• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	mmx.h
2 
3 	MultiMedia eXtensions GCC interface library for IA32.
4 
5 	To use this library, simply include this header file
6 	and compile with GCC.  You MUST have inlining enabled
7 	in order for mmx_ok() to work; this can be done by
8 	simply using -O on the GCC command line.
9 
10 	Compiling with -DMMX_TRACE will cause detailed trace
11 	output to be sent to stderr for each mmx operation.
12 	This adds lots of code, and obviously slows execution to
13 	a crawl, but can be very useful for debugging.
14 
15 	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
16 	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
17 	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18 	AND FITNESS FOR ANY PARTICULAR PURPOSE.
19 
20 	1997-99 by H. Dietz and R. Fisher
21 
22  Notes:
23 	It appears that the latest gas has the pand problem fixed, therefore
24 	  I'll undefine BROKEN_PAND by default.
25 */
26 
27 #ifndef _MMX_H
28 #define _MMX_H
29 
30 #include "goom_graphic.h"
31 
32 /*	Warning:  at this writing, the version of GAS packaged
33 	with most Linux distributions does not handle the
34 	parallel AND operation mnemonic correctly.  If the
35 	symbol BROKEN_PAND is defined, a slower alternative
36 	coding will be used.  If execution of mmxtest results
37 	in an illegal instruction fault, define this symbol.
38 */
39 #undef	BROKEN_PAND
40 
41 
42 /*	The type of an value that fits in an MMX register
43 	(note that long long constant values MUST be suffixed
44 	 by LL and unsigned long long values by ULL, lest
45 	 they be truncated by the compiler)
46 */
47 typedef	union {
48 	long long		q;	/* Quadword (64-bit) value */
49 	unsigned long long	uq;	/* Unsigned Quadword */
50 	int			d[2];	/* 2 Doubleword (32-bit) values */
51 	unsigned int		ud[2];	/* 2 Unsigned Doubleword */
52 	short			w[4];	/* 4 Word (16-bit) values */
53 	unsigned short		uw[4];	/* 4 Unsigned Word */
54 	char			b[8];	/* 8 Byte (8-bit) values */
55 	unsigned char		ub[8];	/* 8 Unsigned Byte */
56 	float			s[2];	/* Single-precision (32-bit) value */
57 } __attribute__ ((aligned (8))) mmx_t;	/* On an 8-byte (64-bit) boundary */
58 
59 
60 
61 /*	Function to test if multimedia instructions are supported...
62 */
63 static int
mm_support(void)64 mm_support(void)
65 {
66 	/* Returns 1 if MMX instructions are supported,
67 	   3 if Cyrix MMX and Extended MMX instructions are supported
68 	   5 if AMD MMX and 3DNow! instructions are supported
69 		 13 if AMD Extended MMX, &3dNow supported
70 	   0 if hardware does not support any of these
71 	*/
72 	register int rval = 0;
73 
74 	__asm__ __volatile__ (
75 		/* See if CPUID instruction is supported ... */
76 		/* ... Get copies of EFLAGS into eax and ecx */
77     "pushl %%ebx\n\t"
78 		"pushf\n\t"
79 		"popl %%eax\n\t"
80 		"movl %%eax, %%ecx\n\t"
81 
82 		/* ... Toggle the ID bit in one copy and store */
83 		/*     to the EFLAGS reg */
84 		"xorl $0x200000, %%eax\n\t"
85 		"push %%eax\n\t"
86 		"popf\n\t"
87 
88 		/* ... Get the (hopefully modified) EFLAGS */
89 		"pushf\n\t"
90 		"popl %%eax\n\t"
91 
92 		/* ... Compare and test result */
93 		"xorl %%eax, %%ecx\n\t"
94 		"testl $0x200000, %%ecx\n\t"
95 		"jz NotSupported1\n\t"		/* CPUID not supported */
96 
97 
98 		/* Get standard CPUID information, and
99 		       go to a specific vendor section */
100 		"movl $0, %%eax\n\t"
101 		"cpuid\n\t"
102 
103 		/* Check for Intel */
104 		"cmpl $0x756e6547, %%ebx\n\t"
105 		"jne TryAMD\n\t"
106 		"cmpl $0x49656e69, %%edx\n\t"
107 		"jne TryAMD\n\t"
108 		"cmpl $0x6c65746e, %%ecx\n"
109 		"jne TryAMD\n\t"
110 		"jmp Intel\n\t"
111 
