
883 dfrag->data_seq = msk->write_seq;
884 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
885 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
886 dfrag->page = pfrag->page;
887
888 return dfrag;
889 }
890
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct msghdr * msg,struct mptcp_data_frag * dfrag,long * timeo,int * pmss_now,int * ps_goal)891 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
892 struct msghdr *msg, struct mptcp_data_frag *dfrag,
893 long *timeo, int *pmss_now,
894 int *ps_goal)
895 {
896 int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0;
897 bool dfrag_collapsed, can_collapse = false;
898 struct mptcp_sock *msk = mptcp_sk(sk);
899 struct mptcp_ext *mpext = NULL;
900 bool retransmission = !!dfrag;
901 struct sk_buff *skb, *tail;
902 struct page_frag *pfrag;
903 struct page *page;
904 u64 *write_seq;
905 size_t psize;
906
907 /* use the mptcp page cache so that we can easily move the data
908 * from one substream to another, but do per subflow memory accounting
909 * Note: pfrag is used only !retransmission, but the compiler if
910 * fooled into a warning if we don't init here
911 */
912 pfrag = sk_page_frag(sk);
913 if (!retransmission) {
914 write_seq = &msk->write_seq;
915 page = pfrag->page;
916 } else {
917 write_seq = &dfrag->data_seq;
918 page = dfrag->page;
919 }
920
921 /* compute copy limit */
922 mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags);
923 *pmss_now = mss_now;
924 *ps_goal = size_goal;
925 avail_size = size_goal;
926 skb = tcp_write_queue_tail(ssk);
927 if (skb) {
928 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
929
930 /* Limit the write to the size available in the
931 * current skb, if any, so that we create at most a new skb.
932 * Explicitly tells TCP internals to avoid collapsing on later
933 * queue management operation, to avoid breaking the ext <->
934 * SSN association set here
935 */
936 can_collapse = (size_goal - skb->len > 0) &&
937 mptcp_skb_can_collapse_to(*write_seq, skb, mpext);
938 if (!can_collapse)
939 TCP_SKB_CB(skb)->eor = 1;
940 else
941 avail_size = size_goal - skb->len;
942 }
943
944 if (!retransmission) {
945 /* reuse tail pfrag, if possible, or carve a new one from the
946 * page allocator
947 */
948 dfrag = mptcp_rtx_tail(sk);
949 offset = pfrag->offset;
950 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
951 if (!dfrag_collapsed) {
952 dfrag = mptcp_carve_data_frag(msk, pfrag, offset);
953 offset = dfrag->offset;
954 frag_truesize = dfrag->overhead;
955 }
956 psize = min_t(size_t, pfrag->size - offset, avail_size);
957
958 /* Copy to page */
959 pr_debug("left=%zu", msg_data_left(msg));
960 psize = copy_page_from_iter(pfrag->page, offset,
961 min_t(size_t, msg_data_left(msg),
962 psize),
963 &msg->msg_iter);
964 pr_debug("left=%zu", msg_data_left(msg));
965 if (!psize)
966 return -EINVAL;
967
968 if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) {
969 iov_iter_revert(&msg->msg_iter, psize);
970 return -ENOMEM;
971 }
972 } else {
973 offset = dfrag->offset;
974 psize = min_t(size_t, dfrag->data_len, avail_size);
975 }
976
977 /* tell the TCP stack to delay the push so that we can safely
978 * access the skb after the sendpages call
979 */
980 ret = do_tcp_sendpages(ssk, page, offset, psize,
981 msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT);
982 if (ret <= 0) {
983 if (!retransmission)
984 iov_iter_revert(&msg->msg_iter, psize);
985 return ret;
986 }
987
988 frag_truesize += ret;
989 if (!retransmission) {
990 if (unlikely(ret < psize))
991 iov_iter_revert(&msg->msg_iter, psize - ret);
992
993 /* send successful, keep track of sent data for mptcp-level
994 * retransmission
995 */
996 dfrag->data_len += ret;
997 if (!dfrag_collapsed) {
998 get_page(dfrag->page);
999 list_add_tail(&dfrag->list, &msk->rtx_queue);
1000 sk_wmem_queued_add(sk, frag_truesize);
1001 } else {
1002 sk_wmem_queued_add(sk, ret);
1003 }
1004
1005 /* charge data on mptcp rtx queue to the master socket
1006 * Note: we charge such data both to sk and ssk
1007 */
1008 sk->sk_forward_alloc -= frag_truesize;
1009 }
1010
1011 /* if the tail skb extension is still the cached one, collapsing
1012 * really happened. Note: we can't check for 'same skb' as the sk_buff
1013 * hdr on tail can be transmitted, freed and re-allocated by the
1014 * do_tcp_sendpages() call
1015 */
1016 tail = tcp_write_queue_tail(ssk);
1017 if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) {
1018 WARN_ON_ONCE(!can_collapse);
1019 mpext->data_len += ret;
1020 goto out;
1021 }
1022
1023 skb = tcp_write_queue_tail(ssk);
1024 mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext);
1025 msk->cached_ext = NULL;
1026
1027 memset(mpext, 0, sizeof(*mpext));
1028 mpext->data_seq = *write_seq;
1029 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1030 mpext->data_len = ret;
1031 mpext->use_map = 1;
1032 mpext->dsn64 = 1;
1033
1034 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1035 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1036 mpext->dsn64);
1037
1038 out:
1039 if (!retransmission)
1040 pfrag->offset += frag_truesize;
1041 WRITE_ONCE(*write_seq, *write_seq + ret);
1042 mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1043
1044 return ret;
1045 }
1046
mptcp_nospace(struct mptcp_sock * msk)1047 static void mptcp_nospace(struct mptcp_sock *msk)
1048 {
1049 struct mptcp_subflow_context *subflow;
1050
1051 clear_bit(MPTCP_SEND_SPACE, &msk->flags);
1052 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
1053
1054 mptcp_for_each_subflow(msk, subflow) {
1055 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1056 struct socket *sock = READ_ONCE(ssk->sk_socket);
1057
1058 /* enables ssk->write_space() callbacks */
1059 if (sock)
1060 set_bit(SOCK_NOSPACE, &sock->flags);
1061 }
1062 }
1063
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1064 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1065 {
1066 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1067
1068 /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */
1069 if (subflow->request_join && !subflow->fully_established)
1070 return false;
1071
1072 /* only send if our side has not closed yet */
1073 return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT));
1074 }
1075
1076 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1077 sizeof(struct tcphdr) - \
1078 MAX_TCP_OPTION_SPACE - \
1079 sizeof(struct ipv6hdr) - \
1080 sizeof(struct frag_hdr))
1081
1082 struct subflow_send_info {
1083 struct sock *ssk;
1084 u64 ratio;
1085 };
1086
mptcp_subflow_get_send(struct mptcp_sock * msk,u32 * sndbuf)1087 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk,
1088 u32 *sndbuf)
1089 {
1090 struct subflow_send_info send_info[2];
1091 struct mptcp_subflow_context *subflow;
1092 int i, nr_active = 0;
1093 struct sock *ssk;
1094 u64 ratio;
1095 u32 pace;
1096
1097 sock_owned_by_me((struct sock *)msk);
1098
1099 *sndbuf = 0;
1100 if (!mptcp_ext_cache_refill(msk))
1101 return NULL;
1102
1103 if (__mptcp_check_fallback(msk)) {
1104 if (!msk->first)
1105 return NULL;
1106 *sndbuf = msk->first->sk_sndbuf;
1107 return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1108 }
1109
1110 /* re-use last subflow, if the burst allow that */
1111 if (msk->last_snd && msk->snd_burst > 0 &&
1112 sk_stream_memory_free(msk->last_snd) &&
1113 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1114 mptcp_for_each_subflow(msk, subflow) {
