1 /*
2 * Copyright (c) 2013 Stefano Sabatini
3 * Copyright (c) 2008 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * rotation filter, partially based on the tests/rotozoom.c program
25 */
26
27 #include "libavutil/avstring.h"
28 #include "libavutil/eval.h"
29 #include "libavutil/opt.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/parseutils.h"
32 #include "libavutil/pixdesc.h"
33
34 #include "avfilter.h"
35 #include "drawutils.h"
36 #include "internal.h"
37 #include "video.h"
38
39 #include <float.h>
40
41 static const char * const var_names[] = {
42 "in_w" , "iw", ///< width of the input video
43 "in_h" , "ih", ///< height of the input video
44 "out_w", "ow", ///< width of the input video
45 "out_h", "oh", ///< height of the input video
46 "hsub", "vsub",
47 "n", ///< number of frame
48 "t", ///< timestamp expressed in seconds
49 NULL
50 };
51
52 enum var_name {
53 VAR_IN_W , VAR_IW,
54 VAR_IN_H , VAR_IH,
55 VAR_OUT_W, VAR_OW,
56 VAR_OUT_H, VAR_OH,
57 VAR_HSUB, VAR_VSUB,
58 VAR_N,
59 VAR_T,
60 VAR_VARS_NB
61 };
62
63 typedef struct RotContext {
64 const AVClass *class;
65 double angle;
66 char *angle_expr_str; ///< expression for the angle
67 AVExpr *angle_expr; ///< parsed expression for the angle
68 char *outw_expr_str, *outh_expr_str;
69 int outh, outw;
70 uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area
71 char *fillcolor_str;
72 int fillcolor_enable;
73 int hsub, vsub;
74 int nb_planes;
75 int use_bilinear;
76 float sinx, cosx;
77 double var_values[VAR_VARS_NB];
78 FFDrawContext draw;
79 FFDrawColor color;
80 uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
81 const uint8_t *src, int src_linesize, int src_linestep,
82 int x, int y, int max_x, int max_y);
83 } RotContext;
84
85 typedef struct ThreadData {
86 AVFrame *in, *out;
87 int inw, inh;
88 int outw, outh;
89 int plane;
90 int xi, yi;
91 int xprime, yprime;
92 int c, s;
93 } ThreadData;
94
95 #define OFFSET(x) offsetof(RotContext, x)
96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
97 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
98
99 static const AVOption rotate_options[] = {
100 { "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
101 { "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
102 { "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
103 { "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
104 { "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
105 { "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
106 { "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
107 { "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
108 { "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
109 { NULL }
110 };
111
112 AVFILTER_DEFINE_CLASS(rotate);
113
init(AVFilterContext * ctx)114 static av_cold int init(AVFilterContext *ctx)
115 {
116 RotContext *rot = ctx->priv;
117
118 if (!strcmp(rot->fillcolor_str, "none"))
119 rot->fillcolor_enable = 0;
120 else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
121 rot->fillcolor_enable = 1;
122 else
123 return AVERROR(EINVAL);
124 return 0;
125 }
126
uninit(AVFilterContext * ctx)127 static av_cold void uninit(AVFilterContext *ctx)
128 {
129 RotContext *rot = ctx->priv;
130
131 av_expr_free(rot->angle_expr);
132 rot->angle_expr = NULL;
133 }
134
query_formats(AVFilterContext * ctx)135 static int query_formats(AVFilterContext *ctx)
136 {
137 static const enum AVPixelFormat pix_fmts[] = {
138 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
139 AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
140 AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
141 AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0,
142 AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0,
143 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
144 AV_PIX_FMT_GRAY8,
145 AV_PIX_FMT_YUV410P,
146 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
147 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
148 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
149 AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE,
150 AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE,
151 AV_PIX_FMT_YUV420P12LE,
152 AV_PIX_FMT_YUV444P12LE,
153 AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE,
154 AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE,
155 AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE,
156 AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE,
157 AV_PIX_FMT_NONE
158 };
159
160 AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
161 if (!fmts_list)
162 return AVERROR(ENOMEM);
163 return ff_set_common_formats(ctx, fmts_list);
164 }
165
get_rotated_w(void * opaque,double angle)166 static double get_rotated_w(void *opaque, double angle)
167 {
168 RotContext *rot = opaque;
169 double inw = rot->var_values[VAR_IN_W];
170 double inh = rot->var_values[VAR_IN_H];
171 float sinx = sin(angle);
172 float cosx = cos(angle);
173
174 return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
175 FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
176 }
177
get_rotated_h(void * opaque,double angle)178 static double get_rotated_h(void *opaque, double angle)
179 {
180 RotContext *rot = opaque;
181 double inw = rot->var_values[VAR_IN_W];
182 double inh = rot->var_values[VAR_IN_H];
183 float sinx = sin(angle);
184 float cosx = cos(angle);
185
186 return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
187 FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx);
188 }
189
190 static double (* const func1[])(void *, double) = {
191 get_rotated_w,
192 get_rotated_h,
193 NULL
194 };
195
196 static const char * const func1_names[] = {
197 "rotw",
198 "roth",
199 NULL
200 };
201
202 #define FIXP (1<<16)
203 #define FIXP2 (1<<20)
204 #define INT_PI 3294199 //(M_PI * FIXP2)
205
206 /**
207 * Compute the sin of a using integer values.
