1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLCompiler.h"
9
10 #include "src/sksl/SkSLByteCodeGenerator.h"
11 #include "src/sksl/SkSLCFGGenerator.h"
12 #include "src/sksl/SkSLCPPCodeGenerator.h"
13 #include "src/sksl/SkSLGLSLCodeGenerator.h"
14 #include "src/sksl/SkSLHCodeGenerator.h"
15 #include "src/sksl/SkSLIRGenerator.h"
16 #include "src/sksl/SkSLMetalCodeGenerator.h"
17 #include "src/sksl/SkSLPipelineStageCodeGenerator.h"
18 #include "src/sksl/SkSLSPIRVCodeGenerator.h"
19 #include "src/sksl/ir/SkSLEnum.h"
20 #include "src/sksl/ir/SkSLExpression.h"
21 #include "src/sksl/ir/SkSLExpressionStatement.h"
22 #include "src/sksl/ir/SkSLFunctionCall.h"
23 #include "src/sksl/ir/SkSLIntLiteral.h"
24 #include "src/sksl/ir/SkSLModifiersDeclaration.h"
25 #include "src/sksl/ir/SkSLNop.h"
26 #include "src/sksl/ir/SkSLSymbolTable.h"
27 #include "src/sksl/ir/SkSLTernaryExpression.h"
28 #include "src/sksl/ir/SkSLUnresolvedFunction.h"
29 #include "src/sksl/ir/SkSLVarDeclarations.h"
30
31 #ifdef SK_ENABLE_SPIRV_VALIDATION
32 #include "spirv-tools/libspirv.hpp"
33 #endif
34
35 // include the built-in shader symbols as static strings
36
37 #define STRINGIFY(x) #x
38
39 static const char* SKSL_GPU_INCLUDE =
40 #include "sksl_gpu.inc"
41 ;
42
43 static const char* SKSL_INTERP_INCLUDE =
44 #include "sksl_interp.inc"
45 ;
46
47 static const char* SKSL_VERT_INCLUDE =
48 #include "sksl_vert.inc"
49 ;
50
51 static const char* SKSL_FRAG_INCLUDE =
52 #include "sksl_frag.inc"
53 ;
54
55 static const char* SKSL_GEOM_INCLUDE =
56 #include "sksl_geom.inc"
57 ;
58
59 static const char* SKSL_FP_INCLUDE =
60 #include "sksl_enums.inc"
61 #include "sksl_fp.inc"
62 ;
63
64 static const char* SKSL_PIPELINE_INCLUDE =
65 #include "sksl_pipeline.inc"
66 ;
67
68 namespace SkSL {
69
Compiler(Flags flags)70 Compiler::Compiler(Flags flags)
71 : fFlags(flags)
72 , fContext(new Context())
73 , fErrorCount(0) {
74 auto types = std::shared_ptr<SymbolTable>(new SymbolTable(this));
75 auto symbols = std::shared_ptr<SymbolTable>(new SymbolTable(types, this));
76 fIRGenerator = new IRGenerator(fContext.get(), symbols, *this);
77 fTypes = types;
78 #define ADD_TYPE(t) types->addWithoutOwnership(fContext->f ## t ## _Type->fName, \
79 fContext->f ## t ## _Type.get())
80 ADD_TYPE(Void);
81 ADD_TYPE(Float);
82 ADD_TYPE(Float2);
83 ADD_TYPE(Float3);
84 ADD_TYPE(Float4);
85 ADD_TYPE(Half);
86 ADD_TYPE(Half2);
87 ADD_TYPE(Half3);
88 ADD_TYPE(Half4);
89 ADD_TYPE(Double);
90 ADD_TYPE(Double2);
91 ADD_TYPE(Double3);
92 ADD_TYPE(Double4);
93 ADD_TYPE(Int);
94 ADD_TYPE(Int2);
95 ADD_TYPE(Int3);
96 ADD_TYPE(Int4);
97 ADD_TYPE(UInt);
98 ADD_TYPE(UInt2);
99 ADD_TYPE(UInt3);
100 ADD_TYPE(UInt4);
101 ADD_TYPE(Short);
102 ADD_TYPE(Short2);
103 ADD_TYPE(Short3);
104 ADD_TYPE(Short4);
105 ADD_TYPE(UShort);
106 ADD_TYPE(UShort2);
107 ADD_TYPE(UShort3);
108 ADD_TYPE(UShort4);
109 ADD_TYPE(Byte);
110 ADD_TYPE(Byte2);
111 ADD_TYPE(Byte3);
112 ADD_TYPE(Byte4);
113 ADD_TYPE(UByte);
114 ADD_TYPE(UByte2);
115 ADD_TYPE(UByte3);
116 ADD_TYPE(UByte4);
117 ADD_TYPE(Bool);
118 ADD_TYPE(Bool2);
119 ADD_TYPE(Bool3);
120 ADD_TYPE(Bool4);
121 ADD_TYPE(Float2x2);
122 ADD_TYPE(Float2x3);
123 ADD_TYPE(Float2x4);
124 ADD_TYPE(Float3x2);
125 ADD_TYPE(Float3x3);
126 ADD_TYPE(Float3x4);
127 ADD_TYPE(Float4x2);
128 ADD_TYPE(Float4x3);
129 ADD_TYPE(Float4x4);
130 ADD_TYPE(Half2x2);
131 ADD_TYPE(Half2x3);
132 ADD_TYPE(Half2x4);
133 ADD_TYPE(Half3x2);
134 ADD_TYPE(Half3x3);
135 ADD_TYPE(Half3x4);
136 ADD_TYPE(Half4x2);
137 ADD_TYPE(Half4x3);
138 ADD_TYPE(Half4x4);
139 ADD_TYPE(Double2x2);
140 ADD_TYPE(Double2x3);
141 ADD_TYPE(Double2x4);
142 ADD_TYPE(Double3x2);
143 ADD_TYPE(Double3x3);
144 ADD_TYPE(Double3x4);
145 ADD_TYPE(Double4x2);
146 ADD_TYPE(Double4x3);
147 ADD_TYPE(Double4x4);
148 ADD_TYPE(GenType);
149 ADD_TYPE(GenHType);
150 ADD_TYPE(GenDType);
151 ADD_TYPE(GenIType);
152 ADD_TYPE(GenUType);
153 ADD_TYPE(GenBType);
154 ADD_TYPE(Mat);
155 ADD_TYPE(Vec);
156 ADD_TYPE(GVec);
157 ADD_TYPE(GVec2);
158 ADD_TYPE(GVec3);
159 ADD_TYPE(GVec4);
160 ADD_TYPE(HVec);
161 ADD_TYPE(DVec);
162 ADD_TYPE(IVec);
163 ADD_TYPE(UVec);
164 ADD_TYPE(SVec);
165 ADD_TYPE(USVec);
166 ADD_TYPE(ByteVec);
167 ADD_TYPE(UByteVec);
168 ADD_TYPE(BVec);
169
170 ADD_TYPE(Sampler1D);
171 ADD_TYPE(Sampler2D);
172 ADD_TYPE(Sampler3D);
173 ADD_TYPE(SamplerExternalOES);
174 ADD_TYPE(SamplerCube);
175 ADD_TYPE(Sampler2DRect);
176 ADD_TYPE(Sampler1DArray);
177 ADD_TYPE(Sampler2DArray);
178 ADD_TYPE(SamplerCubeArray);
179 ADD_TYPE(SamplerBuffer);
180 ADD_TYPE(Sampler2DMS);
181 ADD_TYPE(Sampler2DMSArray);
182
183 ADD_TYPE(ISampler2D);
184
185 ADD_TYPE(Image2D);
186 ADD_TYPE(IImage2D);
187
188 ADD_TYPE(SubpassInput);
189 ADD_TYPE(SubpassInputMS);
190
191 ADD_TYPE(GSampler1D);
192 ADD_TYPE(GSampler2D);
193 ADD_TYPE(GSampler3D);
194 ADD_TYPE(GSamplerCube);
195 ADD_TYPE(GSampler2DRect);
196 ADD_TYPE(GSampler1DArray);
197 ADD_TYPE(GSampler2DArray);
198 ADD_TYPE(GSamplerCubeArray);
199 ADD_TYPE(GSamplerBuffer);
200 ADD_TYPE(GSampler2DMS);
201 ADD_TYPE(GSampler2DMSArray);
202
203 ADD_TYPE(Sampler1DShadow);
204 ADD_TYPE(Sampler2DShadow);
205 ADD_TYPE(SamplerCubeShadow);
206 ADD_TYPE(Sampler2DRectShadow);
207 ADD_TYPE(Sampler1DArrayShadow);
208 ADD_TYPE(Sampler2DArrayShadow);
209 ADD_TYPE(SamplerCubeArrayShadow);
210 ADD_TYPE(GSampler2DArrayShadow);
211 ADD_TYPE(GSamplerCubeArrayShadow);
212 ADD_TYPE(FragmentProcessor);
213 ADD_TYPE(SkRasterPipeline);
214 ADD_TYPE(Sampler);
215 ADD_TYPE(Texture2D);
216
217 StringFragment skCapsName("sk_Caps");
218 Variable* skCaps = new Variable(-1, Modifiers(), skCapsName,
219 *fContext->fSkCaps_Type, Variable::kGlobal_Storage);
220 fIRGenerator->fSymbolTable->add(skCapsName, std::unique_ptr<Symbol>(skCaps));
221
222 StringFragment skArgsName("sk_Args");
223 Variable* skArgs = new Variable(-1, Modifiers(), skArgsName,
224 *fContext->fSkArgs_Type, Variable::kGlobal_Storage);
225 fIRGenerator->fSymbolTable->add(skArgsName, std::unique_ptr<Symbol>(skArgs));
226
227 std::vector<std::unique_ptr<ProgramElement>> ignored;
228 this->processIncludeFile(Program::kFragment_Kind, SKSL_GPU_INCLUDE, strlen(SKSL_GPU_INCLUDE),
229 symbols, &ignored, &fGpuSymbolTable);
230 this->processIncludeFile(Program::kVertex_Kind, SKSL_VERT_INCLUDE, strlen(SKSL_VERT_INCLUDE),
231 fGpuSymbolTable, &fVertexInclude, &fVertexSymbolTable);
232 this->processIncludeFile(Program::kFragment_Kind, SKSL_FRAG_INCLUDE, strlen(SKSL_FRAG_INCLUDE),
233 fGpuSymbolTable, &fFragmentInclude, &fFragmentSymbolTable);
234 this->processIncludeFile(Program::kGeometry_Kind, SKSL_GEOM_INCLUDE, strlen(SKSL_GEOM_INCLUDE),
235 fGpuSymbolTable, &fGeometryInclude, &fGeometrySymbolTable);
236 this->processIncludeFile(Program::kPipelineStage_Kind, SKSL_PIPELINE_INCLUDE,
