1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36
37 #include <climits>
38 #include <cstdarg>
39
40 // ICU PATCH: Customize header file paths for ICU.
41
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-cached-powers.h"
44 #include "double-conversion-ieee.h"
45 #include "double-conversion-strtod.h"
46
47 // ICU PATCH: Wrap in ICU namespace
48 U_NAMESPACE_BEGIN
49
50 namespace double_conversion {
51
52 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
53 // 2^53 = 9007199254740992.
54 // Any integer with at most 15 decimal digits will hence fit into a double
55 // (which has a 53bit significand) without loss of precision.
56 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
57 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
58 // 2^64 = 18446744073709551616 > 10^19
59 static const int kMaxUint64DecimalDigits = 19;
60
61 // Max double: 1.7976931348623157 x 10^308
62 // Min non-zero double: 4.9406564584124654 x 10^-324
63 // Any x >= 10^309 is interpreted as +infinity.
64 // Any x <= 10^-324 is interpreted as 0.
65 // Note that 2.5e-324 (despite being smaller than the min double) will be read
66 // as non-zero (equal to the min non-zero double).
67 static const int kMaxDecimalPower = 309;
68 static const int kMinDecimalPower = -324;
69
70 // 2^64 = 18446744073709551616
71 static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
72
73
74 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
75 static const double exact_powers_of_ten[] = {
76 1.0, // 10^0
77 10.0,
78 100.0,
79 1000.0,
80 10000.0,
81 100000.0,
82 1000000.0,
83 10000000.0,
84 100000000.0,
85 1000000000.0,
86 10000000000.0, // 10^10
87 100000000000.0,
88 1000000000000.0,
89 10000000000000.0,
90 100000000000000.0,
91 1000000000000000.0,
92 10000000000000000.0,
93 100000000000000000.0,
94 1000000000000000000.0,
95 10000000000000000000.0,
96 100000000000000000000.0, // 10^20
97 1000000000000000000000.0,
98 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
99 10000000000000000000000.0
100 };
101 static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
102 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
103
104 // Maximum number of significant digits in the decimal representation.
105 // In fact the value is 772 (see conversions.cc), but to give us some margin
106 // we round up to 780.
107 static const int kMaxSignificantDecimalDigits = 780;
108
TrimLeadingZeros(Vector<const char> buffer)109 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
110 for (int i = 0; i < buffer.length(); i++) {
111 if (buffer[i] != '0') {
112 return buffer.SubVector(i, buffer.length());
113 }
114 }
115 return Vector<const char>(buffer.start(), 0);
116 }
117
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)118 static void CutToMaxSignificantDigits(Vector<const char> buffer,
119 int exponent,
120 char* significant_buffer,
121 int* significant_exponent) {
122 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
123 significant_buffer[i] = buffer[i];
124 }
125 // The input buffer has been trimmed. Therefore the last digit must be
126 // different from '0'.
127 DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
128 // Set the last digit to be non-zero. This is sufficient to guarantee
129 // correct rounding.
130 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
131 *significant_exponent =
132 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
133 }
134
135
136 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
137 // If possible the input-buffer is reused, but if the buffer needs to be
138 // modified (due to cutting), then the input needs to be copied into the
139 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)140 static void TrimAndCut(Vector<const char> buffer, int exponent,
141 char* buffer_copy_space, int space_size,
142 Vector<const char>* trimmed, int* updated_exponent) {
143 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
144 Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
145 exponent += left_trimmed.length() - right_trimmed.length();
146 if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
147 (void) space_size; // Mark variable as used.
148 DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
149 CutToMaxSignificantDigits(right_trimmed, exponent,
150 buffer_copy_space, updated_exponent);
151 *trimmed = Vector<const char>(buffer_copy_space,
152 kMaxSignificantDecimalDigits);
153 } else {
154 *trimmed = right_trimmed;
155 *updated_exponent = exponent;
156 }
157 }
158
159
160 // Reads digits from the buffer and converts them to a uint64.
161 // Reads in as many digits as fit into a uint64.
162 // When the string starts with "1844674407370955161" no further digit is read.
163 // Since 2^64 = 18446744073709551616 it would still be possible read another
164 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)165 static uint64_t ReadUint64(Vector<const char> buffer,
166 int* number_of_read_digits) {
167 uint64_t result = 0;
168 int i = 0;
169 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
170 int digit = buffer[i++] - '0';
171 DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
172 result = 10 * result + digit;
173 }
174 *number_of_read_digits = i;
175 return result;
176 }
177
178
179 // Reads a DiyFp from the buffer.
180 // The returned DiyFp is not necessarily normalized.
181 // If remaining_decimals is zero then the returned DiyFp is accurate.
