• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 // The copyright below was added in 2009, but I see no record of moto contributions...?
9 
10 /* NEON optimized code (C) COPYRIGHT 2009 Motorola
11  *
12  * Use of this source code is governed by a BSD-style license that can be
13  * found in the LICENSE file.
14  */
15 
16 #include "include/core/SkShader.h"
17 #include "include/private/SkTo.h"
18 #include "src/core/SkBitmapProcState.h"
19 #include "src/core/SkUtils.h"
20 
21 /*
22  *  The decal_ functions require that
23  *  1. dx > 0
24  *  2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX
25  *
26  *  In addition, we use SkFractionalInt to keep more fractional precision than
27  *  just SkFixed, so we will abort the decal_ call if dx is very small, since
28  *  the decal_ function just operates on SkFixed. If that were changed, we could
29  *  skip the very_small test here.
30  */
can_truncate_to_fixed_for_decal(SkFixed fx,SkFixed dx,int count,unsigned max)31 static inline bool can_truncate_to_fixed_for_decal(SkFixed fx,
32                                                    SkFixed dx,
33                                                    int count, unsigned max) {
34     SkASSERT(count > 0);
35 
36     // if decal_ kept SkFractionalInt precision, this would just be dx <= 0
37     // I just made up the 1/256. Just don't want to perceive accumulated error
38     // if we truncate frDx and lose its low bits.
39     if (dx <= SK_Fixed1 / 256) {
40         return false;
41     }
42 
43     // Note: it seems the test should be (fx <= max && lastFx <= max); but
44     // historically it's been a strict inequality check, and changing produces
45     // unexpected diffs.  Further investigation is needed.
46 
47     // We cast to unsigned so we don't have to check for negative values, which
48     // will now appear as very large positive values, and thus fail our test!
49     if ((unsigned)SkFixedFloorToInt(fx) >= max) {
50         return false;
51     }
52 
53     // Promote to 64bit (48.16) to avoid overflow.
54     const uint64_t lastFx = fx + sk_64_mul(dx, count - 1);
55 
56     return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max;
57 }
58 
59 // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ...
60 // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1.
61 
62 // The clamp routines may try to fall into one of these unclamped decal fast-paths.
63 // (Only clamp works in the right coordinate space to check for decal.)
decal_nofilter_scale(uint32_t dst[],SkFixed fx,SkFixed dx,int count)64 static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
65     // can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1
66     // times doesn't overflow fx, so we take unusual care not to step count times.
67     for (; count > 2; count -= 2) {
68         *dst++ = pack_two_shorts( (fx +  0) >> 16,
69                                   (fx + dx) >> 16);
70         fx += dx+dx;
71     }
72 
73     SkASSERT(count <= 2);
74     switch (count) {
75         case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16);
76         case 1: ((uint16_t*)dst)[0] = SkToU16((fx +  0) >> 16);
77     }
78 }
79 
80 // A generic implementation for unfiltered scale+translate, templated on tiling method.
81 template <unsigned (*tile)(SkFixed, int), bool tryDecal>
nofilter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)82 static void nofilter_scale(const SkBitmapProcState& s,
83                            uint32_t xy[], int count, int x, int y) {
84     SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
85                              SkMatrix::kScale_Mask)) == 0);
86 
87     // Write out our 32-bit y, and get our intial fx.
88     SkFractionalInt fx;
89     {
90         const SkBitmapProcStateAutoMapper mapper(s, x, y);
91         *xy++ = tile(mapper.fixedY(), s.fPixmap.height() - 1);
92         fx = mapper.fractionalIntX();
93     }
94 
95     const unsigned maxX = s.fPixmap.width() - 1;
96     if (0 == maxX) {
97         // If width == 1, all the x-values must refer to that pixel, and must be zero.