208 * Input is scaled by FIXP2 and output values are scaled by FIXP.
209 */
int_sin(int64_t a)210 static int64_t int_sin(int64_t a)
211 {
212 int64_t a2, res = 0;
213 int i;
214 if (a < 0) a = INT_PI-a; // 0..inf
215 a %= 2 * INT_PI; // 0..2PI
216
217 if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2
218 if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2
219
220 /* compute sin using Taylor series approximated to the fifth term */
221 a2 = (a*a)/(FIXP2);
222 for (i = 2; i < 11; i += 2) {
223 res += a;
224 a = -a*a2 / (FIXP2*i*(i+1));
225 }
226 return (res + 8)>>4;
227 }
228
229 /**
230 * Interpolate the color in src at position x and y using bilinear
231 * interpolation.
232 */
interpolate_bilinear8(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)233 static uint8_t *interpolate_bilinear8(uint8_t *dst_color,
234 const uint8_t *src, int src_linesize, int src_linestep,
235 int x, int y, int max_x, int max_y)
236 {
237 int int_x = av_clip(x>>16, 0, max_x);
238 int int_y = av_clip(y>>16, 0, max_y);
239 int frac_x = x&0xFFFF;
240 int frac_y = y&0xFFFF;
241 int i;
242 int int_x1 = FFMIN(int_x+1, max_x);
243 int int_y1 = FFMIN(int_y+1, max_y);
244
245 for (i = 0; i < src_linestep; i++) {
246 int s00 = src[src_linestep * int_x + i + src_linesize * int_y ];
247 int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
248 int s10 = src[src_linestep * int_x + i + src_linesize * int_y1];
249 int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
250 int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
251 int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
252
253 dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
254 }
255
256 return dst_color;
257 }
258
259 /**
260 * Interpolate the color in src at position x and y using bilinear
261 * interpolation.
262 */
interpolate_bilinear16(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)263 static uint8_t *interpolate_bilinear16(uint8_t *dst_color,
264 const uint8_t *src, int src_linesize, int src_linestep,
265 int x, int y, int max_x, int max_y)
266 {
267 int int_x = av_clip(x>>16, 0, max_x);
268 int int_y = av_clip(y>>16, 0, max_y);
269 int frac_x = x&0xFFFF;
270 int frac_y = y&0xFFFF;
271 int i;
272 int int_x1 = FFMIN(int_x+1, max_x);
273 int int_y1 = FFMIN(int_y+1, max_y);
274
275 for (i = 0; i < src_linestep; i+=2) {
276 int s00 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y ]);
277 int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]);
278 int s10 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y1]);
279 int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]);
280 int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
281 int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
282
283 AV_WL16(&dst_color[i], ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32);
284 }
285
286 return dst_color;
287 }
288
config_props(AVFilterLink * outlink)289 static int config_props(AVFilterLink *outlink)
290 {
291 AVFilterContext *ctx = outlink->src;
292 RotContext *rot = ctx->priv;
293 AVFilterLink *inlink = ctx->inputs[0];
294 const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
295 int ret;
296 double res;
297 char *expr;
298
299 ff_draw_init(&rot->draw, inlink->format, 0);
300 ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
301
302 rot->hsub = pixdesc->log2_chroma_w;
303 rot->vsub = pixdesc->log2_chroma_h;
304
305 if (pixdesc->comp[0].depth == 8)
306 rot->interpolate_bilinear = interpolate_bilinear8;
307 else
308 rot->interpolate_bilinear = interpolate_bilinear16;
309
310 rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
311 rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
312 rot->var_values[VAR_HSUB] = 1<<rot->hsub;
313 rot->var_values[VAR_VSUB] = 1<<rot->vsub;
314 rot->var_values[VAR_N] = NAN;
315 rot->var_values[VAR_T] = NAN;
316 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
317 rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
318
319 av_expr_free(rot->angle_expr);
320 rot->angle_expr = NULL;
321 if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
322 func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
323 av_log(ctx, AV_LOG_ERROR,
324 "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
325 return ret;
326 }
327
328 #define SET_SIZE_EXPR(name, opt_name) do { \
329 ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
330 var_names, rot->var_values, \