182 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)183 static void ReadDiyFp(Vector<const char> buffer,
184 DiyFp* result,
185 int* remaining_decimals) {
186 int read_digits;
187 uint64_t significand = ReadUint64(buffer, &read_digits);
188 if (buffer.length() == read_digits) {
189 *result = DiyFp(significand, 0);
190 *remaining_decimals = 0;
191 } else {
192 // Round the significand.
193 if (buffer[read_digits] >= '5') {
194 significand++;
195 }
196 // Compute the binary exponent.
197 int exponent = 0;
198 *result = DiyFp(significand, exponent);
199 *remaining_decimals = buffer.length() - read_digits;
200 }
201 }
202
203
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)204 static bool DoubleStrtod(Vector<const char> trimmed,
205 int exponent,
206 double* result) {
207 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
208 // Avoid "unused parameter" warnings
209 (void) trimmed;
210 (void) exponent;
211 (void) result;
212 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
213 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
214 // result is not accurate.
215 // We know that Windows32 uses 64 bits and is therefore accurate.
216 return false;
217 #else
218 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
219 int read_digits;
220 // The trimmed input fits into a double.
221 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
222 // can compute the result-double simply by multiplying (resp. dividing) the
223 // two numbers.
224 // This is possible because IEEE guarantees that floating-point operations
225 // return the best possible approximation.
226 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
227 // 10^-exponent fits into a double.
228 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
229 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
230 *result /= exact_powers_of_ten[-exponent];
231 return true;
232 }
233 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
234 // 10^exponent fits into a double.
235 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
236 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
237 *result *= exact_powers_of_ten[exponent];
238 return true;
239 }
240 int remaining_digits =
241 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
242 if ((0 <= exponent) &&
243 (exponent - remaining_digits < kExactPowersOfTenSize)) {
244 // The trimmed string was short and we can multiply it with
245 // 10^remaining_digits. As a result the remaining exponent now fits
246 // into a double too.
247 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
248 DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
249 *result *= exact_powers_of_ten[remaining_digits];
250 *result *= exact_powers_of_ten[exponent - remaining_digits];
251 return true;
252 }
253 }
254 return false;
255 #endif
256 }
257
258
259 // Returns 10^exponent as an exact DiyFp.
260 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)261 static DiyFp AdjustmentPowerOfTen(int exponent) {
262 DOUBLE_CONVERSION_ASSERT(0 < exponent);
263 DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
264 // Simply hardcode the remaining powers for the given decimal exponent
265 // distance.
266 DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
267 switch (exponent) {
268 case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
269 case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
270 case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
271 case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
272 case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
273 case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
274 case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
275 default:
276 DOUBLE_CONVERSION_UNREACHABLE();
277 }
278 }
279
280
281 // If the function returns true then the result is the correct double.
282 // Otherwise it is either the correct double or the double that is just below
283 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)284 static bool DiyFpStrtod(Vector<const char> buffer,
285 int exponent,
286 double* result) {
287 DiyFp input;
288 int remaining_decimals;
289 ReadDiyFp(buffer, &input, &remaining_decimals);
290 // Since we may have dropped some digits the input is not accurate.
291 // If remaining_decimals is different than 0 than the error is at most
292 // .5 ulp (unit in the last place).
293 // We don't want to deal with fractions and therefore keep a common
294 // denominator.
295 const int kDenominatorLog = 3;
296 const int kDenominator = 1 << kDenominatorLog;
297 // Move the remaining decimals into the exponent.
298 exponent += remaining_decimals;
299 uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
300
301 int old_e = input.e();
302 input.Normalize();
303 error <<= old_e - input.e();
304
305 DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
306 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
307 *result = 0.0;
308 return true;
309 }
310 DiyFp cached_power;
311 int cached_decimal_exponent;
312 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
313 &cached_power,
314 &cached_decimal_exponent);
315
316 if (cached_decimal_exponent != exponent) {
317 int adjustment_exponent = exponent - cached_decimal_exponent;
318 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
319 input.Multiply(adjustment_power);
320 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
321 // The product of input with the adjustment power fits into a 64 bit
322 // integer.
323 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
324 } else {
325 // The adjustment power is exact. There is hence only an error of 0.5.
326 error += kDenominator / 2;
327 }
328 }
329
330 input.Multiply(cached_power);
331 // The error introduced by a multiplication of a*b equals
332 // error_a + error_b + error_a*error_b/2^64 + 0.5
333 // Substituting a with 'input' and b with 'cached_power' we have
334 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
335 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
336 int error_b = kDenominator / 2;
337 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
338 int fixed_error = kDenominator / 2;
339 error += error_b + error_ab + fixed_error;
340
341 old_e = input.e();
342 input.Normalize();
343 error <<= old_e - input.e();
344
345 // See if the double's significand changes if we add/subtract the error.
