• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	$KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $	*/
2 
3 /*
4  * rijndael-api-fst.c   v2.3   April '2000
5  *
6  * Optimised ANSI C code
7  *
8  * authors: v1.0: Antoon Bosselaers
9  *          v2.0: Vincent Rijmen
10  *          v2.1: Vincent Rijmen
11  *          v2.2: Vincent Rijmen
12  *          v2.3: Paulo Barreto
13  *          v2.4: Vincent Rijmen
14  *
15  * This code is placed in the public domain.
16  */
17 
18 #include <sys/cdefs.h>
19 __FBSDID("$FreeBSD$");
20 
21 #include <sys/types.h>
22 #include <sys/param.h>
23 #ifdef _KERNEL
24 #include <sys/systm.h>
25 #else
26 #include <string.h>
27 #endif
28 
29 #include <crypto/rijndael/rijndael_local.h>
30 #include <crypto/rijndael/rijndael-api-fst.h>
31 
32 #ifndef TRUE
33 #define TRUE 1
34 #endif
35 
36 typedef uint8_t	BYTE;
37 
rijndael_makeKey(keyInstance * key,BYTE direction,int keyLen,const char * keyMaterial)38 int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen,
39 	const char *keyMaterial) {
40 
41 	if (key == NULL) {
42 		return BAD_KEY_INSTANCE;
43 	}
44 
45 	if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
46 		key->direction = direction;
47 	} else {
48 		return BAD_KEY_DIR;
49 	}
50 
51 	if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
52 		key->keyLen = keyLen;
53 	} else {
54 		return BAD_KEY_MAT;
55 	}
56 
57 	if (keyMaterial != NULL) {
58 		memcpy(key->keyMaterial, keyMaterial, keyLen/8);
59 	}
60 
61 	/* initialize key schedule: */
62 	if (direction == DIR_ENCRYPT) {
63 		key->Nr = rijndaelKeySetupEnc(key->rk, (const u8 *)(key->keyMaterial), keyLen);
64 	} else {
65 		key->Nr = rijndaelKeySetupDec(key->rk, (const u8 *)(key->keyMaterial), keyLen);
66 	}
67 	rijndaelKeySetupEnc(key->ek, (const u8 *)(key->keyMaterial), keyLen);
68 	return TRUE;
69 }
70 
rijndael_cipherInit(cipherInstance * cipher,BYTE mode,char * IV)71 int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
72 	if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
73 		cipher->mode = mode;
74 	} else {
75 		return BAD_CIPHER_MODE;
76 	}
77 	if (IV != NULL) {
78 		memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE);
79 	} else {
80 		memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE);
81 	}
82 	return TRUE;
83 }
84 
rijndael_blockEncrypt(cipherInstance * cipher,keyInstance * key,const BYTE * input,int inputLen,BYTE * outBuffer)85 int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
86 		const BYTE *input, int inputLen, BYTE *outBuffer) {
87 	int i, k, numBlocks;
88 	uint8_t block[16], iv[4][4];
89 
90 	if (cipher == NULL ||
91 		key == NULL ||
92 		key->direction == DIR_DECRYPT) {
93 		return BAD_CIPHER_STATE;
94 	}
95 	if (input == NULL || inputLen <= 0) {
96 		return 0; /* nothing to do */
97 	}
98 
99 	numBlocks = inputLen/128;
100 
101 	switch (cipher->mode) {
102 	case MODE_ECB:
103 		for (i = numBlocks; i > 0; i--) {
104 			rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
105 			input += 16;
106 			outBuffer += 16;
107 		}
108 		break;
109 
110 	case MODE_CBC:
111 #if 1 /*STRICT_ALIGN*/
112 		memcpy(block, cipher->IV, 16);
113 		memcpy(iv, input, 16);
114 		((uint32_t*)block)[0] ^= ((uint32_t*)iv)[0];
115 		((uint32_t*)block)[1] ^= ((uint32_t*)iv)[1];
116 		((uint32_t*)block)[2] ^= ((uint32_t*)iv)[2];
117 		((uint32_t*)block)[3] ^= ((uint32_t*)iv)[3];
118 #else
119 		((uint32_t*)block)[0] = ((uint32_t*)cipher->IV)[0] ^ ((uint32_t*)input)[0];
