• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2014 LunarG, Inc.
3 // Copyright (C) 2015-2018 Google, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 //    Redistributions of source code must retain the above copyright
12 //    notice, this list of conditions and the following disclaimer.
13 //
14 //    Redistributions in binary form must reproduce the above
15 //    copyright notice, this list of conditions and the following
16 //    disclaimer in the documentation and/or other materials provided
17 //    with the distribution.
18 //
19 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 //    contributors may be used to endorse or promote products derived
21 //    from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35 
36 // SPIRV-IR
37 //
38 // Simple in-memory representation (IR) of SPIRV.  Just for holding
39 // Each function's CFG of blocks.  Has this hierarchy:
40 //  - Module, which is a list of
41 //    - Function, which is a list of
42 //      - Block, which is a list of
43 //        - Instruction
44 //
45 
46 #pragma once
47 #ifndef spvIR_H
48 #define spvIR_H
49 
50 #include "spirv.hpp"
51 
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iostream>
56 #include <memory>
57 #include <vector>
58 #include <set>
59 
60 namespace spv {
61 
62 class Block;
63 class Function;
64 class Module;
65 
66 const Id NoResult = 0;
67 const Id NoType = 0;
68 
69 const Decoration NoPrecision = DecorationMax;
70 
71 #ifdef __GNUC__
72 #   define POTENTIALLY_UNUSED __attribute__((unused))
73 #else
74 #   define POTENTIALLY_UNUSED
75 #endif
76 
77 POTENTIALLY_UNUSED
78 const MemorySemanticsMask MemorySemanticsAllMemory =
79                 (MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
80                                       MemorySemanticsWorkgroupMemoryMask |
81                                       MemorySemanticsAtomicCounterMemoryMask |
82                                       MemorySemanticsImageMemoryMask);
83 
84 struct IdImmediate {
85     bool isId;      // true if word is an Id, false if word is an immediate
86     unsigned word;
IdImmediateIdImmediate87     IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
88 };
89 
90 //
91 // SPIR-V IR instruction.
92 //
93 
94 class Instruction {
95 public:
Instruction(Id resultId,Id typeId,Op opCode)96     Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
Instruction(Op opCode)97     explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
~Instruction()98     virtual ~Instruction() {}
addIdOperand(Id id)99     void addIdOperand(Id id) {
100         operands.push_back(id);
101         idOperand.push_back(true);
102     }
addImmediateOperand(unsigned int immediate)103     void addImmediateOperand(unsigned int immediate) {
104         operands.push_back(immediate);
105         idOperand.push_back(false);
106     }
setImmediateOperand(unsigned idx,unsigned int immediate)107     void setImmediateOperand(unsigned idx, unsigned int immediate) {
108         assert(!idOperand[idx]);
109         operands[idx] = immediate;
110     }
111 
addStringOperand(const char * str)112     void addStringOperand(const char* str)
113     {
114         unsigned int word = 0;
115         unsigned int shiftAmount = 0;
116         char c;
117 
118         do {
119             c = *(str++);
120             word |= ((unsigned int)c) << shiftAmount;
121             shiftAmount += 8;
122             if (shiftAmount == 32) {
123                 addImmediateOperand(word);
124                 word = 0;
125                 shiftAmount = 0;
126             }
127         } while (c != 0);
128 
129         // deal with partial last word
130         if (shiftAmount > 0) {
131             addImmediateOperand(word);
132         }
133     }
isIdOperand(int op)134     bool isIdOperand(int op) const { return idOperand[op]; }
setBlock(Block * b)135     void setBlock(Block* b) { block = b; }
getBlock()136     Block* getBlock() const { return block; }
getOpCode()137     Op getOpCode() const { return opCode; }
getNumOperands()138     int getNumOperands() const
139     {
140         assert(operands.size() == idOperand.size());
141         return (int)operands.size();
142     }
getResultId()143     Id getResultId() const { return resultId; }
getTypeId()144     Id getTypeId() const { return typeId; }
getIdOperand(int op)145     Id getIdOperand(int op) const {
146         assert(idOperand[op]);
147         return operands[op];
148     }
getImmediateOperand(int op)149     unsigned int getImmediateOperand(int op) const {
150         assert(!idOperand[op]);
151         return operands[op];
152     }
153 
154     // Write out the binary form.
