1 /*
2 * Copyright (c) 2011 Stefano Sabatini
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * Compute a look-up table for binding the input value to the output
24 * value, and apply it to input video.
25 */
26
27 #include "libavutil/attributes.h"
28 #include "libavutil/bswap.h"
29 #include "libavutil/common.h"
30 #include "libavutil/eval.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "avfilter.h"
34 #include "drawutils.h"
35 #include "formats.h"
36 #include "internal.h"
37 #include "video.h"
38
39 static const char *const var_names[] = {
40 "w", ///< width of the input video
41 "h", ///< height of the input video
42 "val", ///< input value for the pixel
43 "maxval", ///< max value for the pixel
44 "minval", ///< min value for the pixel
45 "negval", ///< negated value
46 "clipval",
47 NULL
48 };
49
50 enum var_name {
51 VAR_W,
52 VAR_H,
53 VAR_VAL,
54 VAR_MAXVAL,
55 VAR_MINVAL,
56 VAR_NEGVAL,
57 VAR_CLIPVAL,
58 VAR_VARS_NB
59 };
60
61 typedef struct LutContext {
62 const AVClass *class;
63 uint16_t lut[4][256 * 256]; ///< lookup table for each component
64 char *comp_expr_str[4];
65 AVExpr *comp_expr[4];
66 int hsub, vsub;
67 double var_values[VAR_VARS_NB];
68 int is_rgb, is_yuv;
69 int is_planar;
70 int is_16bit;
71 int step;
72 int negate_alpha; /* only used by negate */
73 } LutContext;
74
75 #define Y 0
76 #define U 1
77 #define V 2
78 #define R 0
79 #define G 1
80 #define B 2
81 #define A 3
82
83 #define OFFSET(x) offsetof(LutContext, x)
84 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
85
86 static const AVOption options[] = {
87 { "c0", "set component #0 expression", OFFSET(comp_expr_str[0]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
88 { "c1", "set component #1 expression", OFFSET(comp_expr_str[1]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
89 { "c2", "set component #2 expression", OFFSET(comp_expr_str[2]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
90 { "c3", "set component #3 expression", OFFSET(comp_expr_str[3]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
91 { "y", "set Y expression", OFFSET(comp_expr_str[Y]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
92 { "u", "set U expression", OFFSET(comp_expr_str[U]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
93 { "v", "set V expression", OFFSET(comp_expr_str[V]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
94 { "r", "set R expression", OFFSET(comp_expr_str[R]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
95 { "g", "set G expression", OFFSET(comp_expr_str[G]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
96 { "b", "set B expression", OFFSET(comp_expr_str[B]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
97 { "a", "set A expression", OFFSET(comp_expr_str[A]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
98 { NULL }
99 };
100
uninit(AVFilterContext * ctx)101 static av_cold void uninit(AVFilterContext *ctx)
102 {
103 LutContext *s = ctx->priv;
104 int i;
105
106 for (i = 0; i < 4; i++) {
107 av_expr_free(s->comp_expr[i]);
108 s->comp_expr[i] = NULL;
109 av_freep(&s->comp_expr_str[i]);
110 }
111 }
112
113 #define YUV_FORMATS \
114 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, \
115 AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, \
116 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, \
117 AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, \
118 AV_PIX_FMT_YUVJ440P, \
119 AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUV422P9LE, AV_PIX_FMT_YUV420P9LE, \