112 		/* Check for AMD */
113 		"\nTryAMD:\n\t"
114 		"cmpl $0x68747541, %%ebx\n\t"
115 		"jne TryCyrix\n\t"
116 		"cmpl $0x69746e65, %%edx\n\t"
117 		"jne TryCyrix\n\t"
118 		"cmpl $0x444d4163, %%ecx\n"
119 		"jne TryCyrix\n\t"
120 		"jmp AMD\n\t"
121 
122 		/* Check for Cyrix */
123 		"\nTryCyrix:\n\t"
124 		"cmpl $0x69727943, %%ebx\n\t"
125 		"jne NotSupported2\n\t"
126 		"cmpl $0x736e4978, %%edx\n\t"
127 		"jne NotSupported3\n\t"
128 		"cmpl $0x64616574, %%ecx\n\t"
129 		"jne NotSupported4\n\t"
130 		/* Drop through to Cyrix... */
131 
132 
133 		/* Cyrix Section */
134 		/* See if extended CPUID level 80000001 is supported */
135 		/* The value of CPUID/80000001 for the 6x86MX is undefined
136 		   according to the Cyrix CPU Detection Guide (Preliminary
137 		   Rev. 1.01 table 1), so we'll check the value of eax for
138 		   CPUID/0 to see if standard CPUID level 2 is supported.
139 		   According to the table, the only CPU which supports level
140 		   2 is also the only one which supports extended CPUID levels.
141 		*/
142 		"cmpl $0x2, %%eax\n\t"
143 		"jne MMXtest\n\t"	/* Use standard CPUID instead */
144 
145 		/* Extended CPUID supported (in theory), so get extended
146 		   features */
147 		"movl $0x80000001, %%eax\n\t"
148 		"cpuid\n\t"
149 		"testl $0x00800000, %%eax\n\t"	/* Test for MMX */
150 		"jz NotSupported5\n\t"		/* MMX not supported */
151 		"testl $0x01000000, %%eax\n\t"	/* Test for Ext'd MMX */
152 		"jnz EMMXSupported\n\t"
153 		"movl $1, %0\n\n\t"		/* MMX Supported */
154 		"jmp Return\n\n"
155 		"EMMXSupported:\n\t"
156 		"movl $3, %0\n\n\t"		/* EMMX and MMX Supported */
157 		"jmp Return\n\t"
158 
159 
160 		/* AMD Section */
161 		"AMD:\n\t"
162 
163 		/* See if extended CPUID is supported */
164 		"movl $0x80000000, %%eax\n\t"
165 		"cpuid\n\t"
166 		"cmpl $0x80000000, %%eax\n\t"
167 		"jl MMXtest\n\t"	/* Use standard CPUID instead */
168 
169 		/* Extended CPUID supported, so get extended features */
170 		"movl $0x80000001, %%eax\n\t"
171 		"cpuid\n\t"
172 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
173 		"jz NotSupported6\n\t"		/* MMX not supported */
174 		"testl $0x80000000, %%edx\n\t"	/* Test for 3DNow! */
175 		"jnz ThreeDNowSupported\n\t"
176 		"movl $1, %0\n\n\t"		/* MMX Supported */
177 		"jmp Return\n\n"
178 		"ThreeDNowSupported:\n\t"
179 		"testl $0x40000000, %%edx\n\t" /* Test AMD Extended MMX */
180 		"jnz AMDXMMXSupported\n\t"
181 		"movl $5, %0\n\n\t"		/* 3DNow! and MMX Supported */
182 		"jmp Return\n\t"
183 		"AMDXMMXSupported:\n\t"
184 		"movl $13, %0\n\n\t"		/* XMMX, 3DNow! and MMX Supported */
185 		"jmp Return\n\t"
186 
187 
188 		/* Intel Section */
189 		"Intel:\n\t"
190 
191 		/* Check for MMX */
192 		"MMXtest:\n\t"
193 		"movl $1, %%eax\n\t"
194 		"cpuid\n\t"
195 		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
196 		"jz NotSupported7\n\t"		/* MMX Not supported */
197 		"movl $1, %0\n\n\t"		/* MMX Supported */
198 		"jmp Return\n\t"
199 
200 		/* Nothing supported */
201 		"\nNotSupported1:\n\t"
202 		"#movl $101, %0\n\n\t"
203 		"\nNotSupported2:\n\t"
204 		"#movl $102, %0\n\n\t"
205 		"\nNotSupported3:\n\t"
206 		"#movl $103, %0\n\n\t"
207 		"\nNotSupported4:\n\t"
208 		"#movl $104, %0\n\n\t"
209 		"\nNotSupported5:\n\t"
210 		"#movl $105, %0\n\n\t"
211 		"\nNotSupported6:\n\t"
212 		"#movl $106, %0\n\n\t"
213 		"\nNotSupported7:\n\t"
214 		"#movl $107, %0\n\n\t"
215 		"movl $0, %0\n\n\t"
216 
217 		"Return:\n\t"
218     "popl %%ebx\n\t"
219 		: "=X" (rval)
220 		: /* no input */
221 		: "eax", "ecx", "edx"
222 	);
223 
224 	/* Return */
225 	return(rval);
226 }
227 
228 /*	Function to test if mmx instructions are supported...