dump(std::vector<unsigned int> & out)155     void dump(std::vector<unsigned int>& out) const
156     {
157         // Compute the wordCount
158         unsigned int wordCount = 1;
159         if (typeId)
160             ++wordCount;
161         if (resultId)
162             ++wordCount;
163         wordCount += (unsigned int)operands.size();
164 
165         // Write out the beginning of the instruction
166         out.push_back(((wordCount) << WordCountShift) | opCode);
167         if (typeId)
168             out.push_back(typeId);
169         if (resultId)
170             out.push_back(resultId);
171 
172         // Write out the operands
173         for (int op = 0; op < (int)operands.size(); ++op)
174             out.push_back(operands[op]);
175     }
176 
177 protected:
178     Instruction(const Instruction&);
179     Id resultId;
180     Id typeId;
181     Op opCode;
182     std::vector<Id> operands;     // operands, both <id> and immediates (both are unsigned int)
183     std::vector<bool> idOperand;  // true for operands that are <id>, false for immediates
184     Block* block;
185 };
186 
187 //
188 // SPIR-V IR block.
189 //
190 
191 class Block {
192 public:
193     Block(Id id, Function& parent);
~Block()194     virtual ~Block()
195     {
196     }
197 
getId()198     Id getId() { return instructions.front()->getResultId(); }
199 
getParent()200     Function& getParent() const { return parent; }
201     void addInstruction(std::unique_ptr<Instruction> inst);
addPredecessor(Block * pred)202     void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
addLocalVariable(std::unique_ptr<Instruction> inst)203     void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
getPredecessors()204     const std::vector<Block*>& getPredecessors() const { return predecessors; }
getSuccessors()205     const std::vector<Block*>& getSuccessors() const { return successors; }
getInstructions()206     const std::vector<std::unique_ptr<Instruction> >& getInstructions() const {
207         return instructions;
208     }
getLocalVariables()209     const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
setUnreachable()210     void setUnreachable() { unreachable = true; }
isUnreachable()211     bool isUnreachable() const { return unreachable; }
212     // Returns the block's merge instruction, if one exists (otherwise null).
getMergeInstruction()213     const Instruction* getMergeInstruction() const {
214         if (instructions.size() < 2) return nullptr;
215         const Instruction* nextToLast = (instructions.cend() - 2)->get();
216         switch (nextToLast->getOpCode()) {
217             case OpSelectionMerge:
218             case OpLoopMerge:
219                 return nextToLast;
220             default:
221                 return nullptr;
222         }
223         return nullptr;
224     }
225 
226     // Change this block into a canonical dead merge block.  Delete instructions
227     // as necessary.  A canonical dead merge block has only an OpLabel and an
228     // OpUnreachable.
rewriteAsCanonicalUnreachableMerge()229     void rewriteAsCanonicalUnreachableMerge() {
230         assert(localVariables.empty());
231         // Delete all instructions except for the label.
232         assert(instructions.size() > 0);
233         instructions.resize(1);
234         successors.clear();
235         addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
236     }
237     // Change this block into a canonical dead continue target branching to the
238     // given header ID.  Delete instructions as necessary.  A canonical dead continue
239     // target has only an OpLabel and an unconditional branch back to the corresponding
240     // header.
rewriteAsCanonicalUnreachableContinue(Block * header)241     void rewriteAsCanonicalUnreachableContinue(Block* header) {
242         assert(localVariables.empty());
243         // Delete all instructions except for the label.
244         assert(instructions.size() > 0);
245         instructions.resize(1);
246         successors.clear();
247         // Add OpBranch back to the header.
248         assert(header != nullptr);
249         Instruction* branch = new Instruction(OpBranch);
250         branch->addIdOperand(header->getId());
251         addInstruction(std::unique_ptr<Instruction>(branch));
252         successors.push_back(header);
253     }
254 
isTerminated()255     bool isTerminated() const
256     {
257         switch (instructions.back()->getOpCode()) {
258         case OpBranch:
259         case OpBranchConditional:
260         case OpSwitch:
261         case OpKill:
262         case OpTerminateInvocation:
263         case OpReturn:
264         case OpReturnValue:
265         case OpUnreachable:
266             return true;
267         default:
268             return false;
269         }
270     }
271 
dump(std::vector<unsigned int> & out)272     void dump(std::vector<unsigned int>& out) const
273     {
274         instructions[0]->dump(out);
275         for (int i = 0; i < (int)localVariables.size(); ++i)
276             localVariables[i]->dump(out);
277         for (int i = 1; i < (int)instructions.size(); ++i)
278             instructions[i]->dump(out);
279     }
280 
281 protected:
282     Block(const Block&);
283     Block& operator=(Block&);
284 
285     // To enforce keeping parent and ownership in sync:
286     friend Function;
287 
288     std::vector<std::unique_ptr<Instruction> > instructions;
289     std::vector<Block*> predecessors, successors;
290     std::vector<std::unique_ptr<Instruction> > localVariables;
291     Function& parent;
292 
293     // track whether this block is known to be uncreachable (not necessarily
294     // true for all unreachable blocks, but should be set at least
295     // for the extraneous ones introduced by the builder).