120 AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV440P10LE, \
121 AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV422P12LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV440P12LE, \
122 AV_PIX_FMT_YUV444P14LE, AV_PIX_FMT_YUV422P14LE, AV_PIX_FMT_YUV420P14LE, \
123 AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUV422P16LE, AV_PIX_FMT_YUV420P16LE, \
124 AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUVA422P16LE, AV_PIX_FMT_YUVA420P16LE
125
126 #define RGB_FORMATS \
127 AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, \
128 AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, \
129 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, \
130 AV_PIX_FMT_RGB48LE, AV_PIX_FMT_RGBA64LE, \
131 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, \
132 AV_PIX_FMT_GBRP9LE, AV_PIX_FMT_GBRP10LE, \
133 AV_PIX_FMT_GBRAP10LE, \
134 AV_PIX_FMT_GBRP12LE, AV_PIX_FMT_GBRP14LE, \
135 AV_PIX_FMT_GBRP16LE, AV_PIX_FMT_GBRAP12LE, \
136 AV_PIX_FMT_GBRAP16LE
137
138 #define GRAY_FORMATS \
139 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9LE, AV_PIX_FMT_GRAY10LE, \
140 AV_PIX_FMT_GRAY12LE, AV_PIX_FMT_GRAY14LE, AV_PIX_FMT_GRAY16LE
141
142 static const enum AVPixelFormat yuv_pix_fmts[] = { YUV_FORMATS, AV_PIX_FMT_NONE };
143 static const enum AVPixelFormat rgb_pix_fmts[] = { RGB_FORMATS, AV_PIX_FMT_NONE };
144 static const enum AVPixelFormat all_pix_fmts[] = { RGB_FORMATS, YUV_FORMATS, GRAY_FORMATS, AV_PIX_FMT_NONE };
145
query_formats(AVFilterContext * ctx)146 static int query_formats(AVFilterContext *ctx)
147 {
148 LutContext *s = ctx->priv;
149
150 const enum AVPixelFormat *pix_fmts = s->is_rgb ? rgb_pix_fmts :
151 s->is_yuv ? yuv_pix_fmts :
152 all_pix_fmts;
153 AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
154 if (!fmts_list)
155 return AVERROR(ENOMEM);
156 return ff_set_common_formats(ctx, fmts_list);
157 }
158
159 /**
160 * Clip value val in the minval - maxval range.
161 */
clip(void * opaque,double val)162 static double clip(void *opaque, double val)
163 {
164 LutContext *s = opaque;
165 double minval = s->var_values[VAR_MINVAL];
166 double maxval = s->var_values[VAR_MAXVAL];
167
168 return av_clip(val, minval, maxval);
169 }
170
171 /**
172 * Compute gamma correction for value val, assuming the minval-maxval
173 * range, val is clipped to a value contained in the same interval.
174 */
compute_gammaval(void * opaque,double gamma)175 static double compute_gammaval(void *opaque, double gamma)
176 {
177 LutContext *s = opaque;
178 double val = s->var_values[VAR_CLIPVAL];
179 double minval = s->var_values[VAR_MINVAL];
180 double maxval = s->var_values[VAR_MAXVAL];
181
182 return pow((val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval;
183 }
184
185 /**
186 * Compute ITU Rec.709 gamma correction of value val.
187 */
compute_gammaval709(void * opaque,double gamma)188 static double compute_gammaval709(void *opaque, double gamma)
189 {
190 LutContext *s = opaque;
191 double val = s->var_values[VAR_CLIPVAL];
192 double minval = s->var_values[VAR_MINVAL];
193 double maxval = s->var_values[VAR_MAXVAL];
194 double level = (val - minval) / (maxval - minval);
195 level = level < 0.018 ? 4.5 * level
196 : 1.099 * pow(level, 1.0 / gamma) - 0.099;
197 return level * (maxval - minval) + minval;
198 }
199
200 static double (* const funcs1[])(void *, double) = {
201 clip,
202 compute_gammaval,
203 compute_gammaval709,
204 NULL
205 };
206
207 static const char * const funcs1_names[] = {
208 "clip",
209 "gammaval",
