• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_spline_interp_f32.c
4  * Description:  Floating-point cubic spline interpolation
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/interpolation_functions.h"
30 
31 /**
32   @ingroup groupInterpolation
33  */
34 
35 /**
36   @defgroup SplineInterpolate Cubic Spline Interpolation
37 
38   Spline interpolation is a method of interpolation where the interpolant
39   is a piecewise-defined polynomial called "spline".
40 
41   @par Introduction
42 
43   Given a function f defined on the interval [a,b], a set of n nodes x(i)
44   where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
45   a cubic spline interpolant S(x) is defined as:
46 
47   <pre>
48           S1(x)       x(1) < x < x(2)
49   S(x) =   ...
50           Sn-1(x)   x(n-1) < x < x(n)
51   </pre>
52 
53   where
54 
55   <pre>
56   Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3    i=1, ..., n-1
57   </pre>
58 
59   @par Algorithm
60 
61   Having defined h(i) = x(i+1) - x(i)
62 
63   <pre>
64   h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)]    i=2, ..., n-1
65   </pre>
66 
67   It is possible to write the previous conditions in matrix form (Ax=B).
68   In order to solve the system two boundary conidtions are needed.
69   - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
70   In matrix form:
71 
72   <pre>
73   |  1        0         0  ...    0         0           0     ||  c(1)  | |                        0                        |
74   | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
75   | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
76   |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
77   |  0        0         0  ...    0         0           1     ||  c(n)  | |                        0                        |
78   </pre>
79 
80   - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
81   In matrix form:
82 
83   <pre>
84   |  1       -1         0  ...    0         0           0     ||  c(1)  | |                        0                        |
85   | h(0) 2[h(0)+h(1)] h(1) ...    0         0           0     ||  c(2)  | |      3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)]      |
86   | ...      ...       ... ...   ...       ...         ...    ||  ...   |=|                       ...                       |
87   |  0        0         0  ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
88   |  0        0         0  ...    0        -1           1     ||  c(n)  | |                        0                        |
89   </pre>
90 
91   A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
92   algorithms (A=LU) can be simplified considerably because a large number of zeros appear
93   in regular patterns. The Crout method has been used:
94   1) Solve LZ=B
95 
96   <pre>
97   u(1,2) = A(1,2)/A(1,1)
98   z(1)   = B(1)/l(11)
99 
100   FOR i=2, ..., N-1
101     l(i,i)   = A(i,i)-A(i,i-1)u(i-1,i)
102     u(i,i+1) = a(i,i+1)/l(i,i)
103     z(i)     = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
104 
105   l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
106   z(N)   = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
107   </pre>
108 
109   2) Solve UX=Z
110 
111   <pre>
112   c(N)=z(N)
113 
114   FOR i=N-1, ..., 1
115     c(i)=z(i)-u(i,i+1)c(i+1)
116   </pre>
117 
118   c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials.
119   b(i) and d(i) are computed as:
120   - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3
121   - d(i) = [c(i+1)-c(i)]/[3*h(i)]
122   Moreover, a(i)=y(i).
123 
124  @par Behaviour outside the given intervals
125 
126   It is possible to compute the interpolated vector for x values outside the
127   input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
128   xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
129   coefficients used for the last interval.
130 
131  */
132 
133 /**
134   @addtogroup SplineInterpolate
135   @{
136  */
137 
138 /**
139  * @brief Processing function for the floating-point cubic spline interpolation.
140  * @param[in]  S          points to an instance of the floating-point spline structure.
141  * @param[in]  xq         points to the x values of the interpolated data points.
142  * @param[out] pDst       points to the block of output data.
143  * @param[in]  blockSize  number of samples of output data.