98         memset(xy, 0, count * sizeof(uint16_t));
99         return;
100     }
101 
102     const SkFractionalInt dx = s.fInvSxFractionalInt;
103 
104     if (tryDecal) {
105         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
106         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
107 
108         if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
109             decal_nofilter_scale(xy, fixedFx, fixedDx, count);
110             return;
111         }
112     }
113 
114     // Remember, each x-coordinate is 16-bit.
115     for (; count >= 2; count -= 2) {
116         *xy++ = pack_two_shorts(tile(SkFractionalIntToFixed(fx     ), maxX),
117                                 tile(SkFractionalIntToFixed(fx + dx), maxX));
118         fx += dx+dx;
119     }
120 
121     auto xx = (uint16_t*)xy;
122     while (count --> 0) {
123         *xx++ = tile(SkFractionalIntToFixed(fx), maxX);
124         fx += dx;
125     }
126 }
127 
128 // Extract the high four fractional bits from fx, the lerp parameter when filtering.
extract_low_bits_clamp(SkFixed fx,int)129 static unsigned extract_low_bits_clamp(SkFixed fx, int /*max*/) {
130     // If we're already scaled up to by max like clamp/decal,
131     // just grab the high four fractional bits.
132     return (fx >> 12) & 0xf;
133 }
extract_low_bits_repeat_mirror(SkFixed fx,int max)134 static unsigned extract_low_bits_repeat_mirror(SkFixed fx, int max) {
135     // In repeat or mirror fx is in [0,1], so scale up by max first.
136     // TODO: remove the +1 here and the -1 at the call sites...
137     return extract_low_bits_clamp((fx & 0xffff) * (max+1), max);
138 }
139 
140 template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal>
filter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)141 static void filter_scale(const SkBitmapProcState& s,
142                          uint32_t xy[], int count, int x, int y) {
143     SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
144                              SkMatrix::kScale_Mask)) == 0);
145     SkASSERT(s.fInvKy == 0);
146 
147     auto pack = [](SkFixed f, unsigned max, SkFixed one) {
148         unsigned i = tile(f, max);
149         i = (i << 4) | extract_low_bits(f, max);
150         return (i << 14) | (tile((f + one), max));
151     };
152 
153     const unsigned maxX = s.fPixmap.width() - 1;
154     const SkFractionalInt dx = s.fInvSxFractionalInt;
155     SkFractionalInt fx;
156     {
157         const SkBitmapProcStateAutoMapper mapper(s, x, y);
158         const SkFixed fy = mapper.fixedY();
159         const unsigned maxY = s.fPixmap.height() - 1;
160         // compute our two Y values up front
161         *xy++ = pack(fy, maxY, s.fFilterOneY);
162         // now initialize fx
163         fx = mapper.fractionalIntX();
164     }
165 
166     // For historical reasons we check both ends are < maxX rather than <= maxX.
167     // TODO: try changing this?  See also can_truncate_to_fixed_for_decal().
168     if (tryDecal &&
169         (unsigned)SkFractionalIntToInt(fx               ) < maxX &&
170         (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) {
171         while (count --> 0) {
172             SkFixed fixedFx = SkFractionalIntToFixed(fx);
173             SkASSERT((fixedFx >> (16 + 14)) == 0);
174             *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1);
175             fx += dx;
176         }
177         return;
178     }
179 
180     while (count --> 0) {
181         SkFixed fixedFx = SkFractionalIntToFixed(fx);
182         *xy++ = pack(fixedFx, maxX, s.fFilterOneX);
183         fx += dx;
184     }
185 }
186 
187 // Helper to ensure that when we shift down, we do it w/o sign-extension
188 // so the caller doesn't have to manually mask off the top 16 bits.