210 "gammaval709",
211 NULL
212 };
213
config_props(AVFilterLink * inlink)214 static int config_props(AVFilterLink *inlink)
215 {
216 AVFilterContext *ctx = inlink->dst;
217 LutContext *s = ctx->priv;
218 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
219 uint8_t rgba_map[4]; /* component index -> RGBA color index map */
220 int min[4], max[4];
221 int val, color, ret;
222
223 s->hsub = desc->log2_chroma_w;
224 s->vsub = desc->log2_chroma_h;
225
226 s->var_values[VAR_W] = inlink->w;
227 s->var_values[VAR_H] = inlink->h;
228 s->is_16bit = desc->comp[0].depth > 8;
229
230 switch (inlink->format) {
231 case AV_PIX_FMT_YUV410P:
232 case AV_PIX_FMT_YUV411P:
233 case AV_PIX_FMT_YUV420P:
234 case AV_PIX_FMT_YUV422P:
235 case AV_PIX_FMT_YUV440P:
236 case AV_PIX_FMT_YUV444P:
237 case AV_PIX_FMT_YUVA420P:
238 case AV_PIX_FMT_YUVA422P:
239 case AV_PIX_FMT_YUVA444P:
240 case AV_PIX_FMT_YUV420P9LE:
241 case AV_PIX_FMT_YUV422P9LE:
242 case AV_PIX_FMT_YUV444P9LE:
243 case AV_PIX_FMT_YUVA420P9LE:
244 case AV_PIX_FMT_YUVA422P9LE:
245 case AV_PIX_FMT_YUVA444P9LE:
246 case AV_PIX_FMT_YUV420P10LE:
247 case AV_PIX_FMT_YUV422P10LE:
248 case AV_PIX_FMT_YUV440P10LE:
249 case AV_PIX_FMT_YUV444P10LE:
250 case AV_PIX_FMT_YUVA420P10LE:
251 case AV_PIX_FMT_YUVA422P10LE:
252 case AV_PIX_FMT_YUVA444P10LE:
253 case AV_PIX_FMT_YUV420P12LE:
254 case AV_PIX_FMT_YUV422P12LE:
255 case AV_PIX_FMT_YUV440P12LE:
256 case AV_PIX_FMT_YUV444P12LE:
257 case AV_PIX_FMT_YUV420P14LE:
258 case AV_PIX_FMT_YUV422P14LE:
259 case AV_PIX_FMT_YUV444P14LE:
260 case AV_PIX_FMT_YUV420P16LE:
261 case AV_PIX_FMT_YUV422P16LE:
262 case AV_PIX_FMT_YUV444P16LE:
263 case AV_PIX_FMT_YUVA420P16LE:
264 case AV_PIX_FMT_YUVA422P16LE:
265 case AV_PIX_FMT_YUVA444P16LE:
266 min[Y] = 16 * (1 << (desc->comp[0].depth - 8));
267 min[U] = 16 * (1 << (desc->comp[1].depth - 8));
268 min[V] = 16 * (1 << (desc->comp[2].depth - 8));
269 min[A] = 0;
270 max[Y] = 235 * (1 << (desc->comp[0].depth - 8));
271 max[U] = 240 * (1 << (desc->comp[1].depth - 8));
272 max[V] = 240 * (1 << (desc->comp[2].depth - 8));
273 max[A] = (1 << desc->comp[0].depth) - 1;
274 break;
275 case AV_PIX_FMT_RGB48LE:
276 case AV_PIX_FMT_RGBA64LE:
277 min[0] = min[1] = min[2] = min[3] = 0;
278 max[0] = max[1] = max[2] = max[3] = 65535;
279 break;
280 default:
281 min[0] = min[1] = min[2] = min[3] = 0;
282 max[0] = max[1] = max[2] = max[3] = 255 * (1 << (desc->comp[0].depth - 8));
283 }
284
285 s->is_yuv = s->is_rgb = 0;
286 s->is_planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
287 if (ff_fmt_is_in(inlink->format, yuv_pix_fmts)) s->is_yuv = 1;
288 else if (ff_fmt_is_in(inlink->format, rgb_pix_fmts)) s->is_rgb = 1;
289
290 if (s->is_rgb) {
291 ff_fill_rgba_map(rgba_map, inlink->format);
292 s->step = av_get_bits_per_pixel(desc) >> 3;
293 if (s->is_16bit) {
294 s->step = s->step >> 1;
295 }
296 }
297
298 for (color = 0; color < desc->nb_components; color++) {
299 double res;
300 int comp = s->is_rgb ? rgba_map[color] : color;
301
302 /* create the parsed expression */
303 av_expr_free(s->comp_expr[color]);
304 s->comp_expr[color] = NULL;
305 ret = av_expr_parse(&s->comp_expr[color], s->comp_expr_str[color],
306 var_names, funcs1_names, funcs1, NULL, NULL, 0, ctx);
307 if (ret < 0) {
308 av_log(ctx, AV_LOG_ERROR,
309 "Error when parsing the expression '%s' for the component %d and color %d.\n",
310 s->comp_expr_str[comp], comp, color);
311 return AVERROR(EINVAL);
312 }
313
314 /* compute the lut */
315 s->var_values[VAR_MAXVAL] = max[color];