229 */
230 static inline int
mmx_ok(void)231 mmx_ok(void)
232 {
233 	/* Returns 1 if MMX instructions are supported, 0 otherwise */
234 	return ( mm_support() & 0x1 );
235 }
236 
237 int mmx_supported (void);
238 int xmmx_supported (void);
239 
240 
241 /* MMX optimized implementations */
242 void draw_line_mmx (Pixel *data, int x1, int y1, int x2, int y2, int col, int screenx, int screeny);
243 void draw_line_xmmx (Pixel *data, int x1, int y1, int x2, int y2, int col, int screenx, int screeny);
244 void zoom_filter_mmx (int prevX, int prevY, Pixel *expix1, Pixel *expix2,
245 		      int *brutS, int *brutD, int buffratio, int precalCoef[16][16]);
246 void zoom_filter_xmmx (int prevX, int prevY, Pixel *expix1, Pixel *expix2,
247                        int *lbruS, int *lbruD, int buffratio, int precalCoef[16][16]);
248 
249 
250 /*	Helper functions for the instruction macros that follow...
251 	(note that memory-to-register, m2r, instructions are nearly
252 	 as efficient as register-to-register, r2r, instructions;
253 	 however, memory-to-memory instructions are really simulated
254 	 as a convenience, and are only 1/3 as efficient)
255 */
256 #ifdef	MMX_TRACE
257 
258 /*	Include the stuff for printing a trace to stderr...
259 */
260 
261 #include <stdio.h>
262 
263 #define	mmx_i2r(op, imm, reg) \
264 	{ \
265 		mmx_t mmx_trace; \
266 		mmx_trace.uq = (imm); \
267 		printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
268 			mmx_trace.d[1], mmx_trace.d[0]); \
269 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
270 				      : "=X" (mmx_trace) \
271 				      : /* nothing */ ); \
272 		printf(#reg "=0x%08x%08x) => ", \
273 			mmx_trace.d[1], mmx_trace.d[0]); \
274 		__asm__ __volatile__ (#op " %0, %%" #reg \
275 				      : /* nothing */ \
276 				      : "X" (imm)); \
277 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
278 				      : "=X" (mmx_trace) \
279 				      : /* nothing */ ); \
280 		printf(#reg "=0x%08x%08x\n", \
281 			mmx_trace.d[1], mmx_trace.d[0]); \
282 	}
283 
284 #define	mmx_m2r(op, mem, reg) \
285 	{ \
286 		mmx_t mmx_trace; \
287 		mmx_trace = (mem); \
288 		printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
289 			mmx_trace.d[1], mmx_trace.d[0]); \
290 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
291 				      : "=X" (mmx_trace) \
292 				      : /* nothing */ ); \
293 		printf(#reg "=0x%08x%08x) => ", \
294 			mmx_trace.d[1], mmx_trace.d[0]); \
295 		__asm__ __volatile__ (#op " %0, %%" #reg \
296 				      : /* nothing */ \
297 				      : "m" (mem)); \
298 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
299 				      : "=X" (mmx_trace) \
300 				      : /* nothing */ ); \
301 		printf(#reg "=0x%08x%08x\n", \
302 			mmx_trace.d[1], mmx_trace.d[0]); \
303 	}
304 
305 #define	mmx_r2m(op, reg, mem) \
306 	{ \
307 		mmx_t mmx_trace; \
308 		__asm__ __volatile__ ("movq %%" #reg ", %0" \
309 				      : "=X" (mmx_trace) \
310 				      : /* nothing */ ); \
311 		printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
312 			mmx_trace.d[1], mmx_trace.d[0]); \
313 		mmx_trace = (mem); \
314 		printf(#mem "=0x%08x%08x) => ", \
