1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_rotation2quaternion_f32.c
4 * Description: Floating-point rotation to quaternion conversion
5 *
6 * $Date: 23 April 2021
7 * $Revision: V1.9.0
8 *
9 * Target Processor: Cortex-M and Cortex-A cores
10 * -------------------------------------------------------------------- */
11 /*
12 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29 #include "dsp/quaternion_math_functions.h"
30 #include <math.h>
31
32 #define RI(x,y) r[(3*(x) + (y))]
33
34
35 /**
36 @ingroup QuatConv
37 */
38
39 /**
40 @defgroup RotQuat Rotation to Quaternion
41
42 Conversions from rotation to quaternion.
43 */
44
45 /**
46 @addtogroup RotQuat
47 @{
48 */
49
50 /**
51 * @brief Conversion of a rotation matrix to an equivalent quaternion.
52 * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
53 * @param[out] pOutputQuaternions points to an array quaternions
54 * @param[in] nbQuaternions number of quaternions in the array
55 * @return none.
56 *
57 * q and -q are representing the same rotation. This ambiguity must be taken into
58 * account when using the output of this function.
59 *
60 */
61
62 #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
63
64 #include "arm_helium_utils.h"
65
66 #define R00 vgetq_lane(q1,0)
67 #define R01 vgetq_lane(q1,1)
68 #define R02 vgetq_lane(q1,2)
69 #define R10 vgetq_lane(q1,3)
70 #define R11 vgetq_lane(q2,0)
71 #define R12 vgetq_lane(q2,1)
72 #define R20 vgetq_lane(q2,2)
73 #define R21 vgetq_lane(q2,3)
74 #define R22 ro22
75
arm_rotation2quaternion_f32(const float32_t * pInputRotations,float32_t * pOutputQuaternions,uint32_t nbQuaternions)76 void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
77 float32_t *pOutputQuaternions,
78 uint32_t nbQuaternions)
79 {
80 float32_t ro22, trace;
81 f32x4_t q1,q2, q;
82
83 float32_t doubler;
84 float32_t s;
85
86 q = vdupq_n_f32(0.0f);
87
88 for(uint32_t nb=0; nb < nbQuaternions; nb++)
89 {
90 q1 = vld1q(pInputRotations);
91 pInputRotations += 4;
92
93 q2 = vld1q(pInputRotations);
94 pInputRotations += 4;
95
96 ro22 = *pInputRotations++;
97
98 trace = R00 + R11 + R22;
99
100
101 if (trace > 0)
102 {
103 (void)arm_sqrt_f32(trace + 1.0, &doubler) ; // invs=4*qw
104 doubler = 2*doubler;
105 s = 1.0 / doubler;
106
107 q1 = vmulq_n_f32(q1,s);
108 q2 = vmulq_n_f32(q2,s);
109
110 q[0] = 0.25 * doubler;
111 q[1] = R21 - R12;
112 q[2] = R02 - R20;
113 q[3] = R10 - R01;
114 }
115 else if ((R00 > R11) && (R00 > R22) )
116 {
117 (void)arm_sqrt_f32(1.0 + R00 - R11 - R22,&doubler); // invs=4*qx
118 doubler = 2*doubler;
119 s = 1.0 / doubler;
120
121 q1 = vmulq_n_f32(q1,s);
122 q2 = vmulq_n_f32(q2,s);
123
124 q[0] = R21 - R12;
125 q[1] = 0.25 * doubler;
126 q[2] = R01 + R10;
127 q[3] = R02 + R20;
128 }
129 else if (R11 > R22)
130 {
131 (void)arm_sqrt_f32(1.0 + R11 - R00 - R22,&doubler); // invs=4*qy
132 doubler = 2*doubler;
133 s = 1.0 / doubler;
134
135 q1 = vmulq_n_f32(q1,s);
136 q2 = vmulq_n_f32(q2,s);
137
138 q[0] = R02 - R20;
139 q[1] = R01 + R10;
140 q[2] = 0.25 * doubler;
141 q[3] = R12 + R21;
142 }
143 else
144 {
145 (void)arm_sqrt_f32(1.0 + R22 - R00 - R11,&doubler); // invs=4*qz
146 doubler = 2*doubler;
147 s = 1.0 / doubler;
148
149 q1 = vmulq_n_f32(q1,s);
150 q2 = vmulq_n_f32(q2,s);
151
152 q[0] = R10 - R01;
153 q[1] = R02 + R20;
154 q[2] = R12 + R21;
155 q[3] = 0.25 * doubler;
156 }
157
158 vst1q(pOutputQuaternions, q);
159 pOutputQuaternions += 4;
160
161 }
162 }
163
164 #else
arm_rotation2quaternion_f32(const float32_t * pInputRotations,float32_t * pOutputQuaternions,uint32_t nbQuaternions)165 void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
166 float32_t *pOutputQuaternions,
167 uint32_t nbQuaternions)
168 {
169 for(uint32_t nb=0; nb < nbQuaternions; nb++)
170 {
171 const float32_t *r=&pInputRotations[nb*9];
172 float32_t *q=&pOutputQuaternions[nb*4];
173
174 float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
175
176 float32_t doubler;
177 float32_t s;
178
179
180
181 if (trace > 0)
182 {
183 doubler = sqrtf(trace + 1.0) * 2; // invs=4*qw
184 s = 1.0 / doubler;
185 q[0] = 0.25 * doubler;
186 q[1] = (RI(2,1) - RI(1,2)) * s;
187 q[2] = (RI(0,2) - RI(2,0)) * s;
188 q[3] = (RI(1,0) - RI(0,1)) * s;
189 }
190 else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
191 {
192 doubler = sqrtf(1.0 + RI(0,0) - RI(1,1) - RI(2,2)) * 2; // invs=4*qx
193 s = 1.0 / doubler;
194 q[0] = (RI(2,1) - RI(1,2)) * s;
195 q[1] = 0.25 * doubler;
196 q[2] = (RI(0,1) + RI(1,0)) * s;
197 q[3] = (RI(0,2) + RI(2,0)) * s;
198 }
199 else if (RI(1,1) > RI(2,2))
200 {
201 doubler = sqrtf(1.0 + RI(1,1) - RI(0,0) - RI(2,2)) * 2; // invs=4*qy
202 s = 1.0 / doubler;
203 q[0] = (RI(0,2) - RI(2,0)) * s;
204 q[1] = (RI(0,1) + RI(1,0)) * s;
205 q[2] = 0.25 * doubler;
206 q[3] = (RI(1,2) + RI(2,1)) * s;
207 }
208 else
209 {
210 doubler = sqrtf(1.0 + RI(2,2) - RI(0,0) - RI(1,1)) * 2; // invs=4*qz
211 s = 1.0 / doubler;
212 q[0] = (RI(1,0) - RI(0,1)) * s;
213 q[1] = (RI(0,2) + RI(2,0)) * s;
214 q[2] = (RI(1,2) + RI(2,1)) * s;
215 q[3] = 0.25 * doubler;
216 }
217
218 }
219 }
220 #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
221
222 /**
223 @} end of RotQuat group
224 */
225