316 s->var_values[VAR_MINVAL] = min[color];
317
318 for (val = 0; val < FF_ARRAY_ELEMS(s->lut[comp]); val++) {
319 s->var_values[VAR_VAL] = val;
320 s->var_values[VAR_CLIPVAL] = av_clip(val, min[color], max[color]);
321 s->var_values[VAR_NEGVAL] =
322 av_clip(min[color] + max[color] - s->var_values[VAR_VAL],
323 min[color], max[color]);
324
325 res = av_expr_eval(s->comp_expr[color], s->var_values, s);
326 if (isnan(res)) {
327 av_log(ctx, AV_LOG_ERROR,
328 "Error when evaluating the expression '%s' for the value %d for the component %d.\n",
329 s->comp_expr_str[color], val, comp);
330 return AVERROR(EINVAL);
331 }
332 s->lut[comp][val] = av_clip((int)res, 0, max[A]);
333 av_log(ctx, AV_LOG_DEBUG, "val[%d][%d] = %d\n", comp, val, s->lut[comp][val]);
334 }
335 }
336
337 return 0;
338 }
339
340 struct thread_data {
341 AVFrame *in;
342 AVFrame *out;
343
344 int w;
345 int h;
346 };
347
348 #define LOAD_PACKED_COMMON\
349 LutContext *s = ctx->priv;\
350 const struct thread_data *td = arg;\
351 \
352 int i, j;\
353 const int w = td->w;\
354 const int h = td->h;\
355 AVFrame *in = td->in;\
356 AVFrame *out = td->out;\
357 const uint16_t (*tab)[256*256] = (const uint16_t (*)[256*256])s->lut;\
358 const int step = s->step;\
359 \
360 const int slice_start = (h * jobnr ) / nb_jobs;\
361 const int slice_end = (h * (jobnr+1)) / nb_jobs;\
362
363 /* packed, 16-bit */
lut_packed_16bits(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)364 static int lut_packed_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
365 {
366 LOAD_PACKED_COMMON
367
368 uint16_t *inrow, *outrow, *inrow0, *outrow0;
369 const int in_linesize = in->linesize[0] / 2;
370 const int out_linesize = out->linesize[0] / 2;
371 inrow0 = (uint16_t *)in ->data[0];
372 outrow0 = (uint16_t *)out->data[0];
373
374 for (i = slice_start; i < slice_end; i++) {
375 inrow = inrow0 + i * in_linesize;
376 outrow = outrow0 + i * out_linesize;
377 for (j = 0; j < w; j++) {
378
379 switch (step) {
380 #if HAVE_BIGENDIAN
381 case 4: outrow[3] = av_bswap16(tab[3][av_bswap16(inrow[3])]); // Fall-through
382 case 3: outrow[2] = av_bswap16(tab[2][av_bswap16(inrow[2])]); // Fall-through
383 case 2: outrow[1] = av_bswap16(tab[1][av_bswap16(inrow[1])]); // Fall-through
384 default: outrow[0] = av_bswap16(tab[0][av_bswap16(inrow[0])]);
385 #else
386 case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through
387 case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through
388 case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through
389 default: outrow[0] = tab[0][inrow[0]];
390 #endif
391 }
392 outrow += step;
393 inrow += step;
394 }
395 }
396
397 return 0;
398 }
399
400 /* packed, 8-bit */
lut_packed_8bits(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)401 static int lut_packed_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
402 {
403 LOAD_PACKED_COMMON
404
405 uint8_t *inrow, *outrow, *inrow0, *outrow0;
406 const int in_linesize = in->linesize[0];
407 const int out_linesize = out->linesize[0];
408 inrow0 = in ->data[0];
409 outrow0 = out->data[0];
410
411 for (i = slice_start; i < slice_end; i++) {
412 inrow = inrow0 + i * in_linesize;
413 outrow = outrow0 + i * out_linesize;
414 for (j = 0; j < w; j++) {
415 switch (step) {
416 case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through
417 case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through
418 case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through
419 default: outrow[0] = tab[0][inrow[0]];