SK_USHIFT16(unsigned x)189 static inline unsigned SK_USHIFT16(unsigned x) {
190     return x >> 16;
191 }
192 
clamp(SkFixed fx,int max)193 static unsigned clamp(SkFixed fx, int max) {
194     return SkClampMax(fx >> 16, max);
195 }
repeat(SkFixed fx,int max)196 static unsigned repeat(SkFixed fx, int max) {
197     SkASSERT(max < 65535);
198     return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1));
199 }
mirror(SkFixed fx,int max)200 static unsigned mirror(SkFixed fx, int max) {
201     SkASSERT(max < 65535);
202     // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval
203     SkFixed s = SkLeftShift(fx, 15) >> 31;
204 
205     // This should be exactly the same as repeat(fx ^ s, max) from here on.
206     return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) );
207 }
208 
209 // Mirror/Mirror's always just portable code.
210 static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = {
211     nofilter_scale<mirror, false>,
212     filter_scale<mirror, extract_low_bits_repeat_mirror, false>,
213 };
214 
215 // Clamp/Clamp and Repeat/Repeat have NEON or portable implementations.
216 #if defined(SK_ARM_HAS_NEON)
217     #include <arm_neon.h>
218 
219     // TODO: this is a fine drop-in for decal_nofilter_scale() generally.
decal_nofilter_scale_neon(uint32_t dst[],SkFixed fx,SkFixed dx,int count)220     static void decal_nofilter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
221         if (count >= 8) {
222             // SkFixed is 16.16 fixed point
223             SkFixed dx8 = dx * 8;
224             int32x4_t vdx8 = vdupq_n_s32(dx8);
225 
226             // setup lbase and hbase
227             int32x4_t lbase, hbase;
228             lbase = vdupq_n_s32(fx);
229             lbase = vsetq_lane_s32(fx + dx, lbase, 1);
230             lbase = vsetq_lane_s32(fx + dx + dx, lbase, 2);
231             lbase = vsetq_lane_s32(fx + dx + dx + dx, lbase, 3);
232             hbase = lbase + vdupq_n_s32(4 * dx);
233 
234             do {
235                 // store the upper 16 bits
236                 vst1q_u32(dst, vreinterpretq_u32_s16(
237                     vuzpq_s16(vreinterpretq_s16_s32(lbase), vreinterpretq_s16_s32(hbase)).val[1]
238                 ));
239 
240                 // on to the next group of 8
241                 lbase += vdx8;
242                 hbase += vdx8;
243                 dst += 4; // we did 8 elements but the result is twice smaller
244                 count -= 8;
245                 fx += dx8;
246             } while (count >= 8);
247         }
248 
249         uint16_t* xx = (uint16_t*)dst;
250         for (int i = count; i > 0; --i) {
251             *xx++ = SkToU16(fx >> 16); fx += dx;
252         }
253     }
254 
decal_filter_scale_neon(uint32_t dst[],SkFixed fx,SkFixed dx,int count)255     static void decal_filter_scale_neon(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
256         if (count >= 8) {
257             SkFixed dx8 = dx * 8;
258             int32x4_t vdx8 = vdupq_n_s32(dx8);
259 
260             int32x4_t wide_fx, wide_fx2;
261             wide_fx = vdupq_n_s32(fx);
262             wide_fx = vsetq_lane_s32(fx + dx, wide_fx, 1);
263             wide_fx = vsetq_lane_s32(fx + dx + dx, wide_fx, 2);
264             wide_fx = vsetq_lane_s32(fx + dx + dx + dx, wide_fx, 3);
265 
266             wide_fx2 = vaddq_s32(wide_fx, vdupq_n_s32(4 * dx));
267 
268             while (count >= 8) {
269                 int32x4_t wide_out;
270                 int32x4_t wide_out2;
271 
272                 wide_out = vshlq_n_s32(vshrq_n_s32(wide_fx, 12), 14);
273                 wide_out = wide_out | (vshrq_n_s32(wide_fx,16) + vdupq_n_s32(1));
274 
275                 wide_out2 = vshlq_n_s32(vshrq_n_s32(wide_fx2, 12), 14);
276                 wide_out2 = wide_out2 | (vshrq_n_s32(wide_fx2,16) + vdupq_n_s32(1));
277 
278                 vst1q_u32(dst, vreinterpretq_u32_s32(wide_out));
279                 vst1q_u32(dst+4, vreinterpretq_u32_s32(wide_out2));
280 
