• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013 Stefano Sabatini
3  * Copyright (c) 2008 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * rotation filter, partially based on the tests/rotozoom.c program
25 */
26 
27 #include "libavutil/avstring.h"
28 #include "libavutil/eval.h"
29 #include "libavutil/opt.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/parseutils.h"
32 #include "libavutil/pixdesc.h"
33 
34 #include "avfilter.h"
35 #include "drawutils.h"
36 #include "internal.h"
37 #include "video.h"
38 
39 #include <float.h>
40 
41 static const char * const var_names[] = {
42     "in_w" , "iw",  ///< width of the input video
43     "in_h" , "ih",  ///< height of the input video
44     "out_w", "ow",  ///< width of the input video
45     "out_h", "oh",  ///< height of the input video
46     "hsub", "vsub",
47     "n",            ///< number of frame
48     "t",            ///< timestamp expressed in seconds
49     NULL
50 };
51 
52 enum var_name {
53     VAR_IN_W , VAR_IW,
54     VAR_IN_H , VAR_IH,
55     VAR_OUT_W, VAR_OW,
56     VAR_OUT_H, VAR_OH,
57     VAR_HSUB, VAR_VSUB,
58     VAR_N,
59     VAR_T,
60     VAR_VARS_NB
61 };
62 
63 typedef struct RotContext {
64     const AVClass *class;
65     double angle;
66     char *angle_expr_str;   ///< expression for the angle
67     AVExpr *angle_expr;     ///< parsed expression for the angle
68     char *outw_expr_str, *outh_expr_str;
69     int outh, outw;
70     uint8_t fillcolor[4];   ///< color expressed either in YUVA or RGBA colorspace for the padding area
71     char *fillcolor_str;
72     int fillcolor_enable;
73     int hsub, vsub;
74     int nb_planes;
75     int use_bilinear;
76     float sinx, cosx;
77     double var_values[VAR_VARS_NB];
78     FFDrawContext draw;
79     FFDrawColor color;
80     uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
81                                     const uint8_t *src, int src_linesize, int src_linestep,
82                                     int x, int y, int max_x, int max_y);
83 } RotContext;
84 
85 typedef struct ThreadData {
86     AVFrame *in, *out;
87     int inw,  inh;
88     int outw, outh;
89     int plane;
90     int xi, yi;
91     int xprime, yprime;
92     int c, s;
93 } ThreadData;
94 
95 #define OFFSET(x) offsetof(RotContext, x)
96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
97 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
98 
99 static const AVOption rotate_options[] = {
100     { "angle",     "set angle (in radians)",       OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
101     { "a",         "set angle (in radians)",       OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
102     { "out_w",     "set output width expression",  OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
103     { "ow",        "set output width expression",  OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
104     { "out_h",     "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
105     { "oh",        "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
106     { "fillcolor", "set background fill color",    OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
107     { "c",         "set background fill color",    OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
108     { "bilinear",  "use bilinear interpolation",   OFFSET(use_bilinear),  AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
109     { NULL }
110 };
111 
112 AVFILTER_DEFINE_CLASS(rotate);
113 
init(AVFilterContext * ctx)114 static av_cold int init(AVFilterContext *ctx)
115 {
116     RotContext *rot = ctx->priv;
117 
118     if (!strcmp(rot->fillcolor_str, "none"))
119         rot->fillcolor_enable = 0;
120     else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
121         rot->fillcolor_enable = 1;