420 }
421 outrow += step;
422 inrow += step;
423 }
424 }
425
426 return 0;
427 }
428
429 #define LOAD_PLANAR_COMMON\
430 LutContext *s = ctx->priv;\
431 const struct thread_data *td = arg;\
432 int i, j, plane;\
433 AVFrame *in = td->in;\
434 AVFrame *out = td->out;\
435
436 #define PLANAR_COMMON\
437 int vsub = plane == 1 || plane == 2 ? s->vsub : 0;\
438 int hsub = plane == 1 || plane == 2 ? s->hsub : 0;\
439 int h = AV_CEIL_RSHIFT(td->h, vsub);\
440 int w = AV_CEIL_RSHIFT(td->w, hsub);\
441 const uint16_t *tab = s->lut[plane];\
442 \
443 const int slice_start = (h * jobnr ) / nb_jobs;\
444 const int slice_end = (h * (jobnr+1)) / nb_jobs;\
445
446 /* planar >8 bit depth */
lut_planar_16bits(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)447 static int lut_planar_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
448 {
449 LOAD_PLANAR_COMMON
450
451 uint16_t *inrow, *outrow;
452
453 for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
454 PLANAR_COMMON
455
456 const int in_linesize = in->linesize[plane] / 2;
457 const int out_linesize = out->linesize[plane] / 2;
458
459 inrow = (uint16_t *)in ->data[plane] + slice_start * in_linesize;
460 outrow = (uint16_t *)out->data[plane] + slice_start * out_linesize;
461
462 for (i = slice_start; i < slice_end; i++) {
463 for (j = 0; j < w; j++) {
464 #if HAVE_BIGENDIAN
465 outrow[j] = av_bswap16(tab[av_bswap16(inrow[j])]);
466 #else
467 outrow[j] = tab[inrow[j]];
468 #endif
469 }
470 inrow += in_linesize;
471 outrow += out_linesize;
472 }
473 }
474
475 return 0;
476 }
477
478 /* planar 8bit depth */
lut_planar_8bits(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)479 static int lut_planar_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
480 {
481 LOAD_PLANAR_COMMON
482
483 uint8_t *inrow, *outrow;
484
485 for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
486 PLANAR_COMMON
487
488 const int in_linesize = in->linesize[plane];
489 const int out_linesize = out->linesize[plane];
490
491 inrow = in ->data[plane] + slice_start * in_linesize;
492 outrow = out->data[plane] + slice_start * out_linesize;
493
494 for (i = slice_start; i < slice_end; i++) {
495 for (j = 0; j < w; j++)
496 outrow[j] = tab[inrow[j]];
497 inrow += in_linesize;
498 outrow += out_linesize;
499 }
500 }
501
502 return 0;
503 }
504
505 #define PACKED_THREAD_DATA\
506 struct thread_data td = {\
507 .in = in,\
508 .out = out,\
509 .w = inlink->w,\
510 .h = in->height,\
511 };\
512
513 #define PLANAR_THREAD_DATA\
514 struct thread_data td = {\
515 .in = in,\
516 .out = out,\
517 .w = inlink->w,\
518 .h = inlink->h,\
519 };\
520
filter_frame(AVFilterLink * inlink,AVFrame * in)521 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
522 {
523 AVFilterContext *ctx = inlink->dst;
524 LutContext *s = ctx->priv;
525 AVFilterLink *outlink = ctx->outputs[0];
526 AVFrame *out;
527 int direct = 0;
528
529 if (av_frame_is_writable(in)) {
530 direct = 1;
531 out = in;
532 } else {
533 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
534 if (!out) {
535 av_frame_free(&in);
536 return AVERROR(ENOMEM);
537 }
538 av_frame_copy_props(out, in);
539 }
540
541 if (s->is_rgb && s->is_16bit && !s->is_planar) {
542 /* packed, 16-bit */
543 PACKED_THREAD_DATA
544 ctx->internal->execute(ctx, lut_packed_16bits, &td, NULL,
545 FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
546 } else if (s->is_rgb && !s->is_planar) {
547 /* packed 8 bits */
548 PACKED_THREAD_DATA
549 ctx->internal->execute(ctx, lut_packed_8bits, &td, NULL,