315 			mmx_trace.d[1], mmx_trace.d[0]); \
316 		__asm__ __volatile__ (#op " %%" #reg ", %0" \
317 				      : "=m" (mem) \
318 				      : /* nothing */ ); \
319 		mmx_trace = (mem); \
320 		printf(#mem "=0x%08x%08x\n", \
321 			mmx_trace.d[1], mmx_trace.d[0]); \
322 	}
323 
324 #define	mmx_r2r(op, regs, regd) \
325 	{ \
326 		mmx_t mmx_trace; \
327 		__asm__ __volatile__ ("movq %%" #regs ", %0" \
328 				      : "=X" (mmx_trace) \
329 				      : /* nothing */ ); \
330 		printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
331 			mmx_trace.d[1], mmx_trace.d[0]); \
332 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
333 				      : "=X" (mmx_trace) \
334 				      : /* nothing */ ); \
335 		printf(#regd "=0x%08x%08x) => ", \
336 			mmx_trace.d[1], mmx_trace.d[0]); \
337 		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
338 		__asm__ __volatile__ ("movq %%" #regd ", %0" \
339 				      : "=X" (mmx_trace) \
340 				      : /* nothing */ ); \
341 		printf(#regd "=0x%08x%08x\n", \
342 			mmx_trace.d[1], mmx_trace.d[0]); \
343 	}
344 
345 #define	mmx_m2m(op, mems, memd) \
346 	{ \
347 		mmx_t mmx_trace; \
348 		mmx_trace = (mems); \
349 		printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
350 			mmx_trace.d[1], mmx_trace.d[0]); \
351 		mmx_trace = (memd); \
352 		printf(#memd "=0x%08x%08x) => ", \
353 			mmx_trace.d[1], mmx_trace.d[0]); \
354 		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
355 				      #op " %1, %%mm0\n\t" \
356 				      "movq %%mm0, %0" \
357 				      : "=m" (memd) \
358 				      : "m" (mems)); \
359 		mmx_trace = (memd); \
360 		printf(#memd "=0x%08x%08x\n", \
361 			mmx_trace.d[1], mmx_trace.d[0]); \
362 	}
363 
364 #else
365 
366 /*	These macros are a lot simpler without the tracing...
367 */
368 
369 #define	mmx_i2r(op, imm, reg) \
370 	__asm__ __volatile__ (#op " %0, %%" #reg \
371 			      : /* nothing */ \
372 			      : "X" (imm) )
373 
374 #define	mmx_m2r(op, mem, reg) \
375 	__asm__ __volatile__ (#op " %0, %%" #reg \
376 			      : /* nothing */ \
377 			      : "m" (mem))
378 
379 #define	mmx_r2m(op, reg, mem) \
380 	__asm__ __volatile__ (#op " %%" #reg ", %0" \
381 			      : "=m" (mem) \
382 			      : /* nothing */ )
383 
384 #define	mmx_r2r(op, regs, regd) \
385 	__asm__ __volatile__ (#op " %" #regs ", %" #regd)
386 
387 #define	mmx_m2m(op, mems, memd) \
388 	__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
389 			      #op " %1, %%mm0\n\t" \
390 			      "movq %%mm0, %0" \
391 			      : "=m" (memd) \
392 			      : "m" (mems))
393 
394 #endif
395 
396 
397 /*	1x64 MOVe Quadword
398 	(this is both a load and a store...
399 	 in fact, it is the only way to store)
400 */
401 #define	movq_m2r(var, reg)	mmx_m2r(movq, var, reg)
402 #define	movq_r2m(reg, var)	mmx_r2m(movq, reg, var)
403 #define	movq_r2r(regs, regd)	mmx_r2r(movq, regs, regd)
404 #define	movq(vars, vard) \
405 	__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
406 			      "movq %%mm0, %0" \
407 			      : "=X" (vard) \
408 			      : "X" (vars))
409 
410 
411 /*	1x32 MOVe Doubleword
412 	(like movq, this is both load and store...