296     bool unreachable;
297 };
298 
299 // The different reasons for reaching a block in the inReadableOrder traversal.
300 enum ReachReason {
301     // Reachable from the entry block via transfers of control, i.e. branches.
302     ReachViaControlFlow = 0,
303     // A continue target that is not reachable via control flow.
304     ReachDeadContinue,
305     // A merge block that is not reachable via control flow.
306     ReachDeadMerge
307 };
308 
309 // Traverses the control-flow graph rooted at root in an order suited for
310 // readable code generation.  Invokes callback at every node in the traversal
311 // order.  The callback arguments are:
312 // - the block,
313 // - the reason we reached the block,
314 // - if the reason was that block is an unreachable continue or unreachable merge block
315 //   then the last parameter is the corresponding header block.
316 void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
317 
318 //
319 // SPIR-V IR Function.
320 //
321 
322 class Function {
323 public:
324     Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
~Function()325     virtual ~Function()
326     {
327         for (int i = 0; i < (int)parameterInstructions.size(); ++i)
328             delete parameterInstructions[i];
329 
330         for (int i = 0; i < (int)blocks.size(); ++i)
331             delete blocks[i];
332     }
getId()333     Id getId() const { return functionInstruction.getResultId(); }
getParamId(int p)334     Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
getParamType(int p)335     Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
336 
addBlock(Block * block)337     void addBlock(Block* block) { blocks.push_back(block); }
removeBlock(Block * block)338     void removeBlock(Block* block)
339     {
340         auto found = find(blocks.begin(), blocks.end(), block);
341         assert(found != blocks.end());
342         blocks.erase(found);
343         delete block;
344     }
345 
getParent()346     Module& getParent() const { return parent; }
getEntryBlock()347     Block* getEntryBlock() const { return blocks.front(); }
getLastBlock()348     Block* getLastBlock() const { return blocks.back(); }
getBlocks()349     const std::vector<Block*>& getBlocks() const { return blocks; }
350     void addLocalVariable(std::unique_ptr<Instruction> inst);
getReturnType()351     Id getReturnType() const { return functionInstruction.getTypeId(); }
getFuncId()352     Id getFuncId() const { return functionInstruction.getResultId(); }
setReturnPrecision(Decoration precision)353     void setReturnPrecision(Decoration precision)
354     {
355         if (precision == DecorationRelaxedPrecision)
356             reducedPrecisionReturn = true;
357     }
getReturnPrecision()358     Decoration getReturnPrecision() const
359         { return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }
360 
setDebugLineInfo(Id fileName,int line,int column)361     void setDebugLineInfo(Id fileName, int line, int column) {
362         lineInstruction = std::unique_ptr<Instruction>{new Instruction(OpLine)};
363         lineInstruction->addIdOperand(fileName);
364         lineInstruction->addImmediateOperand(line);
365         lineInstruction->addImmediateOperand(column);
366     }
hasDebugLineInfo()367     bool hasDebugLineInfo() const { return lineInstruction != nullptr; }
368 
setImplicitThis()369     void setImplicitThis() { implicitThis = true; }
hasImplicitThis()370     bool hasImplicitThis() const { return implicitThis; }
371 
addParamPrecision(unsigned param,Decoration precision)372     void addParamPrecision(unsigned param, Decoration precision)
373     {
374         if (precision == DecorationRelaxedPrecision)
375             reducedPrecisionParams.insert(param);
376     }
getParamPrecision(unsigned param)377     Decoration getParamPrecision(unsigned param) const
378     {
379         return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
380             DecorationRelaxedPrecision : NoPrecision;
381     }
382 
dump(std::vector<unsigned int> & out)383     void dump(std::vector<unsigned int>& out) const
384     {
385         // OpLine
386         if (lineInstruction != nullptr) {
387             lineInstruction->dump(out);
388         }
389 
390         // OpFunction
391         functionInstruction.dump(out);
392 
393         // OpFunctionParameter
394         for (int p = 0; p < (int)parameterInstructions.size(); ++p)
395             parameterInstructions[p]->dump(out);
396 
397         // Blocks
398         inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
399         Instruction end(0, 0, OpFunctionEnd);
400         end.dump(out);
401     }
402 
403 protected:
404     Function(const Function&);
405     Function& operator=(Function&);
406 
407     Module& parent;
408     std::unique_ptr<Instruction> lineInstruction;
409     Instruction functionInstruction;
410     std::vector<Instruction*> parameterInstructions;
411     std::vector<Block*> blocks;
412     bool implicitThis;  // true if this is a member function expecting to be passed a 'this' as the first argument
413     bool reducedPrecisionReturn;
414     std::set<int> reducedPrecisionParams;  // list of parameter indexes that need a relaxed precision arg
415 };
416 
417 //
418 // SPIR-V IR Module.