1115 ssk = mptcp_subflow_tcp_sock(subflow);
1116 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf);
1117 }
1118 return msk->last_snd;
1119 }
1120
1121 /* pick the subflow with the lower wmem/wspace ratio */
1122 for (i = 0; i < 2; ++i) {
1123 send_info[i].ssk = NULL;
1124 send_info[i].ratio = -1;
1125 }
1126 mptcp_for_each_subflow(msk, subflow) {
1127 ssk = mptcp_subflow_tcp_sock(subflow);
1128 if (!mptcp_subflow_active(subflow))
1129 continue;
1130
1131 nr_active += !subflow->backup;
1132 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf);
1133 if (!sk_stream_memory_free(subflow->tcp_sock))
1134 continue;
1135
1136 pace = READ_ONCE(ssk->sk_pacing_rate);
1137 if (!pace)
1138 continue;
1139
1140 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1141 pace);
1142 if (ratio < send_info[subflow->backup].ratio) {
1143 send_info[subflow->backup].ssk = ssk;
1144 send_info[subflow->backup].ratio = ratio;
1145 }
1146 }
1147
1148 pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld",
1149 msk, nr_active, send_info[0].ssk, send_info[0].ratio,
1150 send_info[1].ssk, send_info[1].ratio);
1151
1152 /* pick the best backup if no other subflow is active */
1153 if (!nr_active)
1154 send_info[0].ssk = send_info[1].ssk;
1155
1156 if (send_info[0].ssk) {
1157 msk->last_snd = send_info[0].ssk;
1158 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1159 sk_stream_wspace(msk->last_snd));
1160 return msk->last_snd;
1161 }
1162 return NULL;
1163 }
1164
ssk_check_wmem(struct mptcp_sock * msk)1165 static void ssk_check_wmem(struct mptcp_sock *msk)
1166 {
1167 if (unlikely(!mptcp_is_writeable(msk)))
1168 mptcp_nospace(msk);
1169 }
1170
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1171 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1172 {
1173 int mss_now = 0, size_goal = 0, ret = 0;
1174 struct mptcp_sock *msk = mptcp_sk(sk);
1175 struct page_frag *pfrag;
1176 size_t copied = 0;
1177 struct sock *ssk;
1178 u32 sndbuf;
1179 bool tx_ok;
1180 long timeo;
1181
1182 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
1183 return -EOPNOTSUPP;
1184
1185 lock_sock(sk);
1186
1187 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1188
1189 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1190 ret = sk_stream_wait_connect(sk, &timeo);
1191 if (ret)
1192 goto out;
1193 }
1194
1195 pfrag = sk_page_frag(sk);
1196 restart:
1197 mptcp_clean_una(sk);
1198
1199 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1200 ret = -EPIPE;
1201 goto out;
1202 }
1203
1204 __mptcp_flush_join_list(msk);
1205 ssk = mptcp_subflow_get_send(msk, &sndbuf);
1206 while (!sk_stream_memory_free(sk) ||
1207 !ssk ||
1208 !mptcp_page_frag_refill(ssk, pfrag)) {
1209 if (ssk) {
1210 /* make sure retransmit timer is
1211 * running before we wait for memory.
1212 *
1213 * The retransmit timer might be needed
1214 * to make the peer send an up-to-date
1215 * MPTCP Ack.
1216 */
1217 mptcp_set_timeout(sk, ssk);
1218 if (!mptcp_timer_pending(sk))
1219 mptcp_reset_timer(sk);
1220 }
1221
1222 mptcp_nospace(msk);
1223 ret = sk_stream_wait_memory(sk, &timeo);
1224 if (ret)
1225 goto out;
1226
1227 mptcp_clean_una(sk);
1228
1229 ssk = mptcp_subflow_get_send(msk, &sndbuf);
1230 if (list_empty(&msk->conn_list)) {
1231 ret = -ENOTCONN;
1232 goto out;
1233 }
1234 }
1235
1236 /* do auto tuning */
1237 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
1238 sndbuf > READ_ONCE(sk->sk_sndbuf))
1239 WRITE_ONCE(sk->sk_sndbuf, sndbuf);
1240
1241 pr_debug("conn_list->subflow=%p", ssk);
1242
1243 lock_sock(ssk);
1244 tx_ok = msg_data_left(msg);
1245 while (tx_ok) {
1246 ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now,
1247 &size_goal);
1248 if (ret < 0) {
1249 if (ret == -EAGAIN && timeo > 0) {
1250 mptcp_set_timeout(sk, ssk);
1251 release_sock(ssk);
1252 goto restart;
1253 }
1254 break;
1255 }
1256
1257 /* burst can be negative, we will try move to the next subflow
1258 * at selection time, if possible.
1259 */
1260 msk->snd_burst -= ret;
1261 copied += ret;
1262
1263 tx_ok = msg_data_left(msg);
1264 if (!tx_ok)
1265 break;
1266
1267 if (!sk_stream_memory_free(ssk) ||
1268 !mptcp_page_frag_refill(ssk, pfrag) ||
1269 !mptcp_ext_cache_refill(msk)) {
1270 tcp_push(ssk, msg->msg_flags, mss_now,
1271 tcp_sk(ssk)->nonagle, size_goal);
1272 mptcp_set_timeout(sk, ssk);
1273 release_sock(ssk);
1274 goto restart;
1275 }
1276
1277 /* memory is charged to mptcp level socket as well, i.e.
1278 * if msg is very large, mptcp socket may run out of buffer
1279 * space. mptcp_clean_una() will release data that has
1280 * been acked at mptcp level in the mean time, so there is
1281 * a good chance we can continue sending data right away.
1282 *
1283 * Normally, when the tcp subflow can accept more data, then
1284 * so can the MPTCP socket. However, we need to cope with
1285 * peers that might lag behind in their MPTCP-level
1286 * acknowledgements, i.e. data might have been acked at
1287 * tcp level only. So, we must also check the MPTCP socket
1288 * limits before we send more data.
1289 */
1290 if (unlikely(!sk_stream_memory_free(sk))) {
1291 tcp_push(ssk, msg->msg_flags, mss_now,
1292 tcp_sk(ssk)->nonagle, size_goal);
1293 mptcp_clean_una(sk);
1294 if (!sk_stream_memory_free(sk)) {
1295 /* can't send more for now, need to wait for
1296 * MPTCP-level ACKs from peer.
1297 *
1298 * Wakeup will happen via mptcp_clean_una().
1299 */
1300 mptcp_set_timeout(sk, ssk);
1301 release_sock(ssk);
1302 goto restart;
1303 }
1304 }
1305 }
1306
1307 mptcp_set_timeout(sk, ssk);
1308 if (copied) {
1309 tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle,
1310 size_goal);
1311
1312 /* start the timer, if it's not pending */
1313 if (!mptcp_timer_pending(sk))
1314 mptcp_reset_timer(sk);
1315 }
1316
1317 release_sock(ssk);
1318 out:
1319 ssk_check_wmem(msk);
1320 release_sock(sk);
1321 return copied ? : ret;
1322 }
1323
mptcp_wait_data(struct sock * sk,long * timeo)1324 static void mptcp_wait_data(struct sock *sk, long *timeo)
1325 {
1326 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1327 struct mptcp_sock *msk = mptcp_sk(sk);
1328
1329 add_wait_queue(sk_sleep(sk), &wait);
1330 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331
1332 sk_wait_event(sk, timeo,
1333 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1334
1335 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1336 remove_wait_queue(sk_sleep(sk), &wait);
1337 }
1338
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len)1339 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1340 struct msghdr *msg,
1341 size_t len)
1342 {
1343 struct sock *sk = (struct sock *)msk;
1344 struct sk_buff *skb;
1345 int copied = 0;
1346
1347 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1348 u32 offset = MPTCP_SKB_CB(skb)->offset;
1349 u32 data_len = skb->len - offset;
1350 u32 count = min_t(size_t, len - copied, data_len);
1351 int err;
1352
1353 err = skb_copy_datagram_msg(skb, offset, msg, count);
1354 if (unlikely(err < 0)) {
1355 if (!copied)
1356 return err;
1357 break;
1358 }
1359
1360 copied += count;
1361
1362 if (count < data_len) {
1363 MPTCP_SKB_CB(skb)->offset += count;
1364 break;
1365 }
1366
1367 __skb_unlink(skb, &sk->sk_receive_queue);
1368 __kfree_skb(skb);
1369
1370 if (copied >= len)
1371 break;
1372 }
1373
1374 return copied;
1375 }
1376
1377 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1378 *
1379 * Only difference: Use highest rtt estimate of the subflows in use.