413 	 but is most useful for moving things between
414 	 mmx registers and ordinary registers)
415 */
416 #define	movd_m2r(var, reg)	mmx_m2r(movd, var, reg)
417 #define	movd_r2m(reg, var)	mmx_r2m(movd, reg, var)
418 #define	movd_r2r(regs, regd)	mmx_r2r(movd, regs, regd)
419 #define	movd(vars, vard) \
420 	__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
421 			      "movd %%mm0, %0" \
422 			      : "=X" (vard) \
423 			      : "X" (vars))
424 
425 
426 /*	2x32, 4x16, and 8x8 Parallel ADDs
427 */
428 #define	paddd_m2r(var, reg)	mmx_m2r(paddd, var, reg)
429 #define	paddd_r2r(regs, regd)	mmx_r2r(paddd, regs, regd)
430 #define	paddd(vars, vard)	mmx_m2m(paddd, vars, vard)
431 
432 #define	paddw_m2r(var, reg)	mmx_m2r(paddw, var, reg)
433 #define	paddw_r2r(regs, regd)	mmx_r2r(paddw, regs, regd)
434 #define	paddw(vars, vard)	mmx_m2m(paddw, vars, vard)
435 
436 #define	paddb_m2r(var, reg)	mmx_m2r(paddb, var, reg)
437 #define	paddb_r2r(regs, regd)	mmx_r2r(paddb, regs, regd)
438 #define	paddb(vars, vard)	mmx_m2m(paddb, vars, vard)
439 
440 
441 /*	4x16 and 8x8 Parallel ADDs using Saturation arithmetic
442 */
443 #define	paddsw_m2r(var, reg)	mmx_m2r(paddsw, var, reg)
444 #define	paddsw_r2r(regs, regd)	mmx_r2r(paddsw, regs, regd)
445 #define	paddsw(vars, vard)	mmx_m2m(paddsw, vars, vard)
446 
447 #define	paddsb_m2r(var, reg)	mmx_m2r(paddsb, var, reg)
448 #define	paddsb_r2r(regs, regd)	mmx_r2r(paddsb, regs, regd)
449 #define	paddsb(vars, vard)	mmx_m2m(paddsb, vars, vard)
450 
451 
452 /*	4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
453 */
454 #define	paddusw_m2r(var, reg)	mmx_m2r(paddusw, var, reg)
455 #define	paddusw_r2r(regs, regd)	mmx_r2r(paddusw, regs, regd)
456 #define	paddusw(vars, vard)	mmx_m2m(paddusw, vars, vard)
457 
458 #define	paddusb_m2r(var, reg)	mmx_m2r(paddusb, var, reg)
459 #define	paddusb_r2r(regs, regd)	mmx_r2r(paddusb, regs, regd)
460 #define	paddusb(vars, vard)	mmx_m2m(paddusb, vars, vard)
461 
462 
463 /*	2x32, 4x16, and 8x8 Parallel SUBs
464 */
465 #define	psubd_m2r(var, reg)	mmx_m2r(psubd, var, reg)
466 #define	psubd_r2r(regs, regd)	mmx_r2r(psubd, regs, regd)
467 #define	psubd(vars, vard)	mmx_m2m(psubd, vars, vard)
468 
469 #define	psubw_m2r(var, reg)	mmx_m2r(psubw, var, reg)
470 #define	psubw_r2r(regs, regd)	mmx_r2r(psubw, regs, regd)
471 #define	psubw(vars, vard)	mmx_m2m(psubw, vars, vard)
472 
473 #define	psubb_m2r(var, reg)	mmx_m2r(psubb, var, reg)
474 #define	psubb_r2r(regs, regd)	mmx_r2r(psubb, regs, regd)
475 #define	psubb(vars, vard)	mmx_m2m(psubb, vars, vard)
476 
477 
478 /*	4x16 and 8x8 Parallel SUBs using Saturation arithmetic
479 */
480 #define	psubsw_m2r(var, reg)	mmx_m2r(psubsw, var, reg)
481 #define	psubsw_r2r(regs, regd)	mmx_r2r(psubsw, regs, regd)
482 #define	psubsw(vars, vard)	mmx_m2m(psubsw, vars, vard)
483 
484 #define	psubsb_m2r(var, reg)	mmx_m2r(psubsb, var, reg)
485 #define	psubsb_r2r(regs, regd)	mmx_r2r(psubsb, regs, regd)
486 #define	psubsb(vars, vard)	mmx_m2m(psubsb, vars, vard)
487 
488 
489 /*	4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
490 */
491 #define	psubusw_m2r(var, reg)	mmx_m2r(psubusw, var, reg)