419 //
420 
421 class Module {
422 public:
Module()423     Module() {}
~Module()424     virtual ~Module()
425     {
426         // TODO delete things
427     }
428 
addFunction(Function * fun)429     void addFunction(Function *fun) { functions.push_back(fun); }
430 
mapInstruction(Instruction * instruction)431     void mapInstruction(Instruction *instruction)
432     {
433         spv::Id resultId = instruction->getResultId();
434         // map the instruction's result id
435         if (resultId >= idToInstruction.size())
436             idToInstruction.resize(resultId + 16);
437         idToInstruction[resultId] = instruction;
438     }
439 
getInstruction(Id id)440     Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
getFunctions()441     const std::vector<Function*>& getFunctions() const { return functions; }
getTypeId(Id resultId)442     spv::Id getTypeId(Id resultId) const {
443         return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
444     }
getStorageClass(Id typeId)445     StorageClass getStorageClass(Id typeId) const
446     {
447         assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
448         return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
449     }
450 
dump(std::vector<unsigned int> & out)451     void dump(std::vector<unsigned int>& out) const
452     {
453         for (int f = 0; f < (int)functions.size(); ++f)
454             functions[f]->dump(out);
455     }
456 
457 protected:
458     Module(const Module&);
459     std::vector<Function*> functions;
460 
461     // map from result id to instruction having that result id
462     std::vector<Instruction*> idToInstruction;
463 
464     // map from a result id to its type id
465 };
466 
467 //
468 // Implementation (it's here due to circular type definitions).
469 //
470 
471 // Add both
472 // - the OpFunction instruction
473 // - all the OpFunctionParameter instructions
Function(Id id,Id resultType,Id functionType,Id firstParamId,Module & parent)474 __inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
475     : parent(parent), lineInstruction(nullptr),
476       functionInstruction(id, resultType, OpFunction), implicitThis(false),
477       reducedPrecisionReturn(false)
478 {
479     // OpFunction
480     functionInstruction.addImmediateOperand(FunctionControlMaskNone);
481     functionInstruction.addIdOperand(functionType);
482     parent.mapInstruction(&functionInstruction);
483     parent.addFunction(this);
484 
485     // OpFunctionParameter
486     Instruction* typeInst = parent.getInstruction(functionType);
487     int numParams = typeInst->getNumOperands() - 1;
488     for (int p = 0; p < numParams; ++p) {
489         Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
490         parent.mapInstruction(param);
491         parameterInstructions.push_back(param);
492     }
493 }
494 
addLocalVariable(std::unique_ptr<Instruction> inst)495 __inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
496 {
497     Instruction* raw_instruction = inst.get();
498     blocks[0]->addLocalVariable(std::move(inst));
499     parent.mapInstruction(raw_instruction);
500 }
501 
Block(Id id,Function & parent)502 __inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
503 {
504     instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
505     instructions.back()->setBlock(this);
506     parent.getParent().mapInstruction(instructions.back().get());
507 }
508 
addInstruction(std::unique_ptr<Instruction> inst)509 __inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
510 {
511     Instruction* raw_instruction = inst.get();
512     instructions.push_back(std::move(inst));
513     raw_instruction->setBlock(this);
514     if (raw_instruction->getResultId())
515         parent.getParent().mapInstruction(raw_instruction);
516 }
517 
518 }  // end spv namespace
519 
520 #endif // spvIR_H
521