346 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
347 int effective_significand_size =
348 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
349 int precision_digits_count =
350 DiyFp::kSignificandSize - effective_significand_size;
351 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
352 // This can only happen for very small denormals. In this case the
353 // half-way multiplied by the denominator exceeds the range of an uint64.
354 // Simply shift everything to the right.
355 int shift_amount = (precision_digits_count + kDenominatorLog) -
356 DiyFp::kSignificandSize + 1;
357 input.set_f(input.f() >> shift_amount);
358 input.set_e(input.e() + shift_amount);
359 // We add 1 for the lost precision of error, and kDenominator for
360 // the lost precision of input.f().
361 error = (error >> shift_amount) + 1 + kDenominator;
362 precision_digits_count -= shift_amount;
363 }
364 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
365 DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
366 DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
367 uint64_t one64 = 1;
368 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
369 uint64_t precision_bits = input.f() & precision_bits_mask;
370 uint64_t half_way = one64 << (precision_digits_count - 1);
371 precision_bits *= kDenominator;
372 half_way *= kDenominator;
373 DiyFp rounded_input(input.f() >> precision_digits_count,
374 input.e() + precision_digits_count);
375 if (precision_bits >= half_way + error) {
376 rounded_input.set_f(rounded_input.f() + 1);
377 }
378 // If the last_bits are too close to the half-way case than we are too
379 // inaccurate and round down. In this case we return false so that we can
380 // fall back to a more precise algorithm.
381
382 *result = Double(rounded_input).value();
383 if (half_way - error < precision_bits && precision_bits < half_way + error) {
384 // Too imprecise. The caller will have to fall back to a slower version.
385 // However the returned number is guaranteed to be either the correct
386 // double, or the next-lower double.
387 return false;
388 } else {
389 return true;
390 }
391 }
392
393
394 // Returns
395 // - -1 if buffer*10^exponent < diy_fp.
396 // - 0 if buffer*10^exponent == diy_fp.
397 // - +1 if buffer*10^exponent > diy_fp.
398 // Preconditions:
399 // buffer.length() + exponent <= kMaxDecimalPower + 1
400 // buffer.length() + exponent > kMinDecimalPower
401 // buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)402 static int CompareBufferWithDiyFp(Vector<const char> buffer,
403 int exponent,
404 DiyFp diy_fp) {
405 DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
406 DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
407 DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
408 // Make sure that the Bignum will be able to hold all our numbers.
409 // Our Bignum implementation has a separate field for exponents. Shifts will
410 // consume at most one bigit (< 64 bits).
411 // ln(10) == 3.3219...
412 DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
413 Bignum buffer_bignum;
414 Bignum diy_fp_bignum;
415 buffer_bignum.AssignDecimalString(buffer);
416 diy_fp_bignum.AssignUInt64(diy_fp.f());
417 if (exponent >= 0) {
418 buffer_bignum.MultiplyByPowerOfTen(exponent);
419 } else {
420 diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
421 }
422 if (diy_fp.e() > 0) {
423 diy_fp_bignum.ShiftLeft(diy_fp.e());
424 } else {
425 buffer_bignum.ShiftLeft(-diy_fp.e());
426 }
427 return Bignum::Compare(buffer_bignum, diy_fp_bignum);
428 }
429
430
431 // Returns true if the guess is the correct double.
432 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)433 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
434 double* guess) {
435 if (trimmed.length() == 0) {
436 *guess = 0.0;
437 return true;
438 }
439 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
440 *guess = Double::Infinity();
441 return true;
442 }
443 if (exponent + trimmed.length() <= kMinDecimalPower) {
444 *guess = 0.0;
445 return true;
446 }
447
448 if (DoubleStrtod(trimmed, exponent, guess) ||
449 DiyFpStrtod(trimmed, exponent, guess)) {
450 return true;
451 }
452 if (*guess == Double::Infinity()) {
453 return true;
454 }
455 return false;
456 }
457
458 #if U_DEBUG // needed for ICU only in debug mode
IsDigit(const char d)459 static bool IsDigit(const char d) {
460 return ('0' <= d) && (d <= '9');
461 }
462
IsNonZeroDigit(const char d)463 static bool IsNonZeroDigit(const char d) {
464 return ('1' <= d) && (d <= '9');
465 }
466
467 #ifdef __has_cpp_attribute
468 #if __has_cpp_attribute(maybe_unused)
469 [[maybe_unused]]
470 #endif
471 #endif
AssertTrimmedDigits(const Vector<const char> & buffer)472 static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
473 for(int i = 0; i < buffer.length(); ++i) {
474 if(!IsDigit(buffer[i])) {
475 return false;
476 }
477 }
478 return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
479 }
480 #endif // needed for ICU only in debug mode
481
StrtodTrimmed(Vector<const char> trimmed,int exponent)482 double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
483 DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
484 DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
485 double guess;
486 const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
487 if (is_correct) {
488 return guess;
489 }
490 DiyFp upper_boundary = Double(guess).UpperBoundary();
491 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
492 if (comparison < 0) {
493 return guess;
494 } else if (comparison > 0) {
495 return Double(guess).NextDouble();
496 } else if ((Double(guess).Significand() & 1) == 0) {
497 // Round towards even.