1380 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1381 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1382 {
1383 struct mptcp_subflow_context *subflow;
1384 struct sock *sk = (struct sock *)msk;
1385 u32 time, advmss = 1;
1386 u64 rtt_us, mstamp;
1387
1388 sock_owned_by_me(sk);
1389
1390 if (copied <= 0)
1391 return;
1392
1393 msk->rcvq_space.copied += copied;
1394
1395 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1396 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1397
1398 rtt_us = msk->rcvq_space.rtt_us;
1399 if (rtt_us && time < (rtt_us >> 3))
1400 return;
1401
1402 rtt_us = 0;
1403 mptcp_for_each_subflow(msk, subflow) {
1404 const struct tcp_sock *tp;
1405 u64 sf_rtt_us;
1406 u32 sf_advmss;
1407
1408 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1409
1410 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1411 sf_advmss = READ_ONCE(tp->advmss);
1412
1413 rtt_us = max(sf_rtt_us, rtt_us);
1414 advmss = max(sf_advmss, advmss);
1415 }
1416
1417 msk->rcvq_space.rtt_us = rtt_us;
1418 if (time < (rtt_us >> 3) || rtt_us == 0)
1419 return;
1420
1421 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1422 goto new_measure;
1423
1424 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1425 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1426 int rcvmem, rcvbuf;
1427 u64 rcvwin, grow;
1428
1429 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1430
1431 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1432
1433 do_div(grow, msk->rcvq_space.space);
1434 rcvwin += (grow << 1);
1435
1436 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1437 while (tcp_win_from_space(sk, rcvmem) < advmss)
1438 rcvmem += 128;
1439
1440 do_div(rcvwin, advmss);
1441 rcvbuf = min_t(u64, rcvwin * rcvmem,
1442 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1443
1444 if (rcvbuf > sk->sk_rcvbuf) {
1445 u32 window_clamp;
1446
1447 window_clamp = tcp_win_from_space(sk, rcvbuf);
1448 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1449
1450 /* Make subflows follow along. If we do not do this, we
1451 * get drops at subflow level if skbs can't be moved to
1452 * the mptcp rx queue fast enough (announced rcv_win can
1453 * exceed ssk->sk_rcvbuf).
1454 */
1455 mptcp_for_each_subflow(msk, subflow) {
1456 struct sock *ssk;
1457 bool slow;
1458
1459 ssk = mptcp_subflow_tcp_sock(subflow);
1460 slow = lock_sock_fast(ssk);
1461 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1462 tcp_sk(ssk)->window_clamp = window_clamp;
1463 tcp_cleanup_rbuf(ssk, 1);
1464 unlock_sock_fast(ssk, slow);
1465 }
1466 }
1467 }
1468
1469 msk->rcvq_space.space = msk->rcvq_space.copied;
1470 new_measure:
1471 msk->rcvq_space.copied = 0;
1472 msk->rcvq_space.time = mstamp;
1473 }
1474
__mptcp_move_skbs(struct mptcp_sock * msk)1475 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1476 {
1477 unsigned int moved = 0;
1478 bool done;
1479
1480 /* avoid looping forever below on racing close */
1481 if (((struct sock *)msk)->sk_state == TCP_CLOSE)
1482 return false;
1483
1484 __mptcp_flush_join_list(msk);
1485 do {
1486 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1487
1488 if (!ssk)
1489 break;
1490
1491 lock_sock(ssk);
1492 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1493 release_sock(ssk);
1494 } while (!done);
1495
1496 if (mptcp_ofo_queue(msk) || moved > 0) {
1497 mptcp_check_data_fin((struct sock *)msk);
1498 return true;
1499 }
1500 return false;
1501 }
1502
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1503 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1504 int nonblock, int flags, int *addr_len)
1505 {
1506 struct mptcp_sock *msk = mptcp_sk(sk);
1507 int copied = 0;
1508 int target;
1509 long timeo;
1510
1511 if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1512 return -EOPNOTSUPP;
1513
1514 lock_sock(sk);
1515 timeo = sock_rcvtimeo(sk, nonblock);
1516
1517 len = min_t(size_t, len, INT_MAX);
1518 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1519 __mptcp_flush_join_list(msk);
1520
1521 while (len > (size_t)copied) {
1522 int bytes_read;
1523
1524 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1525 if (unlikely(bytes_read < 0)) {
1526 if (!copied)
1527 copied = bytes_read;
1528 goto out_err;
1529 }
1530
1531 copied += bytes_read;
1532
1533 if (skb_queue_empty(&sk->sk_receive_queue) &&
1534 __mptcp_move_skbs(msk))
1535 continue;
1536
1537 /* only the master socket status is relevant here. The exit
1538 * conditions mirror closely tcp_recvmsg()
1539 */
1540 if (copied >= target)
1541 break;
1542
1543 if (copied) {
1544 if (sk->sk_err ||
1545 sk->sk_state == TCP_CLOSE ||
1546 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1547 !timeo ||
1548 signal_pending(current))
1549 break;
1550 } else {
1551 if (sk->sk_err) {
1552 copied = sock_error(sk);
1553 break;
1554 }
1555
1556 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1557 mptcp_check_for_eof(msk);
1558
1559 if (sk->sk_shutdown & RCV_SHUTDOWN)
1560 break;
1561
1562 if (sk->sk_state == TCP_CLOSE) {
1563 copied = -ENOTCONN;
1564 break;
1565 }
1566
1567 if (!timeo) {
1568 copied = -EAGAIN;
1569 break;
1570 }
1571
1572 if (signal_pending(current)) {
1573 copied = sock_intr_errno(timeo);
1574 break;
1575 }
1576 }
1577
1578 pr_debug("block timeout %ld", timeo);
1579 mptcp_wait_data(sk, &timeo);
1580 }
1581
1582 if (skb_queue_empty(&sk->sk_receive_queue)) {
1583 /* entire backlog drained, clear DATA_READY. */
1584 clear_bit(MPTCP_DATA_READY, &msk->flags);
1585
1586 /* .. race-breaker: ssk might have gotten new data
1587 * after last __mptcp_move_skbs() returned false.
1588 */
1589 if (unlikely(__mptcp_move_skbs(msk)))
1590 set_bit(MPTCP_DATA_READY, &msk->flags);
1591 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
1592 /* data to read but mptcp_wait_data() cleared DATA_READY */
1593 set_bit(MPTCP_DATA_READY, &msk->flags);
1594 }
1595 out_err:
1596 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
1597 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
1598 skb_queue_empty(&sk->sk_receive_queue), copied);
1599 mptcp_rcv_space_adjust(msk, copied);
1600
1601 release_sock(sk);
1602 return copied;
1603 }
1604
mptcp_retransmit_handler(struct sock * sk)1605 static void mptcp_retransmit_handler(struct sock *sk)
1606 {
1607 struct mptcp_sock *msk = mptcp_sk(sk);
1608
1609 if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) {
1610 mptcp_stop_timer(sk);
1611 } else {
1612 set_bit(MPTCP_WORK_RTX, &msk->flags);
1613 if (schedule_work(&msk->work))
1614 sock_hold(sk);
1615 }
1616 }
1617
mptcp_retransmit_timer(struct timer_list * t)1618 static void mptcp_retransmit_timer(struct timer_list *t)
1619 {
1620 struct inet_connection_sock *icsk = from_timer(icsk, t,
1621 icsk_retransmit_timer);
1622 struct sock *sk = &icsk->icsk_inet.sk;
1623
1624 bh_lock_sock(sk);
1625 if (!sock_owned_by_user(sk)) {
1626 mptcp_retransmit_handler(sk);
1627 } else {
1628 /* delegate our work to tcp_release_cb() */
1629 if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
1630 &sk->sk_tsq_flags))
1631 sock_hold(sk);
1632 }
1633 bh_unlock_sock(sk);
1634 sock_put(sk);
1635 }
1636
1637 /* Find an idle subflow. Return NULL if there is unacked data at tcp
1638 * level.
1639 *
1640 * A backup subflow is returned only if that is the only kind available.
1641 */
mptcp_subflow_get_retrans(const struct mptcp_sock * msk)1642 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
1643 {
1644 struct mptcp_subflow_context *subflow;
1645 struct sock *backup = NULL;
1646
1647 sock_owned_by_me((const struct sock *)msk);
1648
1649 if (__mptcp_check_fallback(msk))
1650 return msk->first;
1651
1652 mptcp_for_each_subflow(msk, subflow) {
1653 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1654
1655 if (!mptcp_subflow_active(subflow))
1656 continue;
1657
1658 /* still data outstanding at TCP level? Don't retransmit. */
1659 if (!tcp_write_queue_empty(ssk)) {
1660 if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
1661 continue;
1662 return NULL;
1663 }
1664
1665 if (subflow->backup) {
1666 if (!backup)
1667 backup = ssk;
1668 continue;
1669 }
1670
1671 return ssk;
1672 }
1673
1674 return backup;
1675 }
1676
1677 /* subflow sockets can be either outgoing (connect) or incoming
1678 * (accept).