237 strlen(SKSL_PIPELINE_INCLUDE), fGpuSymbolTable, &fPipelineInclude,
238 &fPipelineSymbolTable);
239 this->processIncludeFile(Program::kGeneric_Kind, SKSL_INTERP_INCLUDE,
240 strlen(SKSL_INTERP_INCLUDE), symbols, &fInterpreterInclude,
241 &fInterpreterSymbolTable);
242 }
243
~Compiler()244 Compiler::~Compiler() {
245 delete fIRGenerator;
246 }
247
processIncludeFile(Program::Kind kind,const char * src,size_t length,std::shared_ptr<SymbolTable> base,std::vector<std::unique_ptr<ProgramElement>> * outElements,std::shared_ptr<SymbolTable> * outSymbolTable)248 void Compiler::processIncludeFile(Program::Kind kind, const char* src, size_t length,
249 std::shared_ptr<SymbolTable> base,
250 std::vector<std::unique_ptr<ProgramElement>>* outElements,
251 std::shared_ptr<SymbolTable>* outSymbolTable) {
252 fIRGenerator->fSymbolTable = std::move(base);
253 Program::Settings settings;
254 fIRGenerator->start(&settings, nullptr);
255 fIRGenerator->convertProgram(kind, src, length, *fTypes, outElements);
256 if (this->fErrorCount) {
257 printf("Unexpected errors: %s\n", this->fErrorText.c_str());
258 }
259 SkASSERT(!fErrorCount);
260 fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
261 *outSymbolTable = fIRGenerator->fSymbolTable;
262 }
263
264 // add the definition created by assigning to the lvalue to the definition set
addDefinition(const Expression * lvalue,std::unique_ptr<Expression> * expr,DefinitionMap * definitions)265 void Compiler::addDefinition(const Expression* lvalue, std::unique_ptr<Expression>* expr,
266 DefinitionMap* definitions) {
267 switch (lvalue->fKind) {
268 case Expression::kVariableReference_Kind: {
269 const Variable& var = ((VariableReference*) lvalue)->fVariable;
270 if (var.fStorage == Variable::kLocal_Storage) {
271 (*definitions)[&var] = expr;
272 }
273 break;
274 }
275 case Expression::kSwizzle_Kind:
276 // We consider the variable written to as long as at least some of its components have
277 // been written to. This will lead to some false negatives (we won't catch it if you
278 // write to foo.x and then read foo.y), but being stricter could lead to false positives
279 // (we write to foo.x, and then pass foo to a function which happens to only read foo.x,
280 // but since we pass foo as a whole it is flagged as an error) unless we perform a much
281 // more complicated whole-program analysis. This is probably good enough.
282 this->addDefinition(((Swizzle*) lvalue)->fBase.get(),
283 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
284 definitions);
285 break;
286 case Expression::kIndex_Kind:
287 // see comments in Swizzle
288 this->addDefinition(((IndexExpression*) lvalue)->fBase.get(),
289 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
290 definitions);
291 break;
292 case Expression::kFieldAccess_Kind:
293 // see comments in Swizzle
294 this->addDefinition(((FieldAccess*) lvalue)->fBase.get(),
295 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
296 definitions);
297 break;
298 case Expression::kTernary_Kind:
299 // To simplify analysis, we just pretend that we write to both sides of the ternary.
300 // This allows for false positives (meaning we fail to detect that a variable might not
301 // have been assigned), but is preferable to false negatives.
302 this->addDefinition(((TernaryExpression*) lvalue)->fIfTrue.get(),
303 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
304 definitions);
305 this->addDefinition(((TernaryExpression*) lvalue)->fIfFalse.get(),
306 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
307 definitions);
308 break;
309 case Expression::kExternalValue_Kind:
310 break;
311 default:
312 // not an lvalue, can't happen
313 SkASSERT(false);
314 }
315 }
316
317 // add local variables defined by this node to the set
addDefinitions(const BasicBlock::Node & node,DefinitionMap * definitions)318 void Compiler::addDefinitions(const BasicBlock::Node& node,
319 DefinitionMap* definitions) {
320 switch (node.fKind) {
321 case BasicBlock::Node::kExpression_Kind: {
322 SkASSERT(node.expression());
323 const Expression* expr = (Expression*) node.expression()->get();
324 switch (expr->fKind) {
325 case Expression::kBinary_Kind: {
326 BinaryExpression* b = (BinaryExpression*) expr;
327 if (b->fOperator == Token::EQ) {
328 this->addDefinition(b->fLeft.get(), &b->fRight, definitions);
329 } else if (Compiler::IsAssignment(b->fOperator)) {
330 this->addDefinition(
331 b->fLeft.get(),
332 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
333 definitions);
334
335 }
336 break;
337 }
338 case Expression::kFunctionCall_Kind: {
339 const FunctionCall& c = (const FunctionCall&) *expr;
340 for (size_t i = 0; i < c.fFunction.fParameters.size(); ++i) {
341 if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
342 this->addDefinition(
343 c.fArguments[i].get(),
344 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
345 definitions);
346 }
347 }
348 break;
349 }
350 case Expression::kPrefix_Kind: {
351 const PrefixExpression* p = (PrefixExpression*) expr;
352 if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
353 this->addDefinition(
354 p->fOperand.get(),
355 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
356 definitions);
357 }
358 break;
359 }
360 case Expression::kPostfix_Kind: {
361 const PostfixExpression* p = (PostfixExpression*) expr;
362 if (p->fOperator == Token::MINUSMINUS || p->fOperator == Token::PLUSPLUS) {
363 this->addDefinition(
364 p->fOperand.get(),
365 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
366 definitions);
367 }
368 break;
369 }
370 case Expression::kVariableReference_Kind: {
371 const VariableReference* v = (VariableReference*) expr;
372 if (v->fRefKind != VariableReference::kRead_RefKind) {
373 this->addDefinition(
374 v,
375 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression,
376 definitions);
377 }
378 }
379 default:
380 break;
381 }
382 break;
383 }
384 case BasicBlock::Node::kStatement_Kind: {
385 const Statement* stmt = (Statement*) node.statement()->get();
386 if (stmt->fKind == Statement::kVarDeclaration_Kind) {
387 VarDeclaration& vd = (VarDeclaration&) *stmt;
388 if (vd.fValue) {
389 (*definitions)[vd.fVar] = &vd.fValue;
390 }
391 }
392 break;
393 }
394 }
395 }
396
scanCFG(CFG * cfg,BlockId blockId,std::set<BlockId> * workList)397 void Compiler::scanCFG(CFG* cfg, BlockId blockId, std::set<BlockId>* workList) {
398 BasicBlock& block = cfg->fBlocks[blockId];
399
400 // compute definitions after this block
401 DefinitionMap after = block.fBefore;
402 for (const BasicBlock::Node& n : block.fNodes) {
403 this->addDefinitions(n, &after);
404 }
405
406 // propagate definitions to exits
407 for (BlockId exitId : block.fExits) {
408 if (exitId == blockId) {
409 continue;
410 }
411 BasicBlock& exit = cfg->fBlocks[exitId];
412 for (const auto& pair : after) {