281                 dst += 8;
282                 fx += dx8;
283                 wide_fx += vdx8;
284                 wide_fx2 += vdx8;
285                 count -= 8;
286             }
287         }
288 
289         if (count & 1)
290         {
291             SkASSERT((fx >> (16 + 14)) == 0);
292             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
293             fx += dx;
294         }
295         while ((count -= 2) >= 0)
296         {
297             SkASSERT((fx >> (16 + 14)) == 0);
298             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
299             fx += dx;
300 
301             *dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
302             fx += dx;
303         }
304     }
305 
clamp8(int32x4_t low,int32x4_t high,unsigned max)306     static inline int16x8_t clamp8(int32x4_t low, int32x4_t high, unsigned max) {
307         int16x8_t res;
308 
309         // get the hi 16s of all those 32s
310         res = vuzpq_s16(vreinterpretq_s16_s32(low), vreinterpretq_s16_s32(high)).val[1];
311 
312         // clamp
313         res = vmaxq_s16(res, vdupq_n_s16(0));
314         res = vminq_s16(res, vdupq_n_s16(max));
315 
316         return res;
317     }
318 
clamp4(int32x4_t f,unsigned max)319     static inline int32x4_t clamp4(int32x4_t f, unsigned max) {
320         int32x4_t res;
321 
322         // get the hi 16s of all those 32s
323         res = vshrq_n_s32(f, 16);
324 
325         // clamp
326         res = vmaxq_s32(res, vdupq_n_s32(0));
327         res = vminq_s32(res, vdupq_n_s32(max));
328 
329         return res;
330     }
331 
extract_low_bits_clamp4(int32x4_t fx,unsigned)332     static inline int32x4_t extract_low_bits_clamp4(int32x4_t fx, unsigned) {
333         int32x4_t ret;
334 
335         ret = vshrq_n_s32(fx, 12);
336 
337         /* We don't need the mask below because the caller will
338          * overwrite the non-masked bits
339          */
340         //ret = vandq_s32(ret, vdupq_n_s32(0xF));
341 
342         return ret;
343     }
344 
repeat8(int32x4_t low,int32x4_t high,unsigned max)345     static inline int16x8_t repeat8(int32x4_t low, int32x4_t high, unsigned max) {
346         uint16x8_t res;
347         uint32x4_t tmpl, tmph;
348 
349         // get the lower 16 bits
350         res = vuzpq_u16(vreinterpretq_u16_s32(low), vreinterpretq_u16_s32(high)).val[0];
351 
352         // bare multiplication, not SkFixedMul
353         tmpl = vmull_u16(vget_low_u16(res), vdup_n_u16(max+1));
354         tmph = vmull_u16(vget_high_u16(res), vdup_n_u16(max+1));
355 
356         // extraction of the 16 upper bits
357         res = vuzpq_u16(vreinterpretq_u16_u32(tmpl), vreinterpretq_u16_u32(tmph)).val[1];
358 
359         return vreinterpretq_s16_u16(res);
360     }
361 
repeat4(int32x4_t f,unsigned max)362     static inline int32x4_t repeat4(int32x4_t f, unsigned max) {
363         uint16x4_t res;
364         uint32x4_t tmp;
365 
366         // get the lower 16 bits
367         res = vmovn_u32(vreinterpretq_u32_s32(f));
368 
369         // bare multiplication, not SkFixedMul
370         tmp = vmull_u16(res, vdup_n_u16(max+1));
371 
372         // extraction of the 16 upper bits
373         tmp = vshrq_n_u32(tmp, 16);
374 
375         return vreinterpretq_s32_u32(tmp);
376     }
377 
extract_low_bits_repeat_mirror4(int32x4_t fx,unsigned max)378     static inline int32x4_t extract_low_bits_repeat_mirror4(int32x4_t fx, unsigned max) {
379         uint16x4_t res;
380         uint32x4_t tmp;
381         int32x4_t ret;
382 
383         // get the lower 16 bits
384         res = vmovn_u32(vreinterpretq_u32_s32(fx));
385 
386         // bare multiplication, not SkFixedMul
387         tmp = vmull_u16(res, vdup_n_u16(max + 1));
388 
389         // shift and mask
390         ret = vshrq_n_s32(vreinterpretq_s32_u32(tmp), 12);
391 
392         /* We don't need the mask below because the caller will
393          * overwrite the non-masked bits
394          */
395         //ret = vandq_s32(ret, vdupq_n_s32(0xF));