550 FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
551 } else if (s->is_16bit) {
552 /* planar >8 bit depth */
553 PLANAR_THREAD_DATA
554 ctx->internal->execute(ctx, lut_planar_16bits, &td, NULL,
555 FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
556 } else {
557 /* planar 8bit depth */
558 PLANAR_THREAD_DATA
559 ctx->internal->execute(ctx, lut_planar_8bits, &td, NULL,
560 FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
561 }
562
563 if (!direct)
564 av_frame_free(&in);
565
566 return ff_filter_frame(outlink, out);
567 }
568
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)569 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
570 char *res, int res_len, int flags)
571 {
572 int ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
573
574 if (ret < 0)
575 return ret;
576
577 return config_props(ctx->inputs[0]);
578 }
579
580 static const AVFilterPad inputs[] = {
581 { .name = "default",
582 .type = AVMEDIA_TYPE_VIDEO,
583 .filter_frame = filter_frame,
584 .config_props = config_props,
585 },
586 { NULL }
587 };
588 static const AVFilterPad outputs[] = {
589 { .name = "default",
590 .type = AVMEDIA_TYPE_VIDEO,
591 },
592 { NULL }
593 };
594
595 #define DEFINE_LUT_FILTER(name_, description_) \
596 AVFilter ff_vf_##name_ = { \
597 .name = #name_, \
598 .description = NULL_IF_CONFIG_SMALL(description_), \
599 .priv_size = sizeof(LutContext), \
600 .priv_class = &name_ ## _class, \
601 .init = name_##_init, \
602 .uninit = uninit, \
603 .query_formats = query_formats, \
604 .inputs = inputs, \
605 .outputs = outputs, \
606 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | \
607 AVFILTER_FLAG_SLICE_THREADS, \
608 .process_command = process_command, \
609 }
610
611 #if CONFIG_LUT_FILTER
612
613 #define lut_options options
614 AVFILTER_DEFINE_CLASS(lut);
615
lut_init(AVFilterContext * ctx)616 static int lut_init(AVFilterContext *ctx)
617 {
618 return 0;
619 }
620
621 DEFINE_LUT_FILTER(lut, "Compute and apply a lookup table to the RGB/YUV input video.");
622 #endif
623
624 #if CONFIG_LUTYUV_FILTER
625
626 #define lutyuv_options options
627 AVFILTER_DEFINE_CLASS(lutyuv);
628
lutyuv_init(AVFilterContext * ctx)629 static av_cold int lutyuv_init(AVFilterContext *ctx)
630 {
631 LutContext *s = ctx->priv;
632
633 s->is_yuv = 1;
634
635 return 0;
636 }
637
638 DEFINE_LUT_FILTER(lutyuv, "Compute and apply a lookup table to the YUV input video.");
639 #endif
640
641 #if CONFIG_LUTRGB_FILTER
642
643 #define lutrgb_options options
644 AVFILTER_DEFINE_CLASS(lutrgb);
645
lutrgb_init(AVFilterContext * ctx)646 static av_cold int lutrgb_init(AVFilterContext *ctx)
647 {
648 LutContext *s = ctx->priv;
649
650 s->is_rgb = 1;
651
652 return 0;
653 }
654
655 DEFINE_LUT_FILTER(lutrgb, "Compute and apply a lookup table to the RGB input video.");
656 #endif
657
658 #if CONFIG_NEGATE_FILTER
659
660 static const AVOption negate_options[] = {
661 { "negate_alpha", NULL, OFFSET(negate_alpha), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
662 { NULL }
663 };
664
665 AVFILTER_DEFINE_CLASS(negate);
666
negate_init(AVFilterContext * ctx)667 static av_cold int negate_init(AVFilterContext *ctx)
668 {
669 LutContext *s = ctx->priv;
670
671 for (int i = 0; i < 4; i++) {
672 s->comp_expr_str[i] = av_strdup((i == 3 && !s->negate_alpha) ?
673 "val" : "negval");
674 if (!s->comp_expr_str[i])
675 return AVERROR(ENOMEM);
676 }
677
678 return 0;
679 }
680
681 DEFINE_LUT_FILTER(negate, "Negate input video.");
682
683 #endif
684