413 std::unique_ptr<Expression>* e1 = pair.second;
414 auto found = exit.fBefore.find(pair.first);
415 if (found == exit.fBefore.end()) {
416 // exit has no definition for it, just copy it
417 workList->insert(exitId);
418 exit.fBefore[pair.first] = e1;
419 } else {
420 // exit has a (possibly different) value already defined
421 std::unique_ptr<Expression>* e2 = exit.fBefore[pair.first];
422 if (e1 != e2) {
423 // definition has changed, merge and add exit block to worklist
424 workList->insert(exitId);
425 if (e1 && e2) {
426 exit.fBefore[pair.first] =
427 (std::unique_ptr<Expression>*) &fContext->fDefined_Expression;
428 } else {
429 exit.fBefore[pair.first] = nullptr;
430 }
431 }
432 }
433 }
434 }
435 }
436
437 // returns a map which maps all local variables in the function to null, indicating that their value
438 // is initially unknown
compute_start_state(const CFG & cfg)439 static DefinitionMap compute_start_state(const CFG& cfg) {
440 DefinitionMap result;
441 for (const auto& block : cfg.fBlocks) {
442 for (const auto& node : block.fNodes) {
443 if (node.fKind == BasicBlock::Node::kStatement_Kind) {
444 SkASSERT(node.statement());
445 const Statement* s = node.statement()->get();
446 if (s->fKind == Statement::kVarDeclarations_Kind) {
447 const VarDeclarationsStatement* vd = (const VarDeclarationsStatement*) s;
448 for (const auto& decl : vd->fDeclaration->fVars) {
449 if (decl->fKind == Statement::kVarDeclaration_Kind) {
450 result[((VarDeclaration&) *decl).fVar] = nullptr;
451 }
452 }
453 }
454 }
455 }
456 }
457 return result;
458 }
459
460 /**
461 * Returns true if assigning to this lvalue has no effect.
462 */
is_dead(const Expression & lvalue)463 static bool is_dead(const Expression& lvalue) {
464 switch (lvalue.fKind) {
465 case Expression::kVariableReference_Kind:
466 return ((VariableReference&) lvalue).fVariable.dead();
467 case Expression::kSwizzle_Kind:
468 return is_dead(*((Swizzle&) lvalue).fBase);
469 case Expression::kFieldAccess_Kind:
470 return is_dead(*((FieldAccess&) lvalue).fBase);
471 case Expression::kIndex_Kind: {
472 const IndexExpression& idx = (IndexExpression&) lvalue;
473 return is_dead(*idx.fBase) && !idx.fIndex->hasSideEffects();
474 }
475 case Expression::kTernary_Kind: {
476 const TernaryExpression& t = (TernaryExpression&) lvalue;
477 return !t.fTest->hasSideEffects() && is_dead(*t.fIfTrue) && is_dead(*t.fIfFalse);
478 }
479 case Expression::kExternalValue_Kind:
480 return false;
481 default:
482 ABORT("invalid lvalue: %s\n", lvalue.description().c_str());
483 }
484 }
485
486 /**
487 * Returns true if this is an assignment which can be collapsed down to just the right hand side due
488 * to a dead target and lack of side effects on the left hand side.
489 */
dead_assignment(const BinaryExpression & b)490 static bool dead_assignment(const BinaryExpression& b) {
491 if (!Compiler::IsAssignment(b.fOperator)) {
492 return false;
493 }
494 return is_dead(*b.fLeft);
495 }
496
computeDataFlow(CFG * cfg)497 void Compiler::computeDataFlow(CFG* cfg) {
498 cfg->fBlocks[cfg->fStart].fBefore = compute_start_state(*cfg);
499 std::set<BlockId> workList;
500 for (BlockId i = 0; i < cfg->fBlocks.size(); i++) {
501 workList.insert(i);
502 }
503 while (workList.size()) {
504 BlockId next = *workList.begin();
505 workList.erase(workList.begin());
506 this->scanCFG(cfg, next, &workList);
507 }
508 }
509
510 /**
511 * Attempts to replace the expression pointed to by iter with a new one (in both the CFG and the
512 * IR). If the expression can be cleanly removed, returns true and updates the iterator to point to
513 * the newly-inserted element. Otherwise updates only the IR and returns false (and the CFG will
514 * need to be regenerated).
515 */
try_replace_expression(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,std::unique_ptr<Expression> * newExpression)516 bool try_replace_expression(BasicBlock* b,
517 std::vector<BasicBlock::Node>::iterator* iter,
518 std::unique_ptr<Expression>* newExpression) {
519 std::unique_ptr<Expression>* target = (*iter)->expression();
520 if (!b->tryRemoveExpression(iter)) {
521 *target = std::move(*newExpression);
522 return false;
523 }
524 *target = std::move(*newExpression);
525 return b->tryInsertExpression(iter, target);
526 }
527
528 /**
529 * Returns true if the expression is a constant numeric literal with the specified value, or a
530 * constant vector with all elements equal to the specified value.
531 */
is_constant(const Expression & expr,double value)532 bool is_constant(const Expression& expr, double value) {
533 switch (expr.fKind) {
534 case Expression::kIntLiteral_Kind:
535 return ((IntLiteral&) expr).fValue == value;
536 case Expression::kFloatLiteral_Kind:
537 return ((FloatLiteral&) expr).fValue == value;
538 case Expression::kConstructor_Kind: {
539 Constructor& c = (Constructor&) expr;
540 bool isFloat = c.fType.columns() > 1 ? c.fType.componentType().isFloat()
541 : c.fType.isFloat();
542 if (c.fType.kind() == Type::kVector_Kind && c.isConstant()) {
543 for (int i = 0; i < c.fType.columns(); ++i) {
544 if (isFloat) {
545 if (c.getFVecComponent(i) != value) {
546 return false;
547 }
548 } else if (c.getIVecComponent(i) != value) {
549 return false;
550 }
551 }
552 return true;
553 }
554 return false;
555 }
556 default:
557 return false;
558 }
559 }
560
561 /**
562 * Collapses the binary expression pointed to by iter down to just the right side (in both the IR
563 * and CFG structures).
564 */
delete_left(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,bool * outUpdated,bool * outNeedsRescan)565 void delete_left(BasicBlock* b,
566 std::vector<BasicBlock::Node>::iterator* iter,
567 bool* outUpdated,
568 bool* outNeedsRescan) {
569 *outUpdated = true;
570 std::unique_ptr<Expression>* target = (*iter)->expression();
571 SkASSERT((*target)->fKind == Expression::kBinary_Kind);
572 BinaryExpression& bin = (BinaryExpression&) **target;
573 SkASSERT(!bin.fLeft->hasSideEffects());
574 bool result;
575 if (bin.fOperator == Token::EQ) {
576 result = b->tryRemoveLValueBefore(iter, bin.fLeft.get());
577 } else {
578 result = b->tryRemoveExpressionBefore(iter, bin.fLeft.get());
579 }
580 *target = std::move(bin.fRight);
581 if (!result) {
582 *outNeedsRescan = true;
583 return;
584 }
585 if (*iter == b->fNodes.begin()) {
586 *outNeedsRescan = true;
587 return;
588 }
589 --(*iter);
590 if ((*iter)->fKind != BasicBlock::Node::kExpression_Kind ||
591 (*iter)->expression() != &bin.fRight) {
592 *outNeedsRescan = true;
593 return;
594 }
595 *iter = b->fNodes.erase(*iter);
596 SkASSERT((*iter)->expression() == target);
597 }
598
599 /**
600 * Collapses the binary expression pointed to by iter down to just the left side (in both the IR and
601 * CFG structures).