1679 *
1680 * Outgoing subflows use in-kernel sockets.
1681 * Incoming subflows do not have their own 'struct socket' allocated,
1682 * so we need to use tcp_close() after detaching them from the mptcp
1683 * parent socket.
1684 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,long timeout)1685 void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
1686 struct mptcp_subflow_context *subflow,
1687 long timeout)
1688 {
1689 struct socket *sock = READ_ONCE(ssk->sk_socket);
1690
1691 list_del(&subflow->node);
1692
1693 if (sock && sock != sk->sk_socket) {
1694 /* outgoing subflow */
1695 sock_release(sock);
1696 } else {
1697 /* incoming subflow */
1698 tcp_close(ssk, timeout);
1699 }
1700 }
1701
mptcp_sync_mss(struct sock * sk,u32 pmtu)1702 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
1703 {
1704 return 0;
1705 }
1706
pm_work(struct mptcp_sock * msk)1707 static void pm_work(struct mptcp_sock *msk)
1708 {
1709 struct mptcp_pm_data *pm = &msk->pm;
1710
1711 spin_lock_bh(&msk->pm.lock);
1712
1713 pr_debug("msk=%p status=%x", msk, pm->status);
1714 if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
1715 pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
1716 mptcp_pm_nl_add_addr_received(msk);
1717 }
1718 if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) {
1719 pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED);
1720 mptcp_pm_nl_rm_addr_received(msk);
1721 }
1722 if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
1723 pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
1724 mptcp_pm_nl_fully_established(msk);
1725 }
1726 if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
1727 pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
1728 mptcp_pm_nl_subflow_established(msk);
1729 }
1730
1731 spin_unlock_bh(&msk->pm.lock);
1732 }
1733
__mptcp_close_subflow(struct mptcp_sock * msk)1734 static void __mptcp_close_subflow(struct mptcp_sock *msk)
1735 {
1736 struct mptcp_subflow_context *subflow, *tmp;
1737
1738 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
1739 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1740
1741 if (inet_sk_state_load(ssk) != TCP_CLOSE)
1742 continue;
1743
1744 __mptcp_close_ssk((struct sock *)msk, ssk, subflow, 0);
1745 }
1746 }
1747
mptcp_worker(struct work_struct * work)1748 static void mptcp_worker(struct work_struct *work)
1749 {
1750 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
1751 struct sock *ssk, *sk = &msk->sk.icsk_inet.sk;
1752 int orig_len, orig_offset, mss_now = 0, size_goal = 0;
1753 struct mptcp_data_frag *dfrag;
1754 u64 orig_write_seq;
1755 size_t copied = 0;
1756 struct msghdr msg = {
1757 .msg_flags = MSG_DONTWAIT,
1758 };
1759 long timeo = 0;
1760
1761 lock_sock(sk);
1762 mptcp_clean_una(sk);
1763 mptcp_check_data_fin_ack(sk);
1764 __mptcp_flush_join_list(msk);
1765 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
1766 __mptcp_close_subflow(msk);
1767
1768 __mptcp_move_skbs(msk);
1769
1770 if (msk->pm.status)
1771 pm_work(msk);
1772
1773 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1774 mptcp_check_for_eof(msk);
1775
1776 mptcp_check_data_fin(sk);
1777
1778 if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
1779 goto unlock;
1780
1781 dfrag = mptcp_rtx_head(sk);
1782 if (!dfrag)
1783 goto unlock;
1784
1785 if (!mptcp_ext_cache_refill(msk))
1786 goto reset_unlock;
1787
1788 ssk = mptcp_subflow_get_retrans(msk);
1789 if (!ssk)
1790 goto reset_unlock;
1791
1792 lock_sock(ssk);
1793
1794 orig_len = dfrag->data_len;
1795 orig_offset = dfrag->offset;
1796 orig_write_seq = dfrag->data_seq;
1797 while (dfrag->data_len > 0) {
1798 int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo,
1799 &mss_now, &size_goal);
1800 if (ret < 0)
1801 break;
1802
1803 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
1804 copied += ret;
1805 dfrag->data_len -= ret;
1806 dfrag->offset += ret;
1807
1808 if (!mptcp_ext_cache_refill(msk))
1809 break;
1810 }
1811 if (copied)
1812 tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle,
1813 size_goal);
1814
1815 dfrag->data_seq = orig_write_seq;
1816 dfrag->offset = orig_offset;
1817 dfrag->data_len = orig_len;
1818
1819 mptcp_set_timeout(sk, ssk);
1820 release_sock(ssk);
1821
1822 reset_unlock:
1823 if (!mptcp_timer_pending(sk))
1824 mptcp_reset_timer(sk);
1825
1826 unlock:
1827 release_sock(sk);
1828 sock_put(sk);
1829 }
1830
__mptcp_init_sock(struct sock * sk)1831 static int __mptcp_init_sock(struct sock *sk)
1832 {
1833 struct mptcp_sock *msk = mptcp_sk(sk);
1834
1835 spin_lock_init(&msk->join_list_lock);
1836
1837 INIT_LIST_HEAD(&msk->conn_list);
1838 INIT_LIST_HEAD(&msk->join_list);
1839 INIT_LIST_HEAD(&msk->rtx_queue);
1840 __set_bit(MPTCP_SEND_SPACE, &msk->flags);
1841 INIT_WORK(&msk->work, mptcp_worker);
1842 msk->out_of_order_queue = RB_ROOT;
1843
1844 msk->first = NULL;
1845 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
1846
1847 mptcp_pm_data_init(msk);
1848
1849 /* re-use the csk retrans timer for MPTCP-level retrans */
1850 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
1851
1852 return 0;
1853 }
1854
mptcp_init_sock(struct sock * sk)1855 static int mptcp_init_sock(struct sock *sk)
1856 {
1857 struct net *net = sock_net(sk);
1858 int ret;
1859
1860 ret = __mptcp_init_sock(sk);
1861 if (ret)
1862 return ret;
1863
1864 if (!mptcp_is_enabled(net))
1865 return -ENOPROTOOPT;
1866
1867 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
1868 return -ENOMEM;
1869
1870 ret = __mptcp_socket_create(mptcp_sk(sk));
1871 if (ret)
1872 return ret;
1873
1874 sk_sockets_allocated_inc(sk);
1875 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
1876 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
1877
1878 return 0;
1879 }
1880
__mptcp_clear_xmit(struct sock * sk)1881 static void __mptcp_clear_xmit(struct sock *sk)
1882 {
1883 struct mptcp_sock *msk = mptcp_sk(sk);
1884 struct mptcp_data_frag *dtmp, *dfrag;
1885
1886 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
1887
1888 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
1889 dfrag_clear(sk, dfrag);
1890 }
1891
mptcp_cancel_work(struct sock * sk)1892 static void mptcp_cancel_work(struct sock *sk)
1893 {
1894 struct mptcp_sock *msk = mptcp_sk(sk);
1895
1896 if (cancel_work_sync(&msk->work))
1897 sock_put(sk);
1898 }
1899
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)1900 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
1901 {
1902 lock_sock(ssk);
1903
1904 switch (ssk->sk_state) {
1905 case TCP_LISTEN:
1906 if (!(how & RCV_SHUTDOWN))
1907 break;
1908 fallthrough;
1909 case TCP_SYN_SENT:
1910 tcp_disconnect(ssk, O_NONBLOCK);
1911 break;
1912 default:
1913 if (__mptcp_check_fallback(mptcp_sk(sk))) {
1914 pr_debug("Fallback");
1915 ssk->sk_shutdown |= how;
1916 tcp_shutdown(ssk, how);
1917 } else {
1918 pr_debug("Sending DATA_FIN on subflow %p", ssk);
1919 mptcp_set_timeout(sk, ssk);
1920 tcp_send_ack(ssk);
1921 }
1922 break;
1923 }
1924
1925 release_sock(ssk);
1926 }
1927
1928 static const unsigned char new_state[16] = {
1929 /* current state: new state: action: */
1930 [0 /* (Invalid) */] = TCP_CLOSE,
1931 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1932 [TCP_SYN_SENT] = TCP_CLOSE,
1933 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1934 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1935 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1936 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
1937 [TCP_CLOSE] = TCP_CLOSE,
1938 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1939 [TCP_LAST_ACK] = TCP_LAST_ACK,
1940 [TCP_LISTEN] = TCP_CLOSE,
1941 [TCP_CLOSING] = TCP_CLOSING,
1942 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1943 };
1944
mptcp_close_state(struct sock * sk)1945 static int mptcp_close_state(struct sock *sk)
1946 {
1947 int next = (int)new_state[sk->sk_state];
1948 int ns = next & TCP_STATE_MASK;
1949
1950 inet_sk_state_store(sk, ns);
1951
1952 return next & TCP_ACTION_FIN;
1953 }
1954
mptcp_close(struct sock * sk,long timeout)1955 static void mptcp_close(struct sock *sk, long timeout)
1956 {
1957 struct mptcp_subflow_context *subflow, *tmp;
1958 struct mptcp_sock *msk = mptcp_sk(sk);
1959 LIST_HEAD(conn_list);
1960
1961 lock_sock(sk);
1962 sk->sk_shutdown = SHUTDOWN_MASK;
1963
1964 if (sk->sk_state == TCP_LISTEN) {
1965 inet_sk_state_store(sk, TCP_CLOSE);
1966 goto cleanup;
1967 } else if (sk->sk_state == TCP_CLOSE) {
1968 goto cleanup;
1969 }
1970
1971 if (__mptcp_check_fallback(msk)) {
1972 goto update_state;
1973 } else if (mptcp_close_state(sk)) {
1974 pr_debug("Sending DATA_FIN sk=%p", sk);
1975 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
1976 WRITE_ONCE(msk->snd_data_fin_enable, 1);
1977
1978 mptcp_for_each_subflow(msk, subflow) {
1979 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
1980
1981 mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK);
1982 }
1983 }
1984
1985 sk_stream_wait_close(sk, timeout);
1986
1987 update_state:
1988 inet_sk_state_store(sk, TCP_CLOSE);
1989
1990 cleanup:
1991 /* be sure to always acquire the join list lock, to sync vs
1992 * mptcp_finish_join().