498 return guess;
499 } else {
500 return Double(guess).NextDouble();
501 }
502 }
503
Strtod(Vector<const char> buffer,int exponent)504 double Strtod(Vector<const char> buffer, int exponent) {
505 char copy_buffer[kMaxSignificantDecimalDigits];
506 Vector<const char> trimmed;
507 int updated_exponent;
508 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
509 &trimmed, &updated_exponent);
510 return StrtodTrimmed(trimmed, updated_exponent);
511 }
512
SanitizedDoubletof(double d)513 static float SanitizedDoubletof(double d) {
514 DOUBLE_CONVERSION_ASSERT(d >= 0.0);
515 // ASAN has a sanitize check that disallows casting doubles to floats if
516 // they are too big.
517 // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
518 // The behavior should be covered by IEEE 754, but some projects use this
519 // flag, so work around it.
520 float max_finite = 3.4028234663852885981170418348451692544e+38;
521 // The half-way point between the max-finite and infinity value.
522 // Since infinity has an even significand everything equal or greater than
523 // this value should become infinity.
524 double half_max_finite_infinity =
525 3.40282356779733661637539395458142568448e+38;
526 if (d >= max_finite) {
527 if (d >= half_max_finite_infinity) {
528 return Single::Infinity();
529 } else {
530 return max_finite;
531 }
532 } else {
533 return static_cast<float>(d);
534 }
535 }
536
Strtof(Vector<const char> buffer,int exponent)537 float Strtof(Vector<const char> buffer, int exponent) {
538 char copy_buffer[kMaxSignificantDecimalDigits];
539 Vector<const char> trimmed;
540 int updated_exponent;
541 TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
542 &trimmed, &updated_exponent);
543 exponent = updated_exponent;
544 return StrtofTrimmed(trimmed, exponent);
545 }
546
StrtofTrimmed(Vector<const char> trimmed,int exponent)547 float StrtofTrimmed(Vector<const char> trimmed, int exponent) {
548 DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
549 DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
550
551 double double_guess;
552 bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
553
554 float float_guess = SanitizedDoubletof(double_guess);
555 if (float_guess == double_guess) {
556 // This shortcut triggers for integer values.
557 return float_guess;
558 }
559
560 // We must catch double-rounding. Say the double has been rounded up, and is
561 // now a boundary of a float, and rounds up again. This is why we have to
562 // look at previous too.
563 // Example (in decimal numbers):
564 // input: 12349
565 // high-precision (4 digits): 1235
566 // low-precision (3 digits):
567 // when read from input: 123
568 // when rounded from high precision: 124.
569 // To do this we simply look at the neigbors of the correct result and see
570 // if they would round to the same float. If the guess is not correct we have
571 // to look at four values (since two different doubles could be the correct
572 // double).
573
574 double double_next = Double(double_guess).NextDouble();
575 double double_previous = Double(double_guess).PreviousDouble();
576
577 float f1 = SanitizedDoubletof(double_previous);
578 float f2 = float_guess;
579 float f3 = SanitizedDoubletof(double_next);
580 float f4;
581 if (is_correct) {
582 f4 = f3;
583 } else {
584 double double_next2 = Double(double_next).NextDouble();
585 f4 = SanitizedDoubletof(double_next2);
586 }
587 (void) f2; // Mark variable as used.
588 DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
589
590 // If the guess doesn't lie near a single-precision boundary we can simply
591 // return its float-value.
592 if (f1 == f4) {
593 return float_guess;
594 }
595
596 DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
597 (f1 == f2 && f2 != f3 && f3 == f4) ||
598 (f1 == f2 && f2 == f3 && f3 != f4));
599
600 // guess and next are the two possible candidates (in the same way that
601 // double_guess was the lower candidate for a double-precision guess).
602 float guess = f1;
603 float next = f4;
604 DiyFp upper_boundary;
605 if (guess == 0.0f) {
606 float min_float = 1e-45f;
607 upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
608 } else {
609 upper_boundary = Single(guess).UpperBoundary();
610 }
611 int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
612 if (comparison < 0) {
613 return guess;
614 } else if (comparison > 0) {
615 return next;
616 } else if ((Single(guess).Significand() & 1) == 0) {
617 // Round towards even.
618 return guess;
619 } else {
620 return next;
621 }
622 }
623
624 } // namespace double_conversion
625
626 // ICU PATCH: Close ICU namespace
627 U_NAMESPACE_END
628 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
629