602 */
delete_right(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,bool * outUpdated,bool * outNeedsRescan)603 void delete_right(BasicBlock* b,
604 std::vector<BasicBlock::Node>::iterator* iter,
605 bool* outUpdated,
606 bool* outNeedsRescan) {
607 *outUpdated = true;
608 std::unique_ptr<Expression>* target = (*iter)->expression();
609 SkASSERT((*target)->fKind == Expression::kBinary_Kind);
610 BinaryExpression& bin = (BinaryExpression&) **target;
611 SkASSERT(!bin.fRight->hasSideEffects());
612 if (!b->tryRemoveExpressionBefore(iter, bin.fRight.get())) {
613 *target = std::move(bin.fLeft);
614 *outNeedsRescan = true;
615 return;
616 }
617 *target = std::move(bin.fLeft);
618 if (*iter == b->fNodes.begin()) {
619 *outNeedsRescan = true;
620 return;
621 }
622 --(*iter);
623 if (((*iter)->fKind != BasicBlock::Node::kExpression_Kind ||
624 (*iter)->expression() != &bin.fLeft)) {
625 *outNeedsRescan = true;
626 return;
627 }
628 *iter = b->fNodes.erase(*iter);
629 SkASSERT((*iter)->expression() == target);
630 }
631
632 /**
633 * Constructs the specified type using a single argument.
634 */
construct(const Type & type,std::unique_ptr<Expression> v)635 static std::unique_ptr<Expression> construct(const Type& type, std::unique_ptr<Expression> v) {
636 std::vector<std::unique_ptr<Expression>> args;
637 args.push_back(std::move(v));
638 auto result = std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
639 return result;
640 }
641
642 /**
643 * Used in the implementations of vectorize_left and vectorize_right. Given a vector type and an
644 * expression x, deletes the expression pointed to by iter and replaces it with <type>(x).
645 */
vectorize(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,const Type & type,std::unique_ptr<Expression> * otherExpression,bool * outUpdated,bool * outNeedsRescan)646 static void vectorize(BasicBlock* b,
647 std::vector<BasicBlock::Node>::iterator* iter,
648 const Type& type,
649 std::unique_ptr<Expression>* otherExpression,
650 bool* outUpdated,
651 bool* outNeedsRescan) {
652 SkASSERT((*(*iter)->expression())->fKind == Expression::kBinary_Kind);
653 SkASSERT(type.kind() == Type::kVector_Kind);
654 SkASSERT((*otherExpression)->fType.kind() == Type::kScalar_Kind);
655 *outUpdated = true;
656 std::unique_ptr<Expression>* target = (*iter)->expression();
657 if (!b->tryRemoveExpression(iter)) {
658 *target = construct(type, std::move(*otherExpression));
659 *outNeedsRescan = true;
660 } else {
661 *target = construct(type, std::move(*otherExpression));
662 if (!b->tryInsertExpression(iter, target)) {
663 *outNeedsRescan = true;
664 }
665 }
666 }
667
668 /**
669 * Given a binary expression of the form x <op> vec<n>(y), deletes the right side and vectorizes the
670 * left to yield vec<n>(x).
671 */
vectorize_left(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,bool * outUpdated,bool * outNeedsRescan)672 static void vectorize_left(BasicBlock* b,
673 std::vector<BasicBlock::Node>::iterator* iter,
674 bool* outUpdated,
675 bool* outNeedsRescan) {
676 BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression();
677 vectorize(b, iter, bin.fRight->fType, &bin.fLeft, outUpdated, outNeedsRescan);
678 }
679
680 /**
681 * Given a binary expression of the form vec<n>(x) <op> y, deletes the left side and vectorizes the
682 * right to yield vec<n>(y).
683 */
vectorize_right(BasicBlock * b,std::vector<BasicBlock::Node>::iterator * iter,bool * outUpdated,bool * outNeedsRescan)684 static void vectorize_right(BasicBlock* b,
685 std::vector<BasicBlock::Node>::iterator* iter,
686 bool* outUpdated,
687 bool* outNeedsRescan) {
688 BinaryExpression& bin = (BinaryExpression&) **(*iter)->expression();
689 vectorize(b, iter, bin.fLeft->fType, &bin.fRight, outUpdated, outNeedsRescan);
690 }
691
692 // Mark that an expression which we were writing to is no longer being written to
clear_write(const Expression & expr)693 void clear_write(const Expression& expr) {
694 switch (expr.fKind) {
695 case Expression::kVariableReference_Kind: {
696 ((VariableReference&) expr).setRefKind(VariableReference::kRead_RefKind);
697 break;
698 }
699 case Expression::kFieldAccess_Kind:
700 clear_write(*((FieldAccess&) expr).fBase);
701 break;
702 case Expression::kSwizzle_Kind:
703 clear_write(*((Swizzle&) expr).fBase);
704 break;
705 case Expression::kIndex_Kind:
706 clear_write(*((IndexExpression&) expr).fBase);
707 break;
708 default:
709 ABORT("shouldn't be writing to this kind of expression\n");
710 break;
711 }
712 }
713
simplifyExpression(DefinitionMap & definitions,BasicBlock & b,std::vector<BasicBlock::Node>::iterator * iter,std::unordered_set<const Variable * > * undefinedVariables,bool * outUpdated,bool * outNeedsRescan)714 void Compiler::simplifyExpression(DefinitionMap& definitions,
715 BasicBlock& b,
716 std::vector<BasicBlock::Node>::iterator* iter,
717 std::unordered_set<const Variable*>* undefinedVariables,
718 bool* outUpdated,
719 bool* outNeedsRescan) {
720 Expression* expr = (*iter)->expression()->get();
721 SkASSERT(expr);
722 if ((*iter)->fConstantPropagation) {
723 std::unique_ptr<Expression> optimized = expr->constantPropagate(*fIRGenerator, definitions);
724 if (optimized) {
725 *outUpdated = true;
726 if (!try_replace_expression(&b, iter, &optimized)) {
727 *outNeedsRescan = true;
728 return;
729 }
730 SkASSERT((*iter)->fKind == BasicBlock::Node::kExpression_Kind);
731 expr = (*iter)->expression()->get();
732 }
733 }
734 switch (expr->fKind) {
735 case Expression::kVariableReference_Kind: {
736 const VariableReference& ref = (VariableReference&) *expr;
737 const Variable& var = ref.fVariable;
738 if (ref.refKind() != VariableReference::kWrite_RefKind &&
739 ref.refKind() != VariableReference::kPointer_RefKind &&
740 var.fStorage == Variable::kLocal_Storage && !definitions[&var] &&
741 (*undefinedVariables).find(&var) == (*undefinedVariables).end()) {
742 (*undefinedVariables).insert(&var);
743 this->error(expr->fOffset,
744 "'" + var.fName + "' has not been assigned");
745 }
746 break;
747 }
748 case Expression::kTernary_Kind: {
749 TernaryExpression* t = (TernaryExpression*) expr;
750 if (t->fTest->fKind == Expression::kBoolLiteral_Kind) {
751 // ternary has a constant test, replace it with either the true or
752 // false branch
753 if (((BoolLiteral&) *t->fTest).fValue) {
754 (*iter)->setExpression(std::move(t->fIfTrue));
755 } else {
756 (*iter)->setExpression(std::move(t->fIfFalse));
757 }
758 *outUpdated = true;
759 *outNeedsRescan = true;
760 }
761 break;
762 }
763 case Expression::kBinary_Kind: {
764 BinaryExpression* bin = (BinaryExpression*) expr;
765 if (dead_assignment(*bin)) {
766 delete_left(&b, iter, outUpdated, outNeedsRescan);
767 break;
768 }
769 // collapse useless expressions like x * 1 or x + 0
770 if (((bin->fLeft->fType.kind() != Type::kScalar_Kind) &&
771 (bin->fLeft->fType.kind() != Type::kVector_Kind)) ||