396 
397         return ret;
398     }
399 
400     template <unsigned   (*tile)(SkFixed, int),
401               int16x8_t (*tile8)(int32x4_t, int32x4_t, unsigned),
402              bool tryDecal>
nofilter_scale_neon(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)403     static void nofilter_scale_neon(const SkBitmapProcState& s,
404                                     uint32_t xy[], int count, int x, int y) {
405         SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
406                                  SkMatrix::kScale_Mask)) == 0);
407 
408         // we store y, x, x, x, x, x
409         const unsigned maxX = s.fPixmap.width() - 1;
410         SkFractionalInt fx;
411         {
412             const SkBitmapProcStateAutoMapper mapper(s, x, y);
413             const unsigned maxY = s.fPixmap.height() - 1;
414             *xy++ = tile(mapper.fixedY(), maxY);
415             fx = mapper.fractionalIntX();
416         }
417 
418         if (0 == maxX) {
419             // all of the following X values must be 0
420             memset(xy, 0, count * sizeof(uint16_t));
421             return;
422         }
423 
424         const SkFractionalInt dx = s.fInvSxFractionalInt;
425 
426         // test if we don't need to apply the tile proc
427         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
428         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
429         if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
430             decal_nofilter_scale_neon(xy, fixedFx, fixedDx, count);
431             return;
432         }
433 
434         if (count >= 8) {
435             SkFractionalInt dx2 = dx+dx;
436             SkFractionalInt dx4 = dx2+dx2;
437             SkFractionalInt dx8 = dx4+dx4;
438 
439             // now build fx/fx+dx/fx+2dx/fx+3dx
440             SkFractionalInt fx1, fx2, fx3;
441             int32x4_t lbase, hbase;
442             int16_t *dst16 = (int16_t *)xy;
443 
444             fx1 = fx+dx;
445             fx2 = fx1+dx;
446             fx3 = fx2+dx;
447 
448             lbase = vdupq_n_s32(SkFractionalIntToFixed(fx));
449             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx1), lbase, 1);
450             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx2), lbase, 2);
451             lbase = vsetq_lane_s32(SkFractionalIntToFixed(fx3), lbase, 3);
452             hbase = vaddq_s32(lbase, vdupq_n_s32(SkFractionalIntToFixed(dx4)));
453 
454             // store & bump
455             while (count >= 8) {
456 
457                 int16x8_t fx8;
458 
459                 fx8 = tile8(lbase, hbase, maxX);
460 
461                 vst1q_s16(dst16, fx8);
462 
463                 // but preserving base & on to the next
464                 lbase = vaddq_s32 (lbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
465                 hbase = vaddq_s32 (hbase, vdupq_n_s32(SkFractionalIntToFixed(dx8)));
466                 dst16 += 8;
467                 count -= 8;
468                 fx += dx8;
469             }
470             xy = (uint32_t *) dst16;
471         }
472 
473         uint16_t* xx = (uint16_t*)xy;
474         for (int i = count; i > 0; --i) {
475             *xx++ = tile(SkFractionalIntToFixed(fx), maxX);
476             fx += dx;
477         }
478     }
479 
480     template <unsigned              (*tile )(SkFixed, int),
481               int32x4_t             (*tile4)(int32x4_t, unsigned),
482               unsigned  (*extract_low_bits )(SkFixed, int),
483               int32x4_t (*extract_low_bits4)(int32x4_t, unsigned),
484               bool tryDecal>
filter_scale_neon(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)485     static void filter_scale_neon(const SkBitmapProcState& s,
486                                   uint32_t xy[], int count, int x, int y) {
487         SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
488                                  SkMatrix::kScale_Mask)) == 0);
489         SkASSERT(s.fInvKy == 0);