1993 */
1994 spin_lock_bh(&msk->join_list_lock);
1995 list_splice_tail_init(&msk->join_list, &msk->conn_list);
1996 spin_unlock_bh(&msk->join_list_lock);
1997 list_splice_init(&msk->conn_list, &conn_list);
1998
1999 __mptcp_clear_xmit(sk);
2000
2001 release_sock(sk);
2002
2003 list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2004 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2005 __mptcp_close_ssk(sk, ssk, subflow, timeout);
2006 }
2007
2008 mptcp_cancel_work(sk);
2009
2010 __skb_queue_purge(&sk->sk_receive_queue);
2011
2012 sk_common_release(sk);
2013 }
2014
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)2015 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2016 {
2017 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2018 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2019 struct ipv6_pinfo *msk6 = inet6_sk(msk);
2020
2021 msk->sk_v6_daddr = ssk->sk_v6_daddr;
2022 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2023
2024 if (msk6 && ssk6) {
2025 msk6->saddr = ssk6->saddr;
2026 msk6->flow_label = ssk6->flow_label;
2027 }
2028 #endif
2029
2030 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2031 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2032 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2033 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2034 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2035 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2036 }
2037
mptcp_disconnect(struct sock * sk,int flags)2038 static int mptcp_disconnect(struct sock *sk, int flags)
2039 {
2040 /* Should never be called.
2041 * inet_stream_connect() calls ->disconnect, but that
2042 * refers to the subflow socket, not the mptcp one.
2043 */
2044 WARN_ON_ONCE(1);
2045 return 0;
2046 }
2047
2048 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)2049 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2050 {
2051 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2052
2053 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2054 }
2055 #endif
2056
mptcp_sk_clone(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct request_sock * req)2057 struct sock *mptcp_sk_clone(const struct sock *sk,
2058 const struct mptcp_options_received *mp_opt,
2059 struct request_sock *req)
2060 {
2061 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2062 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2063 struct mptcp_sock *msk;
2064 u64 ack_seq;
2065
2066 if (!nsk)
2067 return NULL;
2068
2069 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2070 if (nsk->sk_family == AF_INET6)
2071 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2072 #endif
2073
2074 __mptcp_init_sock(nsk);
2075
2076 msk = mptcp_sk(nsk);
2077 msk->local_key = subflow_req->local_key;
2078 msk->token = subflow_req->token;
2079 msk->subflow = NULL;
2080 WRITE_ONCE(msk->fully_established, false);
2081
2082 msk->write_seq = subflow_req->idsn + 1;
2083 atomic64_set(&msk->snd_una, msk->write_seq);
2084 if (mp_opt->mp_capable) {
2085 msk->can_ack = true;
2086 msk->remote_key = mp_opt->sndr_key;
2087 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2088 ack_seq++;
2089 WRITE_ONCE(msk->ack_seq, ack_seq);
2090 }
2091
2092 sock_reset_flag(nsk, SOCK_RCU_FREE);
2093 /* will be fully established after successful MPC subflow creation */
2094 inet_sk_state_store(nsk, TCP_SYN_RECV);
2095
2096 security_inet_csk_clone(nsk, req);
2097 bh_unlock_sock(nsk);
2098
2099 /* keep a single reference */
2100 __sock_put(nsk);
2101 return nsk;
2102 }
2103
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)2104 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2105 {
2106 const struct tcp_sock *tp = tcp_sk(ssk);
2107
2108 msk->rcvq_space.copied = 0;
2109 msk->rcvq_space.rtt_us = 0;
2110
2111 msk->rcvq_space.time = tp->tcp_mstamp;
2112
2113 /* initial rcv_space offering made to peer */
2114 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2115 TCP_INIT_CWND * tp->advmss);
2116 if (msk->rcvq_space.space == 0)
2117 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2118 }
2119
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)2120 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2121 bool kern)
2122 {
2123 struct mptcp_sock *msk = mptcp_sk(sk);
2124 struct socket *listener;
2125 struct sock *newsk;
2126
2127 listener = __mptcp_nmpc_socket(msk);
2128 if (WARN_ON_ONCE(!listener)) {
2129 *err = -EINVAL;
2130 return NULL;
2131 }
2132
2133 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2134 newsk = inet_csk_accept(listener->sk, flags, err, kern);
2135 if (!newsk)
2136 return NULL;
2137
2138 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2139 if (sk_is_mptcp(newsk)) {
2140 struct mptcp_subflow_context *subflow;
2141 struct sock *new_mptcp_sock;
2142 struct sock *ssk = newsk;
2143
2144 subflow = mptcp_subflow_ctx(newsk);
2145 new_mptcp_sock = subflow->conn;
2146
2147 /* is_mptcp should be false if subflow->conn is missing, see
2148 * subflow_syn_recv_sock()
2149 */
2150 if (WARN_ON_ONCE(!new_mptcp_sock)) {
2151 tcp_sk(newsk)->is_mptcp = 0;
2152 goto out;
2153 }
2154
2155 /* acquire the 2nd reference for the owning socket */
2156 sock_hold(new_mptcp_sock);
2157
2158 local_bh_disable();
2159 bh_lock_sock(new_mptcp_sock);
2160 msk = mptcp_sk(new_mptcp_sock);
2161 msk->first = newsk;
2162
2163 newsk = new_mptcp_sock;
2164 mptcp_copy_inaddrs(newsk, ssk);
2165 list_add(&subflow->node, &msk->conn_list);
2166
2167 mptcp_rcv_space_init(msk, ssk);
2168 bh_unlock_sock(new_mptcp_sock);
2169
2170 __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2171 local_bh_enable();
2172 } else {
2173 MPTCP_INC_STATS(sock_net(sk),
2174 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2175 }
2176
2177 out:
2178 newsk->sk_kern_sock = kern;
2179 return newsk;
2180 }
2181
mptcp_destroy_common(struct mptcp_sock * msk)2182 void mptcp_destroy_common(struct mptcp_sock *msk)
2183 {
2184 skb_rbtree_purge(&msk->out_of_order_queue);
2185 mptcp_token_destroy(msk);
2186 mptcp_pm_free_anno_list(msk);
2187 }
2188
mptcp_destroy(struct sock * sk)2189 static void mptcp_destroy(struct sock *sk)
2190 {
2191 struct mptcp_sock *msk = mptcp_sk(sk);
2192
2193 if (msk->cached_ext)
2194 __skb_ext_put(msk->cached_ext);
2195
2196 mptcp_destroy_common(msk);
2197 sk_sockets_allocated_dec(sk);
2198 }
2199
mptcp_setsockopt_sol_socket(struct mptcp_sock * msk,int optname,sockptr_t optval,unsigned int optlen)2200 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
2201 sockptr_t optval, unsigned int optlen)
2202 {
2203 struct sock *sk = (struct sock *)msk;
2204 struct socket *ssock;
2205 int ret;
2206
2207 switch (optname) {
2208 case SO_REUSEPORT:
2209 case SO_REUSEADDR:
2210 lock_sock(sk);
2211 ssock = __mptcp_nmpc_socket(msk);
2212 if (!ssock) {
2213 release_sock(sk);
2214 return -EINVAL;
2215 }
2216
2217 ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
2218 if (ret == 0) {
2219 if (optname == SO_REUSEPORT)
2220 sk->sk_reuseport = ssock->sk->sk_reuseport;
2221 else if (optname == SO_REUSEADDR)
2222 sk->sk_reuse = ssock->sk->sk_reuse;
2223 }
2224 release_sock(sk);
2225 return ret;
2226 }
2227
2228 return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
2229 }
2230
mptcp_setsockopt_v6(struct mptcp_sock * msk,int optname,sockptr_t optval,unsigned int optlen)2231 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
2232 sockptr_t optval, unsigned int optlen)