772 ((bin->fRight->fType.kind() != Type::kScalar_Kind) &&
773 (bin->fRight->fType.kind() != Type::kVector_Kind))) {
774 break;
775 }
776 switch (bin->fOperator) {
777 case Token::STAR:
778 if (is_constant(*bin->fLeft, 1)) {
779 if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
780 bin->fRight->fType.kind() == Type::kScalar_Kind) {
781 // float4(1) * x -> float4(x)
782 vectorize_right(&b, iter, outUpdated, outNeedsRescan);
783 } else {
784 // 1 * x -> x
785 // 1 * float4(x) -> float4(x)
786 // float4(1) * float4(x) -> float4(x)
787 delete_left(&b, iter, outUpdated, outNeedsRescan);
788 }
789 }
790 else if (is_constant(*bin->fLeft, 0)) {
791 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
792 bin->fRight->fType.kind() == Type::kVector_Kind &&
793 !bin->fRight->hasSideEffects()) {
794 // 0 * float4(x) -> float4(0)
795 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
796 } else {
797 // 0 * x -> 0
798 // float4(0) * x -> float4(0)
799 // float4(0) * float4(x) -> float4(0)
800 if (!bin->fRight->hasSideEffects()) {
801 delete_right(&b, iter, outUpdated, outNeedsRescan);
802 }
803 }
804 }
805 else if (is_constant(*bin->fRight, 1)) {
806 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
807 bin->fRight->fType.kind() == Type::kVector_Kind) {
808 // x * float4(1) -> float4(x)
809 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
810 } else {
811 // x * 1 -> x
812 // float4(x) * 1 -> float4(x)
813 // float4(x) * float4(1) -> float4(x)
814 delete_right(&b, iter, outUpdated, outNeedsRescan);
815 }
816 }
817 else if (is_constant(*bin->fRight, 0)) {
818 if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
819 bin->fRight->fType.kind() == Type::kScalar_Kind &&
820 !bin->fLeft->hasSideEffects()) {
821 // float4(x) * 0 -> float4(0)
822 vectorize_right(&b, iter, outUpdated, outNeedsRescan);
823 } else {
824 // x * 0 -> 0
825 // x * float4(0) -> float4(0)
826 // float4(x) * float4(0) -> float4(0)
827 if (!bin->fLeft->hasSideEffects()) {
828 delete_left(&b, iter, outUpdated, outNeedsRescan);
829 }
830 }
831 }
832 break;
833 case Token::PLUS:
834 if (is_constant(*bin->fLeft, 0)) {
835 if (bin->fLeft->fType.kind() == Type::kVector_Kind &&
836 bin->fRight->fType.kind() == Type::kScalar_Kind) {
837 // float4(0) + x -> float4(x)
838 vectorize_right(&b, iter, outUpdated, outNeedsRescan);
839 } else {
840 // 0 + x -> x
841 // 0 + float4(x) -> float4(x)
842 // float4(0) + float4(x) -> float4(x)
843 delete_left(&b, iter, outUpdated, outNeedsRescan);
844 }
845 } else if (is_constant(*bin->fRight, 0)) {
846 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
847 bin->fRight->fType.kind() == Type::kVector_Kind) {
848 // x + float4(0) -> float4(x)
849 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
850 } else {
851 // x + 0 -> x
852 // float4(x) + 0 -> float4(x)
853 // float4(x) + float4(0) -> float4(x)
854 delete_right(&b, iter, outUpdated, outNeedsRescan);
855 }
856 }
857 break;
858 case Token::MINUS:
859 if (is_constant(*bin->fRight, 0)) {
860 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
861 bin->fRight->fType.kind() == Type::kVector_Kind) {
862 // x - float4(0) -> float4(x)
863 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
864 } else {
865 // x - 0 -> x
866 // float4(x) - 0 -> float4(x)
867 // float4(x) - float4(0) -> float4(x)
868 delete_right(&b, iter, outUpdated, outNeedsRescan);
869 }
870 }
871 break;
872 case Token::SLASH:
873 if (is_constant(*bin->fRight, 1)) {
874 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
875 bin->fRight->fType.kind() == Type::kVector_Kind) {
876 // x / float4(1) -> float4(x)
877 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
878 } else {
879 // x / 1 -> x
880 // float4(x) / 1 -> float4(x)
881 // float4(x) / float4(1) -> float4(x)
882 delete_right(&b, iter, outUpdated, outNeedsRescan);
883 }
884 } else if (is_constant(*bin->fLeft, 0)) {
885 if (bin->fLeft->fType.kind() == Type::kScalar_Kind &&
886 bin->fRight->fType.kind() == Type::kVector_Kind &&
887 !bin->fRight->hasSideEffects()) {
888 // 0 / float4(x) -> float4(0)
889 vectorize_left(&b, iter, outUpdated, outNeedsRescan);
890 } else {
891 // 0 / x -> 0
892 // float4(0) / x -> float4(0)
893 // float4(0) / float4(x) -> float4(0)
894 if (!bin->fRight->hasSideEffects()) {
895 delete_right(&b, iter, outUpdated, outNeedsRescan);
896 }
897 }
898 }
899 break;
900 case Token::PLUSEQ:
901 if (is_constant(*bin->fRight, 0)) {
902 clear_write(*bin->fLeft);
903 delete_right(&b, iter, outUpdated, outNeedsRescan);
904 }
905 break;
906 case Token::MINUSEQ:
907 if (is_constant(*bin->fRight, 0)) {
908 clear_write(*bin->fLeft);
909 delete_right(&b, iter, outUpdated, outNeedsRescan);
910 }
911 break;
912 case Token::STAREQ:
913 if (is_constant(*bin->fRight, 1)) {
914 clear_write(*bin->fLeft);
915 delete_right(&b, iter, outUpdated, outNeedsRescan);
916 }
917 break;
918 case Token::SLASHEQ:
919 if (is_constant(*bin->fRight, 1)) {
920 clear_write(*bin->fLeft);
921 delete_right(&b, iter, outUpdated, outNeedsRescan);
922 }
923 break;
924 default:
925 break;
926 }
927 }
928 default:
929 break;
930 }
931 }
932
933 // returns true if this statement could potentially execute a break at the current level (we ignore
934 // nested loops and switches, since any breaks inside of them will merely break the loop / switch)
contains_conditional_break(Statement & s,bool inConditional)935 static bool contains_conditional_break(Statement& s, bool inConditional) {
936 switch (s.fKind) {
937 case Statement::kBlock_Kind:
938 for (const auto& sub : ((Block&) s).fStatements) {
939 if (contains_conditional_break(*sub, inConditional)) {
940 return true;
941 }
942 }
943 return false;
944 case Statement::kBreak_Kind:
945 return inConditional;
946 case Statement::kIf_Kind: {
947 const IfStatement& i = (IfStatement&) s;
948 return contains_conditional_break(*i.fIfTrue, true) ||
949 (i.fIfFalse && contains_conditional_break(*i.fIfFalse, true));
950 }
951 default:
952 return false;
953 }
954 }
955
956 // returns true if this statement definitely executes a break at the current level (we ignore
957 // nested loops and switches, since any breaks inside of them will merely break the loop / switch)
contains_unconditional_break(Statement & s)958 static bool contains_unconditional_break(Statement& s) {
959 switch (s.fKind) {
960 case Statement::kBlock_Kind:
961 for (const auto& sub : ((Block&) s).fStatements) {
962 if (contains_unconditional_break(*sub)) {
963 return true;
964 }
965 }
966 return false;
967 case Statement::kBreak_Kind:
968 return true;
969 default:
970 return false;
971 }
972 }
973
974 // Returns a block containing all of the statements that will be run if the given case matches
975 // (which, owing to the statements being owned by unique_ptrs, means the switch itself will be
976 // broken by this call and must then be discarded).