490 
491         auto pack = [&](SkFixed f, unsigned max, SkFixed one) {
492             unsigned i = tile(f, max);
493             i = (i << 4) | extract_low_bits(f, max);
494             return (i << 14) | (tile((f + one), max));
495         };
496 
497         auto pack4 = [&](int32x4_t f, unsigned max, SkFixed one) {
498             int32x4_t ret, res;
499 
500             res = tile4(f, max);
501 
502             ret = extract_low_bits4(f, max);
503             ret = vsliq_n_s32(ret, res, 4);
504 
505             res = tile4(f + vdupq_n_s32(one), max);
506             ret = vorrq_s32(vshlq_n_s32(ret, 14), res);
507 
508             return ret;
509         };
510 
511         const unsigned maxX = s.fPixmap.width() - 1;
512         const SkFixed one = s.fFilterOneX;
513         const SkFractionalInt dx = s.fInvSxFractionalInt;
514         SkFractionalInt fx;
515 
516         {
517             const SkBitmapProcStateAutoMapper mapper(s, x, y);
518             const SkFixed fy = mapper.fixedY();
519             const unsigned maxY = s.fPixmap.height() - 1;
520             // compute our two Y values up front
521             *xy++ = pack(fy, maxY, s.fFilterOneY);
522             // now initialize fx
523             fx = mapper.fractionalIntX();
524         }
525 
526         // test if we don't need to apply the tile proc
527         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
528         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
529         if (tryDecal && can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
530             decal_filter_scale_neon(xy, fixedFx, fixedDx, count);
531             return;
532         }
533 
534         if (count >= 4) {
535             int32x4_t wide_fx;
536 
537             wide_fx = vdupq_n_s32(SkFractionalIntToFixed(fx));
538             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx), wide_fx, 1);
539             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx), wide_fx, 2);
540             wide_fx = vsetq_lane_s32(SkFractionalIntToFixed(fx+dx+dx+dx), wide_fx, 3);
541 
542             while (count >= 4) {
543                 int32x4_t res;
544 
545                 res = pack4(wide_fx, maxX, one);
546 
547                 vst1q_u32(xy, vreinterpretq_u32_s32(res));
548 
549                 wide_fx += vdupq_n_s32(SkFractionalIntToFixed(dx+dx+dx+dx));
550                 fx += dx+dx+dx+dx;
551                 xy += 4;
552                 count -= 4;
553             }
554         }
555 
556         while (--count >= 0) {
557             *xy++ = pack(SkFractionalIntToFixed(fx), maxX, one);
558             fx += dx;
559         }
560     }
561 
562     static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
563         nofilter_scale_neon<clamp, clamp8, true>,
564         filter_scale_neon<clamp,
565                           clamp4,
566                           extract_low_bits_clamp,
567                           extract_low_bits_clamp4,
568                           true>,
569     };
570 
571     static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
572         nofilter_scale_neon<repeat, repeat8, false>,
573         filter_scale_neon<repeat,
574                           repeat4,
575                           extract_low_bits_repeat_mirror,
576                           extract_low_bits_repeat_mirror4,
577                           false>,
578     };
579 
580 #else
581     static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
582         nofilter_scale<clamp, true>,
583         filter_scale<clamp, extract_low_bits_clamp, true>,
584     };
585 
586     static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
587         nofilter_scale<repeat, false>,
588         filter_scale<repeat, extract_low_bits_repeat_mirror, false>,
589     };
590 #endif
591 
592 
593 ///////////////////////////////////////////////////////////////////////////////
594 // This next chunk has some specializations for unfiltered translate-only matrices.