122     else
123         return AVERROR(EINVAL);
124     return 0;
125 }
126 
uninit(AVFilterContext * ctx)127 static av_cold void uninit(AVFilterContext *ctx)
128 {
129     RotContext *rot = ctx->priv;
130 
131     av_expr_free(rot->angle_expr);
132     rot->angle_expr = NULL;
133 }
134 
query_formats(AVFilterContext * ctx)135 static int query_formats(AVFilterContext *ctx)
136 {
137     static const enum AVPixelFormat pix_fmts[] = {
138         AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRAP,
139         AV_PIX_FMT_ARGB,   AV_PIX_FMT_RGBA,
140         AV_PIX_FMT_ABGR,   AV_PIX_FMT_BGRA,
141         AV_PIX_FMT_0RGB,   AV_PIX_FMT_RGB0,
142         AV_PIX_FMT_0BGR,   AV_PIX_FMT_BGR0,
143         AV_PIX_FMT_RGB24,  AV_PIX_FMT_BGR24,
144         AV_PIX_FMT_GRAY8,
145         AV_PIX_FMT_YUV410P,
146         AV_PIX_FMT_YUV444P,  AV_PIX_FMT_YUVJ444P,
147         AV_PIX_FMT_YUV420P,  AV_PIX_FMT_YUVJ420P,
148         AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
149         AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE,
150         AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE,
151         AV_PIX_FMT_YUV420P12LE,
152         AV_PIX_FMT_YUV444P12LE,
153         AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE,
154         AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE,
155         AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE,
156         AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE,
157         AV_PIX_FMT_NONE
158     };
159 
160     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
161     if (!fmts_list)
162         return AVERROR(ENOMEM);
163     return ff_set_common_formats(ctx, fmts_list);
164 }
165 
get_rotated_w(void * opaque,double angle)166 static double get_rotated_w(void *opaque, double angle)
167 {
168     RotContext *rot = opaque;
169     double inw = rot->var_values[VAR_IN_W];
170     double inh = rot->var_values[VAR_IN_H];
171     float sinx = sin(angle);
172     float cosx = cos(angle);
173 
174     return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
175            FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
176 }
177 
get_rotated_h(void * opaque,double angle)178 static double get_rotated_h(void *opaque, double angle)
179 {
180     RotContext *rot = opaque;
181     double inw = rot->var_values[VAR_IN_W];
182     double inh = rot->var_values[VAR_IN_H];
183     float sinx = sin(angle);
184     float cosx = cos(angle);
185 
186     return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
187            FFMAX(0,  inh * cosx) + FFMAX(0,  inw * sinx);
188 }
189 
190 static double (* const func1[])(void *, double) = {
191     get_rotated_w,
192     get_rotated_h,
193     NULL
194 };
195 
196 static const char * const func1_names[] = {
197     "rotw",
198     "roth",
199     NULL
200 };
201 
202 #define FIXP (1<<16)
203 #define FIXP2 (1<<20)
204 #define INT_PI 3294199 //(M_PI * FIXP2)
205 
206 /**
207  * Compute the sin of a using integer values.
208  * Input is scaled by FIXP2 and output values are scaled by FIXP.
209  */
int_sin(int64_t a)210 static int64_t int_sin(int64_t a)
211 {
212     int64_t a2, res = 0;
213     int i;
214     if (a < 0) a = INT_PI-a; // 0..inf
215     a %= 2 * INT_PI;         // 0..2PI
216 
217     if (a >= INT_PI*3/2) a -= 2*INT_PI;  // -PI/2 .. 3PI/2
218     if (a >= INT_PI/2  ) a = INT_PI - a; // -PI/2 ..  PI/2
219 
220     /* compute sin using Taylor series approximated to the fifth term */
221     a2 = (a*a)/(FIXP2);
222     for (i = 2; i < 11; i += 2) {
223         res += a;
224         a = -a*a2 / (FIXP2*i*(i+1));
225     }
226     return (res + 8)>>4;
227 }
228 
229 /**
230  * Interpolate the color in src at position x and y using bilinear
231  * interpolation.