2233 {
2234 struct sock *sk = (struct sock *)msk;
2235 int ret = -EOPNOTSUPP;
2236 struct socket *ssock;
2237
2238 switch (optname) {
2239 case IPV6_V6ONLY:
2240 lock_sock(sk);
2241 ssock = __mptcp_nmpc_socket(msk);
2242 if (!ssock) {
2243 release_sock(sk);
2244 return -EINVAL;
2245 }
2246
2247 ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
2248 if (ret == 0)
2249 sk->sk_ipv6only = ssock->sk->sk_ipv6only;
2250
2251 release_sock(sk);
2252 break;
2253 }
2254
2255 return ret;
2256 }
2257
mptcp_unsupported(int level,int optname)2258 static bool mptcp_unsupported(int level, int optname)
2259 {
2260 if (level == SOL_IP) {
2261 switch (optname) {
2262 case IP_ADD_MEMBERSHIP:
2263 case IP_ADD_SOURCE_MEMBERSHIP:
2264 case IP_DROP_MEMBERSHIP:
2265 case IP_DROP_SOURCE_MEMBERSHIP:
2266 case IP_BLOCK_SOURCE:
2267 case IP_UNBLOCK_SOURCE:
2268 case MCAST_JOIN_GROUP:
2269 case MCAST_LEAVE_GROUP:
2270 case MCAST_JOIN_SOURCE_GROUP:
2271 case MCAST_LEAVE_SOURCE_GROUP:
2272 case MCAST_BLOCK_SOURCE:
2273 case MCAST_UNBLOCK_SOURCE:
2274 case MCAST_MSFILTER:
2275 return true;
2276 }
2277 return false;
2278 }
2279 if (level == SOL_IPV6) {
2280 switch (optname) {
2281 case IPV6_ADDRFORM:
2282 case IPV6_ADD_MEMBERSHIP:
2283 case IPV6_DROP_MEMBERSHIP:
2284 case IPV6_JOIN_ANYCAST:
2285 case IPV6_LEAVE_ANYCAST:
2286 case MCAST_JOIN_GROUP:
2287 case MCAST_LEAVE_GROUP:
2288 case MCAST_JOIN_SOURCE_GROUP:
2289 case MCAST_LEAVE_SOURCE_GROUP:
2290 case MCAST_BLOCK_SOURCE:
2291 case MCAST_UNBLOCK_SOURCE:
2292 case MCAST_MSFILTER:
2293 return true;
2294 }
2295 return false;
2296 }
2297 return false;
2298 }
2299
mptcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2300 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
2301 sockptr_t optval, unsigned int optlen)
2302 {
2303 struct mptcp_sock *msk = mptcp_sk(sk);
2304 struct sock *ssk;
2305
2306 pr_debug("msk=%p", msk);
2307
2308 if (mptcp_unsupported(level, optname))
2309 return -ENOPROTOOPT;
2310
2311 if (level == SOL_SOCKET)
2312 return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
2313
2314 /* @@ the meaning of setsockopt() when the socket is connected and
2315 * there are multiple subflows is not yet defined. It is up to the
2316 * MPTCP-level socket to configure the subflows until the subflow
2317 * is in TCP fallback, when TCP socket options are passed through
2318 * to the one remaining subflow.
2319 */
2320 lock_sock(sk);
2321 ssk = __mptcp_tcp_fallback(msk);
2322 release_sock(sk);
2323 if (ssk)
2324 return tcp_setsockopt(ssk, level, optname, optval, optlen);
2325
2326 if (level == SOL_IPV6)
2327 return mptcp_setsockopt_v6(msk, optname, optval, optlen);
2328
2329 return -EOPNOTSUPP;
2330 }
2331
mptcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * option)2332 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
2333 char __user *optval, int __user *option)
2334 {
2335 struct mptcp_sock *msk = mptcp_sk(sk);
2336 struct sock *ssk;
2337
2338 pr_debug("msk=%p", msk);
2339
2340 /* @@ the meaning of setsockopt() when the socket is connected and
2341 * there are multiple subflows is not yet defined. It is up to the
2342 * MPTCP-level socket to configure the subflows until the subflow
2343 * is in TCP fallback, when socket options are passed through
2344 * to the one remaining subflow.
2345 */
2346 lock_sock(sk);
2347 ssk = __mptcp_tcp_fallback(msk);
2348 release_sock(sk);
2349 if (ssk)
2350 return tcp_getsockopt(ssk, level, optname, optval, option);
2351
2352 return -EOPNOTSUPP;
2353 }
2354
2355 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \
2356 TCPF_WRITE_TIMER_DEFERRED)
2357
2358 /* this is very alike tcp_release_cb() but we must handle differently a
2359 * different set of events
2360 */
mptcp_release_cb(struct sock * sk)2361 static void mptcp_release_cb(struct sock *sk)
2362 {
2363 unsigned long flags, nflags;
2364
2365 do {
2366 flags = sk->sk_tsq_flags;
2367 if (!(flags & MPTCP_DEFERRED_ALL))
2368 return;
2369 nflags = flags & ~MPTCP_DEFERRED_ALL;
2370 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
2371
2372 sock_release_ownership(sk);
2373
2374 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
2375 struct mptcp_sock *msk = mptcp_sk(sk);
2376 struct sock *ssk;
2377
2378 ssk = mptcp_subflow_recv_lookup(msk);
2379 if (!ssk || !schedule_work(&msk->work))
2380 __sock_put(sk);
2381 }
2382
2383 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
2384 mptcp_retransmit_handler(sk);
2385 __sock_put(sk);
2386 }
2387 }
2388
mptcp_hash(struct sock * sk)2389 static int mptcp_hash(struct sock *sk)
2390 {
2391 /* should never be called,
2392 * we hash the TCP subflows not the master socket
2393 */
2394 WARN_ON_ONCE(1);
2395 return 0;
2396 }
2397
mptcp_unhash(struct sock * sk)2398 static void mptcp_unhash(struct sock *sk)
2399 {
2400 /* called from sk_common_release(), but nothing to do here */
2401 }
2402
mptcp_get_port(struct sock * sk,unsigned short snum)2403 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2404 {
2405 struct mptcp_sock *msk = mptcp_sk(sk);
2406 struct socket *ssock;
2407
2408 ssock = __mptcp_nmpc_socket(msk);
2409 pr_debug("msk=%p, subflow=%p", msk, ssock);
2410 if (WARN_ON_ONCE(!ssock))
2411 return -EINVAL;
2412
2413 return inet_csk_get_port(ssock->sk, snum);
2414 }
2415
mptcp_finish_connect(struct sock * ssk)2416 void mptcp_finish_connect(struct sock *ssk)
2417 {
2418 struct mptcp_subflow_context *subflow;
2419 struct mptcp_sock *msk;
2420 struct sock *sk;
2421 u64 ack_seq;
2422
2423 subflow = mptcp_subflow_ctx(ssk);
2424 sk = subflow->conn;
2425 msk = mptcp_sk(sk);
2426
2427 pr_debug("msk=%p, token=%u", sk, subflow->token);
2428
2429 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2430 ack_seq++;
2431 subflow->map_seq = ack_seq;
2432 subflow->map_subflow_seq = 1;
2433
2434 /* the socket is not connected yet, no msk/subflow ops can access/race
2435 * accessing the field below
2436 */
2437 WRITE_ONCE(msk->remote_key, subflow->remote_key);
2438 WRITE_ONCE(msk->local_key, subflow->local_key);
2439 WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2440 WRITE_ONCE(msk->ack_seq, ack_seq);
2441 WRITE_ONCE(msk->can_ack, 1);
2442 atomic64_set(&msk->snd_una, msk->write_seq);
2443
2444 mptcp_pm_new_connection(msk, 0);
2445
2446 mptcp_rcv_space_init(msk, ssk);
2447 }
2448
mptcp_sock_graft(struct sock * sk,struct socket * parent)2449 static void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2450 {
2451 write_lock_bh(&sk->sk_callback_lock);
2452 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2453 sk_set_socket(sk, parent);
2454 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2455 write_unlock_bh(&sk->sk_callback_lock);
2456 }
2457
mptcp_finish_join(struct sock * sk)2458 bool mptcp_finish_join(struct sock *sk)
2459 {
2460 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
2461 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
2462 struct sock *parent = (void *)msk;
2463 struct socket *parent_sock;
2464 bool ret;
2465
2466 pr_debug("msk=%p, subflow=%p", msk, subflow);
2467
2468 /* mptcp socket already closing? */
2469 if (!mptcp_is_fully_established(parent))
2470 return false;
2471
2472 if (!msk->pm.server_side)
2473 return true;
2474
2475 if (!mptcp_pm_allow_new_subflow(msk))
2476 return false;
2477
2478 /* active connections are already on conn_list, and we can't acquire
2479 * msk lock here.