492 #define	psubusw_r2r(regs, regd)	mmx_r2r(psubusw, regs, regd)
493 #define	psubusw(vars, vard)	mmx_m2m(psubusw, vars, vard)
494 
495 #define	psubusb_m2r(var, reg)	mmx_m2r(psubusb, var, reg)
496 #define	psubusb_r2r(regs, regd)	mmx_r2r(psubusb, regs, regd)
497 #define	psubusb(vars, vard)	mmx_m2m(psubusb, vars, vard)
498 
499 
500 /*	4x16 Parallel MULs giving Low 4x16 portions of results
501 */
502 #define	pmullw_m2r(var, reg)	mmx_m2r(pmullw, var, reg)
503 #define	pmullw_r2r(regs, regd)	mmx_r2r(pmullw, regs, regd)
504 #define	pmullw(vars, vard)	mmx_m2m(pmullw, vars, vard)
505 
506 
507 /*	4x16 Parallel MULs giving High 4x16 portions of results
508 */
509 #define	pmulhw_m2r(var, reg)	mmx_m2r(pmulhw, var, reg)
510 #define	pmulhw_r2r(regs, regd)	mmx_r2r(pmulhw, regs, regd)
511 #define	pmulhw(vars, vard)	mmx_m2m(pmulhw, vars, vard)
512 
513 
514 /*	4x16->2x32 Parallel Mul-ADD
515 	(muls like pmullw, then adds adjacent 16-bit fields
516 	 in the multiply result to make the final 2x32 result)
517 */
518 #define	pmaddwd_m2r(var, reg)	mmx_m2r(pmaddwd, var, reg)
519 #define	pmaddwd_r2r(regs, regd)	mmx_r2r(pmaddwd, regs, regd)
520 #define	pmaddwd(vars, vard)	mmx_m2m(pmaddwd, vars, vard)
521 
522 
523 /*	1x64 bitwise AND
524 */
525 #ifdef	BROKEN_PAND
526 #define	pand_m2r(var, reg) \
527 	{ \
528 		mmx_m2r(pandn, (mmx_t) -1LL, reg); \
529 		mmx_m2r(pandn, var, reg); \
530 	}
531 #define	pand_r2r(regs, regd) \
532 	{ \
533 		mmx_m2r(pandn, (mmx_t) -1LL, regd); \
534 		mmx_r2r(pandn, regs, regd) \
535 	}
536 #define	pand(vars, vard) \
537 	{ \
538 		movq_m2r(vard, mm0); \
539 		mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
540 		mmx_m2r(pandn, vars, mm0); \
541 		movq_r2m(mm0, vard); \
542 	}
543 #else
544 #define	pand_m2r(var, reg)	mmx_m2r(pand, var, reg)
545 #define	pand_r2r(regs, regd)	mmx_r2r(pand, regs, regd)
546 #define	pand(vars, vard)	mmx_m2m(pand, vars, vard)
547 #endif
548 
549 
550 /*	1x64 bitwise AND with Not the destination
551 */
552 #define	pandn_m2r(var, reg)	mmx_m2r(pandn, var, reg)
553 #define	pandn_r2r(regs, regd)	mmx_r2r(pandn, regs, regd)
554 #define	pandn(vars, vard)	mmx_m2m(pandn, vars, vard)
555 
556 
557 /*	1x64 bitwise OR
558 */
559 #define	por_m2r(var, reg)	mmx_m2r(por, var, reg)
560 #define	por_r2r(regs, regd)	mmx_r2r(por, regs, regd)
561 #define	por(vars, vard)	mmx_m2m(por, vars, vard)
562 
563 
564 /*	1x64 bitwise eXclusive OR
565 */
566 #define	pxor_m2r(var, reg)	mmx_m2r(pxor, var, reg)
567 #define	pxor_r2r(regs, regd)	mmx_r2r(pxor, regs, regd)
568 #define	pxor(vars, vard)	mmx_m2m(pxor, vars, vard)
569 
570 
571 /*	2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
572 	(resulting fields are either 0 or -1)
573 */
574 #define	pcmpeqd_m2r(var, reg)	mmx_m2r(pcmpeqd, var, reg)
575 #define	pcmpeqd_r2r(regs, regd)	mmx_r2r(pcmpeqd, regs, regd)
576 #define	pcmpeqd(vars, vard)	mmx_m2m(pcmpeqd, vars, vard)
577 
578 #define	pcmpeqw_m2r(var, reg)	mmx_m2r(pcmpeqw, var, reg)
579 #define	pcmpeqw_r2r(regs, regd)	mmx_r2r(pcmpeqw, regs, regd)
580 #define	pcmpeqw(vars, vard)	mmx_m2m(pcmpeqw, vars, vard)
581 
582 #define	pcmpeqb_m2r(var, reg)	mmx_m2r(pcmpeqb, var, reg)