120 		((uint32_t*)block)[1] = ((uint32_t*)cipher->IV)[1] ^ ((uint32_t*)input)[1];
121 		((uint32_t*)block)[2] = ((uint32_t*)cipher->IV)[2] ^ ((uint32_t*)input)[2];
122 		((uint32_t*)block)[3] = ((uint32_t*)cipher->IV)[3] ^ ((uint32_t*)input)[3];
123 #endif
124 		rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
125 		input += 16;
126 		for (i = numBlocks - 1; i > 0; i--) {
127 #if 1 /*STRICT_ALIGN*/
128 			memcpy(block, outBuffer, 16);
129 			memcpy(iv, input, 16);
130 			((uint32_t*)block)[0] ^= ((uint32_t*)iv)[0];
131 			((uint32_t*)block)[1] ^= ((uint32_t*)iv)[1];
132 			((uint32_t*)block)[2] ^= ((uint32_t*)iv)[2];
133 			((uint32_t*)block)[3] ^= ((uint32_t*)iv)[3];
134 #else
135 			((uint32_t*)block)[0] = ((uint32_t*)outBuffer)[0] ^ ((uint32_t*)input)[0];
136 			((uint32_t*)block)[1] = ((uint32_t*)outBuffer)[1] ^ ((uint32_t*)input)[1];
137 			((uint32_t*)block)[2] = ((uint32_t*)outBuffer)[2] ^ ((uint32_t*)input)[2];
138 			((uint32_t*)block)[3] = ((uint32_t*)outBuffer)[3] ^ ((uint32_t*)input)[3];
139 #endif
140 			outBuffer += 16;
141 			rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
142 			input += 16;
143 		}
144 		break;
145 
146 	case MODE_CFB1:
147 #if 1 /*STRICT_ALIGN*/
148 		memcpy(iv, cipher->IV, 16);
149 #else  /* !STRICT_ALIGN */
150 		*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV   ));
151 		*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
152 		*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
153 		*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
154 #endif /* ?STRICT_ALIGN */
155 		for (i = numBlocks; i > 0; i--) {
156 			for (k = 0; k < 128; k++) {
157 				*((uint32_t*) block    ) = *((uint32_t*)iv[0]);
158 				*((uint32_t*)(block+ 4)) = *((uint32_t*)iv[1]);
159 				*((uint32_t*)(block+ 8)) = *((uint32_t*)iv[2]);
160 				*((uint32_t*)(block+12)) = *((uint32_t*)iv[3]);
161 				rijndaelEncrypt(key->ek, key->Nr, block,
162 				    block);
163 				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
164 				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
165 				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
166 				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
167 				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
168 				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
169 				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
170 				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
171 				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
172 				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
173 				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
174 				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
175 				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
176 				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
177 				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
178 				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
179 				iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
180 			}
181 		}
182 		break;
183 
184 	default:
185 		return BAD_CIPHER_STATE;
186 	}
187 
188 	explicit_bzero(block, sizeof(block));
189 	return 128*numBlocks;
190 }
191 
192 /**
193  * Encrypt data partitioned in octets, using RFC 2040-like padding.
194  *
195  * @param   input           data to be encrypted (octet sequence)
196  * @param   inputOctets		input length in octets (not bits)
197  * @param   outBuffer       encrypted output data
198  *
199  * @return	length in octets (not bits) of the encrypted output buffer.