977 // Returns null (and leaves the switch unmodified) if no such simple reduction is possible, such as
978 // when break statements appear inside conditionals.
block_for_case(SwitchStatement * s,SwitchCase * c)979 static std::unique_ptr<Statement> block_for_case(SwitchStatement* s, SwitchCase* c) {
980 bool capturing = false;
981 std::vector<std::unique_ptr<Statement>*> statementPtrs;
982 for (const auto& current : s->fCases) {
983 if (current.get() == c) {
984 capturing = true;
985 }
986 if (capturing) {
987 for (auto& stmt : current->fStatements) {
988 if (contains_conditional_break(*stmt, s->fKind == Statement::kIf_Kind)) {
989 return nullptr;
990 }
991 if (contains_unconditional_break(*stmt)) {
992 capturing = false;
993 break;
994 }
995 statementPtrs.push_back(&stmt);
996 }
997 if (!capturing) {
998 break;
999 }
1000 }
1001 }
1002 std::vector<std::unique_ptr<Statement>> statements;
1003 for (const auto& s : statementPtrs) {
1004 statements.push_back(std::move(*s));
1005 }
1006 return std::unique_ptr<Statement>(new Block(-1, std::move(statements), s->fSymbols));
1007 }
1008
simplifyStatement(DefinitionMap & definitions,BasicBlock & b,std::vector<BasicBlock::Node>::iterator * iter,std::unordered_set<const Variable * > * undefinedVariables,bool * outUpdated,bool * outNeedsRescan)1009 void Compiler::simplifyStatement(DefinitionMap& definitions,
1010 BasicBlock& b,
1011 std::vector<BasicBlock::Node>::iterator* iter,
1012 std::unordered_set<const Variable*>* undefinedVariables,
1013 bool* outUpdated,
1014 bool* outNeedsRescan) {
1015 Statement* stmt = (*iter)->statement()->get();
1016 switch (stmt->fKind) {
1017 case Statement::kVarDeclaration_Kind: {
1018 const auto& varDecl = (VarDeclaration&) *stmt;
1019 if (varDecl.fVar->dead() &&
1020 (!varDecl.fValue ||
1021 !varDecl.fValue->hasSideEffects())) {
1022 if (varDecl.fValue) {
1023 SkASSERT((*iter)->statement()->get() == stmt);
1024 if (!b.tryRemoveExpressionBefore(iter, varDecl.fValue.get())) {
1025 *outNeedsRescan = true;
1026 }
1027 }
1028 (*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
1029 *outUpdated = true;
1030 }
1031 break;
1032 }
1033 case Statement::kIf_Kind: {
1034 IfStatement& i = (IfStatement&) *stmt;
1035 if (i.fTest->fKind == Expression::kBoolLiteral_Kind) {
1036 // constant if, collapse down to a single branch
1037 if (((BoolLiteral&) *i.fTest).fValue) {
1038 SkASSERT(i.fIfTrue);
1039 (*iter)->setStatement(std::move(i.fIfTrue));
1040 } else {
1041 if (i.fIfFalse) {
1042 (*iter)->setStatement(std::move(i.fIfFalse));
1043 } else {
1044 (*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
1045 }
1046 }
1047 *outUpdated = true;
1048 *outNeedsRescan = true;
1049 break;
1050 }
1051 if (i.fIfFalse && i.fIfFalse->isEmpty()) {
1052 // else block doesn't do anything, remove it
1053 i.fIfFalse.reset();
1054 *outUpdated = true;
1055 *outNeedsRescan = true;
1056 }
1057 if (!i.fIfFalse && i.fIfTrue->isEmpty()) {
1058 // if block doesn't do anything, no else block
1059 if (i.fTest->hasSideEffects()) {
1060 // test has side effects, keep it
1061 (*iter)->setStatement(std::unique_ptr<Statement>(
1062 new ExpressionStatement(std::move(i.fTest))));
1063 } else {
1064 // no if, no else, no test side effects, kill the whole if
1065 // statement
1066 (*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
1067 }
1068 *outUpdated = true;
1069 *outNeedsRescan = true;
1070 }
1071 break;
1072 }
1073 case Statement::kSwitch_Kind: {
1074 SwitchStatement& s = (SwitchStatement&) *stmt;
1075 if (s.fValue->isConstant()) {
1076 // switch is constant, replace it with the case that matches
1077 bool found = false;
1078 SwitchCase* defaultCase = nullptr;
1079 for (const auto& c : s.fCases) {
1080 if (!c->fValue) {
1081 defaultCase = c.get();
1082 continue;
1083 }
1084 SkASSERT(c->fValue->fKind == s.fValue->fKind);
1085 found = c->fValue->compareConstant(*fContext, *s.fValue);
1086 if (found) {
1087 std::unique_ptr<Statement> newBlock = block_for_case(&s, c.get());
1088 if (newBlock) {
1089 (*iter)->setStatement(std::move(newBlock));
1090 break;
1091 } else {
1092 if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) {
1093 this->error(s.fOffset,
1094 "static switch contains non-static conditional break");
1095 s.fIsStatic = false;
1096 }
1097 return; // can't simplify
1098 }
1099 }
1100 }
1101 if (!found) {
1102 // no matching case. use default if it exists, or kill the whole thing
1103 if (defaultCase) {
1104 std::unique_ptr<Statement> newBlock = block_for_case(&s, defaultCase);
1105 if (newBlock) {
1106 (*iter)->setStatement(std::move(newBlock));
1107 } else {
1108 if (s.fIsStatic && !(fFlags & kPermitInvalidStaticTests_Flag)) {
1109 this->error(s.fOffset,
1110 "static switch contains non-static conditional break");
1111 s.fIsStatic = false;
1112 }
1113 return; // can't simplify
1114 }
1115 } else {
1116 (*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
1117 }
1118 }
1119 *outUpdated = true;
1120 *outNeedsRescan = true;
1121 }
1122 break;
1123 }
1124 case Statement::kExpression_Kind: {
1125 ExpressionStatement& e = (ExpressionStatement&) *stmt;
1126 SkASSERT((*iter)->statement()->get() == &e);
1127 if (!e.fExpression->hasSideEffects()) {
1128 // Expression statement with no side effects, kill it
1129 if (!b.tryRemoveExpressionBefore(iter, e.fExpression.get())) {
1130 *outNeedsRescan = true;
1131 }
1132 SkASSERT((*iter)->statement()->get() == stmt);
1133 (*iter)->setStatement(std::unique_ptr<Statement>(new Nop()));
1134 *outUpdated = true;
1135 }
1136 break;
1137 }
1138 default:
1139 break;
1140 }
1141 }
1142
scanCFG(FunctionDefinition & f)1143 void Compiler::scanCFG(FunctionDefinition& f) {
1144 CFG cfg = CFGGenerator().getCFG(f);
1145 this->computeDataFlow(&cfg);
1146
1147 // check for unreachable code
1148 for (size_t i = 0; i < cfg.fBlocks.size(); i++) {
1149 if (i != cfg.fStart && !cfg.fBlocks[i].fEntrances.size() &&
1150 cfg.fBlocks[i].fNodes.size()) {
1151 int offset;
1152 switch (cfg.fBlocks[i].fNodes[0].fKind) {
1153 case BasicBlock::Node::kStatement_Kind:
1154 offset = (*cfg.fBlocks[i].fNodes[0].statement())->fOffset;
1155 break;
1156 case BasicBlock::Node::kExpression_Kind:
1157 offset = (*cfg.fBlocks[i].fNodes[0].expression())->fOffset;
1158 break;
1159 }
1160 this->error(offset, String("unreachable"));
1161 }
1162 }
1163 if (fErrorCount) {
1164 return;
1165 }
1166
1167 // check for dead code & undefined variables, perform constant propagation
1168 std::unordered_set<const Variable*> undefinedVariables;
1169 bool updated;
1170 bool needsRescan = false;
1171 do {
1172 if (needsRescan) {
1173 cfg = CFGGenerator().getCFG(f);
1174 this->computeDataFlow(&cfg);
1175 needsRescan = false;
1176 }
1177
1178 updated = false;
1179 for (BasicBlock& b : cfg.fBlocks) {
1180 DefinitionMap definitions = b.fBefore;
1181
1182 for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan; ++iter) {
1183 if (iter->fKind == BasicBlock::Node::kExpression_Kind) {
1184 this->simplifyExpression(definitions, b, &iter, &undefinedVariables, &updated,
1185 &needsRescan);
1186 } else {
1187 this->simplifyStatement(definitions, b, &iter, &undefinedVariables, &updated,
1188 &needsRescan);
1189 }
1190 if (needsRescan) {
1191 break;
1192 }
1193 this->addDefinitions(*iter, &definitions);
1194 }
1195 }
1196 } while (updated);
1197 SkASSERT(!needsRescan);
1198