232  */
interpolate_bilinear8(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)233 static uint8_t *interpolate_bilinear8(uint8_t *dst_color,
234                                       const uint8_t *src, int src_linesize, int src_linestep,
235                                       int x, int y, int max_x, int max_y)
236 {
237     int int_x = av_clip(x>>16, 0, max_x);
238     int int_y = av_clip(y>>16, 0, max_y);
239     int frac_x = x&0xFFFF;
240     int frac_y = y&0xFFFF;
241     int i;
242     int int_x1 = FFMIN(int_x+1, max_x);
243     int int_y1 = FFMIN(int_y+1, max_y);
244 
245     for (i = 0; i < src_linestep; i++) {
246         int s00 = src[src_linestep * int_x  + i + src_linesize * int_y ];
247         int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
248         int s10 = src[src_linestep * int_x  + i + src_linesize * int_y1];
249         int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
250         int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
251         int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
252 
253         dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
254     }
255 
256     return dst_color;
257 }
258 
259 /**
260  * Interpolate the color in src at position x and y using bilinear
261  * interpolation.
262  */
interpolate_bilinear16(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)263 static uint8_t *interpolate_bilinear16(uint8_t *dst_color,
264                                        const uint8_t *src, int src_linesize, int src_linestep,
265                                        int x, int y, int max_x, int max_y)
266 {
267     int int_x = av_clip(x>>16, 0, max_x);
268     int int_y = av_clip(y>>16, 0, max_y);
269     int frac_x = x&0xFFFF;
270     int frac_y = y&0xFFFF;
271     int i;
272     int int_x1 = FFMIN(int_x+1, max_x);
273     int int_y1 = FFMIN(int_y+1, max_y);
274 
275     for (i = 0; i < src_linestep; i+=2) {
276         int s00 = AV_RL16(&src[src_linestep * int_x  + i + src_linesize * int_y ]);
277         int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]);
278         int s10 = AV_RL16(&src[src_linestep * int_x  + i + src_linesize * int_y1]);
279         int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]);
280         int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
281         int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
282 
283         AV_WL16(&dst_color[i], ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32);
284     }
285 
286     return dst_color;
287 }
288 
config_props(AVFilterLink * outlink)289 static int config_props(AVFilterLink *outlink)
290 {
291     AVFilterContext *ctx = outlink->src;
292     RotContext *rot = ctx->priv;
293     AVFilterLink *inlink = ctx->inputs[0];
294     const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
295     int ret;
296     double res;
297     char *expr;
298 
299     ff_draw_init(&rot->draw, inlink->format, 0);
300     ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
301 
302     rot->hsub = pixdesc->log2_chroma_w;
303     rot->vsub = pixdesc->log2_chroma_h;
304 
305     if (pixdesc->comp[0].depth == 8)
306         rot->interpolate_bilinear = interpolate_bilinear8;
307     else
308         rot->interpolate_bilinear = interpolate_bilinear16;
309 
310     rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
311     rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
312     rot->var_values[VAR_HSUB] = 1<<rot->hsub;
313     rot->var_values[VAR_VSUB] = 1<<rot->vsub;
314     rot->var_values[VAR_N] = NAN;
315     rot->var_values[VAR_T] = NAN;
316     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
317     rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
318 
319     av_expr_free(rot->angle_expr);
320     rot->angle_expr = NULL;
321     if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
322                              func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
323         av_log(ctx, AV_LOG_ERROR,
324                "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
325         return ret;
326     }
327 
328 #define SET_SIZE_EXPR(name, opt_name) do {                                         \
329     ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str,                \
330                                  var_names, rot->var_values,                       \
331                                  func1_names, func1, NULL, NULL, rot, 0, ctx);     \
332     if (ret < 0 || isnan(res) || isinf(res) || res <= 0) {                         \
333         av_log(ctx, AV_LOG_ERROR,                                                  \
334                "Error parsing or evaluating expression for option %s: "            \
335                "invalid expression '%s' or non-positive or indefinite value %f\n", \
336                opt_name, expr, res);                                               \
337         return ret;                                                                \
338     }                                                                              \
339 } while (0)
340 
341     /* evaluate width and height */
342     av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
343                            func1_names, func1, NULL, NULL, rot, 0, ctx);