200  */
rijndael_padEncrypt(cipherInstance * cipher,keyInstance * key,const BYTE * input,int inputOctets,BYTE * outBuffer)201 int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
202 		const BYTE *input, int inputOctets, BYTE *outBuffer) {
203 	int i, numBlocks, padLen;
204 	uint8_t block[16], *iv, *cp;
205 
206 	if (cipher == NULL ||
207 		key == NULL ||
208 		key->direction == DIR_DECRYPT) {
209 		return BAD_CIPHER_STATE;
210 	}
211 	if (input == NULL || inputOctets <= 0) {
212 		return 0; /* nothing to do */
213 	}
214 
215 	numBlocks = inputOctets/16;
216 
217 	switch (cipher->mode) {
218 	case MODE_ECB:
219 		for (i = numBlocks; i > 0; i--) {
220 			rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
221 			input += 16;
222 			outBuffer += 16;
223 		}
224 		padLen = 16 - (inputOctets - 16*numBlocks);
225 		if (padLen <= 0 || padLen > 16)
226 			return BAD_CIPHER_STATE;
227 		memcpy(block, input, 16 - padLen);
228 		for (cp = block + 16 - padLen; cp < block + 16; cp++)
229 			*cp = padLen;
230 		rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
231 		break;
232 
233 	case MODE_CBC:
234 		iv = cipher->IV;
235 		for (i = numBlocks; i > 0; i--) {
236 			((uint32_t*)block)[0] = ((const uint32_t*)input)[0] ^ ((uint32_t*)iv)[0];
237 			((uint32_t*)block)[1] = ((const uint32_t*)input)[1] ^ ((uint32_t*)iv)[1];
238 			((uint32_t*)block)[2] = ((const uint32_t*)input)[2] ^ ((uint32_t*)iv)[2];
239 			((uint32_t*)block)[3] = ((const uint32_t*)input)[3] ^ ((uint32_t*)iv)[3];
240 			rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
241 			iv = outBuffer;
242 			input += 16;
243 			outBuffer += 16;
244 		}
245 		padLen = 16 - (inputOctets - 16*numBlocks);
246 		if (padLen <= 0 || padLen > 16)
247 			return BAD_CIPHER_STATE;
248 		for (i = 0; i < 16 - padLen; i++) {
249 			block[i] = input[i] ^ iv[i];
250 		}
251 		for (i = 16 - padLen; i < 16; i++) {
252 			block[i] = (BYTE)padLen ^ iv[i];
253 		}
254 		rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
255 		break;
256 
257 	default:
258 		return BAD_CIPHER_STATE;
259 	}
260 
261 	explicit_bzero(block, sizeof(block));
262 	return 16*(numBlocks + 1);
263 }
264 
rijndael_blockDecrypt(cipherInstance * cipher,keyInstance * key,const BYTE * input,int inputLen,BYTE * outBuffer)265 int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
266 		const BYTE *input, int inputLen, BYTE *outBuffer) {
267 	int i, k, numBlocks;
268 	uint8_t block[16], iv[4][4];
269 
270 	if (cipher == NULL ||
271 		key == NULL ||
272 		(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
273 		return BAD_CIPHER_STATE;
274 	}
275 	if (input == NULL || inputLen <= 0) {
276 		return 0; /* nothing to do */
277 	}
278 
279 	numBlocks = inputLen/128;
280 
281 	switch (cipher->mode) {
282 	case MODE_ECB:
283 		for (i = numBlocks; i > 0; i--) {
284 			rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
285 			input += 16;
286 			outBuffer += 16;
287 		}
288 		break;
289 
290 	case MODE_CBC:
291 #if 1 /*STRICT_ALIGN */
292 		memcpy(iv, cipher->IV, 16);
293 #else
294 		*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV   ));
295 		*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
296 		*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
297 		*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
298 #endif
299 		for (i = numBlocks; i > 0; i--) {
300 			rijndaelDecrypt(key->rk, key->Nr, input, block);
301 			((uint32_t*)block)[0] ^= *((uint32_t*)iv[0]);
302 			((uint32_t*)block)[1] ^= *((uint32_t*)iv[1]);
303 			((uint32_t*)block)[2] ^= *((uint32_t*)iv[2]);
304 			((uint32_t*)block)[3] ^= *((uint32_t*)iv[3]);
305 #if 1 /*STRICT_ALIGN*/
306 			memcpy(iv, input, 16);
307 			memcpy(outBuffer, block, 16);
308 #else
309 			*((uint32_t*)iv[0]) = ((uint32_t*)input)[0]; ((uint32_t*)outBuffer)[0] = ((uint32_t*)block)[0];
310 			*((uint32_t*)iv[1]) = ((uint32_t*)input)[1]; ((uint32_t*)outBuffer)[1] = ((uint32_t*)block)[1];
311 			*((uint32_t*)iv[2]) = ((uint32_t*)input)[2]; ((uint32_t*)outBuffer)[2] = ((uint32_t*)block)[2];
312 			*((uint32_t*)iv[3]) = ((uint32_t*)input)[3]; ((uint32_t*)outBuffer)[3] = ((uint32_t*)block)[3];
313 #endif
314 			input += 16;
315 			outBuffer += 16;
316 		}
317 		break;
318 
319 	case MODE_CFB1:
320 #if 1 /*STRICT_ALIGN */
321 		memcpy(iv, cipher->IV, 16);