1199 // verify static ifs & switches, clean up dead variable decls
1200 for (BasicBlock& b : cfg.fBlocks) {
1201 DefinitionMap definitions = b.fBefore;
1202
1203 for (auto iter = b.fNodes.begin(); iter != b.fNodes.end() && !needsRescan;) {
1204 if (iter->fKind == BasicBlock::Node::kStatement_Kind) {
1205 const Statement& s = **iter->statement();
1206 switch (s.fKind) {
1207 case Statement::kIf_Kind:
1208 if (((const IfStatement&) s).fIsStatic &&
1209 !(fFlags & kPermitInvalidStaticTests_Flag)) {
1210 this->error(s.fOffset, "static if has non-static test");
1211 }
1212 ++iter;
1213 break;
1214 case Statement::kSwitch_Kind:
1215 if (((const SwitchStatement&) s).fIsStatic &&
1216 !(fFlags & kPermitInvalidStaticTests_Flag)) {
1217 this->error(s.fOffset, "static switch has non-static test");
1218 }
1219 ++iter;
1220 break;
1221 case Statement::kVarDeclarations_Kind: {
1222 VarDeclarations& decls = *((VarDeclarationsStatement&) s).fDeclaration;
1223 for (auto varIter = decls.fVars.begin(); varIter != decls.fVars.end();) {
1224 if ((*varIter)->fKind == Statement::kNop_Kind) {
1225 varIter = decls.fVars.erase(varIter);
1226 } else {
1227 ++varIter;
1228 }
1229 }
1230 if (!decls.fVars.size()) {
1231 iter = b.fNodes.erase(iter);
1232 } else {
1233 ++iter;
1234 }
1235 break;
1236 }
1237 default:
1238 ++iter;
1239 break;
1240 }
1241 } else {
1242 ++iter;
1243 }
1244 }
1245 }
1246
1247 // check for missing return
1248 if (f.fDeclaration.fReturnType != *fContext->fVoid_Type) {
1249 if (cfg.fBlocks[cfg.fExit].fEntrances.size()) {
1250 this->error(f.fOffset, String("function can exit without returning a value"));
1251 }
1252 }
1253 }
1254
registerExternalValue(ExternalValue * value)1255 void Compiler::registerExternalValue(ExternalValue* value) {
1256 fIRGenerator->fRootSymbolTable->addWithoutOwnership(value->fName, value);
1257 }
1258
takeOwnership(std::unique_ptr<Symbol> symbol)1259 Symbol* Compiler::takeOwnership(std::unique_ptr<Symbol> symbol) {
1260 return fIRGenerator->fRootSymbolTable->takeOwnership(std::move(symbol));
1261 }
1262
convertProgram(Program::Kind kind,String text,const Program::Settings & settings)1263 std::unique_ptr<Program> Compiler::convertProgram(Program::Kind kind, String text,
1264 const Program::Settings& settings) {
1265 fErrorText = "";
1266 fErrorCount = 0;
1267 std::vector<std::unique_ptr<ProgramElement>>* inherited;
1268 std::vector<std::unique_ptr<ProgramElement>> elements;
1269 switch (kind) {
1270 case Program::kVertex_Kind:
1271 inherited = &fVertexInclude;
1272 fIRGenerator->fSymbolTable = fVertexSymbolTable;
1273 fIRGenerator->start(&settings, inherited);
1274 break;
1275 case Program::kFragment_Kind:
1276 inherited = &fFragmentInclude;
1277 fIRGenerator->fSymbolTable = fFragmentSymbolTable;
1278 fIRGenerator->start(&settings, inherited);
1279 break;
1280 case Program::kGeometry_Kind:
1281 inherited = &fGeometryInclude;
1282 fIRGenerator->fSymbolTable = fGeometrySymbolTable;
1283 fIRGenerator->start(&settings, inherited);
1284 break;
1285 case Program::kFragmentProcessor_Kind:
1286 inherited = nullptr;
1287 fIRGenerator->fSymbolTable = fGpuSymbolTable;
1288 fIRGenerator->start(&settings, nullptr);
1289 fIRGenerator->convertProgram(kind, SKSL_FP_INCLUDE, strlen(SKSL_FP_INCLUDE), *fTypes,
1290 &elements);
1291 fIRGenerator->fSymbolTable->markAllFunctionsBuiltin();
1292 break;
1293 case Program::kPipelineStage_Kind:
1294 inherited = &fPipelineInclude;
1295 fIRGenerator->fSymbolTable = fPipelineSymbolTable;
1296 fIRGenerator->start(&settings, inherited);
1297 break;
1298 case Program::kGeneric_Kind:
1299 inherited = &fInterpreterInclude;
1300 fIRGenerator->fSymbolTable = fInterpreterSymbolTable;
1301 fIRGenerator->start(&settings, inherited);
1302 break;
1303 }
1304 for (auto& element : elements) {
1305 if (element->fKind == ProgramElement::kEnum_Kind) {
1306 ((Enum&) *element).fBuiltin = true;
1307 }
1308 }
1309 std::unique_ptr<String> textPtr(new String(std::move(text)));
1310 fSource = textPtr.get();
1311 fIRGenerator->convertProgram(kind, textPtr->c_str(), textPtr->size(), *fTypes, &elements);
1312 auto result = std::unique_ptr<Program>(new Program(kind,
1313 std::move(textPtr),
1314 settings,
1315 fContext,
1316 inherited,
1317 std::move(elements),
1318 fIRGenerator->fSymbolTable,
1319 fIRGenerator->fInputs));
1320 if (fErrorCount) {
1321 return nullptr;
1322 }
1323 return result;
1324 }
1325
optimize(Program & program)1326 bool Compiler::optimize(Program& program) {
1327 SkASSERT(!fErrorCount);
1328 if (!program.fIsOptimized) {
1329 program.fIsOptimized = true;
1330 fIRGenerator->fKind = program.fKind;
1331 fIRGenerator->fSettings = &program.fSettings;
1332 for (auto& element : program) {
1333 if (element.fKind == ProgramElement::kFunction_Kind) {
1334 this->scanCFG((FunctionDefinition&) element);
1335 }
1336 }
1337 if (program.fKind != Program::kFragmentProcessor_Kind) {
1338 for (auto iter = program.fElements.begin(); iter != program.fElements.end();) {
1339 if ((*iter)->fKind == ProgramElement::kVar_Kind) {
1340 VarDeclarations& vars = (VarDeclarations&) **iter;
1341 for (auto varIter = vars.fVars.begin(); varIter != vars.fVars.end();) {
1342 const Variable& var = *((VarDeclaration&) **varIter).fVar;
1343 if (var.dead()) {
1344 varIter = vars.fVars.erase(varIter);
1345 } else {
1346 ++varIter;
1347 }
1348 }
1349 if (vars.fVars.size() == 0) {
1350 iter = program.fElements.erase(iter);
1351 continue;
1352 }
1353 }
1354 ++iter;
1355 }
1356 }
1357 }
1358 return fErrorCount == 0;
1359 }
1360
specialize(Program & program,const std::unordered_map<SkSL::String,SkSL::Program::Settings::Value> & inputs)1361 std::unique_ptr<Program> Compiler::specialize(
1362 Program& program,
1363 const std::unordered_map<SkSL::String, SkSL::Program::Settings::Value>& inputs) {
1364 std::vector<std::unique_ptr<ProgramElement>> elements;
1365 for (const auto& e : program) {
1366 elements.push_back(e.clone());
1367 }
1368 Program::Settings settings;
1369 settings.fCaps = program.fSettings.fCaps;
1370 for (auto iter = inputs.begin(); iter != inputs.end(); ++iter) {
1371 settings.fArgs.insert(*iter);
1372 }
1373 std::unique_ptr<Program> result(new Program(program.fKind,
1374 nullptr,
1375 settings,
1376 program.fContext,
1377 program.fInheritedElements,
1378 std::move(elements),
1379 program.fSymbols,
1380 program.fInputs));
1381 return result;
1382 }
1383
1384 #if defined(SKSL_STANDALONE) || SK_SUPPORT_GPU
1385
toSPIRV(Program & program,OutputStream & out)1386 bool Compiler::toSPIRV(Program& program, OutputStream& out) {
1387 if (!this->optimize(program)) {
1388 return false;
1389 }
1390 #ifdef SK_ENABLE_SPIRV_VALIDATION
1391 StringStream buffer;
1392 fSource = program.fSource.get();
1393 SPIRVCodeGenerator cg(fContext.get(), &program, this, &buffer);
1394 bool result = cg.generateCode();
1395 fSource = nullptr;
1396 if (result) {
1397 spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0);
1398 const String& data = buffer.str();
1399 SkASSERT(0 == data.size() % 4);
1400 auto dumpmsg = [](spv_message_level_t, const char*, const spv_position_t&, const char* m) {
1401 SkDebugf("SPIR-V validation error: %s\n", m);
1402 };
1403 tools.SetMessageConsumer(dumpmsg);
1404 // Verify that the SPIR-V we produced is valid. If this SkASSERT fails, check the logs prior
1405 // to the failure to see the validation errors.