344     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
345     rot->outw = res + 0.5;
346     SET_SIZE_EXPR(outh, "out_h");
347     rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
348     rot->outh = res + 0.5;
349 
350     /* evaluate the width again, as it may depend on the evaluated output height */
351     SET_SIZE_EXPR(outw, "out_w");
352     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
353     rot->outw = res + 0.5;
354 
355     /* compute number of planes */
356     rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
357     outlink->w = rot->outw;
358     outlink->h = rot->outh;
359     return 0;
360 }
361 
copy_elem(uint8_t * pout,const uint8_t * pin,int elem_size)362 static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
363 {
364     int v;
365     switch (elem_size) {
366     case 1:
367         *pout = *pin;
368         break;
369     case 2:
370         *((uint16_t *)pout) = *((uint16_t *)pin);
371         break;
372     case 3:
373         v = AV_RB24(pin);
374         AV_WB24(pout, v);
375         break;
376     case 4:
377         *((uint32_t *)pout) = *((uint32_t *)pin);
378         break;
379     default:
380         memcpy(pout, pin, elem_size);
381         break;
382     }
383 }
384 
simple_rotate_internal(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)385 static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
386 {
387     int i;
388     switch(angle) {
389     case 0:
390         memcpy(dst, src, elem_size * len);
391         break;
392     case 1:
393         for (i = 0; i<len; i++)
394             copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
395         break;
396     case 2:
397         for (i = 0; i<len; i++)
398             copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
399         break;
400     case 3:
401         for (i = 0; i<len; i++)
402             copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
403         break;
404     }
405 }
406 
simple_rotate(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)407 static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
408 {
409     switch(elem_size) {
410     case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
411     case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
412     case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
413     case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
414     default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
415     }
416 }
417 
filter_slice(AVFilterContext * ctx,void * arg,int job,int nb_jobs)418 static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
419 {
420     ThreadData *td = arg;
421     AVFrame *in = td->in;
422     AVFrame *out = td->out;
423     RotContext *rot = ctx->priv;
424     const int outw = td->outw, outh = td->outh;
425     const int inw = td->inw, inh = td->inh;
426     const int plane = td->plane;
427     const int xi = td->xi, yi = td->yi;
428     const int c = td->c, s = td->s;
429     const int start = (outh *  job   ) / nb_jobs;
430     const int end   = (outh * (job+1)) / nb_jobs;
431     int xprime = td->xprime + start * s;
432     int yprime = td->yprime + start * c;
433     int i, j, x, y;
434 
435     for (j = start; j < end; j++) {
436         x = xprime + xi + FIXP*(inw-1)/2;
437         y = yprime + yi + FIXP*(inh-1)/2;
438 
439         if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
440             simple_rotate(out->data[plane] + j * out->linesize[plane],
441                            in->data[plane] + j *  in->linesize[plane],
442                           in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
443         } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
444             simple_rotate(out->data[plane] + j * out->linesize[plane],
445                            in->data[plane] + j * rot->draw.pixelstep[plane],
446                           in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
447         } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
448             simple_rotate(out->data[plane] + j * out->linesize[plane],
449                            in->data[plane] + (outh-j-1) *  in->linesize[plane],
450                           in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
451         } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
452             simple_rotate(out->data[plane] + j * out->linesize[plane],
453                            in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
454                           in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
455         } else {
456 
457         for (i = 0; i < outw; i++) {
458             int32_t v;
459             int x1, y1;
460             uint8_t *pin, *pout;
461             x1 = x>>16;
462             y1 = y>>16;
463 
464             /* the out-of-range values avoid border artifacts */
465             if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
466                 uint8_t inp_inv[4]; /* interpolated input value */
467                 pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
468                 if (rot->use_bilinear) {
469                     pin = rot->interpolate_bilinear(inp_inv,
470                                                     in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