144  */
145 
arm_spline_f32(arm_spline_instance_f32 * S,const float32_t * xq,float32_t * pDst,uint32_t blockSize)146 void arm_spline_f32(
147         arm_spline_instance_f32 * S,
148   const float32_t * xq,
149         float32_t * pDst,
150         uint32_t blockSize)
151 {
152     const float32_t * x = S->x;
153     const float32_t * y = S->y;
154     int32_t n = S->n_x;
155 
156     /* Coefficients (a==y for i<=n-1) */
157     float32_t * b = (S->coeffs);
158     float32_t * c = (S->coeffs)+(n-1);
159     float32_t * d = (S->coeffs)+(2*(n-1));
160 
161     const float32_t * pXq = xq;
162     int32_t blkCnt = (int32_t)blockSize;
163     int32_t blkCnt2;
164     int32_t i;
165     float32_t x_sc;
166 
167 #ifdef ARM_MATH_NEON
168     float32x4_t xiv;
169     float32x4_t aiv;
170     float32x4_t biv;
171     float32x4_t civ;
172     float32x4_t div;
173 
174     float32x4_t xqv;
175 
176     float32x4_t temp;
177     float32x4_t diff;
178     float32x4_t yv;
179 #endif
180 
181     /* Create output for x(i)<x<x(i+1) */
182     for (i=0; i<n-1; i++)
183     {
184 #ifdef ARM_MATH_NEON
185         xiv = vdupq_n_f32(x[i]);
186 
187         aiv = vdupq_n_f32(y[i]);
188         biv = vdupq_n_f32(b[i]);
189         civ = vdupq_n_f32(c[i]);
190         div = vdupq_n_f32(d[i]);
191 
192         while( *(pXq+4) <= x[i+1] && blkCnt > 4 )
193         {
194             /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
195             xqv = vld1q_f32(pXq);
196             pXq+=4;
197 
198             /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
199             diff = vsubq_f32(xqv, xiv);
200             temp = diff;
201 
202             /* y(i) = a(i) + ... */
203             yv = aiv;
204             /* ... + b(i)*(x-x(i)) + ... */
205             yv = vmlaq_f32(yv, biv, temp);
206             /* ... + c(i)*(x-x(i))^2 + ... */
207             temp = vmulq_f32(temp, diff);
208             yv = vmlaq_f32(yv, civ, temp);
209             /* ... + d(i)*(x-x(i))^3 */
210             temp = vmulq_f32(temp, diff);
211             yv = vmlaq_f32(yv, div, temp);
212 
213             /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
214             vst1q_f32(pDst, yv);
215             pDst+=4;
216 
217             blkCnt-=4;
218         }
219 #endif
220         while( *pXq <= x[i+1] && blkCnt > 0 )
221         {
222             x_sc = *pXq++;
223 
224             *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]);
225 
226             pDst++;
227             blkCnt--;
228         }
229     }
230 
231     /* Create output for remaining samples (x>=x(n)) */
232 #ifdef ARM_MATH_NEON
233     /* Compute 4 outputs at a time */
234     blkCnt2 = blkCnt >> 2;
235 
236     while(blkCnt2 > 0)
237     {
238         /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
239         xqv = vld1q_f32(pXq);
240         pXq+=4;
241 
242         /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
243         diff = vsubq_f32(xqv, xiv);
244         temp = diff;
245 
246         /* y(i) = a(i) + ... */
247         yv = aiv;
248         /* ... + b(i)*(x-x(i)) + ... */
249         yv = vmlaq_f32(yv, biv, temp);
250         /* ... + c(i)*(x-x(i))^2 + ... */
251         temp = vmulq_f32(temp, diff);
252         yv = vmlaq_f32(yv, civ, temp);
253         /* ... + d(i)*(x-x(i))^3 */
254         temp = vmulq_f32(temp, diff);
255         yv = vmlaq_f32(yv, div, temp);
256 
257         /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
258         vst1q_f32(pDst, yv);
259         pDst+=4;
260 
261         blkCnt2--;
262     }
263 
264     /* Tail */
265     blkCnt2 = blkCnt & 3;
266 #else
267     blkCnt2 = blkCnt;
268 #endif
269 
270     while(blkCnt2 > 0)
271     {
272         x_sc = *pXq++;
273 
274         *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]);
275 
276         pDst++;
277         blkCnt2--;
278     }
279 }
280 
281 /**
282   @} end of SplineInterpolate group
283  */
284