331 func1_names, func1, NULL, NULL, rot, 0, ctx); \
332 if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
333 av_log(ctx, AV_LOG_ERROR, \
334 "Error parsing or evaluating expression for option %s: " \
335 "invalid expression '%s' or non-positive or indefinite value %f\n", \
336 opt_name, expr, res); \
337 return ret; \
338 } \
339 } while (0)
340
341 /* evaluate width and height */
342 av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
343 func1_names, func1, NULL, NULL, rot, 0, ctx);
344 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
345 rot->outw = res + 0.5;
346 SET_SIZE_EXPR(outh, "out_h");
347 rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
348 rot->outh = res + 0.5;
349
350 /* evaluate the width again, as it may depend on the evaluated output height */
351 SET_SIZE_EXPR(outw, "out_w");
352 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
353 rot->outw = res + 0.5;
354
355 /* compute number of planes */
356 rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
357 outlink->w = rot->outw;
358 outlink->h = rot->outh;
359 return 0;
360 }
361
copy_elem(uint8_t * pout,const uint8_t * pin,int elem_size)362 static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
363 {
364 int v;
365 switch (elem_size) {
366 case 1:
367 *pout = *pin;
368 break;
369 case 2:
370 *((uint16_t *)pout) = *((uint16_t *)pin);
371 break;
372 case 3:
373 v = AV_RB24(pin);
374 AV_WB24(pout, v);
375 break;
376 case 4:
377 *((uint32_t *)pout) = *((uint32_t *)pin);
378 break;
379 default:
380 memcpy(pout, pin, elem_size);
381 break;
382 }
383 }
384
simple_rotate_internal(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)385 static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
386 {
387 int i;
388 switch(angle) {
389 case 0:
390 memcpy(dst, src, elem_size * len);
391 break;
392 case 1:
393 for (i = 0; i<len; i++)
394 copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
395 break;
396 case 2:
397 for (i = 0; i<len; i++)
398 copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
399 break;
400 case 3:
401 for (i = 0; i<len; i++)
402 copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
403 break;
404 }
405 }
406
simple_rotate(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)407 static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
408 {
409 switch(elem_size) {
410 case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
411 case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
412 case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
413 case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
414 default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
415 }
416 }
417
filter_slice(AVFilterContext * ctx,void * arg,int job,int nb_jobs)418 static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
419 {
420 ThreadData *td = arg;
421 AVFrame *in = td->in;
422 AVFrame *out = td->out;
423 RotContext *rot = ctx->priv;
424 const int outw = td->outw, outh = td->outh;
425 const int inw = td->inw, inh = td->inh;
426 const int plane = td->plane;
427 const int xi = td->xi, yi = td->yi;
428 const int c = td->c, s = td->s;
429 const int start = (outh * job ) / nb_jobs;
430 const int end = (outh * (job+1)) / nb_jobs;
431 int xprime = td->xprime + start * s;
432 int yprime = td->yprime + start * c;
433 int i, j, x, y;
434
435 for (j = start; j < end; j++) {
436 x = xprime + xi + FIXP*(inw-1)/2;
437 y = yprime + yi + FIXP*(inh-1)/2;
438
439 if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
440 simple_rotate(out->data[plane] + j * out->linesize[plane],
441 in->data[plane] + j * in->linesize[plane],
442 in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
443 } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
444 simple_rotate(out->data[plane] + j * out->linesize[plane],
445 in->data[plane] + j * rot->draw.pixelstep[plane],
446 in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
447 } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
448 simple_rotate(out->data[plane] + j * out->linesize[plane],
449 in->data[plane] + (outh-j-1) * in->linesize[plane],
450 in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
451 } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
452 simple_rotate(out->data[plane] + j * out->linesize[plane],
453 in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
454 in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
455 } else {
456
457 for (i = 0; i < outw; i++) {