471                                                     x, y, inw-1, inh-1);
472                 } else {
473                     int x2 = av_clip(x1, 0, inw-1);
474                     int y2 = av_clip(y1, 0, inh-1);
475                     pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
476                 }
477                 switch (rot->draw.pixelstep[plane]) {
478                 case 1:
479                     *pout = *pin;
480                     break;
481                 case 2:
482                     v = AV_RL16(pin);
483                     AV_WL16(pout, v);
484                     break;
485                 case 3:
486                     v = AV_RB24(pin);
487                     AV_WB24(pout, v);
488                     break;
489                 case 4:
490                     *((uint32_t *)pout) = *((uint32_t *)pin);
491                     break;
492                 default:
493                     memcpy(pout, pin, rot->draw.pixelstep[plane]);
494                     break;
495                 }
496             }
497             x += c;
498             y -= s;
499         }
500         }
501         xprime += s;
502         yprime += c;
503     }
504 
505     return 0;
506 }
507 
filter_frame(AVFilterLink * inlink,AVFrame * in)508 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
509 {
510     AVFilterContext *ctx = inlink->dst;
511     AVFilterLink *outlink = ctx->outputs[0];
512     AVFrame *out;
513     RotContext *rot = ctx->priv;
514     int angle_int, s, c, plane;
515     double res;
516 
517     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
518     if (!out) {
519         av_frame_free(&in);
520         return AVERROR(ENOMEM);
521     }
522     av_frame_copy_props(out, in);
523 
524     rot->var_values[VAR_N] = inlink->frame_count_out;
525     rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
526     rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
527 
528     av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
529            rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
530 
531     angle_int = res * FIXP * 16;
532     s = int_sin(angle_int);
533     c = int_sin(angle_int + INT_PI/2);
534 
535     /* fill background */
536     if (rot->fillcolor_enable)
537         ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
538                           0, 0, outlink->w, outlink->h);
539 
540     for (plane = 0; plane < rot->nb_planes; plane++) {
541         int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
542         int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
543         const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
544         const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
545         ThreadData td = { .in = in,   .out  = out,
546                           .inw  = AV_CEIL_RSHIFT(inlink->w, hsub),
547                           .inh  = AV_CEIL_RSHIFT(inlink->h, vsub),
548                           .outh = outh, .outw = outw,
549                           .xi = -(outw-1) * c / 2, .yi =  (outw-1) * s / 2,
550                           .xprime = -(outh-1) * s / 2,
551                           .yprime = -(outh-1) * c / 2,
552                           .plane = plane, .c = c, .s = s };
553 
554 
555         ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ff_filter_get_nb_threads(ctx)));
556     }
557 
558     av_frame_free(&in);
559     return ff_filter_frame(outlink, out);
560 }
561 
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)562 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
563                            char *res, int res_len, int flags)
564 {
565     RotContext *rot = ctx->priv;
566     int ret;
567 
568     if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
569         AVExpr *old = rot->angle_expr;
570         ret = av_expr_parse(&rot->angle_expr, args, var_names,
571                             NULL, NULL, NULL, NULL, 0, ctx);
572         if (ret < 0) {
573             av_log(ctx, AV_LOG_ERROR,
574                    "Error when parsing the expression '%s' for angle command\n", args);
575             rot->angle_expr = old;
576             return ret;
577         }
578         av_expr_free(old);
579     } else
580         ret = AVERROR(ENOSYS);
581 
582     return ret;
583 }
584 
585 static const AVFilterPad rotate_inputs[] = {
586     {
587         .name         = "default",
588         .type         = AVMEDIA_TYPE_VIDEO,
589         .filter_frame = filter_frame,
590     },
591     { NULL }
592 };
593 
594 static const AVFilterPad rotate_outputs[] = {
595     {
596         .name         = "default",
597         .type         = AVMEDIA_TYPE_VIDEO,
598         .config_props = config_props,
599     },
600     { NULL }
601 };
602 
603 AVFilter ff_vf_rotate = {
604     .name          = "rotate",
605     .description   = NULL_IF_CONFIG_SMALL("Rotate the input image."),
606     .priv_size     = sizeof(RotContext),
607     .init          = init,
608     .uninit        = uninit,
609     .query_formats = query_formats,
610     .process_command = process_command,
611     .inputs        = rotate_inputs,
612     .outputs       = rotate_outputs,
613     .priv_class    = &rotate_class,
614     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
615 };
616