595 
int_clamp(int x,int n)596 static inline U16CPU int_clamp(int x, int n) {
597     if (x <  0) { x = 0; }
598     if (x >= n) { x = n - 1; }
599     return x;
600 }
601 
602 /*  returns 0...(n-1) given any x (positive or negative).
603 
604     As an example, if n (which is always positive) is 5...
605 
606           x: -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8
607     returns:  2  3  4  0  1  2  3  4  0  1  2  3  4  0  1  2  3
608  */
sk_int_mod(int x,int n)609 static inline int sk_int_mod(int x, int n) {
610     SkASSERT(n > 0);
611     if ((unsigned)x >= (unsigned)n) {
612         if (x < 0) {
613             x = n + ~(~x % n);
614         } else {
615             x = x % n;
616         }
617     }
618     return x;
619 }
620 
int_repeat(int x,int n)621 static inline U16CPU int_repeat(int x, int n) {
622     return sk_int_mod(x, n);
623 }
624 
int_mirror(int x,int n)625 static inline U16CPU int_mirror(int x, int n) {
626     x = sk_int_mod(x, 2 * n);
627     if (x >= n) {
628         x = n + ~(x - n);
629     }
630     return x;
631 }
632 
fill_sequential(uint16_t xptr[],int pos,int count)633 static void fill_sequential(uint16_t xptr[], int pos, int count) {
634     while (count --> 0) {
635         *xptr++ = pos++;
636     }
637 }
638 
fill_backwards(uint16_t xptr[],int pos,int count)639 static void fill_backwards(uint16_t xptr[], int pos, int count) {
640     while (count --> 0) {
641         SkASSERT(pos >= 0);
642         *xptr++ = pos--;
643     }
644 }
645 
clampx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)646 static void clampx_nofilter_trans(const SkBitmapProcState& s,
647                                   uint32_t xy[], int count, int x, int y) {
648     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
649 
650     const SkBitmapProcStateAutoMapper mapper(s, x, y);
651     *xy++ = int_clamp(mapper.intY(), s.fPixmap.height());
652     int xpos = mapper.intX();
653 
654     const int width = s.fPixmap.width();
655     if (1 == width) {
656         // all of the following X values must be 0
657         memset(xy, 0, count * sizeof(uint16_t));
658         return;
659     }
660 
661     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
662     int n;
663 
664     // fill before 0 as needed
665     if (xpos < 0) {
666         n = -xpos;
667         if (n > count) {
668             n = count;
669         }
670         memset(xptr, 0, n * sizeof(uint16_t));
671         count -= n;
672         if (0 == count) {
673             return;
674         }
675         xptr += n;
676         xpos = 0;
677     }
678 
679     // fill in 0..width-1 if needed
680     if (xpos < width) {
681         n = width - xpos;
682         if (n > count) {
683             n = count;
684         }
685         fill_sequential(xptr, xpos, n);
686         count -= n;
687         if (0 == count) {
688             return;
689         }
690         xptr += n;
691     }
692 
693     // fill the remaining with the max value
694     sk_memset16(xptr, width - 1, count);
695 }
696 
repeatx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)697 static void repeatx_nofilter_trans(const SkBitmapProcState& s,
698                                    uint32_t xy[], int count, int x, int y) {
699     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
700 
701     const SkBitmapProcStateAutoMapper mapper(s, x, y);
702     *xy++ = int_repeat(mapper.intY(), s.fPixmap.height());
703     int xpos = mapper.intX();
704 
705     const int width = s.fPixmap.width();
706     if (1 == width) {
707         // all of the following X values must be 0
708         memset(xy, 0, count * sizeof(uint16_t));
709         return;
710     }
711 
712     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
713     int start = sk_int_mod(xpos, width);
714     int n = width - start;
715     if (n > count) {
716         n = count;
717     }
718     fill_sequential(xptr, start, n);