322 #else
323 		*((uint32_t*)iv[0]) = *((uint32_t*)(cipher->IV));
324 		*((uint32_t*)iv[1]) = *((uint32_t*)(cipher->IV+ 4));
325 		*((uint32_t*)iv[2]) = *((uint32_t*)(cipher->IV+ 8));
326 		*((uint32_t*)iv[3]) = *((uint32_t*)(cipher->IV+12));
327 #endif
328 		for (i = numBlocks; i > 0; i--) {
329 			for (k = 0; k < 128; k++) {
330 				*((uint32_t*) block    ) = *((uint32_t*)iv[0]);
331 				*((uint32_t*)(block+ 4)) = *((uint32_t*)iv[1]);
332 				*((uint32_t*)(block+ 8)) = *((uint32_t*)iv[2]);
333 				*((uint32_t*)(block+12)) = *((uint32_t*)iv[3]);
334 				rijndaelEncrypt(key->ek, key->Nr, block,
335 				    block);
336 				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
337 				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
338 				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
339 				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
340 				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
341 				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
342 				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
343 				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
344 				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
345 				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
346 				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
347 				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
348 				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
349 				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
350 				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
351 				iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
352 				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
353 			}
354 		}
355 		break;
356 
357 	default:
358 		return BAD_CIPHER_STATE;
359 	}
360 
361 	explicit_bzero(block, sizeof(block));
362 	return 128*numBlocks;
363 }
364 
rijndael_padDecrypt(cipherInstance * cipher,keyInstance * key,const BYTE * input,int inputOctets,BYTE * outBuffer)365 int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
366 		const BYTE *input, int inputOctets, BYTE *outBuffer) {
367 	int i, numBlocks, padLen, rval;
368 	uint8_t block[16];
369 	uint32_t iv[4];
370 
371 	if (cipher == NULL ||
372 		key == NULL ||
373 		key->direction == DIR_ENCRYPT) {
374 		return BAD_CIPHER_STATE;
375 	}
376 	if (input == NULL || inputOctets <= 0) {
377 		return 0; /* nothing to do */
378 	}
379 	if (inputOctets % 16 != 0) {
380 		return BAD_DATA;
381 	}
382 
383 	numBlocks = inputOctets/16;
384 
385 	switch (cipher->mode) {
386 	case MODE_ECB:
387 		/* all blocks but last */
388 		for (i = numBlocks - 1; i > 0; i--) {
389 			rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
390 			input += 16;
391 			outBuffer += 16;
392 		}
393 		/* last block */
394 		rijndaelDecrypt(key->rk, key->Nr, input, block);
395 		padLen = block[15];
396 		if (padLen >= 16) {
397 			rval = BAD_DATA;
398 			goto out;
399 		}
400 		for (i = 16 - padLen; i < 16; i++) {
401 			if (block[i] != padLen) {
402 				rval = BAD_DATA;
403 				goto out;
404 			}
405 		}
406 		memcpy(outBuffer, block, 16 - padLen);
407 		break;
408 
409 	case MODE_CBC:
410 		memcpy(iv, cipher->IV, 16);
411 		/* all blocks but last */
412 		for (i = numBlocks - 1; i > 0; i--) {
413 			rijndaelDecrypt(key->rk, key->Nr, input, block);
414 			((uint32_t*)block)[0] ^= iv[0];
415 			((uint32_t*)block)[1] ^= iv[1];
416 			((uint32_t*)block)[2] ^= iv[2];
417 			((uint32_t*)block)[3] ^= iv[3];
418 			memcpy(iv, input, 16);
419 			memcpy(outBuffer, block, 16);
420 			input += 16;
421 			outBuffer += 16;
422 		}
423 		/* last block */
424 		rijndaelDecrypt(key->rk, key->Nr, input, block);
425 		((uint32_t*)block)[0] ^= iv[0];
426 		((uint32_t*)block)[1] ^= iv[1];
427 		((uint32_t*)block)[2] ^= iv[2];
428 		((uint32_t*)block)[3] ^= iv[3];
429 		padLen = block[15];
430 		if (padLen <= 0 || padLen > 16) {
431 			rval = BAD_DATA;
432 			goto out;
433 		}
434 		for (i = 16 - padLen; i < 16; i++) {
435 			if (block[i] != padLen) {
436 				rval = BAD_DATA;
437 				goto out;
438 			}
439 		}
440 		memcpy(outBuffer, block, 16 - padLen);
441 		break;
442 
443 	default:
444 		return BAD_CIPHER_STATE;
445 	}
446 
447 	rval = 16*numBlocks - padLen;
448 
449 out:
450 	explicit_bzero(block, sizeof(block));
451 	return rval;
452 }
453