458 int32_t v;
459 int x1, y1;
460 uint8_t *pin, *pout;
461 x1 = x>>16;
462 y1 = y>>16;
463
464 /* the out-of-range values avoid border artifacts */
465 if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
466 uint8_t inp_inv[4]; /* interpolated input value */
467 pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
468 if (rot->use_bilinear) {
469 pin = rot->interpolate_bilinear(inp_inv,
470 in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
471 x, y, inw-1, inh-1);
472 } else {
473 int x2 = av_clip(x1, 0, inw-1);
474 int y2 = av_clip(y1, 0, inh-1);
475 pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
476 }
477 switch (rot->draw.pixelstep[plane]) {
478 case 1:
479 *pout = *pin;
480 break;
481 case 2:
482 v = AV_RL16(pin);
483 AV_WL16(pout, v);
484 break;
485 case 3:
486 v = AV_RB24(pin);
487 AV_WB24(pout, v);
488 break;
489 case 4:
490 *((uint32_t *)pout) = *((uint32_t *)pin);
491 break;
492 default:
493 memcpy(pout, pin, rot->draw.pixelstep[plane]);
494 break;
495 }
496 }
497 x += c;
498 y -= s;
499 }
500 }
501 xprime += s;
502 yprime += c;
503 }
504
505 return 0;
506 }
507
filter_frame(AVFilterLink * inlink,AVFrame * in)508 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
509 {
510 AVFilterContext *ctx = inlink->dst;
511 AVFilterLink *outlink = ctx->outputs[0];
512 AVFrame *out;
513 RotContext *rot = ctx->priv;
514 int angle_int, s, c, plane;
515 double res;
516
517 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
518 if (!out) {
519 av_frame_free(&in);
520 return AVERROR(ENOMEM);
521 }
522 av_frame_copy_props(out, in);
523
524 rot->var_values[VAR_N] = inlink->frame_count_out;
525 rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
526 rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
527
528 av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
529 rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
530
531 angle_int = res * FIXP * 16;
532 s = int_sin(angle_int);
533 c = int_sin(angle_int + INT_PI/2);
534
535 /* fill background */
536 if (rot->fillcolor_enable)
537 ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
538 0, 0, outlink->w, outlink->h);
539
540 for (plane = 0; plane < rot->nb_planes; plane++) {
541 int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
542 int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
543 const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
544 const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
545 ThreadData td = { .in = in, .out = out,
546 .inw = AV_CEIL_RSHIFT(inlink->w, hsub),
547 .inh = AV_CEIL_RSHIFT(inlink->h, vsub),
548 .outh = outh, .outw = outw,
549 .xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2,
550 .xprime = -(outh-1) * s / 2,
551 .yprime = -(outh-1) * c / 2,
552 .plane = plane, .c = c, .s = s };
553
554
555 ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ff_filter_get_nb_threads(ctx)));
556 }
557
558 av_frame_free(&in);
559 return ff_filter_frame(outlink, out);
560 }
561
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)562 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
563 char *res, int res_len, int flags)
564 {
565 RotContext *rot = ctx->priv;
566 int ret;
567
568 if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
569 AVExpr *old = rot->angle_expr;
570 ret = av_expr_parse(&rot->angle_expr, args, var_names,
571 NULL, NULL, NULL, NULL, 0, ctx);
572 if (ret < 0) {
573 av_log(ctx, AV_LOG_ERROR,
574 "Error when parsing the expression '%s' for angle command\n", args);
575 rot->angle_expr = old;
576 return ret;
577 }
578 av_expr_free(old);
579 } else
580 ret = AVERROR(ENOSYS);
581
582 return ret;
583 }
584
585 static const AVFilterPad rotate_inputs[] = {
586 {
587 .name = "default",
588 .type = AVMEDIA_TYPE_VIDEO,
589 .filter_frame = filter_frame,
590 },
591 { NULL }
592 };
593
594 static const AVFilterPad rotate_outputs[] = {
595 {
596 .name = "default",
597 .type = AVMEDIA_TYPE_VIDEO,
598 .config_props = config_props,
599 },
600 { NULL }
601 };
602
603 AVFilter ff_vf_rotate = {
604 .name = "rotate",
605 .description = NULL_IF_CONFIG_SMALL("Rotate the input image."),
606 .priv_size = sizeof(RotContext),
607 .init = init,
608 .uninit = uninit,
609 .query_formats = query_formats,
610 .process_command = process_command,
611 .inputs = rotate_inputs,
612 .outputs = rotate_outputs,
613 .priv_class = &rotate_class,
614 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
615 };
616