2480 * use the join list lock as synchronization point and double-check
2481 * msk status to avoid racing with mptcp_close()
2482 */
2483 spin_lock_bh(&msk->join_list_lock);
2484 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
2485 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node)))
2486 list_add_tail(&subflow->node, &msk->join_list);
2487 spin_unlock_bh(&msk->join_list_lock);
2488 if (!ret)
2489 return false;
2490
2491 /* attach to msk socket only after we are sure he will deal with us
2492 * at close time
2493 */
2494 parent_sock = READ_ONCE(parent->sk_socket);
2495 if (parent_sock && !sk->sk_socket)
2496 mptcp_sock_graft(sk, parent_sock);
2497 subflow->map_seq = READ_ONCE(msk->ack_seq);
2498 return true;
2499 }
2500
mptcp_memory_free(const struct sock * sk,int wake)2501 static bool mptcp_memory_free(const struct sock *sk, int wake)
2502 {
2503 struct mptcp_sock *msk = mptcp_sk(sk);
2504
2505 return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true;
2506 }
2507
2508 static struct proto mptcp_prot = {
2509 .name = "MPTCP",
2510 .owner = THIS_MODULE,
2511 .init = mptcp_init_sock,
2512 .disconnect = mptcp_disconnect,
2513 .close = mptcp_close,
2514 .accept = mptcp_accept,
2515 .setsockopt = mptcp_setsockopt,
2516 .getsockopt = mptcp_getsockopt,
2517 .shutdown = tcp_shutdown,
2518 .destroy = mptcp_destroy,
2519 .sendmsg = mptcp_sendmsg,
2520 .recvmsg = mptcp_recvmsg,
2521 .release_cb = mptcp_release_cb,
2522 .hash = mptcp_hash,
2523 .unhash = mptcp_unhash,
2524 .get_port = mptcp_get_port,
2525 .sockets_allocated = &mptcp_sockets_allocated,
2526 .memory_allocated = &tcp_memory_allocated,
2527 .memory_pressure = &tcp_memory_pressure,
2528 .stream_memory_free = mptcp_memory_free,
2529 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
2530 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
2531 .sysctl_mem = sysctl_tcp_mem,
2532 .obj_size = sizeof(struct mptcp_sock),
2533 .slab_flags = SLAB_TYPESAFE_BY_RCU,
2534 .no_autobind = true,
2535 };
2536
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)2537 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2538 {
2539 struct mptcp_sock *msk = mptcp_sk(sock->sk);
2540 struct socket *ssock;
2541 int err;
2542
2543 lock_sock(sock->sk);
2544 ssock = __mptcp_nmpc_socket(msk);
2545 if (!ssock) {
2546 err = -EINVAL;
2547 goto unlock;
2548 }
2549
2550 err = ssock->ops->bind(ssock, uaddr, addr_len);
2551 if (!err)
2552 mptcp_copy_inaddrs(sock->sk, ssock->sk);
2553
2554 unlock:
2555 release_sock(sock->sk);
2556 return err;
2557 }
2558
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2559 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
2560 struct mptcp_subflow_context *subflow)
2561 {
2562 subflow->request_mptcp = 0;
2563 __mptcp_do_fallback(msk);
2564 }
2565
mptcp_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)2566 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
2567 int addr_len, int flags)
2568 {
2569 struct mptcp_sock *msk = mptcp_sk(sock->sk);
2570 struct mptcp_subflow_context *subflow;
2571 struct socket *ssock;
2572 int err;
2573
2574 lock_sock(sock->sk);
2575 if (sock->state != SS_UNCONNECTED && msk->subflow) {
2576 /* pending connection or invalid state, let existing subflow
2577 * cope with that
2578 */
2579 ssock = msk->subflow;
2580 goto do_connect;
2581 }
2582
2583 ssock = __mptcp_nmpc_socket(msk);
2584 if (!ssock) {
2585 err = -EINVAL;
2586 goto unlock;
2587 }
2588
2589 mptcp_token_destroy(msk);
2590 inet_sk_state_store(sock->sk, TCP_SYN_SENT);
2591 subflow = mptcp_subflow_ctx(ssock->sk);
2592 #ifdef CONFIG_TCP_MD5SIG
2593 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
2594 * TCP option space.
2595 */
2596 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
2597 mptcp_subflow_early_fallback(msk, subflow);
2598 #endif
2599 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
2600 mptcp_subflow_early_fallback(msk, subflow);
2601
2602 do_connect:
2603 err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
2604 sock->state = ssock->state;
2605
2606 /* on successful connect, the msk state will be moved to established by
2607 * subflow_finish_connect()
2608 */
2609 if (!err || err == -EINPROGRESS)
2610 mptcp_copy_inaddrs(sock->sk, ssock->sk);
2611 else
2612 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2613
2614 unlock:
2615 release_sock(sock->sk);
2616 return err;
2617 }
2618
mptcp_listen(struct socket * sock,int backlog)2619 static int mptcp_listen(struct socket *sock, int backlog)
2620 {
2621 struct mptcp_sock *msk = mptcp_sk(sock->sk);
2622 struct socket *ssock;
2623 int err;
2624
2625 pr_debug("msk=%p", msk);
2626
2627 lock_sock(sock->sk);
2628 ssock = __mptcp_nmpc_socket(msk);
2629 if (!ssock) {
2630 err = -EINVAL;
2631 goto unlock;
2632 }
2633
2634 mptcp_token_destroy(msk);
2635 inet_sk_state_store(sock->sk, TCP_LISTEN);
2636 sock_set_flag(sock->sk, SOCK_RCU_FREE);
2637
2638 err = ssock->ops->listen(ssock, backlog);
2639 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2640 if (!err)
2641 mptcp_copy_inaddrs(sock->sk, ssock->sk);
2642
2643 unlock:
2644 release_sock(sock->sk);
2645 return err;
2646 }
2647
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2648 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
2649 int flags, bool kern)
2650 {
2651 struct mptcp_sock *msk = mptcp_sk(sock->sk);
2652 struct socket *ssock;
2653 int err;
2654
2655 pr_debug("msk=%p", msk);
2656
2657 lock_sock(sock->sk);
2658 if (sock->sk->sk_state != TCP_LISTEN)
2659 goto unlock_fail;
2660
2661 ssock = __mptcp_nmpc_socket(msk);
2662 if (!ssock)
2663 goto unlock_fail;
2664
2665 clear_bit(MPTCP_DATA_READY, &msk->flags);
2666 sock_hold(ssock->sk);
2667 release_sock(sock->sk);
2668
2669 err = ssock->ops->accept(sock, newsock, flags, kern);
2670 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
2671 struct mptcp_sock *msk = mptcp_sk(newsock->sk);
2672 struct mptcp_subflow_context *subflow;
2673
2674 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
2675 * This is needed so NOSPACE flag can be set from tcp stack.