583 #define	pcmpeqb_r2r(regs, regd)	mmx_r2r(pcmpeqb, regs, regd)
584 #define	pcmpeqb(vars, vard)	mmx_m2m(pcmpeqb, vars, vard)
585 
586 
587 /*	2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
588 	(resulting fields are either 0 or -1)
589 */
590 #define	pcmpgtd_m2r(var, reg)	mmx_m2r(pcmpgtd, var, reg)
591 #define	pcmpgtd_r2r(regs, regd)	mmx_r2r(pcmpgtd, regs, regd)
592 #define	pcmpgtd(vars, vard)	mmx_m2m(pcmpgtd, vars, vard)
593 
594 #define	pcmpgtw_m2r(var, reg)	mmx_m2r(pcmpgtw, var, reg)
595 #define	pcmpgtw_r2r(regs, regd)	mmx_r2r(pcmpgtw, regs, regd)
596 #define	pcmpgtw(vars, vard)	mmx_m2m(pcmpgtw, vars, vard)
597 
598 #define	pcmpgtb_m2r(var, reg)	mmx_m2r(pcmpgtb, var, reg)
599 #define	pcmpgtb_r2r(regs, regd)	mmx_r2r(pcmpgtb, regs, regd)
600 #define	pcmpgtb(vars, vard)	mmx_m2m(pcmpgtb, vars, vard)
601 
602 
603 /*	1x64, 2x32, and 4x16 Parallel Shift Left Logical
604 */
605 #define	psllq_i2r(imm, reg)	mmx_i2r(psllq, imm, reg)
606 #define	psllq_m2r(var, reg)	mmx_m2r(psllq, var, reg)
607 #define	psllq_r2r(regs, regd)	mmx_r2r(psllq, regs, regd)
608 #define	psllq(vars, vard)	mmx_m2m(psllq, vars, vard)
609 
610 #define	pslld_i2r(imm, reg)	mmx_i2r(pslld, imm, reg)
611 #define	pslld_m2r(var, reg)	mmx_m2r(pslld, var, reg)
612 #define	pslld_r2r(regs, regd)	mmx_r2r(pslld, regs, regd)
613 #define	pslld(vars, vard)	mmx_m2m(pslld, vars, vard)
614 
615 #define	psllw_i2r(imm, reg)	mmx_i2r(psllw, imm, reg)
616 #define	psllw_m2r(var, reg)	mmx_m2r(psllw, var, reg)
617 #define	psllw_r2r(regs, regd)	mmx_r2r(psllw, regs, regd)
618 #define	psllw(vars, vard)	mmx_m2m(psllw, vars, vard)
619 
620 
621 /*	1x64, 2x32, and 4x16 Parallel Shift Right Logical
622 */
623 #define	psrlq_i2r(imm, reg)	mmx_i2r(psrlq, imm, reg)
624 #define	psrlq_m2r(var, reg)	mmx_m2r(psrlq, var, reg)
625 #define	psrlq_r2r(regs, regd)	mmx_r2r(psrlq, regs, regd)
626 #define	psrlq(vars, vard)	mmx_m2m(psrlq, vars, vard)
627 
628 #define	psrld_i2r(imm, reg)	mmx_i2r(psrld, imm, reg)
629 #define	psrld_m2r(var, reg)	mmx_m2r(psrld, var, reg)
630 #define	psrld_r2r(regs, regd)	mmx_r2r(psrld, regs, regd)
631 #define	psrld(vars, vard)	mmx_m2m(psrld, vars, vard)
632 
633 #define	psrlw_i2r(imm, reg)	mmx_i2r(psrlw, imm, reg)
634 #define	psrlw_m2r(var, reg)	mmx_m2r(psrlw, var, reg)
635 #define	psrlw_r2r(regs, regd)	mmx_r2r(psrlw, regs, regd)
636 #define	psrlw(vars, vard)	mmx_m2m(psrlw, vars, vard)
637 
638 
639 /*	2x32 and 4x16 Parallel Shift Right Arithmetic
640 */
641 #define	psrad_i2r(imm, reg)	mmx_i2r(psrad, imm, reg)
642 #define	psrad_m2r(var, reg)	mmx_m2r(psrad, var, reg)
643 #define	psrad_r2r(regs, regd)	mmx_r2r(psrad, regs, regd)
644 #define	psrad(vars, vard)	mmx_m2m(psrad, vars, vard)
645 
646 #define	psraw_i2r(imm, reg)	mmx_i2r(psraw, imm, reg)
647 #define	psraw_m2r(var, reg)	mmx_m2r(psraw, var, reg)
648 #define	psraw_r2r(regs, regd)	mmx_r2r(psraw, regs, regd)
649 #define	psraw(vars, vard)	mmx_m2m(psraw, vars, vard)
650 
651 
652 /*	2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
653 	(packs source and dest fields into dest in that order)
654 */
655 #define	packssdw_m2r(var, reg)	mmx_m2r(packssdw, var, reg)