719     xptr += n;
720     count -= n;
721 
722     while (count >= width) {
723         fill_sequential(xptr, 0, width);
724         xptr += width;
725         count -= width;
726     }
727 
728     if (count > 0) {
729         fill_sequential(xptr, 0, count);
730     }
731 }
732 
mirrorx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)733 static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
734                                    uint32_t xy[], int count, int x, int y) {
735     SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
736 
737     const SkBitmapProcStateAutoMapper mapper(s, x, y);
738     *xy++ = int_mirror(mapper.intY(), s.fPixmap.height());
739     int xpos = mapper.intX();
740 
741     const int width = s.fPixmap.width();
742     if (1 == width) {
743         // all of the following X values must be 0
744         memset(xy, 0, count * sizeof(uint16_t));
745         return;
746     }
747 
748     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
749     // need to know our start, and our initial phase (forward or backward)
750     bool forward;
751     int n;
752     int start = sk_int_mod(xpos, 2 * width);
753     if (start >= width) {
754         start = width + ~(start - width);
755         forward = false;
756         n = start + 1;  // [start .. 0]
757     } else {
758         forward = true;
759         n = width - start;  // [start .. width)
760     }
761     if (n > count) {
762         n = count;
763     }
764     if (forward) {
765         fill_sequential(xptr, start, n);
766     } else {
767         fill_backwards(xptr, start, n);
768     }
769     forward = !forward;
770     xptr += n;
771     count -= n;
772 
773     while (count >= width) {
774         if (forward) {
775             fill_sequential(xptr, 0, width);
776         } else {
777             fill_backwards(xptr, width - 1, width);
778         }
779         forward = !forward;
780         xptr += width;
781         count -= width;
782     }
783 
784     if (count > 0) {
785         if (forward) {
786             fill_sequential(xptr, 0, count);
787         } else {
788             fill_backwards(xptr, width - 1, count);
789         }
790     }
791 }
792 
793 ///////////////////////////////////////////////////////////////////////////////
794 // The main entry point to the file, choosing between everything above.
795 
chooseMatrixProc(bool translate_only_matrix)796 SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) {
797     SkASSERT(fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
798     SkASSERT(fTileModeX == fTileModeY);
799     SkASSERT(fTileModeX != SkTileMode::kDecal);
800 
801     // Check for our special case translate methods when there is no scale/affine/perspective.
802     if (translate_only_matrix && kNone_SkFilterQuality == fFilterQuality) {
803         switch (fTileModeX) {
804             default: SkASSERT(false);
805             case SkTileMode::kClamp:  return  clampx_nofilter_trans;
806             case SkTileMode::kRepeat: return repeatx_nofilter_trans;
807             case SkTileMode::kMirror: return mirrorx_nofilter_trans;
808         }
809     }
810 
811     // The arrays are all [ nofilter, filter ].
812     int index = fFilterQuality > kNone_SkFilterQuality ? 1 : 0;
813 
814     if (fTileModeX == SkTileMode::kClamp) {
815         // clamp gets special version of filterOne, working in non-normalized space (allowing decal)
816         fFilterOneX = SK_Fixed1;
817         fFilterOneY = SK_Fixed1;
818         return ClampX_ClampY_Procs[index];
819     }
820 
821     // all remaining procs use this form for filterOne, putting them into normalized space.
822     fFilterOneX = SK_Fixed1 / fPixmap.width();
823     fFilterOneY = SK_Fixed1 / fPixmap.height();
824 
825     if (fTileModeX == SkTileMode::kRepeat) {
826         return RepeatX_RepeatY_Procs[index];
827     }
828 
829     return MirrorX_MirrorY_Procs[index];
830 }
831