1406 SkAssertResult(tools.Validate((const uint32_t*) data.c_str(), data.size() / 4));
1407 out.write(data.c_str(), data.size());
1408 }
1409 #else
1410 fSource = program.fSource.get();
1411 SPIRVCodeGenerator cg(fContext.get(), &program, this, &out);
1412 bool result = cg.generateCode();
1413 fSource = nullptr;
1414 #endif
1415 return result;
1416 }
1417
toSPIRV(Program & program,String * out)1418 bool Compiler::toSPIRV(Program& program, String* out) {
1419 StringStream buffer;
1420 bool result = this->toSPIRV(program, buffer);
1421 if (result) {
1422 *out = buffer.str();
1423 }
1424 return result;
1425 }
1426
toGLSL(Program & program,OutputStream & out)1427 bool Compiler::toGLSL(Program& program, OutputStream& out) {
1428 if (!this->optimize(program)) {
1429 return false;
1430 }
1431 fSource = program.fSource.get();
1432 GLSLCodeGenerator cg(fContext.get(), &program, this, &out);
1433 bool result = cg.generateCode();
1434 fSource = nullptr;
1435 return result;
1436 }
1437
toGLSL(Program & program,String * out)1438 bool Compiler::toGLSL(Program& program, String* out) {
1439 StringStream buffer;
1440 bool result = this->toGLSL(program, buffer);
1441 if (result) {
1442 *out = buffer.str();
1443 }
1444 return result;
1445 }
1446
toMetal(Program & program,OutputStream & out)1447 bool Compiler::toMetal(Program& program, OutputStream& out) {
1448 if (!this->optimize(program)) {
1449 return false;
1450 }
1451 MetalCodeGenerator cg(fContext.get(), &program, this, &out);
1452 bool result = cg.generateCode();
1453 return result;
1454 }
1455
toMetal(Program & program,String * out)1456 bool Compiler::toMetal(Program& program, String* out) {
1457 if (!this->optimize(program)) {
1458 return false;
1459 }
1460 StringStream buffer;
1461 bool result = this->toMetal(program, buffer);
1462 if (result) {
1463 *out = buffer.str();
1464 }
1465 return result;
1466 }
1467
toCPP(Program & program,String name,OutputStream & out)1468 bool Compiler::toCPP(Program& program, String name, OutputStream& out) {
1469 if (!this->optimize(program)) {
1470 return false;
1471 }
1472 fSource = program.fSource.get();
1473 CPPCodeGenerator cg(fContext.get(), &program, this, name, &out);
1474 bool result = cg.generateCode();
1475 fSource = nullptr;
1476 return result;
1477 }
1478
toH(Program & program,String name,OutputStream & out)1479 bool Compiler::toH(Program& program, String name, OutputStream& out) {
1480 if (!this->optimize(program)) {
1481 return false;
1482 }
1483 fSource = program.fSource.get();
1484 HCodeGenerator cg(fContext.get(), &program, this, name, &out);
1485 bool result = cg.generateCode();
1486 fSource = nullptr;
1487 return result;
1488 }
1489
toPipelineStage(const Program & program,String * out,std::vector<FormatArg> * outFormatArgs)1490 bool Compiler::toPipelineStage(const Program& program, String* out,
1491 std::vector<FormatArg>* outFormatArgs) {
1492 SkASSERT(program.fIsOptimized);
1493 fSource = program.fSource.get();
1494 StringStream buffer;
1495 PipelineStageCodeGenerator cg(fContext.get(), &program, this, &buffer, outFormatArgs);
1496 bool result = cg.generateCode();
1497 fSource = nullptr;
1498 if (result) {
1499 *out = buffer.str();
1500 }
1501 return result;
1502 }
1503
1504 #endif
1505
toByteCode(Program & program)1506 std::unique_ptr<ByteCode> Compiler::toByteCode(Program& program) {
1507 #if defined(SK_ENABLE_SKSL_INTERPRETER)
1508 if (!this->optimize(program)) {
1509 return nullptr;
1510 }
1511 std::unique_ptr<ByteCode> result(new ByteCode());
1512 ByteCodeGenerator cg(fContext.get(), &program, this, result.get());
1513 if (cg.generateCode()) {
1514 return result;
1515 }
1516 #else
1517 ABORT("ByteCode interpreter not enabled");
1518 #endif
1519 return nullptr;
1520 }
1521
OperatorName(Token::Kind kind)1522 const char* Compiler::OperatorName(Token::Kind kind) {
1523 switch (kind) {
1524 case Token::PLUS: return "+";
1525 case Token::MINUS: return "-";
1526 case Token::STAR: return "*";
1527 case Token::SLASH: return "/";
1528 case Token::PERCENT: return "%";
1529 case Token::SHL: return "<<";
1530 case Token::SHR: return ">>";
1531 case Token::LOGICALNOT: return "!";
1532 case Token::LOGICALAND: return "&&";
1533 case Token::LOGICALOR: return "||";
1534 case Token::LOGICALXOR: return "^^";
1535 case Token::BITWISENOT: return "~";
1536 case Token::BITWISEAND: return "&";
1537 case Token::BITWISEOR: return "|";
1538 case Token::BITWISEXOR: return "^";
1539 case Token::EQ: return "=";
1540 case Token::EQEQ: return "==";
1541 case Token::NEQ: return "!=";
1542 case Token::LT: return "<";
1543 case Token::GT: return ">";
1544 case Token::LTEQ: return "<=";
1545 case Token::GTEQ: return ">=";
1546 case Token::PLUSEQ: return "+=";
1547 case Token::MINUSEQ: return "-=";
1548 case Token::STAREQ: return "*=";
1549 case Token::SLASHEQ: return "/=";
1550 case Token::PERCENTEQ: return "%=";
1551 case Token::SHLEQ: return "<<=";
1552 case Token::SHREQ: return ">>=";
1553 case Token::LOGICALANDEQ: return "&&=";
1554 case Token::LOGICALOREQ: return "||=";
1555 case Token::LOGICALXOREQ: return "^^=";
1556 case Token::BITWISEANDEQ: return "&=";
1557 case Token::BITWISEOREQ: return "|=";
1558 case Token::BITWISEXOREQ: return "^=";
1559 case Token::PLUSPLUS: return "++";
1560 case Token::MINUSMINUS: return "--";
1561 case Token::COMMA: return ",";
1562 default:
1563 ABORT("unsupported operator: %d\n", kind);
1564 }
1565 }
1566
1567
IsAssignment(Token::Kind op)1568 bool Compiler::IsAssignment(Token::Kind op) {
1569 switch (op) {
1570 case Token::EQ: // fall through
1571 case Token::PLUSEQ: // fall through
1572 case Token::MINUSEQ: // fall through
1573 case Token::STAREQ: // fall through
1574 case Token::SLASHEQ: // fall through
1575 case Token::PERCENTEQ: // fall through
1576 case Token::SHLEQ: // fall through
1577 case Token::SHREQ: // fall through
1578 case Token::BITWISEOREQ: // fall through
1579 case Token::BITWISEXOREQ: // fall through
1580 case Token::BITWISEANDEQ: // fall through
1581 case Token::LOGICALOREQ: // fall through
1582 case Token::LOGICALXOREQ: // fall through
1583 case Token::LOGICALANDEQ:
1584 return true;
1585 default:
1586 return false;
1587 }
1588 }
1589
position(int offset)1590 Position Compiler::position(int offset) {
1591 SkASSERT(fSource);
1592 int line = 1;
1593 int column = 1;
1594 for (int i = 0; i < offset; i++) {
1595 if ((*fSource)[i] == '\n') {
1596 ++line;
1597 column = 1;
1598 }
1599 else {
1600 ++column;
1601 }
1602 }
1603 return Position(line, column);
1604 }
1605
error(int offset,String msg)1606 void Compiler::error(int offset, String msg) {
1607 fErrorCount++;
1608 Position pos = this->position(offset);
1609 fErrorText += "error: " + to_string(pos.fLine) + ": " + msg.c_str() + "\n";
1610 }
1611
errorText()1612 String Compiler::errorText() {
1613 this->writeErrorCount();
1614 fErrorCount = 0;
1615 String result = fErrorText;
1616 return result;
1617 }
1618
writeErrorCount()1619 void Compiler::writeErrorCount() {
1620 if (fErrorCount) {
1621 fErrorText += to_string(fErrorCount) + " error";
1622 if (fErrorCount > 1) {
1623 fErrorText += "s";
1624 }
1625 fErrorText += "\n";
1626 }
1627 }
1628
1629 } // namespace
1630