656 #define	packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
657 #define	packssdw(vars, vard)	mmx_m2m(packssdw, vars, vard)
658 
659 #define	packsswb_m2r(var, reg)	mmx_m2r(packsswb, var, reg)
660 #define	packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
661 #define	packsswb(vars, vard)	mmx_m2m(packsswb, vars, vard)
662 
663 
664 /*	4x16->8x8 PACK and Unsigned Saturate
665 	(packs source and dest fields into dest in that order)
666 */
667 #define	packuswb_m2r(var, reg)	mmx_m2r(packuswb, var, reg)
668 #define	packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
669 #define	packuswb(vars, vard)	mmx_m2m(packuswb, vars, vard)
670 
671 
672 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
673 	(interleaves low half of dest with low half of source
674 	 as padding in each result field)
675 */
676 #define	punpckldq_m2r(var, reg)	mmx_m2r(punpckldq, var, reg)
677 #define	punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
678 #define	punpckldq(vars, vard)	mmx_m2m(punpckldq, vars, vard)
679 
680 #define	punpcklwd_m2r(var, reg)	mmx_m2r(punpcklwd, var, reg)
681 #define	punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
682 #define	punpcklwd(vars, vard)	mmx_m2m(punpcklwd, vars, vard)
683 
684 #define	punpcklbw_m2r(var, reg)	mmx_m2r(punpcklbw, var, reg)
685 #define	punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
686 #define	punpcklbw(vars, vard)	mmx_m2m(punpcklbw, vars, vard)
687 
688 
689 /*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
690 	(interleaves high half of dest with high half of source
691 	 as padding in each result field)
692 */
693 #define	punpckhdq_m2r(var, reg)	mmx_m2r(punpckhdq, var, reg)
694 #define	punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
695 #define	punpckhdq(vars, vard)	mmx_m2m(punpckhdq, vars, vard)
696 
697 #define	punpckhwd_m2r(var, reg)	mmx_m2r(punpckhwd, var, reg)
698 #define	punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
699 #define	punpckhwd(vars, vard)	mmx_m2m(punpckhwd, vars, vard)
700 
701 #define	punpckhbw_m2r(var, reg)	mmx_m2r(punpckhbw, var, reg)
702 #define	punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
703 #define	punpckhbw(vars, vard)	mmx_m2m(punpckhbw, vars, vard)
704 
705 
706 /*	Empty MMx State
707 	(used to clean-up when going from mmx to float use
708 	 of the registers that are shared by both; note that
709 	 there is no float-to-mmx operation needed, because
710 	 only the float tag word info is corruptible)
711 */
712 #ifdef	MMX_TRACE
713 
714 #ifdef __clang__
715 #define emms() \
716 	{ \
717 		printf("emms()\n"); \
718 		__asm__ __volatile__ ("emms"); \
719 	}
720 #else
721 #define	emms() \
722 	{ \
723 		printf("emms()\n"); \
724 		__asm__ __volatile__ ("emms" \
725                         "st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)"); \
726 	}
727 #endif
728 
729 #else
730 
731 #ifdef __clang__
732 #define	emms() __asm__ __volatile__ ("emms")
733 #else
734 #define	emms() __asm__ __volatile__ ("emms"::: \
735                       "st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)")
736 #endif
737 
738 #endif
739 
740 #endif
741 
742