2676 */
2677 __mptcp_flush_join_list(msk);
2678 mptcp_for_each_subflow(msk, subflow) {
2679 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2680
2681 if (!ssk->sk_socket)
2682 mptcp_sock_graft(ssk, newsock);
2683 }
2684 }
2685
2686 if (inet_csk_listen_poll(ssock->sk))
2687 set_bit(MPTCP_DATA_READY, &msk->flags);
2688 sock_put(ssock->sk);
2689 return err;
2690
2691 unlock_fail:
2692 release_sock(sock->sk);
2693 return -EINVAL;
2694 }
2695
mptcp_check_readable(struct mptcp_sock * msk)2696 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2697 {
2698 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
2699 0;
2700 }
2701
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)2702 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
2703 struct poll_table_struct *wait)
2704 {
2705 struct sock *sk = sock->sk;
2706 struct mptcp_sock *msk;
2707 __poll_t mask = 0;
2708 int state;
2709
2710 msk = mptcp_sk(sk);
2711 sock_poll_wait(file, sock, wait);
2712
2713 state = inet_sk_state_load(sk);
2714 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
2715 if (state == TCP_LISTEN)
2716 return mptcp_check_readable(msk);
2717
2718 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
2719 mask |= mptcp_check_readable(msk);
2720 if (test_bit(MPTCP_SEND_SPACE, &msk->flags))
2721 mask |= EPOLLOUT | EPOLLWRNORM;
2722 }
2723 if (sk->sk_shutdown & RCV_SHUTDOWN)
2724 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
2725
2726 return mask;
2727 }
2728
mptcp_shutdown(struct socket * sock,int how)2729 static int mptcp_shutdown(struct socket *sock, int how)
2730 {
2731 struct mptcp_sock *msk = mptcp_sk(sock->sk);
2732 struct mptcp_subflow_context *subflow;
2733 int ret = 0;
2734
2735 pr_debug("sk=%p, how=%d", msk, how);
2736
2737 lock_sock(sock->sk);
2738
2739 how++;
2740 if ((how & ~SHUTDOWN_MASK) || !how) {
2741 ret = -EINVAL;
2742 goto out_unlock;
2743 }
2744
2745 if (sock->state == SS_CONNECTING) {
2746 if ((1 << sock->sk->sk_state) &
2747 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
2748 sock->state = SS_DISCONNECTING;
2749 else
2750 sock->state = SS_CONNECTED;
2751 }
2752
2753 /* If we've already sent a FIN, or it's a closed state, skip this. */
2754 if (__mptcp_check_fallback(msk)) {
2755 if (how == SHUT_WR || how == SHUT_RDWR)
2756 inet_sk_state_store(sock->sk, TCP_FIN_WAIT1);
2757
2758 mptcp_for_each_subflow(msk, subflow) {
2759 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2760
2761 mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2762 }
2763 } else if ((how & SEND_SHUTDOWN) &&
2764 ((1 << sock->sk->sk_state) &
2765 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2766 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) &&
2767 mptcp_close_state(sock->sk)) {
2768 __mptcp_flush_join_list(msk);
2769
2770 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2771 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2772
2773 mptcp_for_each_subflow(msk, subflow) {
2774 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2775
2776 mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2777 }
2778 }
2779
2780 /* Wake up anyone sleeping in poll. */
2781 sock->sk->sk_state_change(sock->sk);
2782
2783 out_unlock:
2784 release_sock(sock->sk);
2785
2786 return ret;
2787 }
2788
2789 static const struct proto_ops mptcp_stream_ops = {
2790 .family = PF_INET,
2791 .owner = THIS_MODULE,
2792 .release = inet_release,
2793 .bind = mptcp_bind,
2794 .connect = mptcp_stream_connect,
2795 .socketpair = sock_no_socketpair,
2796 .accept = mptcp_stream_accept,
2797 .getname = inet_getname,
2798 .poll = mptcp_poll,
2799 .ioctl = inet_ioctl,
2800 .gettstamp = sock_gettstamp,
2801 .listen = mptcp_listen,
2802 .shutdown = mptcp_shutdown,
2803 .setsockopt = sock_common_setsockopt,
2804 .getsockopt = sock_common_getsockopt,
2805 .sendmsg = inet_sendmsg,
2806 .recvmsg = inet_recvmsg,
2807 .mmap = sock_no_mmap,
2808 .sendpage = inet_sendpage,
2809 };
2810
2811 static struct inet_protosw mptcp_protosw = {
2812 .type = SOCK_STREAM,
2813 .protocol = IPPROTO_MPTCP,
2814 .prot = &mptcp_prot,
2815 .ops = &mptcp_stream_ops,
2816 .flags = INET_PROTOSW_ICSK,
2817 };
2818
mptcp_proto_init(void)2819 void __init mptcp_proto_init(void)
2820 {
2821 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
2822
2823 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
2824 panic("Failed to allocate MPTCP pcpu counter\n");
2825
2826 mptcp_subflow_init();
2827 mptcp_pm_init();
2828 mptcp_token_init();
2829
2830 if (proto_register(&mptcp_prot, 1) != 0)
2831 panic("Failed to register MPTCP proto.\n");
2832
2833 inet_register_protosw(&mptcp_protosw);
2834
2835 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
2836 }
2837
2838 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2839 static const struct proto_ops mptcp_v6_stream_ops = {
2840 .family = PF_INET6,
2841 .owner = THIS_MODULE,
2842 .release = inet6_release,
2843 .bind = mptcp_bind,
2844 .connect = mptcp_stream_connect,
2845 .socketpair = sock_no_socketpair,
2846 .accept = mptcp_stream_accept,
2847 .getname = inet6_getname,
2848 .poll = mptcp_poll,
2849 .ioctl = inet6_ioctl,
2850 .gettstamp = sock_gettstamp,
2851 .listen = mptcp_listen,
2852 .shutdown = mptcp_shutdown,
2853 .setsockopt = sock_common_setsockopt,
2854 .getsockopt = sock_common_getsockopt,
2855 .sendmsg = inet6_sendmsg,
2856 .recvmsg = inet6_recvmsg,
2857 .mmap = sock_no_mmap,
2858 .sendpage = inet_sendpage,
2859 #ifdef CONFIG_COMPAT
2860 .compat_ioctl = inet6_compat_ioctl,
2861 #endif
2862 };
2863
2864 static struct proto mptcp_v6_prot;
2865
mptcp_v6_destroy(struct sock * sk)2866 static void mptcp_v6_destroy(struct sock *sk)
2867 {
2868 mptcp_destroy(sk);
2869 inet6_destroy_sock(sk);
2870 }
2871
2872 static struct inet_protosw mptcp_v6_protosw = {
2873 .type = SOCK_STREAM,
2874 .protocol = IPPROTO_MPTCP,
2875 .prot = &mptcp_v6_prot,
2876 .ops = &mptcp_v6_stream_ops,
2877 .flags = INET_PROTOSW_ICSK,
2878 };
2879
mptcp_proto_v6_init(void)2880 int __init mptcp_proto_v6_init(void)
2881 {
2882 int err;
2883
2884 mptcp_v6_prot = mptcp_prot;
2885 strcpy(mptcp_v6_prot.name, "MPTCPv6");
2886 mptcp_v6_prot.slab = NULL;
2887 mptcp_v6_prot.destroy = mptcp_v6_destroy;
2888 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
2889
2890 err = proto_register(&mptcp_v6_prot, 1);
2891 if (err)
2892 return err;
2893
2894 err = inet6_register_protosw(&mptcp_v6_protosw);
2895 if (err)
2896 proto_unregister(&mptcp_v6_prot);
2897
2898 return err;
2899 }
2900 #endif
2901